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We consider a kinetic model of self-propelled particles with alignment interaction and
with precession about the alignment direction. We derive a hydrodynamic system for
the local density and velocity orientation of the particles. The system consists of the
conservative equation for the local density and a non-conservative equation for the ori-
entation. First, we assume that the alignment interaction is purely local and derive a
first-order system. However, we show that this system may lose its hyperbolicity. Under

the assumption of weakly nonlocal interaction, we derive diffusive corrections to the
first-order system which lead to the combination of a heat flow of the harmonic map
and Landau–Lifschitz–Gilbert dynamics. In the particular case of zero self-propelling
speed, the resulting model reduces to the phenomenological Landau–Lifschitz–Gilbert
equations. Therefore the present theory provides a kinetic formulation of classical micro-
magnetization models and spin dynamics.
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1. Introduction

The setting of this paper is the same as in Ref. 10 and considers a kinetic model
of self-propelled particles in three dimensions and its hydrodynamic limit. The
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particles are supposed to move with the same constant speed and their velocity
orientation (which are vectors of the two-dimensional sphere S2) tend to align to
the local average orientation, with some noise. This model has been proposed as
a kinetic formulation of the Vicsek particle model.28 In this paper, we investigate
how the addition of a precession force around the local average orientation modifies
the resulting kinetic and hydrodynamic models.

The derivation of the hydrodynamic model proceeds like in Ref. 10 and relies on
both the determination of local equilibria in the form of Von-Mises–Fischer (VMF)
distributions and on the new concept of “Generalized Collision Invariants” (GCI)
which allows for a non-conservative closure. In this paper, we show that the VMF
equilibria are still equilibrium states of the system with precession and we extend the
derivation of the GCIs to this system. As in Ref. 10, the resulting hydrodynamics
(later on referred to as hydrodynamic model for self-alignment with precession)
consists of a conservation law for the density and a non-conservative equation for
the velocity orientation. In contrast to Ref. 10, the velocity orientation equation
contains an additional term which accounts for the influence of the precession force
and which results in the loss of hyperbolicity of the model as soon as the precession
force is nonzero. This loss of hyperbolicity occurs when waves propagate in the
same direction as that of the average velocity direction.

In order to stabilize the model, we introduce a weak nonlocality in the alignment
interaction: the local average which determines the alignment direction is now taken
over by a certain spatial extension around the particle. If the spatial extension of
this local average is scaled like the square root of the alignment mean free path ε,
then, the alignment direction possesses a small correction of order ε to the local
average direction. This correction involves the Laplacian of the velocity orientation
and results in diffusion terms in the macroscopic equation. Due to the precession
force, this diffusion term has two contributions: the first one corresponds to the heat
flow for harmonic maps; the second one is in the form of a Landau–Lifschitz–Gilbert
term.

In the particular case of zero speed, the resulting model reduces to the phe-
nomenological Landau–Lifschitz–Gilbert equations. Therefore the present theory
provides a kinetic formulation of classical micromagnetization models and spin
dynamics.4

In the nonlocal alignment interaction, we also include a small (of order ε) repul-
sive force which, in the macroscopic model, gives rise to both an additional pressure
force and a pressure precession term.

The Vicsek model28 has been proposed as a model for the interaction of individ-
uals among animal societies such as fish schools, bird flocks, herds of mammalians,
etc. (see also Refs. 1, 2, 8 and 17). It is a particle model (or “Individual-Based
Model” or “Agent-Based model”) which consists in an Ordinary Differential Equa-
tion system for the particle positions and velocities. As the number of particles
increases, its computational cost increases more than linearly and becomes pro-
hibitive for large particle numbers. The Vicsek model is set up in a time-discrete
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framework. A time-continuous version of the Vicsek model has been proposed in
Ref. 10 and a kinetic model has been deduced from it on formal grounds. The rig-
orous derivation of this kinetic model has been performed in Ref. 3. In this paper,
we will directly start from the kinetic level.

For the modeling of systems consisting of a large number of individuals, it is more
efficient to use hydrodynamic models, which describe the system by macroscopic
averages. Many such models exist7,14,20,21,26,27 but few of them are rigorously
derived from particle or kinetic dynamics. The first rigorous derivation of the hydro-
dynamic limit of the Vicsek model is done in Ref. 10 (earlier phenomenological
derivations can be found in Refs. 18, 24 and 25 but do not lead to the same model).
The resulting hydrodynamic model has also been found in the hydrodynamics of the
so-called Persistent Turning Walker model11 of fish behavior, where particles inter-
act through curvature control. Diffusive corrections to the hydrodynamic model
have also been computed in Ref. 12 through a Chapman–Enskog expansion up to
the second order. Other macroscopic models of swarming particle systems derived
from kinetic theory can be found e.g. in Refs. 5 and 6. In particular, variants of the
kinetic model of Ref. 10 and its hydrodynamics have been proposed. In Ref. 15,
the influence of a vision angle and dependency of the alignment frequency upon
the local density has been investigated. In Refs. 9 and 16, the modification of the
normalization constant of the alignment force results in phase transitions from dis-
ordered to ordered equilibria as the density increases and reaches a threshold. In
the spatially homogeneous case, these phase transition models are analogs of the
Doi–Onsager13,22 and Maier–Saupe19 models for phase transition in polymers. This
makes a strong difference in the resulting macroscopic models as compared with
the ones we are presenting here.

The organization of the paper is as follows. In Sec. 2, we set up the kinetic
model and discuss the equilibria and GCIs. In Sec. 3, the hydrodynamic limit
is established. The hyperbolicity of the resulting model is investigated in Sec. 4.
Then, the weakly nonlocal model is derived in Sec. 5. Finally, a conclusion is drawn
in Sec. 6.

2. Setting of the Problem and Preliminaries

2.1. The kinetic model

The starting point is the following kinetic model for a distribution function f(x, v, t),
where x ∈ R3, v ∈ S2, t ≥ 0:

fε
t + cv · ∇xf

ε =
1
ε
∇v · [−(Pv⊥Ωfε)fε + d∇vf

ε + α(Ωfε × v)fε]

:=
1
ε
Q(fε)

:=
1
ε
(Q0(fε) +R(fε)), (2.1)
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where

Q0(f) = ∇v · [−(Pv⊥Ωf )f + d∇vf ],

R(f) = α∇v · [(Ωf × v)f ].

Q0(f) is the operator studied in Ref. 10. R(f) is the precession operator about
an axis which is that of the average particle velocity. c ≥ 0 is the speed of the
self-propelled particles. We let Pv⊥ = Id − v ⊗ v be the projection operator onto
the plane normal to v and

ρf =
∫

S2
f(v)dv, Ωf =

∫
S2 f(v)vdv

|
∫

S2f(v)vdv| ,

the density and mean velocity direction associated to f . We define the equilibria
(Von-Mises–Fischer distribution):

FΩ =
exp(βv · Ω)∫

S2 exp(βv · Ω)dv
,

with β = 1/d. We note the compatibility relation:

ρρFΩ = ρ, ΩρFΩ = Ω.

We define

Mf = ρfFΩf
,

the equilibrium distribution associated to f .

2.2. Equilibria

In this section, we investigate the solutions of the equation Q(f) = 0, which are
the so-called local equilibria of the kinetic model.

Proposition 2.1. We have:

Q(f) = 0 ⇔ ∃ ρ ≥ 0, ∃Ω ∈ S2, such that f = ρFΩ.

Proof. We note the following properties:∫
S2
Q0(f)

f

Mf
dv = −d

∫
S2

∣∣∣∣∇v

(
f

Mf

)∣∣∣∣
2

Mf dv ≤ 0,

∫
S2
R(f)

f

Mf
dv = −α

∫
S2

(Ωf × v) ·
[
∇vf

Mf
− (Pv⊥Ωf )

f

Mf

]
f(v)dv = 0.

The first line is proved in Ref. 10. To prove the second line, we remark that ∇vMf =
βPv⊥ωMf , (Ωf × v) · (Pv⊥Ωf ) = 0 and that the first term can be written as

−α
2

2

∫
S2
∇v

[
(Ωf × v)

f2

Mf

]
dv = 0.
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Then, if Q(f) = 0, we have

0 =
∫

S2
Q(f)

f

Mf
dv = −d

∫
S2

∣∣∣∣∇v

(
f

Mf

)∣∣∣∣
2

Mf dv.

This implies that f
Mf

is a constant, and that therefore, f is of the form ρFΩ for a
given ρ ≥ 0, Ω ∈ S2. Conversely, by the compatibility relation, it is obvious that
f = ρFΩ satisfies Q(f) = 0.

Remark 2.1. We comment on the connection between this model and rod-like
polymers. In the case of rod-like polymers, the interaction operator is written

∇v · [(−∇vφ+ w × v)f + d∇vf ],

where φ(v) is a potential and w is the precession direction. In general, finding
equilibria for polymer models is difficult.23 Here, we deal with the special case where
φ(v) = −v ·w which makes this computation possible. In general, the computation
is possible if the level curves of φ are invariant under precession rotation.

2.3. Generalized collisions invariants

We recall the definition of a generalized collision invariant (GCI) (see Ref. 10).
First, we define the collision operator

Q(f,Ω) = ∇v · [−(Pv⊥Ω)f + d∇vf + α(Ω × v)f ],

where now Ω ∈ S2 is not necessarily equal to Ωf . For given Ω, Q(·,Ω) is a linear
operator and we will also consider its formal adjoint Q∗(·,Ω). Then, we have

Definition 2.1. For given Ω ∈ S2, a function ψΩ(v) is said to be a GCI associated
to Ω iff the following property holds:∫

S2
Q(f,Ω)ψΩdv = 0, ∀ f such that Ωf = ±Ω.

We note that the condition Ωf = ±Ω is a linear condition on f which can
equivalently be written A ·

∫
S2 f(v)vdv = 0, for all vectors A such that A · Ω = 0.

On the other hand, we have∫
S2

Q(f,Ω)ψΩdv =
∫

S2
Q∗(ψΩ,Ω)fdv.

Therefore, that ψΩ is a GCI is equivalent to

∃A ∈ R3 such that A · Ω = 0 and Q∗(ψΩ,Ω) = A · v,

or

(Pv⊥Ω) · ∇vψΩ + d∆vψΩ − α(Ω × v) · ∇vψΩ = A · v.
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In spherical coordinates (with polar axis Ω, latitude θ ∈ [0, π] and longitude ϕ ∈
[0, 2π]), this equation is written (dropping the index Ω):

−sin θ ∂θψ + d

[
1

sin θ
∂θ(sin θ∂θψ) +

1
sin2 θ

∂2
ϕψ

]

−α sin θ ∂ϕψ = A1 sin θ cosϕ+A2 sin θ sinϕ, (2.2)

where A = (A1, A2, 0) are the coordinates of A, in an orthonormal coordinate basis
(e1, e2,Ω).

Proposition 2.2. The set CΩ of the GCIs associated to Ω is a vector space of
dimension 3 spanned by {1, ψ(1), ψ(2)}, where ψ(k) is associated to A = ek, for
k = 1, 2. Furthermore,

ψ(k)(θ, ϕ) = ψ
(k)
1 (θ) cosϕ+ ψ

(k)
2 (θ) sinϕ, k = 1, 2

and

ψ
(2)
1 = −ψ(1)

2 , ψ
(2)
2 = ψ

(1)
1 .

Finally, (ψ(1)
1 , ψ

(1)
2 ) satisfies the following elliptic system:

−sin θ ∂θψ
(1)
1 + d

[
1

sin θ
∂θ(sin θ ∂θψ

(1)
1 ) − 1

sin2 θ
ψ

(1)
1

]
− α sin θ ψ(1)

2 = sin θ, (2.3)

−sin θ ∂θψ
(1)
2 + d

[
1

sin θ
∂θ(sin θ ∂θψ

(1)
2 ) − 1

sin2 θ
ψ

(1)
2

]
+ α sin θ ψ(1)

1 = 0. (2.4)

(ψ(2)
1 , ψ

(2)
2 ) satisfies the same system with right-hand sides 0 and sin θ for the first

and second equations respectively. The elliptic system has a unique zero-average
solution, which defines ψ(k) uniquely.

Proof. The reduction of (2.2) to (2.3), (2.4) follows from using Fourier transform
in the ϕ variable. To solve this system, we construct the complex-valued function
ψ̃(k)(θ) = ψ

(k)
1 (θ) + iψ

(k)
2 (θ). ψ̃(1) satisfies the complex-valued elliptic problem:

−sin θ ∂θ ψ̃
(1) + d

[
1

sin θ
∂θ(sin θ ∂θψ̃

(1)) − 1
sin2 θ

ψ̃(1)

]
+ iα sin θ ψ̃(1) = sin θ,

whereas ψ̃(2) satisfies the same equation with right-hand side i sin θ. Since the
imaginary part of the operator is skew-adjoint, it does not modify the energy iden-
tity. Therefore, the same theory as in Ref. 10 applies and shows the existence and
uniqueness of the solution in the space of zero average functions. The remaining
part of the statement follows easily.
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3. Hydrodynamic Limit

The following theorem establishes the limit ε→ 0.

Theorem 3.1. We assume that fε → f0 as smoothly as needed. Then, we have

f0 = ρFΩ, (3.1)

where ρ = ρ(x, t) and Ω = Ω(x, t) satisfy the following system

∂tρ+ cc1∇x(ρΩ) = 0, (3.2)

ρ(∂tΩ + cc2 cos δ(Ω · ∇x)Ω + cc2 sin δΩ × ((Ω · ∇x)Ω)) + cdPΩ⊥∇xρ = 0. (3.3)

The coefficient c1 is defined by

c1 =
∫

S2
FΩ(v)(v · Ω)dv =

∫
S2 exp(βv · Ω)(v · Ω)dv∫

S2 exp(βv · Ω)dv
. (3.4)

The coefficients c2 and δ are defined as follows. First, define ak and bk for k =
1, 2 by

ak =
1
2

∫
θ∈[0,π]

FΩ(cos θ)ψ(1)
k (θ) sin2 θ dθ, k = 1, 2, (3.5)

bk =
1
2

∫
θ∈[0,π]

FΩ(cos θ)ψ(1)
k (θ) cos θ sin2 θ dθ, k = 1, 2, (3.6)

where ψ(1)
k are the GCIs found in Proposition 2.2. Then, introducing (ρa, θa), (ρb, θb)

the polar coordinates of the vectors (a1, a2) and (b1, b2), i.e.

a1 + ia2 = ρae
iθa , b1 + ib2 = ρbe

iθb ,

c2 and δ are defined by

c2 =
ρb

ρa
, δ = θb − θa. (3.7)

Remark 3.1. Model (3.2) and (3.3) will be referred to as the hydrodynamic model
for self-alignment interactions with precession.

Remark 3.2. We note the following identities:

(Ω · ∇x)Ω = (∇x × Ω) × Ω,

Ω × ((∇x × Ω) × Ω) = PΩ⊥(∇x × Ω).

Remark 3.3. The reason for keeping the dependence upon the speed c explicit is
that we will later investigate the case c = 0.

Proof. Letting ε→ 0 in (2.1) and using Proposition 2.1, we get that Q(fε) → 0 =
Q(f0), and that Eq. (3.1) is satisfied. Now, we look for the equations satisfied by
(ρ,Ω) and for this purpose, we use the GCI.
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According to Proposition 2.2, 1 is a classical collision invariant. Therefore,
multiplying (2.1) by 1 and letting ε→ 0, we get the mass conservation Eq. (3.2).

Now, we successively multiply (2.1) by the GCIs ψ(k), k = 1, 2 associated to the
polar vector Ωfε . From the fact that ψ(k) ∈ CΩfε, we get that∫

S2
Q(fε)ψ(k)dv =

∫
S2

Q(fε,Ωfε)ψ(k)dv = 0, k = 1, 2,

thanks to Definition 2.1. We deduce that∫
S2
T (fε)ψ(k)dv = 0, k = 1, 2,

where Tf = ∂tf+ cv ·∇xf is the transport operator. Letting ε→ 0, we deduce that

T (k) :=
∫

S2
T (ρFΩ)ψ(k)dv = 0, k = 1, 2. (3.8)

We note that

ψ(1) = ψ1(θ) cosϕ+ ψ2(θ) sinϕ, (3.9)

ψ(2) = −ψ2(θ) cosϕ+ ψ1(θ) sinϕ, (3.10)

where we define ψ1 = ψ
(1)
1 and ψ2 = ψ

(1)
2 for simplicity.

A simple computation10 shows that

T (ρFΩ) = FΩ{∂tρ+ c(v · ∇x)ρ+ βρ(v · (∂t + cv · ∇x)Ω)}.

We decompose

v = v⊥ + v‖, v⊥ = PΩ⊥v, v‖ = (v · Ω)Ω.

In spherical coordinate system, we have

v⊥ = (sin θ cosϕ, sin θ sinϕ, 0)T , v‖ = (0, 0, cos θ).

Therefore, v⊥ is an odd degree trigonometric polynomial of ϕ, while v‖ is an even
degree such polynomial. We decompose T (ρFΩ) into even and odd degree trigono-
metric polynomials in ϕ using the above-defined decomposition of v. We get:

T (ρFΩ) = Te + To,

To = FΩ{cv⊥ · ∇xρ+ βρv⊥ · (∂t + c(v · Ω)Ω · ∇x)Ω},
(3.11)

where we have used that v‖ · ((v⊥ · ∇x)Ω) = 0 because |Ω| = 1. We can write

To = FΩv⊥ ·D(v · Ω) = FΩ sin θ(cosϕD1(cos θ) + sinϕD2(cos θ)),

with

D(v · Ω) = c∇xρ+ βρ(∂t + c(v · Ω)Ω · ∇x)Ω (3.12)
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and D = (D1, D2, D3) are the coordinates of D in the Cartesian coordinate basis
associated to the definitions of the angles (θ, ϕ).

Now, inserting (3.11), (3.12) into (3.8), and noting that the odd degree polyno-
mial in ϕ vanish away upon integration with respect to ϕ ∈ [0, 2π], we get,

T (1) =
∫

θ∈[0,π],ϕ∈[0,2π]

FΩ(cos θ)(cosϕD1(cos θ) + sinϕD2(cos θ))

· (ψ1(θ) cosϕ+ ψ2(θ) sinϕ) sin2 θ dθ dϕ,

T (2) =
∫

θ∈[0,π],ϕ∈[0,2π]

FΩ(cos θ)(cosϕD1(cos θ) + sinϕD2(cos θ))

· (−ψ2(θ) cosϕ+ ψ1(θ) sinϕ) sin2 θ dθ dϕ.

Performing the ϕ integration leads to:

T (1) =
1
2

∫
θ∈[0,π]

FΩ(cos θ)(D1(cos θ)ψ1(θ) +D2(cos θ)ψ2(θ)) sin2 θd θ, (3.13)

T (2) =
1
2

∫
θ∈[0,π]

FΩ(cos θ)(−D1(cos θ)ψ2(θ) +D2(cos θ)ψ1(θ)) sin2 θ dθ. (3.14)

Now, introducing the matrices

[a] =

(
a1 a2

−a2 a1

)
, [b] =

(
b1 b2

−b2 b1

)

and

[A] =




a1 a2 0

−a2 a1 0

0 0 0


 , [B] =




b1 b2 0

−b2 b1 0

0 0 0


 ,

with ak and bk (k = 1, 2) defined at (3.5), (3.6) and inserting (3.12) into (3.13),
(3.14) leads to


T (1)

T (2)

0


 = [A]PΩ⊥(c∇xρ+ βρ∂tΩ) + βρc[B]PΩ⊥((Ω · ∇x)Ω) = 0. (3.15)

The matrix [a] being a similitude matrix, it is invertible and we can introduce the
matrix

[c2] = [a]−1[b] =

(
c21 c22

−c22 c21

)

and

[C2] =




c21 c22 0

−c22 c21 0

0 0 0


 .
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Multiplying the first two lines of the vector equation (3.15) by d[a]−1, we get:

ρ(∂tΩ + c[C2](Ω · ∇x)Ω) + cdPΩ⊥∇xρ = 0. (3.16)

This is the momentum equation.
The equation can be transformed using the fact that [b] and consequently [c2]

are similitude matrices. Therefore, we can write

[c2] = c2Rδ, (3.17)

where c2 and δ are given by (3.7) and

Rδ =

(
cos δ sin δ

−sin δ cos δ

)

is the rotation matrix of angle δ. Then, (3.16) can be equivalently written according
to (3.3), which ends the proof.

4. Hyperbolicity of the Hydrodynamic Model

In this section, we investigate the hyperbolicity of the hydrodynamic model for
self-alignment interactions with precession. For this purpose, we use the spherical
coordinates associated to a fixed Cartesian basis. In this basis, denoting by θ ∈ [0, π]
the latitude and ϕ ∈ [0, 2π] the longitude, we have

Ω = (sin θ cosϕ, sin θ sinϕ, cos θ)T ,

and we let Ωθ and Ωϕ be the derivatives of Ω with respect to θ and ϕ. We note that

|Ωθ| = 1, |Ωϕ| = sin θ.

We will use the formulas

∇x · Ω = Ωθ · ∇xθ + Ωϕ · ∇xϕ,

PΩ⊥a = (Ωθ · a)Ωθ +
(Ωϕ · a)
sin2 θ

Ωϕ,

(Ω · ∇x)Ω = ((Ω · ∇x)θ)Ωθ + ((Ω · ∇x)ϕ)Ωϕ,

Ω × (Ω · ∇x)Ω =
((Ω · ∇x)θ)

sin θ
Ωϕ − sin θ((Ω · ∇x)ϕ)Ωθ,

Ωt = Ωθθt + Ωϕϕt,

where a is an arbitrary vector.
As in Ref. 10, we use the time rescaling t′ = cc1t and introduce

a =
c2
c1
, λ2 =

d

c1
, ρ̂ = λ ln ρ.
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With this change of variables and unknowns, system (3.2) and (3.3) is written
(dropping the primes on t):

ρ̂t + Ω · ∇xρ̂+ λ∇x · Ω = 0,

Ωt + a(cos δ(Ω · ∇x)Ω + sin δΩ × ((Ω · ∇x)Ω)) + λPΩ⊥∇xρ̂ = 0,

or,

ρ̂t + Ω · ∇xρ̂+ λ(Ωθ · ∇xθ + Ωϕ · ∇xϕ) = 0, (4.1)

θt + a(cos δ(Ω · ∇x)θ − sin δ sin θ(Ω · ∇x)ϕ) + λΩθ · ∇xρ̂ = 0, (4.2)

ϕt + a(cos δ(Ω · ∇x)ϕ+
sin δ
sin θ

(Ω · ∇x)θ) + λ
Ωϕ · ∇xρ̂

sin2 θ
= 0. (4.3)

In passing, we note a mistake in formula (4.70) of Ref. 10 where the last term
should be divided by sin2 θ. This mistake does not affect the eigenvalues of the
system which are correct.

Introducing

U =



ρ̂

θ

ϕ


 ,

this system is written

Ut +A(U)Ux +B(U)Uy + C(U)Uz = 0,

in Cartesian coordinates x = (x, y, z). Assuming translation invariance along the z
direction, the system is reduced to

Ut + C(U)Uz = 0,

with

C(U) =




cos θ −λ sin θ 0

−λ sin θ a cos δ cos θ −a sin δ sin θ cos θ

0
a sin δ cos θ

sin θ
a cos δ cos θ


 .

The system is hyperbolic, if and only if the eigenvalues of C(U) are real for all
values of U . The characteristic polynomial of C(U) is given by

P (X) = X3 − (1 + 2a cos δ) cos θX2 + (a(a+ 2 cos δ) cos2 θ − λ2 sin2 θ)X

+ a(λ2 cos δ sin2 θ − a cos2 θ) cos θ.

We note that in the case sin δ = 0, we recover the results of Ref. 10 where all
eigenvalues are real. In the present sin δ 
= 0 case, the roots of P (X) cannot be
analytically computed. However, they are analytically computable in the two cases
θ = 0 and θ = π/2.
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Case θ = π/2. Then, P (X) = X(X−λ)(X+λ) has real rootsX = 0 andX = ±λ.
These roots are the same as in the δ = 0 case.10

Case θ = 0. Then, P (X) = (X − 1)((X − a cos δ)2 + a2 sin2 δ) has one real root
X = 1 and two complex conjugate roots X = ae±iδ. Therefore, as soon as sin δ 
= 0,
the system loses its hyperbolicity near θ = 0.

Due to the loss of hyperbolicity of the hydrodynamic model, we look for diffusive
corrections by introducing a nonlocal evaluation of the alignment direction. This
task is performed in the next section.

5. Taking into Account Nonlocality in the Interaction

Now, we assume that the Ωf vector is replaced by a nonlocal evaluation denoted
by Ω̃η

f . So, we introduce the following kinetic model:

ft + cv · ∇xf =
1
ε
∇v · [−(Pv⊥ Ω̃η

f )f + d∇vf + α(Ω̃η
f × v)f ], (5.1)

where

Ω̃η
f =

jη
f + η2rη

f

|jη
f + η2rη

f |
,

jη
f =

∫
(x′,v′)∈R3×S2

K

(
|x′ − x|

η

)
v′f(x′, v′, t)dv′ dx′,

rη
f = −∇x

∫
(x′,v′)∈R3×S2

Φ
(
|x′ − x|

η

)
f(x′, v′, t)dv′ dx′,

is a force term. The first term (given by jη
f ) expresses the alignment interaction

(like in the Vicsek dynamics) while the second term (given by rη
f ) expresses the

repulsion interaction.
We denote: ∫

x′∈Rn

K(|ξ|)dξ = k0,

1
2n

∫
x′∈Rn

K(|ξ|)|ξ|2 dξ = k,

∫
x′∈Rn

Φ(|ξ|)dξ = φ.

We can always assume that k0 = 1. Repulsive interaction here means that we
assume φ ≥ 0. Defining uf by

ρfuf =
∫

v′∈S2
f(v′)v′ dv′,
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we have the following Taylor expansion of vη
f :

Ωη
f = Ωf + η2 1

ρf |uf |
�f + o(η2), �f := PΩ⊥

f
(k∆(ρfuf) − φ∇xρf ).

Inserting this expression into the kinetic equation (2.1), we get

ft + cv · ∇xf =
1
ε
∇v · [−(Pv⊥Ωf)f + d∇vf + α(Ωf × v)f ]

+
η2

ε

1
ρf |uf |

∇v · [−(Pv⊥�f )f + α(�f × v)f ] + o

(
η2

ε

)
.

Now we let η2

ε = 1 and ε → 0. Dropping terms of order o(1) or smaller, this
leads to the following problem:

fε
t + cv · ∇xf

ε =
1
ε
∇v · [−(Pv⊥Ωfε)fε + d∇vf

ε + α(Ωfε × v)fε]

+
1

ρfε|ufε |∇v · [−(Pv⊥�fε)fε + α(�fε × v)fε]

=
1
ε
Q(fε) − L(fε), (5.2)

with

Lf = − 1
ρf |uf |

∇v · [−(Pv⊥�f )f + α(�f × v)f ].

The following theorem establishes the formal ε→ 0 limit.

Theorem 5.1. We assume that fε → f0 as smoothly as needed. Then, we have

f0 = ρFΩ, (5.3)

where ρ = ρ(x, t) and Ω = Ω(x, t) satisfy the following system:

∂tρ+ cc1∇x(ρΩ) = 0, (5.4)

ρ{∂tΩ + cc2 cos δ(Ω · ∇x)Ω + cc2 sin δΩ × ((Ω · ∇x)Ω)} + cdPΩ⊥∇xρ

+
1
c1

{−(2d+ c2 cos δ)PΩ⊥(kc1∆(ρΩ) − φ∇xρ)

+ (c2 sin δ − α)(Ω × (kc1∆(ρΩ) − φ∇xρ))} = 0, (5.5)

and the coefficients c1, c2 and δ are the same as in Theorem 3.1. We restrict our-
selves to the case 2d + c2 cos δ ≥ 0 which is the condition for the system to be
stable.

Remark 5.1. A special case is c = 0, ρ = 1, φ = 0. This leads to

∂tΩ + k(2d+ c2 cos δ)Ω × (Ω × ∆Ω) + k(c2 sin δ − α)(Ω × ∆Ω) = 0,

which is the classical Landau–Lifschitz–Gilbert equation, provided that 2d +
c2 cos δ ≥ 0.
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Proof. Since Lf is a divergence in velocity space, the mass conservation equation is
unaffected by this additional term compared to Sec. 3. The additional contribution
of Lf to the momentum equation is a term of the form:

L(k) :=
∫

S2
L(ρFΩ)ψ(k)dv, k = 1, 2, (5.6)

on the left-hand side of (3.15). We have

L(ρFΩ) = − 1
c1
∇v · [−(Pv⊥�)FΩ + α(�× v)FΩ],

where

� := �ρFΩ := PΩ⊥(kc1∆(ρΩ) − φ∇xρ).

Therefore, using Green’s formula, we get:

L(k) =
1
c1

∫
S2

[−(Pv⊥�) + α(�× v)] · ∇vψ
(k)FΩ dv

=
1
c1

∫
S2

[−�+ α(�× v)] · ∇vψ
(k)FΩ dv = 0

=
1
c1

(∫
S2

[−∇vψ
(k) + α(v ×∇vψ

(k))]FΩ dv

)
· �.

Now, we use the formulas:∫
S2
∇vg dv = 2

∫
S2
vg dv,

∫
S2

(∇vg)h dv = 2
∫

S2
vgh dv −

∫
S2

(∇vh)g dv,

∫
S2

(v ×∇vg)h dv = −
∫

S2
(v ×∇vh)g dv,

for any pair of scalar functions g, h on S2. We get:

L(k) =
1
c1

(∫
S2

[−2vFΩ + ∇vFΩ − α(v ×∇vFΩ)]ψ(k) dv

)
· �.

Now, we note that ∇vFΩ = β(Pv⊥Ω)FΩ, which leads to

L(k) =
1
c1

(∫
S2

[−2v + β(Pv⊥Ω) − αβ(v × Ω)]ψ(k)FΩ dv

)
· �,

(we used that v × Ω = v × (Pv⊥Ω)). We use the decomposition v = v⊥ + v‖. Since
�⊥Ω and PΩ⊥Pv⊥Ω = −(v · Ω)v⊥, we can write:

L(k) =
1
c1

(∫
S2

[−(2 + β(v · Ω))v⊥ − αβ(v⊥ × Ω)]ψ(k)FΩ dv

)
· �.
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Introducing the coordinates � = (�1, �2, 0) in the Cartesian basis associated to Ω,
and decomposing v⊥ accordingly, we get:

L(k) =
1
c1

∫
S2

[−(2 + β cos θ)(cosϕ�1 + sinϕ�2)

−αβ(sinϕ�1 − cosϕ�2)]ψ(k)FΩ sin θ dv

=
1
c1

∫
S2

[(−(2 + β cos θ)�1 + αβ�2) cosϕ

+ (−(2 + β cos θ)�2 − αβ�1) sinϕ]ψ(k)FΩ sin θ dv.

Finally, using (3.9) and (3.10), we get:

L(1) =
1
c1

∫
S2

[(−(2 + β cos θ)�1 + αβ�2) cosϕ+ (−(2 + β cos θ)�2 − αβ�1) sinϕ]

· (ψ1(θ) cosϕ+ ψ2(θ) sinϕ)FΩ sin θ dv,

L(2) =
1
c1

∫
S2

[(−(2 + β cos θ)�1 + αβ�2) cosϕ+ (−(2 + β cos θ)�2 − αβ�1) sinϕ]

· (−ψ2(θ) cosϕ+ ψ1(θ) sinϕ)FΩ sin θ dv,

and performing the integration with respect to ϕ ∈ [0, 2π], we are led to

L(1) =
1

2c1

∫ π

0

[(−(2 + β cos θ)�1 + αβ�2)ψ1(θ)

+ (−(2 + β cos θ)�2 − αβ�1)ψ2(θ)]FΩ sin2 θ dθ,

L(2) =
1

2c1

∫ π

0

[−(−(2 + β cos θ)�1 + αβ�2)ψ2(θ)

+ (−(2 + β cos θ)�2 − αβ�1)ψ1(θ)]FΩ sin2 θ dθ.

In vector notations, this is written as:




L(1)

L(2)

0


 =

1
c1

{−(2[A] + β[B])�+ αβ[A](�× Ω)} .

Finally, collecting all terms leads to the following equation:

[A]PΩ⊥(c∇xρ+ βρ∂tΩ) + βρc[B]PΩ⊥ ((Ω · ∇x)Ω)

+
1
c1

{−(2[A] + β[B])�+ αβ[A](� × Ω)} = 0.
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Now, multiplying the first two lines of this vector equation by β[a]−1, we get

ρ(∂tΩ + c[C2](Ω · ∇x)Ω) + cdPΩ⊥∇xρ+
1
c1
{−(2dId + [C2])�+ α(�× Ω)} = 0,

or, expliciting the expression of �:

ρ(∂tΩ + c[C2](Ω · ∇x)Ω) + cdPΩ⊥∇xρ

+
1
c1
{−(2dId + [C2])PΩ⊥ (kc1∆(ρΩ) − φ∇xρ)

+α((kc1∆(ρΩ) − φ∇xρ) × Ω)} = 0.

Using (3.17), we can also write this equation in the form (5.5), which ends the proof
of the theorem.

6. Conclusion

In this paper, we have derived the hydrodynamic limit of a kinetic model of
self-propelled particles with alignment interaction and with precession about the
alignment direction. We have shown that the resulting system consists of a
conservative equation for the local density and a non-conservative equation for
the orientation. We have observed that this system may lose its hyperbolicity.
Then, we have provided an extension of the model including diffusion terms under
the assumption of weakly nonlocal interaction. In the particular case of zero self-
propelling speed, we have noted that the resulting model is nothing but the classi-
cal Landau–Lifschitz–Gilbert equation. Therefore the present theory provides one
of the very few (if not the only) kinetic justification of the phenomenological
Landau–Lifschitz–Gilbert equation. Future works in this direction will include the
sensitivity analysis of the hydrodynamic model in terms of the modeling param-
eters, the accounting for phase transitions, the influence of a vision angle, and
the inclusion of the particle interactions with a surrounding fluid in the perspec-
tive of modeling active particles suspensions. Another research direction consists in
investigating the mathematical structure of these models, prove well-posedness and
investigate its qualitative properties.
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