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HYDRODYNAMIC MODELS OF SELF-ORGANIZED DYNAMICS:
DERIVATION AND EXISTENCE THEORY∗
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Abstract. This paper is concerned with the derivation and analysis of hydrodynamic models
for systems of self-propelled particles subject to alignment interaction and attraction-repulsion. In-
troducing various scalings, the effects of the alignment and attraction-repulsion interactions give rise
to a variety of hydrodynamic limits. For instance, local alignment produces a pressure term at the
hydrodynamic limit whereas near-local alignment induces a viscosity term. Depending on the scal-
ings, attraction-repulsion either yields an additional pressure term or a capillary force (also termed
’Korteweg force’). The hydrodynamic limits are shown to be symmetrizable hyperbolic systems with
viscosity terms. A local-in-time existence result is proved in the 2D case for the viscous model and
in the 3D case for the inviscid model.
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1. Introduction. There has been an intense literature about the modeling of
interactions between individuals among animal societies such as fish schools, bird
flocks, herds of mammals, etc. We refer e.g. to [1, 2, 35, 9, 21] but an exhaustive
bibliography is out of reach. Among these models, the Vicsek model [40] has received
particular attention due to its simplicity and the universality of its qualitative features.
This model is a discrete particle model (or ’Individual-Based Model’ or ’Agent-Based
model’) which consists of a time-discretized set of Ordinary Differential Equations for
the particle positions and velocities. The velocities are supposed to be of constant
norm and are updated according to an alignment rule: each agent tries to align its
velocity to that of its neighbors in some sensing region. Some angular noise is added
to account for stochastic fluctuations. A time-continuous version of this model and
its kinetic formulation are available in [10, 13]. A rigorous derivation of this kinetic
model from the time-continuous Vicsek model can be found in [3].

The present work starts with an Individual-Based Model which appears to be a
generalization of the Vicsek model [40] with the addition of an attraction-repulsion
interaction potential (see e.g. [7, 10, 22]). Again, the self-propulsion speed is supposed
to be constant and identical for all the particles. Therefore, the velocity variable re-
duces to its orientation. In addition to the alignment rule which tends to relax the
particle velocities to their local orientation (already present in the original Vicsek
model [40]), the particle interactions involve an attraction-repulsion rule. It makes
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the particles move closer or farther away from each other according to whether the in-
teraction is attractive or repulsive. Typically, we will consider short-range attraction
and long-range repulsion, in the spirit of the three-zone model [2, 35, 9]. Addition-
ally, velocity orientations undergo a Brownian motion which describes the effect of
stochastic fluctuations. Therefore, this model can be seen as a continuous version of
the three zone model [2, 35, 9].

In [13], the hydrodynamic limit of the time-continuous Vicsek model is performed
through an asymptotic analysis of its kinetic version [3]. The resulting model is a sys-
tem of balance equations for the density and mean velocity orientation (or polarization
vector). The model has been later referred to as the Self-Organized Hydrodynamics
(SOH) and is studied numerically in [12, 29]. The main concern of the paper is to
study the modifications of the SOH model that are induced by (i) the introduction of
the attraction-repulsion force as described above and (ii) different scaling assumptions
about the size of the sensing region which involve a higher level of nonlocality. As
proved in [13], the strict combination of alignment and noise results in the appear-
ance of a pressure term in the SOH model. Introducing an attraction-repulsion force
and spanning various scaling assumptions on this force and on the size of the sensing
region, we obtain a variety of effects that are not encompassed in [13]. First, we try to
take a better account of the non-local character of the interaction forces than in [13].
To this aim, the scaling assumption relating the range of the interaction force to the
micro and macro-scopic scales is modified. The chosen scaling makes the interaction
range large compared to the microscopic scale but small compared to the macroscopic
one. The non-local character of the interaction force at the microscopic level results
in the appearance of higher order derivative terms, such as viscosity terms, at the
macroscopic level. The specific effect of the attraction-repulsion force in the hydrody-
namic limit is to add either an extra pressure term or a capillary (or Korteweg) force
term depending on the chosen scalings.

Beyond the statements of the models, we prove a local-in-time existence theorem
in the 2D case for the viscous model (when the non-local effects are retained) and
in the 3D case for the inviscid model (when the non-local effects are omitted). Both
proofs rely on a suitable symmetrization of the system and on the energy method.

Hydrodynamic models are attractive over particle ones due to their computational
efficiency. For this reason, many such models have been proposed in the literature
[5, 6, 8, 18, 27, 28, 37, 38]. However, most of them are phenomenological. [13] proposes
one of the first rigorous derivations of a hydrodynamic version of the Vicsek model
(see also [24, 32, 33] for phenomenological derivations). It has been expanded in [14] to
account for a model of fish behavior where particles interact through curvature control,
and in [15] to include diffusive corrections. Other variants have also been investigated.
For instance, [19] studies the influence of a vision angle and of the dependency of the
alignment frequency upon the local density. [11, 20] propose a modification of the
model which results in phase transitions from disordered to ordered equilibria as the
density increases and reaches a threshold, in a way similar to polymer models [17, 30].

The organization of the paper is as follows. In Section 2, we introduce the model
of self-propelled particles and set up the associated kinetic equation. We then discuss
various scalings which lead to the derivation of the studied hydrodynamic models. We
introduce four dimensionless parameters in the problem: the scaled interaction mean-
free path ε, the radius of the sensing region η, the noise intensity δ and the relative
strength between the attraction-repulsion and the alignment forces χ̃. The scaling
considered in [13] ignores the attraction-repulsion force (i.e. χ̃ = 0) and supposes
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that ε = η → 0 with δ = O(1). Here, we investigate four different scaling relations.

1. The weakly non-local interaction scaling without noise: η =
√
ε, δ = 0,

χ̃ = η2. The resulting model is a viscous version of the SOH model. We re-
call (see e.g. [13]) that the SOH model is a variant of the inviscid isothermal
compressible Euler equations where the fluid velocity is constrained to be of
unit norm. More precisely, in the SOH model, the unknown fluid velocity is
replaced by the fluid velocity direction (or polarization vector). As a result
of this constraint, the momentum balance equation is non-conservative. In
this scaling, we assume that the solutions of the kinetic equation are monoki-
netic. We justify this assumption by studying the space homogeneous kinetic
model and prove that the solutions converge on the fast ε time scale to the
monokinetic distribution. We also highlight the variational structure of this
space homogeneous kinetic model. Note that the scaling assumption η =

√
ε

is different from the one used in [13]. It corresponds to increasing the size of
the interaction region in the microscopic variables by a factor 1/

√
ε, as ε→ 0.

Therefore, more and more non-local effects are picked up in the hydrodynamic
limit. These non-local effects give rise to the viscosity term in the viscous
SOH model, which makes an original addition from previous works.

2. The local interaction scaling with noise. This is the scaling proposed in [13].
It is recalled here just for the sake of comparisons. It consists in letting
η ≪ ε, δ = O(1), χ̃ ≤ η2. The resulting model is the inviscid SOH model
(see presentation in the previous item).

3. The weakly non-local interaction scaling with noise. This scaling unifies the
two previous scalings. It consists in letting η =

√
ε, δ = O(1), χ̃ = η2. Again,

the resulting model is a viscous SOH model, but with modified coefficients as
compared to the first scaling. We note however, that in the zero noise limit
δ → 0, we recover the system obtained with the first scaling, which provides
another justification of the monokinetic assumption in the derivation of the
model.

4. Strong potential force scaling. This corresponds to η =
√
ε, δ = O(1), χ̃ = 1.

Therefore, here, the attraction repulsion force is of the same order as the
alignment force. However, we make the additional assumption that the zero-
th order moment of the potential is zero, which expresses some kind of balance
between the attraction and repulsion effects. Equivalently, we can say that
we modify the potential with van der Waals modification [39]. This results in
an SOH model with the addition of a term analog to the capillary force (or
Korteweg term [23]), induced from the attractive part of the potential.

In Section 3, we prove local well-posedness for all the models derived in Section 2,
except the last one (strong potential force scaling). All these systems have the same
form of a symmetrizable hyperbolic system with additional viscosity. In Section 3.1,
we prove the local-in-time existence of solutions for the viscous system in 2D and in
Section 3.2, we show the same result for the inviscid system in 3D based on the energy
method. Finally, a conclusion is drawn in Section 4.
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grant No. 1107291.
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2. Derivation of self-organized hydrodynamic models.

2.1. Individual-based model of self-alignment with attraction-
repulsion. The starting point of this study is an Individual-Based Model of particles
interacting through self-alignment [40] and attraction-repulsion [2, 35, 9]. Specifically,
we consider N particles xk ∈ Rn, k = 1, . . . , N , moving at a constant speed a > 0 with
direction vk ∈ Sn−1. Each particle adjusts its velocity to align with its neighbors or
to get closer to or further away from them. The evolution of each particle is modeled
by the following dynamics:

dxk
dt

= avk, (2.1)

dvk = Pv⊥

k
◦
(

σvk dt+
√
2d dBk

t

)

. (2.2)

Here, Pv⊥

k
= Id − vk ⊗ vk is the projection matrix onto the normal plane to vk. It

ensures that vk stays of norm 1. Bk
t are independent Brownian motions in Rn and the

stochastic differential equation (2.2) is to be understood in the Stratonovitch sense.
The quantities d and σ represent the noise and social force intensities respectively.
The social force describes attraction at large distances, repulsion at short distances
and alignment in the intermediate range, in accordance to the so-called three zone
model [2, 35, 9]. Both the alignment and attraction-repulsion rules are encoded in
the vector vk:

vk =
jk + χrk
|jk + χrk|

,

where jk counts for the alignment and rk for the attraction-repulsion:

jk =
1

N

N
∑

j=1

K(|xj − xk|)vj , (2.3)

rk = −∇x

( 1

N

N
∑

j=1

Φ(|x− xj |)
)∣

∣

∣

x=xk

= − 1

N

N
∑

j=1

Φ′(|xk − xj |)
xk − xj
|xk − xj |

, (2.4)

and χ measures the strength of the attraction-repulsion force relative to the alignment
force (and has physical dimension of a length). We denote by Φ′ the derivative of Φ
with respect to |x|. We assume that the kernel K is positive and that both kernels K
and Φ are integrable and that K and Φ are ’normalized’ in the following sense:

K ≥ 0,

∫

Rn

K(|x|) dx = 1,

∫

Rn

|Φ(|x|)| dx = 1. (2.5)

In addition, we assume that Φ tends to zero at infinity (i.e. Φ(r) → 0 when r → ∞).
We note that Φ′ can be negative in some regions (the repulsion regions) and positive
in other regions (the attraction regions). In figure 1, we give examples of functions K
and Φ modeling the popular three-zone model for fish behavior [2, 9, 31]. We make
the assumption that both potentials describe a certain interaction scale R and we
highlight this fact by writing

K(|x|) = 1

Rn
K̃
( |x|
R

)

, Φ(|x|) = 1

Rn
Φ̃
( |x|
R

)

,

where K̃ and Φ̃ are reference interaction kernels and R is the sensing radius.
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Fig. 1. The three-zone model (repulsion-alignment-attraction) can be viewed as a special choice
of kernel K and potential Φ.

When the number of particles becomes large (i.e. N → ∞), one can formally
derive the equation satisfied by the particle distribution function f(x, v, t) (i.e. the
probability distribution of the particles in phase-space (x, v)). Under suitable assump-
tions [3, 13, 36], f satisfies the following kinetic equation:

ft + av · ∇xf = −σ∇v · [(Pv⊥vf )f ] + d∆vf, (2.6)

where

vf =
jf + χrf
|jf + χrf |

, (2.7)

jf =
1

Rn

∫

x′,v′

K̃
( |x′ − x|

R

)

v′ f(x′, v′, t) dx′dv′, (2.8)

rf = − 1

Rn
∇x

∫

x′,v′

Φ̃
( |x′ − x|

R

)

f(x′, v′, t) dx′dv′, (2.9)

The operator ∇v denotes the tangential gradient on the sphere and ∆v is the Laplace-
Beltrami operator. Using this kinetic formulation, we want to explore the asymptotic
behavior of the model in different regimes. For this purpose, we introduce a scaling
of the physical variables. This is the purpose of the next section.

2.2. Scaling parameters. We now introduce dimensionless variables and scal-
ing assumptions. Let t0 be a time unit and let x0 = at0, f0 = 1/(x0)

n. We choose t0
in such a way that σt0 = 1 and introduce the quantity δ = dt0 = O(1). Introducing
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new variables x̃ = x/x0, t̃ = t/t0, f̃(x̃, v, t̃) = f(x, v, t)/f0, eq. (2.6) is written:

f̃t̃ + v · ∇x̃f̃ = −∇v ·
[

(Pv⊥vf̃ )f̃
]

+ δ∆vf̃ . (2.10)

In this choice of units, the influence of the social force and of the noise are of order
unity. We now introduce

R̃ =
R

x0
, χ̃ =

χ

x0
.

Then, eqs (2.7)-(2.9) are now written in dimensionless variables:

vf̃ =
j̃f̃ + χ̃r̃f̃

|j̃f̃ + χ̃r̃f̃ |
, (2.11)

j̃f̃ =

∫

x̃′,v′

K̃
( |x̃′ − x̃|

R̃

)

v′ f̃(x̃′, v′, t̃) dx̃′dv′, (2.12)

r̃f̃ = −∇x̃

∫

x̃′,v′

Φ̃
( |x̃′ − x̃|

R̃

)

f̃(x̃′, v′, t̃) dx̃′dv′, (2.13)

where j̃f̃ (x̃, t̃) = Rn jf (x, t) and r̃f̃ (x̃, t̃) = Rn rf (x, t).
We now introduce hydrodynamic scale. This means that we change the space and

time units to new ones x′0, t
′
0 which are large compared to the microscopic units x0,

t0. Specifically, we let ε ≪ 1 be a small parameter and define x′0 = x0/ε, t
′
0 = t0/ε.

By doing so, we change the space and time variables x̃ and t̃ to macroscopic variables
x̂ = εx̃, t̂ = εt̃ and define f̂(x̂, v, t̂) = ε−nf̃(x̃, v, t̃). Finally, we define

η = εR̃.

In all sections but Section 2.6, we scale the relative intensity of the attraction-repulsion
force to the alignment force χ̃ as:

χ̃ = η2. (2.14)

We refer to this scaling as the weak potential force scaling. In Section 2.6, this as-
sumption will be changed to χ̃ = 1 under van der Waals modification of the potential.
This other scaling is referred to as the strong potential force scaling.

Performing this new change of variables and dropping the hats on the variables
for the sake of simplicity, we are led to the following system for the kinetic distribution
function f(x, v, t):

ft + v · ∇xf =
1

ε

(

−∇v ·
[

(Pv⊥vηf )f
]

+ δ∆vf
)

, (2.15)

where, in the weak potential force scaling (2.14), we have:

vηf =
jηf + η2rηf
|jηf + η2rηf |

, (2.16)

jηf =

∫

(x′,v′)∈Rn×Sn−1

K

( |x′ − x|
η

)

v′ f(x′, v′, t) dx′ dv′, (2.17)

rηf = −∇x

∫

(x′,v′)∈Rn×Sn−1

Φ

( |x′ − x|
η

)

f(x′, v′, t) dx′ dv′. (2.18)
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Reminding that K is normalized by (2.5), we denote:

k =
1

2n

∫

ξ∈Rn

K(|ξ|) |ξ|2 dξ, Θ =

∫

ξ∈Rn

Φ(|ξ|) dξ.

The potential Φ is said to be globally repulsive if Θ ≥ 0. Indeed, we will see that
the introduction of the potential gives rise to an additional isothermal pressure force
associated to an equivalent temperature Θ in the SOH model. If Θ is negative, then
the SOH model may become nonhyperbolic. This occurs when particle attraction at
large distances overtakes particle repulsion at short distances. Such potentials are
thus referred to as globally attractive ones. We want to avoid them. Therefore, we
make the assumption of a globally repulsive potential, with Θ ≥ 0.

Defining the moments ρf and ρfuf of f by

ρf =

∫

v∈Sn−1

f(v) dv, ρfuf =

∫

v∈Sn−1

f(v) v dv,

we have the following Taylor expansion of the quantity vηf (given by (2.16)) in the
weak potential force scaling:

vηf = Ωf + η2
1

ρf |uf |
ℓf + o(η2), (2.19)

Ωf =
uf
|uf |

, ℓf = PΩ⊥

f
(k∆x(ρfuf)−Θ∇xρf ).

Inserting this expression into the kinetic equation (2.15), we get

ft + v · ∇xf = −1

ε
∇v · [(Pv⊥Ωf )f ]

−η
2

ε

1

ρf |uf |
∇v · [(Pv⊥ℓf )f ] +

δ

ε
∆vf + o(

η2

ε
). (2.20)

We now consider four different scaling limits which lead to models for which we
will prove local existence of classical solutions. They are all concerned with the limits
η → 0 and ε→ 0 but assume different relations between η and ε. In addition, in some
cases, we distinguish between the noisy case δ 6= 0 and the noiseless case δ = 0. The
first three scalings are relative to the weak potential force scaling, while the fourth
one considers the strong potential force scaling. Specifically, these scalings are (see
the discussion at the end of Section 1):

1. Weakly non-local interaction without noise: η2/ε = O(1) and δ = 0.
2. Local interaction with noise: η2/ε = o(1) and δ = O(1).
3. Weakly non-local interaction with noise: η2/ε = O(1) and δ = O(1)
4. Strong potential force scaling: large attraction-repulsion force χ̃ = O(1), with

van der Waals modification of the potential. Note that in this last scaling,
expansion (2.19) is not true (and consequently neither is (2.20)). The correct
expansion for this case will be performed in Section 2.6.

The weakly non-local interaction scaling allows us to retain some of the nonlocality
of the social force in the macroscopic model, while the local one does not. Indeed,
ε corresponds to the characteristic distance needed by an individual to react to the
social force, while η is the typical distance at which agents are able to detect their
congeners. For instance, the local scaling is satisfied if η = O(ε). In this case, these
two distances are of the same order of magnitude. By contrast, in the non-local
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interaction scaling, the agents’ detection region is large compared to the reaction
distance. Which one of these two regimes is biologically relevant depends on the
situation. For instance, we can imagine that the local interaction scaling will be
more relevant in denser swarms because in such systems, far agents are concealed by
closer ones. We will present these various scaling sequentially, starting from the first
one (Section 2.3), then moving successively towards the second (Section 2.4), third
(Section 2.5) and fourth (Section 2.6) ones.

2.3. Weakly non-local interaction scaling without noise. In this scaling
limit, we assume no noise δ = 0 and the following ordering between the two parameters
ε and η:

ε→ 0, η → 0,
η2

ε
→ 1.

f ε satisfies (keeping only the O(1) terms in ε or larger):

f ε
t + v · ∇xf

ε +
1

ρfε |ufε |∇v · [(Pv⊥ℓfε)f ε] = −1

ε
∇v · [(Pv⊥Ωfε)f ε] . (2.21)

This equation results from (2.20) by making η2/ε = 1 in the second term at the right-
hand side of (2.20) and moving it to the left-hand side and by omitting the third
term.

In order to study the limit ε → 0, we have to determine the stable equilibria i.e.
the stable solutions of ∇v · [(Pv⊥Ωfε)f ε] = 0. Such stable equilibria are defined as the
limits as time tends to infinity of the spatially homogeneous equation:

ft = −1

ε
∇v · [(Pv⊥Ωf )f ] . (2.22)

In the following lemma, we show that its solution relaxes to a monokinetic distribution:

f ε(v, t) → ρ δΩ(v), (2.23)

with ρ > 0, Ω ∈ Sn−1 and where δΩ(v) denotes the Dirac delta at v = Ω. Moreover,
this limit occurs at the fast ε time scale. More precisely, we have

Proposition 2.1. We assume that
∫

f |t=0 dv = 1 so that
∫

f(v, t) dv = 1 and
u =

∫

v f(v) dv for all times (we omit the index f when the context is clear). We also
assume that ut=0 6= 0, otherwise, the dynamics is not defined. Then, any stable limit
point of the solution f(t) of (2.22) as t→ ∞ is of the form δΩ(v) for some Ω ∈ Sn−1.

Proof. We introduce the free energy:

F(f) =

∫

(

1− u · v
)

f(v) dv,

and note that F(f) = 1− |u|2 ≥ 0 because |u| ≤ 1. We note that |u|2 is the classical
order parameter [40]. In Lemma 2.2 below, we prove that F(f) satisfies the following
dissipation equation:

∂

∂t
F(f) +D(f) = 0, D(f) =

2

ε

∫ |u|2 − (v · u)2
|u| f(v) dv. (2.24)
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Since |u|2 − (v · u)2 ≥ 0, we have

∂

∂t
F(f) ≤ 0.

Therefore, F(f) is a decreasing function of time. Furthermore, if f is a distribution
such that

D(f) = 0 =
2

ε

∫ |u|2 − (v · u)2
|u| f(v) dv =

|u|
2ε

∫

∣

∣v − u

|u|
∣

∣

2 ∣
∣v +

u

|u|
∣

∣

2
f(v) dv, (2.25)

then f is of the form of a dipole:

f = αδΩ(v) + (1− α)δ−Ω(v), (2.26)

where α ∈ [0, 1] and Ω = u
|u| ∈ Sn−1. Indeed, f is a positive measure and the quantity

at the right-hand side of (2.25) can only be zero if f is supported by either Ω or −Ω.
Now, any dipole such that α 6= 1 is trajectorily unstable. Indeed, eq. (2.22) is a first
order conservation law on the sphere. The characteristics of this equation are given
by:

v̇ =
1

ε
Pv⊥Ω. (2.27)

This dynamical system has two stationary points: Ω and −Ω. The point Ω is a sink
and is stable. By contrast, the point −Ω is a source and hence is unstable. Therefore,
a dipole with α 6= 1 can never be reached in the course of the dynamics, unless it is
initially a dipole or a perturbation of a dipole with cylindrical symmetry around the
dipole axis. We illustrate the geometry of the characteristics given by (2.27) in Fig.
2, which shows the source −Ω and sink Ω of this system.

To conclude, we collect all these observations. The quantity F(f) is decreasing
with time and tends to a limit F∞ as t → ∞. Therefore, the dissipation rate D(f)
tends to 0. This implies that any limit point f∞ of f(t) satisfies D(f∞) = 0. Owing
to the instability of the dipole, this implies that any stable limit point f∞ is of the
form f∞ = δΩ(v) for some Ω ∈ Sn−1 with typical convergence rate ε−1.

Lemma 2.2. Any solution f of (2.22) satisfies (2.24).

Proof. We write

∂

∂t
F(f) =

∫

(1− (u · v)) ∂tf(v) dv − ut ·
∫

v f(v) dv

=

∫

(1− (u · v)) ∂tf(v) dv −
∫

v ∂tf(v) dv · u

= ∂t(

∫

f(v) dv) − 2

∫

(u · v) ∂tf(v) dv

= −2

∫

(u · v) ∂tf(v) dv.

To pass from the first to the second line in the last term, we note that
∫

v f(v) dv = u
and therefore, ut ·

∫

v f(v) dv = u ·
∫

v ft(v) dv. In the last equality, we have used that
∫

f(v, t) dv = 1. Now, multiplying (2.22) by −2(u · v), integrating with respect to v,
using Green’s formula on the sphere and the fact that ∇v(v · u) = Pv⊥u, we get:

∂

∂t
F(f) +

2

ε

∫

(Pv⊥u · Pv⊥Ω) f(v) dv = 0.
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Ω

−Ω

Fig. 2. The trajectories of the differential equation (2.27) on the sphere, showing the source
−Ω and sink Ω.

But by definition of Ω, we have Ω = u
|u| , so that we find:

Pv⊥u · Pv⊥Ω =
1

|u| (|u|
2 − (u · v)2),

which leads to the result.

Now, we return to the space-inhomogeneous system (2.21). Using the previous
study, we can state the

Theorem 2.3. If ε tends to 0 in (2.21), we formally have f ε → ρδΩ where δΩ(v)
is the Dirac delta distribution at v = Ω and ρ = ρ(x, t) and Ω = Ω(x, t) satisfy the
following SOH system:

∂tρ+∇x · (ρΩ) = 0, (2.28)

∂t(ρΩ) +∇x · (ρΩ⊗ Ω) + ΘPΩ⊥∇xρ = kPu⊥∆x(ρΩ). (2.29)

We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0) satisfies
|Ω0| = 1.

Remark 2.1. The repulsive force contributes for a pressure term at the left-hand
side of the momentum equation, which otherwise would not be strictly hyperbolic, and
would fall in the class of Pressureless Gas Dynamics models [4].

Elements of the proof. We begin with some remarks. For the sake of simplicity,
we note

〈ϕ〉Sn−1 =

∫

v∈Sn−1

ϕ(v) dv.

We first notice the (easy and left to the reader) identity

〈v∇vA(v)〉Sn−1 = −〈A(v)〉Sn−1 , (2.30)
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which is valid for any smooth tangent vector field A(v) on Sn−1. Now, we form the
vector test function

ϕf (v) =
PΩ⊥

f
v

|PΩ⊥

f
v| . (2.31)

We note that ϕf can be written:

ϕf (v) = Ψ(v · Ωf ) PΩ⊥

f
v, Ψ(X) =

1

(1−X2)1/2
, X = v · Ωf ∈ [−1, 1].

The following identity holds:

〈ϕf ∇v · (Pv⊥Ωf f)〉Sn−1 = 0, (2.32)

for all distribution function f(v) on Sn−1. This identity is proved at Lemma 2.4 below.
Now, first we note that, because of proposition 2.1, we have

f ε(x, v, t) → ρ(x, t) δΩ(x,t)(v) as ε→ 0. (2.33)

In other words, in the limit ε→ 0, f ε converges to a monokinetic distribution function.
Now, we integrate (2.21) upon v ∈ Sn−1. By Green’s formula, the integrals of the

last term of the left-hand side and of the right-hand side vanish and we are left with
the mass conservation equation

(ρfε)t +∇x · (ρfεufε) = 0.

Now, taking the limit ε → 0 and using (2.33), we have ufε → u = Ω and we finally
get (2.28).

In order to find an equation for Ω, we multiply (2.21) by the GCI (2.31) and get

〈

(

f ε
t + v · ∇xf

ε +
1

ρfε |ufε |∇v · [(Pv⊥ℓfε)f ε]

)

ϕfε

〉

Sn−1 = 0. (2.34)

Now, we intend to pass to the limit ε→ 0 in this equation. However, notice that the
GCI (2.31) is singular near v = Ω while f ε concentrates to a Dirac delta at this point.
Therefore, this limit is not straightforward and requires some smoothing procedure.
Instead, in the next section, we consider a noisy version of this problem such that f ε

converges to a smooth distribution, which allows to pass to the limit easily (see eq.
(2.41)). If we let δ → 0 in eq. (2.41) below, we get the momentum balance equation
(2.29). The direct proof from using (2.34) is left to future work.

Lemma 2.4. The following identity holds:

〈ϕf ∇v · (Pv⊥Ωf f)〉Sn−1 = 0, (2.35)

for all distribution function f(v) on S
n−1.

Proof. We omit the subscript f to Ω, the dependence of Ψ upon (v · Ω) and the
indices Sn−1 to the brackets for the sake of simplicity. We denote by B the quantity
to be evaluated, i.e;

B = 〈ΨPΩ⊥v∇v · (Pv⊥Ω f)〉.
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Pulling PΩ⊥ outside the bracket and using Leibnitz formula, we have:

B = PΩ⊥〈Ψ v∇v · (Pv⊥Ω f)〉
= PΩ⊥〈v∇v · (ΨPv⊥Ω f)〉 − PΩ⊥〈v∇vΨ · Pv⊥Ω f〉
= −PΩ⊥〈ΨPv⊥Ω f〉 − PΩ⊥〈vΨ′|Pv⊥Ω|2 f〉,

where we have used (2.30) and the fact that ∇vΨ = Ψ′Pv⊥Ω to simplify the first and
second brackets in the last equation. We denote by Ψ′(X) the derivative or Ψ(X)
with respect to X . Now, we remark that

PΩ⊥ Pv⊥ Ω = (Id− Ω⊗ Ω)(Id− v ⊗ v)Ω

= −(v · Ω) (Id− Ω⊗ Ω)v = −(v · Ω)PΩ⊥v,

and that |Pv⊥Ω|2 = 1− (v · Ω)2. This leads to

B = 〈PΩ⊥v
(

(v · Ω)Ψ− (1− (v · Ω)2)Ψ′
)

f〉.

Now, since Ψ satisfies the differential equation

XΨ(X)− (1 −X2)Ψ′(x) = 0,

we have B = 0, which proves (2.35).

Remark 2.2. The n − 1 independent functions (ϕf )k = ϕf · ek where
(e1, . . . , en−1) is an orthonormal basis of {Span(Ωf )}⊥ are the ’Generalized Colli-
sion Invariants’ (or GCI) associated to the operator Q(f) = −∇v · (Pv⊥Ωf f) in the
sense of [13] (see proof of Theorem 2.5 below for more detail on the GCI).

Remark 2.3. The quantity F(f) is a free energy for the spatially homogeneous
problem (2.22) and provides a variational structure. First, let us denote by ν = δF

δf
the first variation of F with respect to f . It is defined by

〈δF
δf

, g〉 = d

dǫ

∣

∣

∣

ǫ=0
F(f + ǫg),

where g is an increment of f , i.e. a function g(v) satisfying
∫

g(v) dv = 0 (so that
f + ǫg satisfies the admissibility condition

∫

(f + ǫg) dv = 1) and such that there exists
ǫ0 with f + ǫg ≥ 0 for all ǫ < ǫ0. Eq. (2.22) can be recast as

ft −
1

ε|u|∇v · {[∇v(
δF
δf

)]f} = 0, (2.36)

which shows that the flow of (2.22) has a gradient flow structure in the Wasserstein
metric [42]. We have:

F(f)t +
1

ε|u|

∫

|∇v(
δF
δf

)|2 f dv = 0, (2.37)

which provides another proof of the decay of F(f) with time. Indeed, we have:

δF
δf

(g) = −2u ·
∫

g(v) v dv = 〈−2(u · v), g〉,
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which yields

ν =
δF
δf

= −2u · v.

A simple computation shows that

∇vν = −Pv⊥u = −|u|Pv⊥Ω.

Therefore, eq. (2.22) can be written as (2.36). Now, multiplying by δF
δf , integrating

over v and using Green’s formula, we get (2.37). The variational structure of (2.22)
will be exploited in future work.

2.4. Local interaction scaling with noise. In this scaling we assume that
δ 6= 0 is a given constant. We also assume that ε and η are such that:

ε→ 0, η → 0,
η2

ε
→ 0.

With this last assumption, the O(η
2

ε ) term in (2.20), which results from the non-
locality of the average alignment direction, vanishes. Therefore, this scaling keeps
only the local contribution of the alignment interaction. The resulting asymptotic
problem, keeping only terms of order O(1) or larger, is written:

f ε
t + v · ∇xf

ε =
1

ε
{−∇v · [(Pv⊥Ωε)f ε] + δ∆vf

ε} . (2.38)

The difference with (2.20) it that the second term at the right-hand side of (2.20) is
omitted. The limit of (2.38) as ε→ 0 has been studied in [13] in dimension 3 and in
[19] in any dimensions. The result is stated in the following theorem.

Theorem 2.5. If ε tends to 0 in (2.38), we formally have f ε → ρMΩ where
MΩ(v) is the Von Mises-Fischer distribution:

MΩ(v) =
exp(β(v · Ω)) dv

∫

v∈Sn−1 exp(β(v · Ω)) dv
, β =

1

δ
, (2.39)

and ρ and Ω satisfy the following Self-Organized Hydrodynamic (SOH) system:

∂tρ+ c1∇x · (ρΩ) = 0, (2.40)

ρ(∂tΩ + c2Ω · ∇xΩ) + δPΩ⊥∇xρ = 0. (2.41)

The constants c1 and c2 are defined by

c1 =

∫

v∈Sn−1

MΩ(v) (v · Ω) dv, (2.42)

c2 =

∫

v∈Sn−1 MΩ(v)h(v · Ω) (1− (v · Ω)2) (v · Ω) dv
∫

v∈Sn−1 MΩ(v)h(v · Ω) (1− (v · Ω)2) dv , (2.43)

where h(v · Ω) is the Generalized Collision Invariants (GCI) [13] and is defined as
follows in the n-dimensional case [19]. Set ψξ(v) = h(Ω · v) (ξ · v) where ξ ∈ Rn is
any vector such that ξ · Ω = 0. Then, ψξ is the unique solution in the Sobolev space
H1(Sn−1) with zero mean, of the following elliptic problem:

−∆vψ − β(Ω · ∇v)ψ = ξ · v. (2.44)



102 DEGOND ET AL.

Finally, we formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0)
satisfies |Ω0| = 1.

Sketch of the proof. We refer to [13] in the three dimensional case and [19] in
the general n-dimensional case for more details. We denote by

Q(f) = −∇v · [(Pv⊥Ωf )f ] + δ∆vf, Ωf =
jf
|jf |

, jf =

∫

f(v) v dv,

the ‘collision’ operator and write (2.38) as

f ε
t + v · ∇xf

ε =
1

ε
Q(f ε). (2.45)

We assume that f ε → f as ε → 0 as smoothly as needed (which means in particular
that derivatives of f ε converge to the corresponding derivatives of f). From (2.45), we
notice that Q(f ε) = O(ε), which implies that Q(f) = 0. The functions ϕ(v) such that
Q(ϕ) = 0 are the so-called equilibria of Q. It is shown in [13, 19] that the equilibria
of Q are of the form ϕ(v) = ρMΩ(v) with MΩ given by (2.39) and ρ > 0, Ω ∈ Sn−1

are arbitrary. Therefore,

f(x, v, t) = ρ(x, t)MΩ(x,t)(v), (2.46)

where ρ(x, t) and Ω(x, t) need now to be determined.
In order to find equations for ρ and Ω, we introduce the notion of a ’Generalized

Collision Invariant’ or GCI. In kinetic theory, a ’Collision Invariant’ (or CI) of the
collision operator Q is a function ψ(v) such that

∫

Q(f)(v)ψ(v) dv = 0, ∀ functions f(v).

In this formal proof, we do not specify the functional setting any further. Here,
following this definition, we find that the set of CI’s is the one-dimensional space
spanned by the constants. But the dimension of the space of the CI’s determines the
number of conservation equations for the macroscopic model. Here, we only get one
conservation equation (namely the mass conservation equation, which determines ρ)
with this concept. We are lacking n− 1 independent equations to determine the unit
vector Ω. In order to find these additional equations, we weaken the concept of a CI
to define the concept of a GCI. For this purpose, we introduce the operator

Q(Ω, f) = −∇v · [(Pv⊥Ω)f ] + δ∆vf.

We note that for fixed Ω, Q(Ω, f) is a linear operator of f . The GCI’s are now defined
as follows:

Definition 2.6. Let Ω ∈ Sn−1 be given. The function ψΩ(v) is a ’Generalized
Collision Invariant’ or GCI of Q associated to the direction Ω if and only if we have

∫

Q(Ω, f)ψΩ(v) dv = 0, ∀ functions f(v) such that Ωf = ±Ω. (2.47)

The constraint Ωf = ±Ω is a linear constraint on f and it is shown in [13, 19]
that condition (2.47) is equivalent to saying that there exists a vector ξ ∈ Rn, with
ξ · Ω = 0 such that ψΩ = ψξ solves the equation:

Q∗(Ω, ψξ) = ξ · v, (2.48)
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where Q∗(Ω, ·) is the L2-adjoint of Q(Ω, ·). We easily see that (2.48) leads to (2.44).
Furthermore, by rotational invariance, ψξ is, up to a constant, of the form h(Ω·v)(ξ·v).
Therefore, the vector space of GCI’s is spanned by the function 1 and the n − 1
independent functions h(Ω · v) v · ek, where (e1, . . . , ek, . . . , en−1) is an orthonormal

basis of
(

Span{Ω}
)⊥

.
Now, (2.40) and (2.41) are obtained by pre-multiplying (2.38) by respectively

1 (for (2.40)) and a non-constant GCI ψΩfε (for (2.41)) and integrating them with
respect to v. By (2.47), the contributions of the singular term involving Q disappear
and we can let ε→ 0 in the resulting equations, which only involve regular terms in ε.
After some analytic computations which are detailed in [13, 19], we find eqs. (2.40),
(2.41) together with the coefficients (2.42), (2.43).

Remark 2.4. We note that c1 is such that 0 < c1 < 1. The parameter c1 is the
classical order parameter of the Von-Mises distribution. The parameter c2 satisfies
0 < c2 < c1. In more general situations (involving a limited field of vision), the range
of values of c2 may be much larger. It can be negative or larger than c1 (see [19] for
details).

2.5. Weakly non-local interaction scaling with noise. In this section, we
propose a scaling which unifies the two previous ones. In this scaling we assume that
δ is a given constant and that:

ε→ 0, η → 0,
η2

ε
→ 1.

Here η2

ε → 1 instead of 0 like in the previous section. Inserting these assumptions
into (2.20), and keeping terms of order O(1) or larger, we get

f ε
t + v · ∇xf

ε +
1

ρfε |ufε |∇v · [(Pv⊥ℓfε)f ε] =

1

ε
{−∇v · [(Pv⊥Ωfε)f ε] + δ∆vf

ε} . (2.49)

The difference with (2.20) it that the second term at the right-hand side of (2.20) is
moved to the left-hand side while making η2/ε = 1. The limit of (2.49) as ε→ 0 can
been studied by the same techniques as in [13, 19] (see also proof of Theorem 2.5).
The result is stated in the following theorem.

Theorem 2.7. If ε tends to 0 in (2.49), we formally have f ε → ρMΩ where
MΩ(v) is the Von Mises-Fischer distribution (2.39). ρ and Ω satisfy the following
viscous SOH system:

∂tρ+ c1∇x · (ρΩ) = 0, (2.50)

ρ(∂tΩ+ c2Ω · ∇xΩ) + (δ + c3Θ)PΩ⊥∇xρ = c3kc1PΩ⊥∆x(ρΩ), (2.51)

where the constants c1 and c2 are defined as in Theorem 2.5 and

c3 =
(n− 1)δ + c2

c1
. (2.52)

We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0) satisfies
|Ω0| = 1.
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Remark 2.5. We notice that ck → 1 as δ → 0 for k = 1, 2, 3 and we recover the
noiseless system (2.28), (2.29) when δ → 0.

Proof. We write (2.49) as

(T1 + T2)f
ε =

1

ε
Q(f ε),

where T1+T2 and Q are respectively the operators appearing at the left and right hand
sides of (2.49). T1 = ∂t + v · ∇x and T2 is the remaining part of the left-hand side.
Integrating over v and letting f ε → ρMΩ leads to the mass conservation equation
(2.40) unchanged, since T2 is in divergence form and vanishes through integration
with respect to v.

Now, to get the momentum equation, we proceed like in [13, 19] or as in the proof
of Theorem 2.5. From the Generalized Collision Invariant property, it follows that

PΩ⊥

∫

v∈Sn−1

T (ρMΩ)h v dv = 0.

Now, the term

P1 := PΩ⊥

∫

v∈Sn−1

T1(ρMΩ)h v dv

gives rise to the same expression as in Theorem 2.5. This expression is

P1 = βαρ∂tΩ+ γΩ · ∇xΩ+ αPΩ⊥∇xρ,

with

α =
1

n− 1

∫

v∈Sn−1

MΩ(v)h (1 − (v · Ω)2) dv,

γ =
1

(n− 1)δ

∫

v∈Sn−1

MΩ(v)h (1 − (v · Ω)2) (v · Ω) dv.

Dividing by αβ, we find the coefficients c2 and δ of (2.41) (we recall that βδ = 1).
We introduce the notation

ℓ := ℓρMΩ
= PΩ⊥(kc1∆x(ρΩ)−Θ∇xρ),

and consider

P2 := PΩ⊥

∫

v∈Sn−1

T2(ρMΩ)h v dv

=
1

c1
PΩ⊥

∫

v∈Sn−1

∇v · [(Pv⊥ℓ)MΩ] h v dv.

Using Green’s formula, we get

P2 = − 1

c1
PΩ⊥

∫

v∈Sn−1

[Pv⊥ℓ] · ∇v(h v)MΩ dv.

We note that (Pv⊥ℓ) · ∇vϕ = ℓ · ∇vϕ, with ϕ being any component of h v. We deduce
that

P2 = − 1

c1
PΩ⊥

∫

v∈Sn−1

(ℓ · ∇v)(h v)MΩ dv

= − 1

c1
PΩ⊥

(∫

v∈Sn−1

∇v(h v)MΩ dv

)T

ℓ. (2.53)
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Now, we use the formulas:
∫

Sn−1

∇vg dv = (n− 1)

∫

S2

vg dv

∫

Sn−1

(∇vg)h dv = (n− 1)

∫

S2

vgh dv −
∫

S2

(∇vh)g dv

for any pair of scalar functions g, h on S
n−1. We recall that ∇vMΩ = βPv⊥ΩMΩ.

Since ℓ · Ω = 0, we compute the matrix

D :=

(∫

v∈Sn−1

∇v(h v)MΩ dv

)T

PΩ⊥

= (n− 1)

(∫

v∈Sn−1

(v ⊗ v)hMΩ dv

)

PΩ⊥

−β
(∫

v∈Sn−1

(v ⊗ Pv⊥Ω)hMΩ dv

)

PΩ⊥

:= (n− 1)D1 −D2.

We decompose

v = v⊥ + v‖, v⊥ = PΩ⊥v, v‖ = (v · Ω)Ω.

Using this decomposition and the fact that integrals of odd degree polynomials of v⊥
over Sn−1 vanish, we have:

D1 =

(
∫

v∈Sn−1

(v⊥ ⊗ v⊥)hMΩ dv

)

PΩ⊥ = αPΩ⊥ ,

and

D2 = β

(∫

v∈Sn−1

(v‖ + v⊥)⊗ (Ω− (Ω · v)(v‖ + v⊥))hMΩ dv

)

PΩ⊥ .

Owing to the fact that any term of the form (A ⊗ v‖)PΩ⊥ = 0 for any vector A, we
have since v‖ is parallel to Ω:

D2 = −β
(∫

v∈Sn−1

(v⊥ ⊗ v⊥)(Ω · v)hMΩ dv

)

PΩ⊥ = −γPΩ⊥ .

Inserting these results into (2.53), we get

P2 = − (n− 1)α+ γ

c1
ℓ.

Collecting all the results and dividing by αβ, we are led to the momentum equation
(2.51), which ends the proof.

2.6. Strong potential force scaling: induced capillary (or Korteweg)
force. In this section, we investigate the case where the attraction-repulsion force
term is of the same order as the alignment term in the expression of the alignment
direction vηf , i.e. we change vηf into ṽηf in (2.15), with ṽηf given by:

ṽηf =
jηf + rηf
|jηf + rηf |

, (2.54)
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where jηf and rηf are respectively given by (2.17) and (2.18). Note that, by contrast

to (2.16), there is no η2 in front of rηf in (2.54).

The Taylor expansion of ṽηf is now given by

ṽηf = Ω̂f + η2
1

ρf |uf |
ℓf + o(η2),

Ω̂f =
uf −Θ∇xρf
|uf −Θ∇xρf |

, ℓf = PΩ̂⊥

f
(k∆x(ρfuf )−Θ2∇x∆xρf ),

where

1

2n

∫

x′∈Rn

Φ(|ξ|) |ξ|2 dξ = Θ2.

Here, we suppose like in [2], that the potential is repulsive at short scales and
attractive at large scales (see Fig. 3). Therefore, Φ(|ξ|) is supposed to decrease for
|ξ| ∈ [0, ξ∗] and to increase for |ξ| ∈ [ξ∗,+∞). Furthermore, since Φ(|ξ|) is supposed
integrable on Rn, we have Φ(|ξ|) → 0 as |ξ| → ∞. It results that Φ(ξ∗) < 0 and that
Φ ≥ 0 for |ξ| ∈ [0, ξ0] and Φ ≤ 0 for |ξ| ∈ [ξ0,+∞) where ξ0 < ξ∗. We make the
additional assumption that the zero-th order moment vanishes:

Θ = 0, (2.55)

which expresses the balance between the attractive and repulsive parts of Φ. Given
the above assumptions, the second moment is negative:

Θ2 < 0. (2.56)

Equivalently, we can modify the expression of the attraction-repulsion (2.18) as:

rηf = −∇x

∫

(x′,v′)∈Rn×Sn−1

Φ

( |x′ − x|
η

)

(

f(x′, v′, t)− f(x, v, t)
)

dx′ dv′, (2.57)

instead of making the assumption (2.55). This modification of the interaction poten-
tial was first introduced by van der Waals [39]. In this case, the inequality (2.56) has
to be put as an assumption.
With these assumptions, the Taylor expansion of vηf simplifies and becomes:

ṽηf = Ωf + η2
1

ρf |uf |
ℓf + o(η2),

Ωf =
uf
|uf |

, ℓf = PΩ⊥

f
(k∆x(ρfuf)−Θ2∇x∆xρf ). (2.58)

Now, we can develop the same theory as before, assuming that

ε→ 0, η → 0,
η2

ε
→ 1.

Inserting these assumptions into (2.20), and keeping terms of order O(1) or larger,
we get

f ε
t + v · ∇xf

ε +
1

ρfε |ufε |∇v · [(Pv⊥ℓfε)f ε] =

1

ε
{−∇v · [(Pv⊥Ωfε)f ε] + δ∆vf

ε} . (2.59)
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ξ∗ξ0

Φ(|ξ|)

|ξ|

Fig. 3. The attraction-repulsion potential Φ.

with ℓf given by (2.58). The limit ε→ 0 can be performed like in Section 2.5 and we
obtain the following theorem:

Theorem 2.8. If ε tends to 0 in (2.59) and under the assumption (2.55) (if the
expression (2.18) of the potential force is used) or (2.56) (if the expression (2.57) is
used), we formally have f ε → ρMΩ whereMΩ(v) is the Von Mises-Fischer distribution
(2.39). ρ and Ω satisfy the viscous SOH system with capillary (or Korteweg) force
term:

∂tρ+ c1∇x · (ρΩ) = 0, (2.60)

ρ(∂tΩ + c2Ω · ∇xΩ) + δPΩ⊥∇xρ = c3kc1PΩ⊥∆x(ρΩ) + c3|Θ2|PΩ⊥∇x∆xρ, (2.61)

where the constants c1 and c2 are defined as in Theorem 2.5 and c3 as in Theorem
2.7. We formally have |Ω(·, t)| = 1 for all t > 0 as soon as the initial data (ρ0,Ω0)
satisfies |Ω0| = 1.

Remark 2.6. The last term at the right-hand side of (2.61) has the same ex-
pression as the capillary force (or Korteweg term [23]) in fluid dynamics, except for
the projection operator PΩ⊥ . This capillary force is induced by the attractive part of
the potential Φ.

3. Existence theory.

3.1. Existence in 2D with viscosity. This section is concerned with a local
existence result in 2D for an SOH system of the general form

∂tρ+∇x · (ρΩ) = 0, (3.1)

ρ(∂tΩ + cΩ · ∇xΩ) + PΩ⊥∇x(p(ρ)) = µPΩ⊥∆x(ρΩ), (3.2)

where the constants c ∈ R and µ ≥ 0 are given and the pressure relation p(ρ) satisfies
p′(ρ) > 0. All systems derived in the previous section can by recast in this form, with a
particular choice of c, µ and p(ρ), after time rescaling, except for the last one (Section
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2.6) involving the capillary force. The system is supplemented with initial data ρ0 > 0
and Ω0 such that |Ω0| = 1. Because of the presence of the projection operator PΩ⊥ ,
this unit norm constraint |Ω(x, t)| = 1 is preserved by the dynamics but at the price
of a loss of conservativity. Because of this, a notion of entropy condition for shock
solutions is open. In [29], a selection criterion based on a numerical comparison with
the particle system is proposed. It is based on the approximation of this system by a
conservative system with a stiff relaxation right-hand side. This relaxation approach
is also quite common in the Ericksen-Leslie theory of liquid crystals [25, 26] and has
been recently extended to convex constraints [16].

We assume that the domain is the square box Π2 = [0, 1]2 with periodic boundary
conditions. The consideration of physical boundary conditions for the short-time ex-
istence of smooth solutions of quasi-linear symmetrizable hyperbolic systems is rather
technical. The strictly dissipative property is required for the boundary condition
[34]. Here the assumption of periodic boundary condition allows to avoid these com-
plications which are not the purpose of this paper.

Theorem 3.1. We assume that the initial data belong to Hm(Π2) with m > 2.
Then, there exists a time T > 0 and a unique solution (ρ, ϕ) of the system (3.1)-(3.2)
in L∞([0, T ], Hm(Π2)) ∩ H1([0, T ], Hm−1(Π2)) such that ρ remains positive. If, in
addition, µ > 0, then, the solution also belongs to L2([0, T ], Hm+1(Π2)).

Proof. In 2D, we can set Ω = (cosϕ, sinϕ). We recall that

∂tΩ = Ω⊥ ∂tϕ, ∇x · Ω = (Ω⊥ · ∇x)ϕ, PΩ⊥ = Ω⊥ ⊗ Ω⊥,

with Ω⊥ = (− sinϕ, cosϕ). Then, we have

∆x(ρΩ) = ∆xρ Ω+ 2Ω⊥(∇xρ · ∇xϕ)− 2ρΩ |∇xϕ|2 + ρΩ⊥∆xϕ,

Ω⊥ ·∆x(ρΩ) = ρ∆xϕ+ 2 (∇xρ · ∇xϕ).

Therefore, system (3.1), (3.2) is written:

(∂t +Ω · ∇x)ρ+ ρ (Ω⊥ · ∇x)ϕ = 0, (3.3)

(∂t + cΩ · ∇x)ϕ+
p′(ρ)

ρ
(Ω⊥ · ∇x)ρ = µ

(

∆xϕ+ 2
∇xρ · ∇xϕ

ρ

)

. (3.4)

Introduce ρ̂ = a(ρ) and λ(ρ̂) such that

a′(ρ) =

√

p′(ρ)

ρ
, λ(ρ̂) = a′(ρ)ρ, h(ρ̂) = 2 lnρ. (3.5)

Then, system (3.3), (3.4) becomes:

(∂t +Ω · ∇x)ρ̂+ λ(ρ̂) (Ω⊥ · ∇x)ϕ = 0, (3.6)

(∂t + cΩ · ∇x)ϕ+ λ(ρ̂) (Ω⊥ · ∇x)ρ̂ = µ (∆xϕ+∇xh(ρ̂) · ∇xϕ) . (3.7)

From (3.3), we have the following a priori estimate (maximum principle):

ρmin exp(−
∫ t

0

‖∇xϕ(·, s)‖L∞(Π2) ds) ≤ ρ ≤ ρmax exp(

∫ t

0

‖∇xϕ(·, s)‖L∞(Π2) ds),

(3.8)
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where

ρmin = min
x∈Π2

ρ0(x), ρmax = max
x∈Π2

ρ0(x).

We remind the following lemma [41]:

Lemma 3.2. For any pair of functions f , g in Hm(Rn) ∩ L∞(Rn), we have:

‖fg‖Hm ≤ C (‖f‖Hm‖g‖L∞ + ‖f‖L∞‖g‖Hm) .

If additionally, we suppose that ∇xf ∈ L∞(Rn), we have, for any α ∈ Nn, with
|α| = ∑n

i=1 αi = m :

‖Dα(fg)− fDαg‖Hm ≤ C (‖f‖Hm‖g‖L∞ + ‖∇xf‖L∞‖g‖Hm−1) ,

where Dα = ∂xα1
1 ...xαn

n
.

Now, with |α| ≤ m, we take the Dα derivative of (3.6), multiply it by Dαρ̂ and
integrate it with respect to x. Similarly, we take the Dα derivative of (3.7), multiply
it by Dαϕ and integrate it with respect to x. We sum up the resulting identities.
Using the notation

〈f, g〉 =
∫

Π2

f g dx,

we find:

0 = 〈Dαρ̂, Dαρ̂t〉+ 〈Dαϕ,Dαϕt〉
+〈Dαρ̂, Dα((Ω · ∇x)ρ̂)〉+ c〈Dαϕ,Dα((Ω · ∇x)ϕ)〉
+〈Dαρ̂, Dα(λ(ρ̂) (Ω⊥ · ∇x)ϕ)〉 + 〈Dαϕ,Dα(λ(ρ̂) (Ω⊥ · ∇x)ρ̂)〉
−µ〈Dαϕ,Dα∆xϕ〉
−µ〈Dαϕ,Dα(∇xh(ρ̂) · ∇xϕ)〉

= I1 + . . .+ I5.

Then:

I1 =
1

2

d

dt
(‖Dαρ̂‖2 + ‖Dαϕ‖2),

and

I4 = µ‖Dα∇xϕ‖2,

where ‖ · ‖ just indicates an L2 norm. Now, for the remaining terms, we have the
following lemma

Lemma 3.3. We have:

|Ik| ≤ C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm), k = 2, 3,

|I5| ≤
µ

2
‖∇Dαϕ‖2 + C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm),

where C denote generic constants depending on the parameters of the problem.

The proof of the lemma is postponed at the end.
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Adding all these terms together for all possible indices α such that |α| ≤ m, we
have,

1

2

d

dt
(‖ρ̂‖2Hm + ‖ϕ‖2Hm) + µ‖∇xϕ‖2Hm ≤ µ

2
‖∇xϕ‖2Hm +

+C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞ + 1) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

For m ≥ n
2 + 1, we have

‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞ ≤ C(‖ρ̂‖Hm + ‖ϕ‖Hm),

and get

1

2

d

dt
(‖ρ̂‖2Hm + ‖ϕ‖2Hm) +

µ

2
‖∇xϕ‖2Hm ≤ C (‖ρ̂‖2Hm + ‖ϕ‖2Hm + 1)2.

Gronwall’s inequality leads to the local existence of a solution (ρ̂, ϕ) in
L∞([0, T ], Hm(Π2)) which, if µ > 0, also belongs to L2([0, T ], Hm+1(Π2)) and which
satisfies the a priori bound (3.8). To get time regularity, we directly use eqs. (3.6),
(3.7), take the Hm−1 norm, apply Lemma 3.2, and find

‖ρ̂t‖Hm−1 + ‖ϕt‖Hm−1 ≤ C‖ϕ‖Hm+1 + C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖Hm + ‖ϕ‖Hm).

Using the previous estimates, we deduce that (ρ̂, ϕ) also belongs to
H1([0, T ], Hm−1(Π2)). The estimates on ρ̂ immediately transfer to ρ since
a(ρ) is smooth and invertible for ρ > 0.

Proof of Lemma 3.3. Estimate of I5: Using Green’s formula and Cauchy-Schwartz
inequality, we have:

|I5| ≤ µ‖∇xD
αϕ‖ ‖∇xh(ρ̂) · ∇xϕ‖Hm−1

≤ C‖∇xD
αϕ‖ (‖ρ̂‖Hm‖∇xϕ‖L∞ + ‖∇xρ̂‖L∞‖ϕ‖Hm)

≤ µ

2
‖∇xD

αϕ‖2 + C (‖ρ̂‖Hm‖∇xϕ‖L∞ + ‖∇xρ̂‖L∞‖ϕ‖Hm)
2

≤ µ

2
‖∇xD

αϕ‖2 + C(‖ρ̂‖2W 1,∞ + ‖ϕ‖2W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

The second inequality uses Lemma 3.2 and the third one uses Young’s inequality.

Estimate of I3: We write

I3 = 〈Dαρ̂, λ(ρ̂) (Ω⊥ · ∇x)D
αϕ〉 + 〈Dαϕ, (λ(ρ̂) (Ω⊥ · ∇x)D

αρ̂)〉
+〈Dαρ̂,

(

Dα(λ(ρ̂) (Ω⊥ · ∇x)ϕ)− λ(ρ̂) (Ω⊥ · ∇x)D
αϕ

)

〉
+〈Dαϕ,

(

Dα(λ(ρ̂) (Ω⊥ · ∇x)ρ̂)− λ(ρ̂) (Ω⊥ · ∇x)D
αρ̂

)

〉
= J1 + J2 + J3.

Using Green’s formula, we find

|J1| = |〈∇x · (λ(ρ̂)Ω⊥)Dαρ̂, Dαϕ〉|
≤ C(‖ρ̂‖W 1,∞ + ‖ϕ‖W 1,∞) (‖ρ̂‖2Hm + ‖ϕ‖2Hm).

Now, using Cauchy-Schwartz inequality and applying Lemma 3.2, we find that J2 and
J3 satisfy the same inequality.
Estimate of I2: The proof is similar as for I3 and is omitted.
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3.2. Existence in 3D without viscosity. In this section, we investigate the
local existence for the inviscid SOH problem in 3 dimensions:

∂tρ+∇x · (ρΩ) = 0, (3.9)

ρ(∂tΩ+ cΩ · ∇xΩ) + PΩ⊥∇x(p(ρ)) = 0, (3.10)

where the parameters and data have the same meaning as in Section 3.1. We consider
the system in the domain Π3 = [0, 1]3 with periodic boundary conditions.

For this purpose, we use the spherical coordinates associated to a fixed Cartesian
basis. In this basis, denoting by θ ∈ [0, π] the latitude and ϕ ∈ [0, 2π] the longitude,
we have

Ω = (sin θ cosϕ, sin θ sinϕ, cos θ)T ,

and we let Ωθ and Ωϕ be the derivatives of Ω with respect to θ and ϕ. We note that

|Ωθ| = 1, |Ωϕ| = sin θ.

We will use the formulas

∇x · Ω = Ωθ · ∇xθ +Ωϕ · ∇xϕ,

PΩ⊥a = (Ωθ · a)Ωθ +
(Ωϕ · a)
sin2 θ

Ωϕ,

(Ω · ∇x)Ω =
(

(Ω · ∇x)θ
)

Ωθ +
(

(Ω · ∇x)ϕ
)

Ωϕ,

Ωt = Ωθ θt +Ωϕ ϕt,

where a is an arbitrary vector.
Introduce ρ̂ and λ(ρ̂) as in (3.5). Then, system (3.9), (3.10) becomes:

ρ̂t +Ω · ∇xρ̂+ λ(ρ̂)∇x · Ω = 0,

Ωt + c (Ω · ∇x)Ω + λ(ρ̂)PΩ⊥∇xρ̂ = 0,

or,

ρ̂t +Ω · ∇xρ̂+ λ(ρ̂)(Ωθ · ∇xθ +Ωϕ · ∇xϕ) = 0, (3.11)

θt + c (Ω · ∇x)θ + λ(ρ̂)Ωθ · ∇xρ̂ = 0, (3.12)

sin2 θϕt + c sin2 θ (Ω · ∇x)ϕ+ λ(ρ̂)Ωϕ · ∇xρ̂ = 0. (3.13)

Introducing

U =





ρ̂
θ
ϕ



 ,

this system is written

A0(U)Ut +A1(U)Ux +A2(U)Uy +A3(U)Uz = 0,

in Cartesian coordinates x = (x, y, z), where Ak(U), k = 0, . . . , 4 are all symmetric
matrices and

A0 =





1 0 0
0 1 0
0 0 sin2 θ



 . (3.14)
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If sin θ > 0, then this system is a symmetrizable hyperbolic system. We can apply
proposition 2.1 p. 425 of [41] and the following theorem follows immediately:

Theorem 3.4. We assume that the initial data (ρ0, θ0, ϕ0) belong to H
m(Π3) with

m > 5/2 with ρ0 > 0, sin θ0 > 0. Then, there exists a time T > 0 and a unique solu-
tion (ρ, θ, ϕ) of the system (3.9)-(3.10) in L∞([0, T ], Hm(Π3))∩H1([0, T ], Hm−1(Π3))
such that ρ remains positive.

Remark 3.1. We see from (3.14) that in 3D, the symmetrizer degenerates at
sin θ = 0. So the structure condition sin θ ≥ C > 0 is needed. In the inviscid case,
if the initial condition satisfies this condition, the solution itself satisfies it over a
certain time interval by finite speed of propagation. However, if viscosity is added, the
speed of propagation becomes infinite and this structure condition is instantaneously
lost. This is why we restrict ourselves to the inviscid case in 3D.

4. Conclusion. In this paper, we have derived hydrodynamic systems from ki-
netic models of self-propelled particles with alignment interaction and attraction-
repulsion force. We have particularly focused on the inclusion of diffusion terms
under the assumption of weakly non-local interactions. Then, we have proved the
local-in-time existence of solutions for the viscous system in 2D and a similar result
for the inviscid system in 3D. The methods rely on a suitable symmetrization and on
the energy method. Adding an attraction-repulsion potential has greatly extended
the work in [13]. The weakly nonlocal scaling allows us to derive new macroscopic
effects such as viscosity and capillary (or Korteweg) forces. This work also provides
rigorous existence results on the macroscopic models whereas [13] contains only for-
mal results. Future works in this direction will consist in continuing the exploration
of the mathematical structure of the system and particularly, trying to prove local
existence of the viscous system in 3D and the treatment of the geometric singularity
near sin θ = 0. Another direction of work will consist of the numerical quantification
of the viscosity as a consequence of the non-locality of the interaction.
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