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cooperative anonymous games with a continuum of players and Mean-Field Games.
The large time behavior of the system is given by a macroscopic closure with a Nash
equilibrium serving as the local thermodynamic equilibrium. An application of the
presented theory to a social model (herding behavior) is discussed.
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1 Introduction

The paper aims at providing a framework for a non-cooperative non-atomic anony-
mous game with a continuum of players (Aumann 1964; Mas-Colell 1984; Schmei-
dler 1973; Shapiro and Shapley 1978) also known as a Mean-Field Game
(Cardaliaguet 2012; Lasry and Lions 2007) which exhibit strong scale separation.
More precisely, we are interested in such games where agents evolve their strate-
gies according to the best-reply scheme on a much faster time scale than their social
configuration variables. We target the derivation of a system of equations which de-
scribes the slow evolution of the social configuration variables as a consequence of
the very fast evolution of the agents variables through a suitable averaging, or ‘coarse-
graining’ procedure. Indeed, the fast evolution of the strategy variables drives the
agents towards a local Nash equilibrium, where locality is both in social configura-
tion and time. The slow evolution equation depends on parameters that are computed
from these local Nash equilibria.

Therefore, this work provides a rigorous coarse-graining procedure to derive the
large time dynamic of the social configuration of the agents, in the spirit of a macro-
scopic model in continuum mechanics. We believe that this framework provides a
new viewpoint which, by connecting kinetic theory to game theory, may be useful to
address complex dynamical problems in economics and social sciences. In this paper,
we focus on the definition of a framework and defer its detailed application to specific
examples (such as the evolution of wealth distribution in economic neighborhoods)
to future work except for an example of herding behavior that will be treated at the
end.

We consider a dynamic model for an ensemble of rational agents or players in the
game-theoretical sense. Each agent is endowed with two variables: a type variable X
which describes the state of the agent such as its position in some social configuration
spece, such as its economic neighborhood, its geographical position, etc., and a de-
cision (or control or action or strategy) variable Y which describes the strategies the
agent can play with during the game. The social configuration variable X and strategy
variable Y belong to the two spaces X and ), respectively. In this paper, for simplic-
ity, we make X = R” while ) is a compact connected oriented Riemannian manifold
imbedded in R”. This last assumption is inessential () = R” could be used instead)
but is made to avoid tedious considerations about the integrability of the functions at
infinity in y. We also have in mind a herding example (Sect. 5) where this framework
is natural.

Each agents tries to minimize a cost function (or equivalently maximize a utility
function) in the presence of the other players in the framework of a non-cooperative,
anonymous game (Green and Porter 1984; Schmeidler 1973). The cost function de-
pends on the social configuration and decision variables of the agent itself and of all
the other agents. By contrast to equilibrium theory, we assume that the agents are not
choosing the Nash equilibrium instantaneously (Nash 1950) (also known as Cournot—
Nash equilibria), but rather each agent works towards this goal by the so-called ‘best-
reply strategy’, minimizing its cost while considering that the other agents will not

@ Springer



J Nonlinear Sci (2014) 24:93-115 95

change theirs. This results in a descent in the direction of the gradient of the cost
function. In addition, this action is overlayed by some statistical noise, giving rise
to Brownian fluctuations. This setup gives rise to a system of stochastic differential
equations.

To put this abstract framework into a more concrete setting, we give the following
example. Let us consider that an agent works in a team and that her wage depends on
her skill X, her investment (into training for instance) Y and the skill and investment
of the whole team. So, in this example, X € X = R” is the vector of possible skills
and Y € Y =R? is the vector of possible investments like e.g. job training. The agent
wants to maximize her wage. In order to do so, she chooses her action by considering
that the rest of the workers will not change theirs. She thus chooses to invest in the
direction which maximizes the increase of her wage. This leads to the evolution of Y
according to the best-reply strategy. Now, the evolution of the agent’s skill X depends
on her current skill and her investment. It is not unrealistic to say that her ability
X evolves due to these two factors (Schultz 1961) and that this evolution is slow
compared to the rate of investment, i.e. the evolution of Y.

We are interested in systems of a large number of agents where a continuum
description can be adopted, in the way of non-cooperative non-atomic anonymous
games with a continuum of players (Aumann 1964; Mas-Colell 1984; Schmeidler
1973; Shapiro and Shapley 1978) also known as Mean-Field Games (Cardaliaguet
2012; Lasry and Lions 2007). Indeed, in the situation of anonymous games with a
large number of players, the construction of a mean field that serves as a mediator for
describing inter-particle interactions constitutes an excellent approximation. In this
kind of models, one describes the contribution of each particle to the creation of a
mean field, and the effect of the mean field on each particle, by conceiving each par-
ticle as infinitesimal, i.e. by carrying out a kind of limit process on the number N of
particles for N — oco. We refer the reader to Blanchet (2012) for a nice introduction
to game theory and Mean-Field Games. In the present paper we consider such mean
field models, i.e. we consider a continuum of players which, under the usual molec-
ular chaos assumptions, can be described by an effective equation for the probability
distribution of single agents in the phase space (x, y) consisting of the type and action
variables.

In this large number of agents limit, a kinetic model for the time evolution of this
probability distribution f(x, y, t) can be written as follows:

Wfx,y. D)+ Ve [fVa,N]=Vy - [[Vs@s(x,y,0)]=dA,f.  (1.1)

The vector valued function V (x, y) is given by the basic dynamics of the system,
describing how the state x evolves for a given control variable y. The forcing term
Vy - [fVy@r(x,y,1)] in Eq. (1.1) describes the agent trying to minimize the cost
functional @ ¢ by marching in the steepest descent direction —V,® ¢ (in the mean
field model considered in this paper @ ; will exhibit a functional dependence on the
density f). The Laplacian on the right-hand side of Eq. (1.1) is a consequence of
the Brownian noise in the system, with the diffusion coefficient d corresponding to
the variance 2d. Again, by contrast to the usual Mean-Field Game models for agent
systems (Cardaliaguet 2012; Lasry and Lions 2007) where the optimum control is re-
alized instantaneously (leading to the solution of a Hamilton—Jacobi—Bellman equa-
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tion), our agents march an infinitesimal step towards the optimum at each time step
by taking the steepest descent of the cost functional.

The substance of this paper is to relate the kinetic description given by Eq. (1.1)
to the well-established game-theoretical framework. We show that, in the homoge-
neous case, when the density f is independent of the state x, steady state solu-
tions of Eq. (1.1) correspond to Nash equilibria. Therefore the model considered
here, which relies on the best-reply strategy, results in a scheme consisting of agents
choosing their strategy variables in the direction of steepest descent towards this
Nash equilibrium. In the case of potential games (Monderer and Shapley 1996;
Rosenthal 1973), when the cost functional @ ¢ can be expressed as the functional
derivative of a potential functional, we show that the kinetic equation can be ex-
pressed as the gradient flow of a free energy. Nash equilibria are the critical points
of this free energy. Stable Nash equilibria are those which correspond to a global
minimum of the free energy, the other minima corresponding to metastable ones. For
special cases, we can prove that the dynamic solution of the kinetic equation con-
verges to these stable or metastable Nash equilibrium solutions (see Sect. 5). We note
that potential games have originated from congestion games aimed at describing con-
gested traffic situations (Rosenthal 1973) and that we will recover familiar models of
traffic flow below (see Eq. (1.2) and comments below). Recently, an approach similar
to that developed here has been applied to pedestrian traffic (Appert-Rolland et al.
2013a, 2013b).

The main goal of the paper is to investigate the inhomogeneous case, when the
probability density f depends on the both the state (or type) x and the control vari-
able y. We aim to derive macroscopic dynamic equations in the state variable x only,
which constitute good approximations to the solution of Eq. (1.1) at large scales. In-
deed, we look at the system over time scales which are large compared to the typical
time needed by the players to act on their control variables. Simultaneously, we sup-
pose that the interactions between the players are localized in the state space x. This
corresponds to a situation of so-called bounded information where the agents only
take into account agents which are close to themselves in state space x to make their
decision, ignoring agents in the far field. In the macroscopic dynamics, we focus on
scales in state space which are large compared to this interaction scale. Over these
large time and state space scales, the distribution of agents in the control variable y
instantaneously realizes the local Nash equilibrium. This local Nash equilibrium de-
scribes the statistics of agents in control variable y and depends on parameters which
may vary over the large-scale state variable x and time ¢. Such parameters may be
e.g. the local number density p(x, t) of agents at given state x and time ¢, or the mean
or standard deviation of the local Nash equilibrium distribution.

The resulting macroscopic equation represents, in the language of kinetic theory,
the macroscopic closure of the kinetic equation, using the Nash equilibrium distribu-
tion as the Local Thermodynamic Equilibrium. For instance, the large time evolution
of the density p(x, ) is of the form

dp(x,1) + Vs - (up) =0, (1.2)

where p is related to the probability density f by p(x,t) = [ f(x,y,t)dy. The
macroscopic velocity u(x, t) is given by the expectation of the local velocity V (x, y)
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over the Nash equilibrium distribution. In the simplest possible case the macroscopic
velocity u can be expressed in terms of the macroscopic density p as u = u,, giving
a closed (usually) hyperbolic conservation law such as in the Lighthill-Whitham—
Richards model of traffic (Lighthill and Whitham 1955). However, in many applica-
tions the structure of the macroscopic velocity u is more complicated, and additional
constitutive equations are needed to obtain a closed system from Eq. (1.2). In such an
occurrence a case by case study is necessary. We will give such an example in Sect. 5.
This paper is organized as follows:

— In Sect. 2 we define the basic model, consisting of a system of stochastic differen-
tial equations, and state under what assumptions the solution can be expressed in
terms of a mean field density for one effective agent.

— Section 3 is devoted to the analysis of equilibria. For this purpose it is sufficient
to consider the homogeneous case where the density function f in (1.1) does not
depend on the state variable x. In this case the equilibrium solution is given as
the solution of a fixed point problem and we show that this equilibrium solution is
actually a Nash equilibrium in the game-theoretical sense. In the case of potential
games, we provide a variational structure and Liapounov functional to Eq. (1.1).

— Section 4 is concerned with the inhomogeneous case. We consider the macroscopic
limit in the regime when the control variable y is adjusted on a much faster time
scale than that of the evolution of the state variable x and when the interactions are
nearly local in state space. In the limit, this leads to the macroscopic model (1.2)
where the macroscopic velocity u has to be computed from the local Nash equilib-
rium.

— In Sect. 5, we apply the framework developed so far to a model of social herd-
ing behavior, where V is an actual velocity in physical space, and the goal of
each individual is to adjust to the mean velocity of the ensemble. Here, equilib-
rium distributions are given by the Von Mises—Fischer distribution. This serves as
an example of a potential game. However, the macroscopic limit Eq. (1.2) is not
well defined unless some additional constitutive relations are used to determine
the macroscopic velocity u#. An other example pertaining to the evolution of the
distribution of wealth in economic neighborhood can be found in Degond et al.
(2013b). There are many models of social interactions and group formation based
on a game-theoretical approach (see e.g. Konishi et al. 1997).

— In Sect. 6, a conclusion is drawn and perspectives are given.

2 A Mean-Field Model of Social Dynamics

We consider N rational agents (or players) moving continuously in a space of so-
cial configurations X. Each agent labeled j, j € {1, ..., N} has social configuration
X;(t) € X, depending on time ¢ € R. It controls its state by an action (or deci-
sion) variable Y;(¢) belonging to a space of control variables ). For simplicity, we
suppose that X = R" and ) is a compact, orientable, connected manifold imbedded
in R? with or without boundary and endowed with the Riemannian structure induced
by R?. Given (X (¢), Y;(t)), the jth agent moves in configuration space with velocity
Vit)=V(X;(),Y;()), where V =V (X, Y) is a given function of the configuration
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and decision variables, and will be referred to as the social velocity of agents at so-
cial configuration X having strategy Y. To act on their decision variables, the agents
impose a given force F ]N which will be a function of his own and the other agents’
configuration and decision variables. In addition to this force, each agent’s decision
variables are subject to Brownian noises which model uncertainties in the decision
process as well as of the influence of the environment. Brownian noises for different
agents are independent. In order to constrain the dynamics of the decision variables
to the manifold ), the resulting combination of the force and Brownian noise is pro-
Jected onto the tangent plane Ty, ;) to ) at this point. The particle dynamics is given
by the following Stochastic Differential Equation (SDE):

X;j=V(X;0.Y;0),  d¥;=Pr, o (F)+v2daw/), @D

where the dot indicates the time derivative, PTyj « 1s the orthogonal projection onto
the tangent plane to Y (¢), the symbol o refers to the Stratonowich interpretation of
the SDE, dW,j for j € {1,..., N} denote N independent Brownian motions in R” and
d is the diffusion coefficient. Finally F denotes the force acting on the jth agent
which is described below. In the case where ) is a manifold with boundary, suitable
boundary conditions must be given. Such boundary conditions will be specified later
on in the kinetic framework (see Eq. (2.8)). That (2.1) provides a well-defined SDE
on X x ) follows from the theory described e.g. in Hsu (2002).

We denote by X (1) = (X1, ..., Xn), Y (1) = (Y1, ..., Yy)and ¥; = (Y1, ..., Yj_1,
Yii1,...,Yn) (in game theory, the notation Y_; is usually preferred to Y ). We also
write ¥ = (Y;, Y ;) by abuse of notation. We assume the existence of a cost function
oN ()} Y, t) which each agent tries to minimize by acting on its strategy variables,
assuming that the other agents do not change theirs. This means that each agent j
relaxes its control variable Y; towards an equilibrium Y; ()Z' , % i, 1) such that

YN(X.¥;.1) =arg mir)l}éN()}, Y;,¥;,0, Vje{l,...,N).  (22)
Yje

Since such a goal cannot be achieved instantaneously, it chooses the best-reply strat-
egy, i.e. it acts on itself such that

FN(X.Y.1)==Vy,®"(X.Y;.¥;.1), Vje{l.....N}. (2.3)

We now assume that F' ,N is globally Lipschitz with respect to all its arguments, so
that the system (2.1) has global solutions.

The terminology used so far is borrowed from classical physics (see e.g. the term
‘force’ to describe the action of the agents). We refer to the ‘investment-skill’ ex-
ample given in the introduction for a description in more economical terms. Within
this example, the force would characterize the rate at which the agent would invest to
improve her wage. A more sophisticated way to optimize the action or control vari-
ables is to use a Hamilton—Jacobi—Bellman equation (see e.g. the Mean-Field Game
theory of Lasry and Lions 2007). We can also easily generalize this setting to a fiber
bundle but we will stay in the frame of a trivial bundle (i.e. a Cartesian product) for
simplicity.
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Now, we introduce the N-particle empirical distribution function

N
1
fNey.n= N E 8% (1) (X) ® 8y (1) (¥)s
j=1

and regard fV as a map from r e Ry to fV(r) € P(X x )), where P(X x ))
denotes the space of probability measures on X x ). We assume that in the mean-field
limit N — oo of the number of players going to infinity, there exists a one-particle
distribution function f = f(x, y, t), whichmapst € Ry to f () € Pac(X x )) where
Pac(X x ) is the space of probability measures on X x ) which are absolutely
continuous with respect to the Lebesgue measure on X x ) (i.e. the measure on
X x Y induced by the Lebesgue measure on R” x R”), such that

=1 2.4)

in the weak star topology of bounded measures. We assume that a mean-field cost
function exists. More precisely, we assume that there exists a map Py (X x V) —
C2(X x V), f+ @y, such that, for all trajectories (X;(¢), Y;(¢)) satisfying (2.4),
we have

SN (X (1), X (1), Yj (1), Yj (1), 1) = ® 51y (X (0), Y; (1)),
Vjiell,...,N}, Yt >0. 2.5)

This assumption means that the influence of the rest of the agent ensemble can be
replaced by a functional dependence on the distribution of the social configuration
and decision variables of a single anonymous agent. Therefore, two agents which
have the same strategy are indistinguishable, which is known as an anonymous game.

Thanks to this assumption, in the limit N — oo, the one-particle distribution func-
tion f is a solution of the following Fokker—Planck equation (Sznitman 1991):

Wf+Ve - (V) +Vy - (Frf)=dA,f, (2.6)

where Fy = Fyr(x,y,t) is given by

Ff(-xvyvt)z_vy¢f(l)(-x7y)' (27)

In (2.6), the symbol V- denotes the divergence of tangent vector fields on ), while
Ay is the Laplace—Beltrami operator on ). Below, we will also use V, for the tan-
gential gradient of functions defined on )). We supplement this system with an initial
condition f(0) = fo. For short, we will write @ ¢y = @ . In the case where Y is
a manifold with boundary, we set a zero flux condition on the boundary X x 9,
namely:

fo,®; +dd, f=0, onX xaY, 2.8)

where 9, f (x, y) denotes the normal derivative of f at (x,y) € X x ).
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3 The Homogeneous Configuration Case: Convergence to Nash Equilibria
3.1 General Setting

In this section, we consider the case where the dynamics of the decision variables
is independent of the state variables and we restrict the system to the decision vari-
ables only. In the kinetic-theory framework, this would refer to the spatially homo-
geneous case, where the spatial dependence is omitted. Then, f becomes a mapping
from ¢ € [0, co[ to f(t) € Pa(}), where Py ()) is now the space of absolutely con-
tinuous probability measures on ). The cost function @ becomes a mapping from
feEPiQ)todye C2()). Equation (2.6) is now written

o f =00, Q) =Vy - (fVy@y +dVyf), 3.D

with initial condition given by fy. We note that we can write the collision operator
Q(f) as follows:

Q(f)=Vy-(fVy(@s+dlnf)) =V, - (fVyur), (3.2
with
pr(y)=®r(y)+dln f(y). (3.3)
In the case where ) has boundary, then the boundary condition (2.8) reduces to
SOy =0, ond), 34

where 9,4 7 (y) is the normal derivative of 1y at y € ). For a given function @ (y),
we introduce the Gibbs measure Mg (y) by

b ) _ AS))
Mg (y) = Za exp( 4 ) Zo —/yeyexp< p )dy. 3.5)

The definition of Zg is such that Mg is a probability density, i.e. it satisfies

Mg (y)dy =1. (3.6)
yey

Now, we can write

0(f) =dv <M¢_fvy(%>>. G.7)

f
We have the following.

Lemma 3.1 (i) For any sufficiently smooth function f and g on ), we have

g f g
——dy=—-d Vol — ) - V| —=— |Msp.dy. 3.8
[ ewngia /yey y(Mqu) y(Mq)f) o dy.  (8)

(i) We have

f f
2 dv=—-d .
/;ey Q(f)MCD_/ g /yey’Vy<M¢f>

2
Mo, dy <0. (3.9)
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Proof (1) Multiplying (3.7) by ¢/ Mo, integrating over y and using Green’s formula
on Y, we get (3.8). In the application of Green’s formula, the boundary term is either
absent when ) has no boundary or vanishes due to the boundary condition (3.4) in
the case where ) has a boundary. Indeed, we notice that

S
Mo,
Therefore, the boundary term in Green’s formula is written

y rr
=Zgped, Q(f)=dZ¢,Vy- (Mg, VyeT). (3.10)

2l g
dZ¢f /yeaqu;f(y)a,,(e d )(y)WdS(y)zo’

where dS(y) is the measure on d) and where the integral is zero because

Br 1 #r®
Ol 7)) =Ze T By () =0,
by virtue of (3.4).
(i) We let g = f in (3.8) and get (3.9). O

From Lemma 3.1, we deduce the following.

Proposition 3.2 The distribution function f € P,c(}) is an equilibrium solution, i.e.
a solution of Q(f) =0 if and only if f is of the form feq where feq is a solution of
the following fixed point problem:

1 P, (») P foq (V)
Jeq(¥) = Zo exp<—%>, Z(b_/eq =/yeyexp<—%> dy. (3.11)

Jeq

Proof First, suppose that Q(f) = 0. Then, |

ye

f —
y Q(f) Uy dy = 0. Therefore,

thanks to (3.9), % is a constant. Using the positivity of Mg, and its normaliza-
!

tion condition (3.6), we get f = Mg ,. Consequently, for f to be an equilibrium, it

has to satisfy the fixed point problem (3.11). Conversely, if feq is a solution of the

Mf:eq =1 and Q(feq) =0 follows. 0

fixed point problem (3.11), then

We now show that equilibria (3.11) are Nash equilibria for the mean-field game
(also known as non-cooperative anonymous game with a continuum of players
(Cardaliaguet 2012)) associated to the cost function augmented by the contributed
of the noise w ¢(y) (or ‘augmented cost function’). We first define the concept of a
Nash equilibrium for such a game (Blanchet and Carlier 2012; Blanchet et al. 2012;
Cardaliaguet 2012).

Definition 3.3 A Nash equilibrium measure fNg € P()) for the Mean-Field Game
defined by the cost function u £ (y) is such that there exists a constant K and

{ e () =K Yy eSupp(fag),

Lie) =K Vye),
where Supp( f) refers to the support of f, i.e. the closure of the set where f 7 0.

(3.12)
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We recall the following proposition (Cardaliaguet 2012):

Proposition 3.4 Definition (3.12) is equivalent to the following statement:

dy= inf dy. 3.13
/yEnyNE(y)fNE(y) y fe?l?ric(y)/;;gyﬂfNE(y)f(y) y (3.13)

Equation (3.13) is called the ‘mean-field’ equation.
Now, we can state the following theorem:

Theorem 3.5 Let f € Py ()). Then the two following statements are equivalent:

(i) f is an equilibrium (3.11),
(i1) f is a Nash equilibrium (3.12).

Proof (i) = (ii). Let feq be an equilibrium (3.11). Since Y is compact and P is
continuous on Y for any f € P,:()), then @ feq is bounded. Therefore, its support is
the entire manifold )’ and the second line of (3.12) reduces to the first line. We easily
compute that K = —dInZg . Therefore, feq is a Nash equilibrium (3.12).

(i) = (i). Let fng be a Nash equilibrium (3.12). We show that Supp(fng) =
Y. Indeed, by contradiction, suppose Supp(fng) & V. There exists y € )V such that
/NE(y) = 0. Then, because of the log inside (3.3) and the boundedness of @ £, we
have u 4 (y) = —oo which is a contradiction to the second line of (3.12). Therefore,
by the first line of (3.12), u s is identically constant over the entire space ). From
the expression of u sy in (3.3), fNE is proportional to exp(—@ sy /d), which means
that it is an equilibrium (3.11). O

The mean-field model (3.1), (3.2) can be recast as a transport equation as follows:

Wf+Vy (f)=0, (3.14)
v=—Vyur. (3.15)

It describes the bulk motion of agents which move in the direction of the steepest
descent towards the minimum of u . When all agents have reached the minimum
of iy, then uy is a constant and describes a Nash Equilibrium. Therefore, in the
proposed dynamics, the agents are driven towards the Nash equilibrium by the best-
reply strategy i.e. they choose as their action to move in the descent direction of the
gradient of the cost functional.

Remark 3.1 The existence and uniqueness of Nash equilibria i.e. solutions of the
fixed point problem (3.11) is an open problem in the fully general setting. How-
ever, in Sect. 5, we provide an example where such equilibria exist. Depending on
the conditions, they may be unique or not. In the non-uniqueness case, this leads to
the occurrence of phase transitions. The final Nash equilibrium which is reached as
t — oo depends on the initial condition.
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3.2 Variational Structure and Potential Games (Monderer and Shapley 1996)
In this section, we make the following assumption:

Assumption 3.1 There exists a functional ¢/ ( f) such that
_SUS)

[o7] = v ,
) 5f (), Vye)l
where Ws;f ) is the functional derivative of ¢/ defined by
SU(S) 1
[ B L wemay=lim @ +so-Un). 616
yey Of s—>0§

for any test function ¢ (y) = g(y) — f(¥), g € Pac(Y).

We note that the existence of such a functional gives a very strong constraint on
@ (if f were finite-dimensional, i.e. if ) were replaced by a finite set and Eq. (3.1)
by a system of ordinary differential equations, that would mean that @ is the gradient
of the scalar potential /). We will call U/ the potential energy. A game associated to
such a cost function @ is called a potential game (Monderer and Shapley 1996). We
now introduce the entropy functional:

S(f)=d JIn f(y)dy, (3.17)

yey

and the free energy

FH=US)+SU). (3.18)

It is a simple matter to find

5S(f),
7()’) =dlIn f(y).
Therefore, we have
8F
%(y) =®s(y)+dIn f(y) =pr(). (3.19)

In statistical physics, the first-order variation of the free energy of a system is called
the ‘chemical potential’. Building on this analogy, we call the augmented cost func-
tion 1 ¢(y), the chemical potential associated with the free energy F(f). Now, we
can recast (3.1), (3.2) as

1)
0 f =V, (V) f) =V, - (vy (%)f) (3.20)

But for a function f(y,t) we have

d . SF(f(,1), of
E]:(f(',f)) _/yey T()’)E()’J)d)’-

Inserting (3.20) into the above equation, and using Green’s formula, we have
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d SF(f(.0), |
GFren) == [ renn e o) oo

:==D(f(-.1)) <0. (3.21)

Using (3.21), Eq. (3.20) can be viewed as a gradient flow in the Wasserstein metric
and can be discretized in time using the Jordan—Kinderlehrer—Otto scheme (Jordan
et al. 1997).

Therefore, F is Liapounov functional for this dynamic and D is the free-energy
dissipation term. By fine analysis of D, it is possible in some cases to deduce decay
rates from this kind of estimate (Frouvelle and Liu 2012; Villani 2003). Equilibria
given by (3.11) are critical points of F subject to the constraint [ f dy =1 and the
chemical potential u is the Lagrange multiplier of this constraint in this optimization
problem. Each of these critical points corresponds to a Nash equilibrium. However,
these critical points are not necessarily global minimizers of the free energy. Among
these equilibria, the ground states, which are the global minimizers of F are the most
stable ones. Other equilibria are either not stable or only locally stable (or metastable).
The co-existence of several stable equilibria may give rise to phase transitions and
hysteresis behavior if bifurcation parameters are involved and varied.

4 The Inhomogeneous Configuration Case: Nash Equilibrium Macroscopic
Closure

Now, we return to the inhomogeneous configuration case (2.6), (2.7) where the po-
sitions of the players in the social configuration space is considered. The goal of
this section is to investigate the ensemble motion of the players at large time scales,
averaging out over their individual decision variables. For this purpose, we have to
assume a temporal scale separation, where individual decisions are fast compared to
the evolution of the ensemble of players in configuration space. We also need to ob-
serve the system as a bulk, averaging out the fine details of the individual players in
configuration space. Therefore, we will introduce a suitable coarse-graining proce-
dure. We take advantage of the fact that individuals act on their decision variables in
such a way that the augmented cost function u ¢ is gradually reduced. Eventually, at
large times, no agent can reduce 1 ¢ any further by acting on its own decision vari-
ables. Such a state is by definition a Nash equilibrium and is given by (3.11). We use
this equilibrium as a prescription for the internal decision variable distribution of the
agents. In this section, we provide the details of this coarse-graining process, known
as the hydrodynamic limit in kinetic theory.

In order to manage the various scales in a proper way, we first change the variables
to dimensionless ones. Let 7y be a time unit and let xo = atg, where a is the typical
magnitude of V. We choose #j in such a way that the magnitude of @ is O(1) and in-
troduce the quantity d = dty = O(1). The decision space ) is already dimensionless
and the variable y does not require any scaling. Introducing new variables x = x /xo,
f=t/to, f(X,y,0) = x5 f(x,y.0), VE y) =V, y)/a, F, y) =10Pr(x,y),
Eq. (2.6) is written

0if + Vi (VE ) +Vy - (Fpf)=dA, f, .1
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where F 7 is given by

Fpx.y.0) = =Vy® (X, ). 4.2)

We now introduce the macroscopic scale. Referring to the discussion of the be-
ginning of this section, we change the configuration space unit and the time unit to
new ones x;), #;, which are large compared to xo, fo. Specifically, we let ¢ < 1 be a
small parameter and define x, = xo/, 1, = 1o/¢. Here, ¢ refers to the “small” aver-
age change of the configuration of the ensemble of agents on the “fast” time scale
of the evolution of the decision variables. In the kinetic framework, ¢ would be a
measure of the particle mean-free path in macroscopic units. By doing so, we change
the space and time variables X and 7 to macroscopic variables £ = X, f = f and
define f()?, y,f)=¢" f()?, y, f). Inserting this change of variables into (4.1), (4.2),
we are led to the following perturbation problem (dropping the hats and tildes for
simplicity):

e@ f + Ve (V) +Vy - (Fpe f©) =dAy f*, 4.3)
where Fpe is given by
Fi(x,y,) = =V, ®5(x, y). 4.4)

The following assumption is an assumption of spatial scale separation between the
decision and social configuration variables.

Assumption 4.1 For a distribution function f(x,y), f € Pac(X x )), we assume
that cDSf can be developed as follows:

D% (x, y) = D)., (%, ) + O(e7), (4.5)
with

1
ve(y) = ——=f(x,y), p(x)=f fx, y)dy, (4.6)
p(x) yey
and @, ,, is a map [0, 00) X Pac(V) — C2(X x V), (0, V) > D .

In short, v, is the conditional probability density of f conditioned on fixing the
position x € X, and it belongs to P,.())). Equation (4.5) states that, up to factors of
order O(g?), the cost function is a functional of this conditional probability and of the
density only, and therefore, only depends on local quantities at social position x. The
O(e?) term collects all non-local effects in social position space. These effects are
supposed to be much smaller than the local ones. This is an expression of the scale
separation in social space: local effects in social space are supposed to have a much
bigger influence that non-local ones on a given subject.

Indeed, Assumption 4.1 states that the fast dynamics which are driven by the lead-
ing order of the cost function (4.5) and which only acts on the decision variable y,
only depends on the other agents located at the same social position x. The remainder
O(g?) term, which collects all non-local effects acts even more slowly than the slow
dynamics (the order O(e) in (4.1)) which affects the social position variable x. If

@ Springer



106 J Nonlinear Sci (2014) 24:93-115

the remainder term were (O(g) only, the slow dynamics would exhibit a contribution
coming from the non-local term, which is neglected here. If the scale-separation As-
sumption 4.1 is not satisfied, the coarse-graining procedure cannot be implemented
since the social variable x evolves on the same scale as the decision variable y.

The macroscopic limit is about taking the limit ¢ — 0 in this set of equations. In
order to do so, we write (4.3), (4.4) as follows:

1
0 f% + V- (V0 f) = 20(f%), 4.7
with O given by

Q(f) = Vy . (qu)p(x,t),vx,,f +dvyf)» (4-8)

and where p(x,t), vy are related to f(¢) by (4.6). Here, we have used (4.5) to
replace @ by @ in (4.7), (4.8) and dropped the remaining O(¢) terms. In the example
section below, we will show that this assumption is actually quite natural.

Here again, we emphasize that (x, #) now refers to slow variables. The left-hand
side of (4.7) describes how the distribution of agents as a function of the external
variables (the social configuration x) evolves. This evolution is driven by the fast,
local evolution of this distribution as a function of the individual decision variables y
described by the right-hand side. The parameter ¢ at the denominator highlights that
fact that the internal decision variables evolve on a faster time scale than the external
social configuration variables. The fast evolution of the internal decision variables
drives the system towards an equilibrium, i.e., solution of Q(f) = 0. Such a solution
is referred to in physics as a Local Thermodynamical Equilibrium (LTE). Below, we
use the results of the previous section to show that, in this case, the LTE’s are given
by Nash equilibria.

To highlight this fact, by factoring out p(x, ¢) from the expression of Q in (4.8),
we can recast it as follows:

O(f) :=p(x, [)Qp(x,t) (vx,t)v 4.9

where, for any p € RT, we define the operator Q o acting on P,c()) as follows:

Qp(v) =V, - (Vy®, v +dVyv). (4.10)

The equation Q(f) = 0 can then be recast (supposing that p(x,) # 0) into
Q.1 (vx,1) = 0. But the operator Q,, freezes the slow variables (x, ¢) and acts only
on the distribution of agents in the decision variable y. Therefore, this equation is
merely a homogeneous configuration problem and we can apply Proposition 3.2 to
solve it. This leads to the following lemma whose proof is a direct application of
Proposition 3.2 and is omitted.

Lemma 4.1 The LTE, i.e. the solutions of Q(f) =0 are given by

@y, 1) =px, DVeq o, (V) 4.11)

where veq,p(y) is a solution of Q,(v) = 0. Such solutions veq,,(y) are given by the
resolution of the Nash equilibrium fixed point problem
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exp(— Pp.veas (y))
Pp.veq,p d 7
4.12)

D veq, (V)
Z‘pp,ueq,p = /;ey CXp(— dﬂ )dy

Now, we can state the result for the coarse-graining limit ¢ — 0 inside Eq. (4.7).
We have

Veq,p(y) =

Theorem 4.2 Under Assumption 4.1, suppose that the solution f¢ to (4.7) converges
to a function f when ¢ — 0 smoothly, which means in particular that all derivatives
of [ converge to the corresponding derivative of f. Then, formally f is given by an
LTE (4.11). The density p(x,t) satisfies the following conservation law:

00 + Vx - (pu) =0, (4.13)
with
U= M[Veq,p(x,t)](x)’ 4.14)

being the mean social velocity of veq, p(x,r) and u[v](x) is given by

u[v](x) = / LV @.15)
ye
for all distributions v € Pac ().

Remark 4.1 The quantity u[v], which could be referred to as an ability to move or as a
mean velocity in social configuration space is constructed by averaging the individual
social velocities V (x, y) of all the individuals located at social configuration x having
strategy y, over the Nash equilibrium distribution veq, o (x,)-

Proof of Theorem 4.2 From (4.7), we have Q(f*) = O(¢e) and owing to the con-
vergence assumptions made on f¢, we have Q(f) = 0. Thanks to Lemma 4.1, f
is of the form (4.11). Now, observe that 1 is a collisional invariant of Q, meaning
that fy ey 9 f)(y)dy =0, for all functions f(y) (simply by Green’s formula and the
boundary conditions). Therefore, integrating (4.7) with respect to y leads to

3p°+ Vi (p°u®) =0, (4.16)

with u®(x, 1) = u[vg ,](x) where u[v](x) is given by (4.15) and vy , is related to
f¢ by the first Eq. (4.6). Then, taking the limit ¢ — 0 in (4.16) and using p® — p
and vy ; = Veq p(x,r)» WE get u® = ulveq p(x,n](x), and the limit of Eq. (4.16) is

precisely (4.13). 0

Remark 4.2 We note that Eq. (4.13) (complemented with an initial condition pg(x)
and possibly boundary conditions) does not necessarily lead to a closed system. We
will provide examples in the next section where additional equations may be re-
quired to provide a closed problem. However, in many cases, the solution of the Nash
equilibrium problem (3.11) is not known explicitly. This suggests the development
of coarse-graining strategies, based on e.g. the Heterogeneous Multiscale Method
(E 2011) or kinetic upscaling (Degond et al. 2006).
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5 Models of Social Herding Behavior
5.1 General Framework

Here, we specify the potential @ ¢(x, y) as given by the following kernel:
Pr(x,y) 2/ k(x, y, ', ) f(x', ') dx" dy', (5.1
‘ ('YX xY

where (x, y,x",y) € (X x V)2 > k(x,y,x',y) €eRisa given function. To be more
specific, we focus on a model of social herding behavior, where pairs of agents try to
minimize the angle between their respective social velocities. Namely, we set

k(x, v, x/, y’) = —K(x,x’)V(x, y)- V(x’, y’), 5.2)

where V (x, y) is the velocity in social space specified earlier and the dot refers to
inner product in the vector space X'. By trying to minimize the angle between their
own velocity and that of their neighbors, the agents adopt a mimetic behavior, and
tend to move in social space in the same direction as the others. We can write

Dr(x,y)=—V(x,y) Wy(x), (5.3)
with

Wr(x) :/ K(x, xX)vV(x',y) f(x',y)dx"dy e X. (5.4)
', yHeX <y

We can view Wy as some average of V (x, y) over f.
Now, let us first focus on the homogeneous configuration case, letting K = 1. In
this case, f(y,t) satisfies (3.1) with @ (y) given by

D)= V()W Wy / RGIULE (5.5)
y'e

By (3.11) the Nash equilibrium is now depending on a parameter W € X’. It is denoted
by Mw and given by (3.5) with @ (y) = -V (y) - W, i.e.

(5'6)

Now, Eq. (3.11) which defines a Nash equilibrium is replaced by a ‘compatibility
condition’ deduced from (5.4) and which expresses that

W =Wuy,,

or equivalently

1 1
w (V) -W))dy= (V) -W)|)V(dy. .7
yef"p<d( ) )) y /yey""p<d( ) )) Mdy. (7

The associated game is a potential game. Indeed, we introduce the potential energy

1
Uf) = —5|Wf|2. (5.8)
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According to definition (3.16), we have, for all test functions ¢ (y),

SUS) / Wy
—77 dy =-W; - —rL d
/yey 5 Mo (y)dy r ey 5F ¢ (y)dy

:_Wf‘/ V()¢ (y)dy
yey

_ / RIS (59

where, to pass from the first to the second line, we have used the fact that, in the
homogeneous configuration case, Wy is linear with respect to f. So, we get

SUS)

— (=2 , 5.10

5f N =2r(y) (5.10)

which shows that the game with augmented cost function w ¢ (y) given by (3.3) is a
potential game associated to potential /. Its variational structure is associated to the
following free-energy functional (thanks to (3.17) (3.18) and (5.10)):

1
F(f)=8(f) — 5|Wf|2. (5.11)

In economics, one may be interested in the ‘social cost’ (Blanchet and Carlier
2012; Blanchet et al. 2012) defined by

C(fH)= / wr) f(y)dy =3S(f) +f Cr(y)f(y)dy, (5.12)
yey yey
where the second equality comes from (3.3), (3.17). Definition (5.12) expresses that
the total cost for the society is the sum of the individual costs 1 r(y) averaged over
the distribution of strategies f(y). Now, taking ¢ = f in (5.9) we have, for all
J € Pac(I),
[ eimrme=[ ELorma.
yey yey 8f

But noting that U/ (f) is a quadratic function of f, we have the following identity,
which is valid for all degree 2 homogeneous functions:

5f
It follows that, for all f € P,.(}),

U
/ ) M fO)dy =2U(f).
yey

/ s (y) f(y)dy =— Wyl (5.13)
yey
Then, the social cost (5.12) has the expression

C(f)=S8(f) — Wyl (5.14)

Note that the free energy (5.11) and social cost (5.14) differ by a factor 1/2 in front
of [Wy|>. Then, we have F(f) = S(f) + 3/Wy|?. Therefore, a minimizer of the
free energy is not necessarily a minimizer of the social cost, which is called a ‘social
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optimum’. The reason for this is that the agents take into account the cost of their
own interaction but do not take into account the cost of the interaction for the agents
they are interacting with. Hence, they are missing half of the total interaction energy.
Consequently, the difference F(f) — C(f) = %IW r |? is a kind of measure of social
disorder. In general, a Nash equilibrium gives rise to a minimizer of the free energy
instead of the social cost. The reason is that individual players make strategies without
taking into account the cost of the freely available social infrastructure. To correct
this discrepancy, one has to make players pay for the use of this infrastructure by e.g.
assigning taxes. In the present cases, taxes would lead to an augmented cost function
equal to w7 (y) — V(y) - Wy. An example pertaining to city planning can be found in
Blanchet et al. (2012).

5.2 Example: Animal Herding Model

In this section, we consider a special case of the above one which describes the herd-
ing behavior a group of animals or a human crowd (Vicsek et al. 1995). The social
space X coincides with the geographical space R" (with n = 2 (for crowds) or n =3
(for fish schools for instance)). The decision variable y is the direction of the motion
of the individuals and is such that y € ) = S"~1, where S"~! is the unit sphere of R"
endowed with the Lebesgue measure dy (normalized such that the total measure of Y
is equal to 1). The function V (y) relating the decision variable to the physical speed
is independent of x and simply given by
Viy) =y,

where the speed (supposed uniform and independent of position) is normalized to
1 through the non-dimensionalization procedure. We take the same kernel (5.2) as
before, which leads to the cost function

Pr(x,y)=—y - Wr(x), (5.13)
with

Wf(x):/ K(x,x")y f(x',y")dx"dy". (5.16)
(x’,y’)ERnXSn71

In the homogeneous configuration case (where we set K = 1), the free energy is
still given by (5.11) where now Wy is given by

Wy = f Y (y)dy'.
y’ES"il

Then, from (5.6), the Nash equilibrium is given by a so-called Von Mises—Fischer
(VMF) distribution

1 1 1
MW()’)=E€XP(5(%W)), Zw=/ . leXP<E()"W)> dy, (5.17)
yeSt—

where W € R” is a solution of (5.7). In the present context, this equation is written

1 1
w exp(—(y . W)) dy =/ exp(—(y . W))ydy. (5.18)
yeS”*l d yES"71 d
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By rotational symmetry and expressing the integrals in (5.18) in polar coordinates,
we can write

W =|W|$, (5.19)
where £2 € S"~! is arbitrary. The quantity x = |W|/d satisfies

c(k) =dk, (5.20)
with
Jo e cos @ sin 2 60 do

s (5.21)
foﬂ excost gin2 9 4o

clk) =

and cosf =y - £2. Then, the VMF distribution (5.17) is more conveniently written
M, (where k € Ry is the concentration parameter and §2 is the mean direction) as

1
M (y) = — exp(k(y - 2)), (5.22)

with Z, given by the denominator of (5.21). The quantity c(«) is the order parameter.
It is an increasing function of x which satisfies 0 < c(k) < 1. When c(x) ~ 0, then
M, (y) is nearly isotropic (i.e. M, (y) =~ 1). On the other hand, when c(k) — 1,
which happens when x — oo, then M, (y) — 8 (y) (see details in Degond et al.
2013a; Frouvelle and Liu 2012).

Now, we look at the solutions of the compatibility condition (5.20). This analysis
has been performed in Degond et al. (2013a), Frouvelle and Liu (2012). We only
summarize the final results in the following.

Theorem 5.1 (Degond et al. 2013a; Frouvelle and Liu 2012) (i) If ¢/(0) = % <d,
then, the only solution of Eq. (5.20) is k = 0 and the associated equilibrium (5.22) is
the uniform distribution My = 1. It is a stable equilibrium.

(i) If ¢'(0) = % > d, then, there exist exactly two solutions of Eq. (5.20): k = 0 and
another solution denoted by kg > 0. kg is a strictly decreasing function of d € [0, %]
onto (+00, 0]. The associated equilibria (5.22) are the uniform distribution My = 1
associated to k =0 and all VMF distributions M, where §2 takes any value on the
sphere S"~1. The uniform equilibrium is now unstable and the VMF equilibria Mo
for all 2 € S"~! are the ground states of the free energy and are stable.

We refer to Degond et al. (2013a), Frouvelle and Liu (2012) for the precise math-
ematical statement of the stability result, as well as for rate estimates of convergence
to the equilibria in the homogeneous configuration case.

Remark 5.1 If n = 1, then S*~! = {—1, 1} and ¢(x) = tanh(x). The compatibility
condition (5.20) is the same as the mean-field equation in the Ising spin model for
ferromagnetism (Huang 1987).

Now, we apply the coarse-graining procedure with Nash equilibrium closure de-

veloped in Sect. 4 to this special case. To implement this closure, we first need to
verify condition (4.5). For this purpose, we assume that
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K(x,x/) = ﬁ%(

with k(r): r € [0, 00) — R a given kernel. The quantities associated to such kernel
K by (5.15) and (5.16) are denoted by <1§;} and W; For simplicity, we assume

/XGXIZ(|x|)dx=1.

Then, inserting (5.23) into (5.16) and expanding in powers of ¢, we get, for f €
Pac(X x V):

lx — x|

), (5.23)

&

5(x) = p()W,, +0(e?), (5.24)
with for all v € Py ()),

W, = / yv(y')dy'. (5.25)
y/ESn—l
By inserting this expansion into (5.15), we get

DY (x,y) = Dp, (y) + O(c7), (5.26)

where, for p € Ry and v € Py ()), we set

@, 0(y)=—py - Wy, (5.27)

We note that, in order to recover the homogeneous configuration setting of the be-
ginning of this section, WW; must be replaced by oW, in (5.15). It follows that the
compatibility condition (5.20) becomes

d
clk) =« —,
P

and that the Nash equilibrium solutions are now the VMF distributions M, 19525 with

2 € S"~!. The discussion of Theorem 5.1 is still valid provided that d is replaced by
d/p everywhere. Therefore, there are two regimes corresponding to items (i) and (ii)
in the statement of Theorem 5.1. We successively describe the models resulting from
the application of Theorem 4.2 for these two regimes.

(i) Large noise or small density case: % > % Then, the only Nash equilibrium being
the isotropic distribution My = 1, the macroscopic velocity u as given by (4.14),
4.15)is

u=u[1]=/ ydy =0,
yesnfl

by antisymmetry. The macroscopic Eq. (4.13) reduces to
8; P = 0.

In order to get a meaningful macroscopic model, we must rescale time to diffu-
sive scales. In this case, a diffusion approximation procedure leads to a nonlinear
diffusion equation for p. Details can be found in Degond et al. (2013a).
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(i) Small noise or large density case: % < % Then, we use the ground-state Nash

equilibrium My, ¢, where £2 € S"~!. In this case, f is given by (4.11), i.e.,
fy, ) =p&x, )My, 00,0 (5.28)

By the computations above, the mean velocity u is given by

u(x,t) =clkq/p)$2(x,t) #0.

The Nash equilibrium macroscopic closure Eq. (4.13) gives

3P+ Vy - (ckasp)p2) = 0. (5.29)

We note that it does not provide an equation for £2(x, t) yet and as such, would
lead to an ill-posed problem. However, by using the concept of Generalized Col-
lision Invariant (GCI) (Degond and Motsch 2008), it is possible to derive the
equation for §2. This equation reads

H2 +b(p)(2 V)R +O(p)PoiVip =0, (5.30)

where b(p) and @ (p) are real-valued functions of p and Po1 =1d — 2 ® 2
is the orthogonal projection of X’ onto the hyperplane space (Span{$2})* or-
thogonal to £2. The functions b and @ are not specified here. They are obtained
through the application of the GCI to (4.11). Details can be found in Degond
et al. (2013a). We note that because of the presence of the projection Po.1 the
constraint |§2| = 1 is propagated in time as soon as it is verified at time ¢ = 0.
We note that the system is not in conservative form but, under some conditions,
it can be shown to be well-posed (Degond et al. 2013c).

This example illustrates that the Nash equilibrium closure can be effectively used
to derive macroscopic closures. However, merely the mass conservation Eq. (4.13)
may be not be enough to provide a well-posed closed system and that additional
techniques must be called for in order to find a closed system.

6 Conclusion and Perspectives

In this paper we have provided a framework for the time evolution of a system of ra-
tional players in a non-cooperative anonymous game with a continuum of players (or
Mean-Field Game) which collectively make their decision by choosing the best-reply
strategy, i.e. they move in the steepest descent direction of the individual cost func-
tions. Assuming that the individual actions are fast and localized in social configura-
tion space, we have derived a macroscopic dynamic which describes the large-scale
evolution of the parameters of the local Nash equilibria. In forthcoming works, we
plan to apply this framework to various phenomena such as the evolution of the distri-
bution of wealth in the economic neighborhood, opinion formation, social dynamics
and collective decision making. The development of numerical methods based on the
gradient flow structure offers an interesting perspective for the computation of the lo-
cal Nash equilibria in the case of potential games. Various elaborations of our frame-
work can be envisioned, such as including mixed strategies or a non-deterministic
component of the cost function, like e.g. in Lazear and Rosen (1979).
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