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Abstract We present and analyze a model for the evolution of the wealth distribution within
a heterogeneous economic environment. The model considers a system of rational agents in-
teracting in a game theoretical framework, through fairly general assumptions on the cost
function. This evolution drives the dynamic of the agents in both wealth and economic
configuration variables. We consider a regime of scale separation where the large scale dy-
namics is given by a hydrodynamic closure with a Nash equilibrium serving as the local
thermodynamic equilibrium. The result is a system of gas dynamics-type equations for the
density and average wealth of the agents on large scales. We recover the inverse gamma
distribution as an equilibrium in the particular case of quadratic cost functions which has
been previously considered in the literature.
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1 Introduction

This paper is concerned with the evolution of wealth in economy. More precisely, we wish
to model the large time-scale evolution of the distribution of wealth when the ensemble
of agents presents some large-scale heterogeneities arising e.g. from geographic or social
differences. This evolution will be driven by Nash equilibria within the framework set up by
[12], which is closely related to Mean-Field Games [8, 18].

The subject of understanding the wealth distribution has a long history since Pareto in
1896 [27]. The wealth distribution results from the combination of two important mecha-
nisms: the first one is the geometric Brownian motion of finance which has first been pro-
posed by Bachelier in 1900 [2] and the second one is the trading model, one the earlier
ones being that of Edgeworth, dating back to 1881 [14]. These pioneering works have been
followed by numerous authors and have given rise to the field of econophysics. Recent refer-
ences on this problem can be found e.g. in the books [9, 24, 32, 33] and e.g. in the references
[20, 31, 34, 36].

We consider an economy modeled as a closed ensemble of agents. The state of each
agent is described by two variables. The variable x, describes its location in the economic
configuration space, as for instance the propensity of an agent to invest [13]. Therefore, there
is a notion of proximity between agents which makes economic interaction (trading) more
likely. In addition, the state is described by the wealth y of the agent. The dynamic of these
attributes is given by some motion mechanism in the economic configuration variable x and
by the exchange of wealth (trading) in the wealth variable y.

The basic equation considered in this paper is of the form

∂tf (x, y, t) + ∂x

(
f V (x, y)

) = ∂y(f ∂yΦf ) + d∂2
y

(
y2f

)
, (1.1)

where f (x, y, t) is the density of agents in economic configuration space x having wealth
y at time t . In the absence of the economic configuration variable x, it reduces to a model
originally proposed by Bouchaud and Mézard [7] (see also [10]), namely

∂tf (y, t) = ∂y(f ∂yΦf ) + d∂2
y

(
y2f

)
. (1.2)

In this model, Φf is an interaction ‘potential’, which in the mean-field theory, is functionally
dependent on the density f (x, y, t). In [7], it describes the resultant of pairwise interactions
proportional to the quadratic distance between the wealth of the two agents. The goal of the
present paper is to extend this framework to general potentials. The second term at the right
hand side of (1.2) models the uncertainty and has the form of a diffusion operator corre-
sponding to the geometric Brownian motion of economy and finance, with variance 2dy2

quadratic in y. The justification of this operator can be found in [26]. In this model, the total
wealth

∫ ∞
0 yf (y, t)dy is preserved. This case is referred to as a “conservative economy”.

The Bouchaud and Mézard model [7] can be recovered in the small exchange of wealth
limit from the Boltzmann like model of [10].

In [13], Düring and Toscani have introduced an economic configuration variable x to the
model of [7, 10] and considered Eq. (1.1) in the case of a quadratic potential. In their work,
the x variable is a propensity to trade. In [13] as well as in the present model, the position
in economic configuration affects the trading behavior of the agent through the dependence
of Φf upon x. Conversely, the evolution of the agents’ wealth y triggers some movement
in the economic configuration variable x. This evolution is modeled by the quantity V (x, y)

which describes how fast the agents move in configuration space (i.e. is the ‘velocity’ in
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economic configuration). The dependence of V upon both economic configuration x and
wealth y expresses that the evolution of the agents in these two variables are coupled.

In [13], the first two moments of the wealth distribution function f are considered. These
moments are the density of agents ρ(x, t) and the density of wealth ρΥ (x, t) defined by:

ρ(x, t) =
∫

f (x, y, t)dy, ρΥ (x, t) =
∫

yf (x, y, t)dy, (1.3)

(where Υ is the mean wealth) and are functions of the economic configuration x and the
time t . Taking the moments of (1.1) and closing the resulting moment system by using the
equilibrium distribution of [7, 10], they find a system of conservation equations for ρ and
ρY in configuration space x and time t , which resembles the gas dynamics equations.

The first goal of the present paper is to propose an extension of [7, 10, 13] by considering
arbitrary potentials (and not only quadratic ones). We find that the equilibria cannot be given
explicitly, by contrast to the previous literature where they could be expressed in terms of
an inverse gamma distribution. Rather, they are found through the resolution of a fixed point
equation. If multiple solutions to this fixed point equation exist, corresponding to multiple
stable equilibria, this indicates that phase transitions in the wealth distribution are possible.
However, we leave the question of the existence and enumeration of the solutions to the
fixed point equation to future work.

The second goal of the paper is to derive the moment equations which provide the dy-
namics of ρ and ρY in configuration space x and time t , using the equilibria found from
the resolution of the above mentioned fixed point problem. This is done in the same way as
in [13] except for the following differences. First, the conditions of scale separation where
this derivation is justified are stated explicitly. Second, we give a proof that the density and
wealth density are the only quantities which are preserved by the interaction. In kinetic the-
oretical terms, this means that the only ‘collision invariants’ are linear combinations of 1
and y. This result is rigorously proved here in the case of a quadratic potential considered
before [7, 10, 13]. The proof relies on a Poincaré inequality which follows from [3, 4]. At
this point, it is only a conjecture in the case of a general potential.

The third goal of this paper is to relate the setting of [7, 10, 13] to game theory. In
the present work, the potential can be viewed as the cost function in a non-atomic non-
cooperative anonymous game with a continuum of players [1, 21, 29, 30], also known as a
Mean-Field Game [8, 18]. This cost function arises from the sum of pairwise interactions.
For each pair of players, the equilibrium reached under this interaction corresponds to wealth
difference being at one of the mimima of this cost function. We note that this model only
considers the exchange of money and does not keep track of the goods and services traded.
Therefore, this game does not mean that each players wishes to share some of its wealth
with the trading partner. Rather, the utility of the exchange is to maximize the economic
action resulting in the optimal exchange of goods and services. Within this framework, the
dynamic of agents following these strategies can be viewed as given by the following game:
each agent follows what is known as the best-reply strategy, that is tries to minimize the cost
function with respect to its wealth variable, assuming that the other agents do not change
theirs. In order to do so, each player moves in the y direction along the negative gradient of
the cost function Φf .

The passage to the macroscopic scale is done by assuming that the spatio-temporal scale
of the economic interaction (the dynamic in the y-direction) is fast compared to the spatio-
temporal scale of the motion in the economic configuration space (i.e. the x variable). The
analysis of such scale separation problems is usually done by re-scaling t → t

ε
, x → x

ε
,

while leaving y unchanged where ε � 1 is a small parameter characterizing the ratio of the
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microscopic units to the macroscopic ones. Typically, here, the microscopic time unit is the
inverse of the trading frequency, while the macroscopic one is the characteristic time of the
evolution in the economic configuration space. Similar considerations would hold for the
spatial units.

This rescaling yields the following perturbation problem:

ε
(
∂tf (x, y, t) + ∂x

(
f V (x, y)

)) = Q(f ), (1.4)

with the operator Q(f ) given by

Q(f )(y) = ∂y(f ∂yΦ̄f ) + d∂2
y

(
y2f

)
, (1.5)

where Φ̄f is a localized version of the cost function Φf . The localized cost function Φ̄f

is such that its evaluation at a given point (x, t) only depends on the values of f at the
same point. This localization is obtained under the assumption of scale-separation, i.e. that
trading interactions are much more likely within agents belonging to the same economic
neighborhood x at a given time t . For this reason, we will denote it by Φ̄ρ(x,t),νx,t (y), where

ρ(x, t) =
∫

y∈R+
f (x, y, t)dy, νx,t (y) = 1

ρ(x, t)
f (x, y, t).

respectively denote the local density of agents at (x, t) and the conditional probability of
presence of the agents, conditioned on fixing (x, t). Writing Φ̄ = Φ̄ρ(x,t),νx,t (y) expresses
that Φ̄ evaluated at (x, t) depends on the scalar quantity ρ(x, t) and is functionally depen-
dent on the probability νx,t .

In the limit ε → 0, one is led to look for the solutions of Q(f ) = 0. These solutions,
known as the local equilibria, provide the formal limit of the solution f ε to (1.4) when
ε → 0. Along with the interpretation given in [12], we show that these local equilibria can
be interpreted as Nash equilibria of the mean-field game defined above. So, Eq. (1.1) can be
interpreted as the mean field limit of a system of agents whose dynamic in the wealth vari-
able y is driven by the best-reply strategy, i.e. is a march towards the Nash equilibrium along
the gradient of the cost function. This motion is supplemented with the standard geometric
Brownian motion of economy and finance.

The Nash equilibria can be expressed in the form of Gibbs distributions MΞ(y):

MΞ(y) = 1

ZΞ

exp

(
−Ξ(y)

d

)
, ZΞ =

∫

y∈R+
exp

(
−Ξ(y)

d

)
dy. (1.6)

where the function Ξ(y) is associated to the cost function Φ̄ρ,ν . For MΞ to be a local equi-
librium, Ξ must satisfy a fixed point equation expressing the Nash equilibrium property.
Since Φ̄ρ(x,t),νx,t depend locally on (x, t), so do the function Ξ = Ξx,t (y). The importance
of the Gibbs distribution in the statistical physics of money and wealth is reviewed in [36].

The large scale limit i.e. the limit ε → 0 after rescaling t → t
ε
, x → x

ε
yields the gas-

dynamic type system of evolution equations for the macroscopic quantities (the moments),
i.e. for the local density ρ(x, t) and average wealth Υ (x, t) defined at (1.3). The macroscopic
equations are of the form

∂tρ(x, t) + ∂x

(
ρu(x;Ξx,t )

) = 0, (1.7)

∂t (ρΥ )(x, t) + ∂x

(
ρE(x;Ξx,t )

) = 0. (1.8)
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Here the macroscopic velocity u(x;Ξx,t ) and wealth velocity E(x;Ξx,t ) are functions of x

and are functionally dependent on Ξx,t . They are computed via closure of the moments of
Eq. (1.1) using the Nash equilibrium (1.6) as a closure. For the case of a general trading
interaction potential, it is not known whether system (1.7), (1.8) forms a closed system of
equations, i.e. in other words, if the knowledge of ρ and Υ suffices to reconstruct Ξ in a
unique way. This point is left to future work.

However, in the case of a quadratic trading interaction [7, 10, 13], it can be shown that it
is actually the case and we can write u(x;Ξx,t ) = u(x;Υ (x, t)), E(x;Ξx,t ) = E(x;Υ (x, t)),
which makes system (1.7), (1.8) a closed system of equations. Under suitable assumptions
on u and E , it can be shown that this system is hyperbolic. Therefore, it is (at least locally
in time) well-posed and shares similar features as the classical system of compressible gas
dynamics equations. This system has already been proposed in [13]. However, we prove
that the conservation of density and wealth density are the only conserved quantities. The
proof of this fact relies on a Poincaré inequality which can be derived from [3, 4]. This is
an important step towards the rigorous proof of the convergence of the solutions of (1.4) to
those of (1.7), (1.8) in the ε → 0 limit.

We now give a few examples of potential applications of the present work, beyond the
case considered in [13], where x has the meaning of a propensity to trade. In the first exam-
ple, the economic configuration variable x coincides with the geographical position x. Here
for instance, we are considering different countries, or different areas of the same country,
which have different wealth distributions. It is a documented fact [17, 22] that spatial inho-
mogenities of the wealth distribution trigger migrations, people from areas where the lower
range of the wealth distributions is thick tending to migrate towards areas where the higher
range of the wealth distribution is more populated. Obviously, in return, these migrations af-
fect the shape of the wealth distribution in the concerned areas. In this context, the model can
be used to provide a spatially continuous description of wealth distribution inhomogeneities
and of their evolution in the large time due to migrations.

The second example has to do with the connection between wealth and social status
which has been studied in e.g. [11, 28, 35]. Social status has an obvious relation to wealth.
However, this relation may not be straightforward, as social status may also be influenced by
other factors such as professional or marital status and power. Obviously, a higher social sta-
tus increases the opportunities to make money and conversely, money may buy some factors
which influence social status. Therefore, it is interesting to study how differences between
wealth distributions in different social strata may trigger movement of agents between these
strata in the long term and how, in return, these movements influence the wealth distribution
in each strata.

Lastly, the third example pertains to the connection between wealth and education or
cultural level. Studies about this connection can be found e.g. in [15, 16]. This is very similar
to the previous example as a higher education or cultural level increases the opportunities for
a high trading activity. Conversely, an increased wealth due to a higher economic activity
provides the resources and incentives for training and participation in cultural activities.
Therefore, like in the previous examples, our methodology could be used to study the long
term evolution of the distribution of education or cultural level due to inhomogeneities in
the wealth distribution among the various cultural or educational strata.

This paper is organized as follows. In Sect. 2, we present the multi-agent model for
the dynamics of N agents. We assume the existence of a mean field limit for N → ∞,
yielding formally the Fokker-Planck equation (1.1) for the effective single agent density
f (x, y, t). Section 3 is devoted to the spatially homogeneous case, where f is independent
of the economic configuration variable x. Its main purpose is to provide the fixed point
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equation whose resolution yields the equilibrium distribution of Q in (1.5). We show that the
equilibrium distribution is actually a Nash equilibrium, i.e. no player can improve on the cost
function by choosing a different direction in y. In Sect. 4 we consider the inhomogeneous
case and close the moments of the kinetic equation (1.1) using the equilibrium density from
Sect. 3. Finally, we conclude by drawing some perspectives in Sect. 5.

2 The Model and Its Mean-Field Limit

2.1 A Dynamic Agent Model for Wealth Distribution

We consider a set of N market agents. Each agent, labeled j , is endowed with two variables:
its wealth Yj ∈ R+ and a variable Xj ∈ R which characterizes its economic configuration,
i.e. the category of agents it usually interacts with. We ignore the possibility of debts so that
we take Yj ≥ 0.

The dynamics of the agents is an elaboration of a model proposed in [7]. It is written:

Ẋj = V
(
Xj(t), Yj (t)

)
, (2.1)

dYj = − 1

N

∑

k �=j

ξjkΨ (|Xj − Xk|)∂Y φ(Yj − Yk)dt + √
2dYjdB

j
t . (2.2)

The first term at the right-hand side of (2.2) describes economic interactions such as trading.
A huge diversity of trading models have been proposed since the pioneering work [14]
(see e.g. [31]). Here, we consider a slightly generalized form of the Bouchaud and Mézart
trading model [7]. The quantity φ is a trading interaction potential which describes how the
trading activity depends on the difference of wealth between the trading agents. In [7], the
trading activity is proportional to the difference of wealth, which means that φ is a quadratic
function. This simple assumption is convenient as it gives rise to explicit formulae for the
equilibria (see below). However, in the perspective of making this theory more quantitative,
it is desirable to investigate more general forms of trading interactions. Here, at this point, we
make no assumption on the form of the trading interaction φ. The weight ξjkΨ (|Xj − Xk|)
is the trading frequency between agents j and k and depends on the distance in economic
configuration space between the two agents. We assume that ξjk is symmetric: ξjk = ξkj and
that Ψ is normalized:

∫

x∈R
Ψ (|x|)dx = 1. (2.3)

The second term at the right-hand side of (2.2) is the classical geometric Brownian motion
of finance, which has first been proposed by Bachelier in 1900 [2]. The quantity

√
2d is

the volatility while the notation B
j
t denote independent Brownian motions. Equation (2.1)

describes how fast the agent evolves in the economic configuration space as a function of its
current wealth and current economic configuration and V (x, y) is a measure of the speed of
this motion.

In this paper, we make the following important assumption:

Assumption 2.1 The function Y ∈R→ φ(Y ) ∈R is C2 and even.
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Under this assumption, the first term of (2.2) conserves the total wealth. Indeed, the rates
of evolution of the wealth of agent j in its interaction with agent k and conversely, of agent
k in its interaction with agent j are opposite and add up to zero. The stochastic differential
equation (2.2) should be understood in the Itò sense. This is a difference with [7] where the
Stratonovich sense was used. However, upon a simple conversion involving the addition of a
term Yjddt , the models are the same in the case of a quadratic trading interaction potential φ.
In this case, Eq. (2.2) is homogeneous of degree one with respect to the variable Yj , which
means that the unit of wealth in this case can be arbitrary. However, this homogeneity is lost
for a more general trading interaction potential, and later on, we will have to choose a unit
of wealth (such as a given monetary unit).

In this work, we assume that the trading frequency ξjk is a function of the number of
trading agents in the economic neighbourhoods of j and k. For instance, we can take

ξjk = ξ

(
ρΨ

j + ρΨ
k

2

)

where

ρΨ
j = 1

N

∑

��=j

Ψ (|X� − Xj |).

For the simplicity of notations, we have assumed that the ‘counting function’ Ψ is the same
as in (2.2) but this restriction in unessential.

We introduce the notations 	X(t) = (X1, . . . ,XN), 	Y(t) = (Y1, . . . , YN) and Ŷj =
(Y1, . . . , Yj−1, Yj+1, . . . , YN) (note that in game theory, Ŷj is often denoted Y−j ). We also
write 	Y = (Yj , Ŷj ) by abuse of notation. Equation (2.2) can be recast in the following form:

dYj = −∂Yj
ΦN( 	X,Yj , Ŷj , t)dt + √

2dYjdB
j
t . (2.4)

where the cost function ΦN( 	X, 	Y , t) is given by

ΦN( 	X, 	Y , t) = 1

N

∑

k �=j

ξjk( 	X)Ψ (|Xj − Xk|)φ(Yk − Yj ), (2.5)

with

ξjk( 	X) = ξ

(
ρΨ

j ( 	X) + ρΨ
k ( 	X)

2

)
, ρΨ

j ( 	X) = 1

N

∑

��=j

Ψ (|X� − Xj |).

Therefore, the agents choose the steepest descent direction of their cost function Yj →
ΦN( 	X,Yj , Ŷj ) as their action in wealth space. This action is supplemented with a geo-
metric Brownian noise which models volatility. Ignoring these additional effects due to the
environment, the agents would eventually, at large times, reach a point of minimum of their
cost function. This minimum would then be written

Y N
j ( 	X, Ŷj , t) = arg min

Yj ∈R+
ΦN( 	X,Yj , Ŷj , t), ∀j ∈ {1, . . . ,N}. (2.6)

and corresponds to a Nash equilibrium of the agents. Therefore, the dynamics correspond to
a non-cooperative non-atomic anonymous game [1, 21, 29, 30], also known as a Mean-Field
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Game [8, 18], where the equilibrium assumption is replaced by a time dynamics describing
the march towards a Nash equilibrium. However, the cost function depends on the position
of the agent in economic configuration space and reciprocally, the motion of the agents in
economic configuration space depends on their wealth. Consequently, this march towards
a local Nash equilibrium may be perturbed by the motion of the agents in economic con-
figuration space. The goal of this paper is to study the large scale dynamics of this system
by establishing macroscopic equations in economic configuration space, particularly in the
case where the potential is not quadratic (the quadratic case being treated in [13]). To this
aim, we consider a continuous version of this discrete system.

2.2 Mean-Field Limit

We introduce the N -particle empirical distribution function

f N(x, y, t) = 1

N

N∑

j=1

δXj (t)(x) ⊗ δYj (t)(y),

and regard f N as a map from t ∈R+ to f N(t) ∈ P(R×R+), where P(R×R+) denotes the
set of probability measures on R×R+. We now make the following assumptions:

Assumption 2.2 In the mean-field limit N → ∞ of the number of agents going to infinity,
there exists a one-particle distribution function f = f (x, y, t), which maps t ∈R+ to f (t) ∈
Pac(R× R+) where Pac(R×R+) is the space of probability measures on (R× R+) which
are absolutely continuous with respect to the Lebesgue measure on (R×R+), such that

f N ⇀ f, when N → ∞, (2.7)

in the weak star topology of bounded measures.

We also assume that a mean-field cost function exists:

Assumption 2.3 We assume that there exists a map Pac(R×R+) → C2(R×R+), f �→ Φf ,
such that, for all trajectories (Xj (t), Yj (t)) satisfying (2.7) and (X(t), Y (t)) such that
(Xj (t), Yj (t)) → (X(t), Y (t)) when N → ∞, we have

ΦN
(
Xj(t), X̂j (t), Yj (t), Ŷj (t), t

) → Φf (t)

(
X(t), Y (t)

)
,

∀j ∈ {1, . . . ,N},∀t ≥ 0. (2.8)

Under Assumptions 2.2 and 2.3, and owing to (2.5), Φf (t) is given by:

Φf (t)(x, y) =
∫

(x′,y′)∈R×R+
ξ

(
ρΨ (x, t) + ρΨ (x ′, t)

2

)
Ψ

(|x ′ − x|)

× φ
(
y ′ − y

)
f

(
x ′, y ′, t

)
dx ′dy ′, (2.9)

with

ρΨ (x, t) =
∫

(x′,y′)∈R×R+
Ψ

(|x − x ′|)f (
x ′, y ′, t

)
dx ′dy ′.
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Then, in the limit N → ∞, the one-particle distribution function f is a solution of the
following Fokker-Planck equation [7]:

∂tf + ∂x

(
V (x, y)f

) + ∂y(Ff f ) = d∂2
y

(
y2f

)
, (2.10)

where Ff = Ff (x, y, t) is given by

Ff (x, y, t) = −∂yΦf (t)(x, y). (2.11)

For short, we will write Φf (t) = Φf . Thanks to (2.9), Ff can be written:

Ff (x, y, t) = −
∫

(x′,y′)∈R×R+
ξ

(
ρΨ (x, t) + ρΨ (x ′, t)

2

)
Ψ

(|x − x ′|)

× ∂yφ
(
y − y ′)f

(
x ′, y ′, t

)
dx ′dy ′. (2.12)

We supplement this equation with the boundary condition

f (x,0, t) = 0, ∀x ∈R, ∀t ∈ R+. (2.13)

We also provide an initial condition f (x, y,0) = f0(x, y).

2.3 Macroscopic Scaling

In order to manage the various scales in a proper way, we first change the variables to
dimensionless ones. We introduce t0 and x0 = at0 the time and economic configuration
space units, with a the typical magnitude of V . We scale the wealth variable y, by a monetary
unit y0. We choose t0 in such a way that the magnitude of Ψ and d are O(1). Introducing x̃ =
x/x0, t̃ = t/t0, ỹ = y/y0, f̃ (x̃, ỹ, t̃) = x0y0f (x, y, t), Ṽ (x̃, ỹ) = V (x, y)/a, Ψ̃ (|x̃ − x̃ ′|) =
x0Ψ (|x − x ′|), ρ̃Ψ̃ (x̃, t̃ ) = x0ρ

Ψ (x, t), ξ̃ (ρ̃) = ξ(ρ)/(ay2
0), F̃f̃ (x̃, ỹ, t̃) = (t0/y0)Ff (x, y, t),

Φ̃f̃ (x̃, ỹ, t̃) = (t0/y
2
0 )Φf (x, y, t), φ̃(ỹ) = φ(y), d̃ = dt0, Eq. (2.10) is written:

∂t̃ f̃ + ∂x̃

(
Ṽ (x̃, ỹ)f̃

) + ∂ỹ(F̃f̃ f̃ ) = d̃∂2
ỹ

(
ỹ2f̃

)
, (2.14)

with F̃f̃ given by

F̃f̃ (x̃, ỹ, t̃ ) = −∂ỹΦ̃f̃ (x̃, ỹ, t̃ ), (2.15)

and

Φ̃f̃ (x̃, ỹ, t̃ ) =
∫

(x̃′,ỹ′)∈R×R+
ξ̃

(
ρ̃Ψ̃ (x̃, t̃) + ρ̃Ψ̃ (x̃ ′, t̃)

2

)

× Ψ̃
(|x̃ − x̃ ′|)φ(

ỹ − ỹ ′)f̃
(
x̃ ′, ỹ ′, t̃

)
dx̃ ′dỹ ′, (2.16)

ρ̃Ψ̃ (x̃, t̃ ) =
∫

(x̃′,ỹ′)∈R×R+
Ψ̃

(|x̃ − x̃ ′|)f̃ (
x̃ ′, ỹ ′, t̃

)
dx̃ ′dỹ ′. (2.17)

We note that Ψ̃ still satisfies the normalization condition (2.3).
Following the procedure developed in [12], we introduce the macroscopic scale. We as-

sume that the changes in economic configuration x are slow compared to the exchanges
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of wealth between agents. Therefore, we change the units of economic configuration space
and time to new ones x ′

0 = x0/ε, t ′0 = t0/ε with ε � 1. The parameter ε is the ratio of the
typical time between two economic interactions (which is very short) compared to the time-
scale of the evolution of the economic configuration variable (which is large). Therefore,
we change the space and time variables to macroscopic variables x̂ = εx̃, t̂ = εt̃ and define
f̂ (x̂, ỹ, t̂ ) = ε−1f̃ (x̃, ỹ, t̃). We note that, as usual in kinetic theory, we do not scale the vari-
able ỹ. In this change of scale, the integral (2.17) becomes

∫
Ψ̃ (

|x̂−x̂′|
ε

)f̂ (x̂ ′, ỹ ′, t̂ )dx̂ ′dỹ ′ =
O(ε). Therefore, we rescale the density ρ̃Ψ̃ to take into account this behavior and let
ρ̂Ψ̃ (x̂, t̂ ) = ε−1ρ̃Ψ̃ (x̃, t̃ ). We scale the velocity, cost function and force to unity i.e. we let
V̂ (x̂, ỹ) = Ṽ (x̃, ỹ), F̂f̂ (x̂, ỹ, t̂ ) = F̃f̃ (x̃, ỹ, t̃), Φ̂f̂ (x̂, ỹ, t̂ ) = Φ̃f̃ (x̃, ỹ, t̃ ).

Similar to (2.17), in this rescaling, the integral in (2.16) is O(ε). To compensate for it,
we assume that ξ̃ is large, which maintains the trading frequency of order unity. Therefore,
we let ξ̂ (ρ̂) = εξ̃ (ρ̃). The resulting expression of the force term is

F̂f̂ (x̂, ỹ, t̂ ) = −∂ỹΦ̂f̂ (x̂, ỹ, t̂ ), (2.18)

with

Φ̂f̂ (x̂, ỹ, t̂ ) =
∫

(x̂′,ỹ′)∈R×R+
ξ̂

(
ρ̂Ψ̃ (x̂, t) + ρ̂Ψ̃ (x̂ ′, t)

2

)

× 1

ε
Ψ̃

( |x̂ − x̂ ′|
ε

)
φ̃
(
ỹ − ỹ ′)f̂

(
x̂ ′, ỹ ′, t̂

)
dx̂ ′dỹ ′, (2.19)

ρ̂Ψ̃ (x̂, t̂ ) =
∫

(x̂′,ỹ′)∈R×R+

1

ε
Ψ̃

( |x̂ − x̂ ′|
ε

)
f̂

(
x̂ ′, ỹ ′, t̂

)
dx̂ ′dỹ ′. (2.20)

Inserting these changes of variables and unknowns into (2.14) and using (2.18), we finally
obtain the following perturbation problem:

ε
(
∂t̂ f̂ + ∂x̂

(
V̂ (x̂, ỹ)f̂

)) + ∂ỹ(F̂f̂ f̂ ) = d̃∂2
ỹ

(
ỹ2f̂

)
. (2.21)

Now, by Taylor expansion in (2.19) and (2.20), and using the normalization condition
(2.3), we get, assuming that f̂ varies only at the large scale:

Φ̂f̂ (x̂, ỹ, t̂ ) = ξ
(
ρ̂(x̂, t̂ )

)∫

ỹ′∈R+
φ̃
(
ỹ − ỹ ′)f̂

(
x̂, ỹ ′, t̂

)
dỹ ′ +O

(
ε2

)
. (2.22)

Here, we introduce the local density ρ̂(x̂, t̂ ) of agents having economic configuration x̂

at time t̂ , νx̂,t̂ (ỹ) the conditional probability derived from the probability density f̂ (t̂ ) by
conditioning on the economic configuration variable being equal to x̂, by:

νx̂,t̂ (ỹ) = 1

ρ̂(x̂, t̂ )
f̂ (x̂, ỹ, t̂ ), ρ̂(x̂, t̂ ) =

∫

ỹ∈R+
f (x̂, ỹ, t̂ )dỹ, (2.23)

We assume that νx̂,t̂ ∈ Pac(R+), the space of absolutely continuous probability measures
on R+. With these notations, (2.22) can be written:

Φ̂f̂ (x̂, ỹ, t̂ ) = Φ̄ρ̂(x̂,t̂ ),νx̂,t̂
(ỹ) +O

(
ε2

)
, (2.24)
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where the functional Φ̄: (ρ̂, ν) ∈ R+ ×Pac(R+) → Φ̄ρ̂,ν ∈ C2(R+) is defined as follows:

Φ̄ρ̂,ν(ỹ) = ρ̂ξ̂ (ρ̂)

∫

ỹ′∈R+
φ̃
(
ỹ − ỹ ′)ν

(
ỹ ′)dỹ ′. (2.25)

Equations (2.24), (2.25) state that, up to factors of order O(ε2), the cost function is a
functional of the conditional probability νx̂,t̂ and of the density ρ̂(x̂, t̂ ) only, and therefore,
only depends on local quantities in the economic configuration variable x̂. The O(ε2) term
collects all non-local effects in economic configuration. These effects are supposed to be
much smaller than the local ones. This is an expression of the scale separation in economic
configuration: local effects in the economic configuration variable are supposed to have a
much bigger influence than non-local ones on a given agent. We comment the relevance of
this assumption in the three examples discussed in the introduction.

In the first example, concerning the influence of migration on the wealth distribution,
local trading may be viewed as much more important than long-distance ones, especially
when services are concerned. Also, the time-scale of trading is much faster than the time-
scale of demographic changes due to migration. Therefore, the time-scale separation is also
justified. In the second and third example pertaining with the coupled evolution of wealth
and social status on the one hand and wealth and education level on the other hand, similar
observations can be made. Wealth exchanges are more likely to be important with a given
social status or education level than outside them. A similar observation can be made for the
time-scale of trading which is much faster than the time-scales of social status or education
level changes. Of course, it is difficult to quantify the amount of ‘locality’ of the wealth
exchanges within a social network. Precisely, the present model can actually help testing
such hypotheses by providing a coarse-grained description of the system which could be
more easily compared to actual data.

Keeping only the leading order term of (2.24) inside (2.21), (2.18), we are finally led to
the following perturbation problem (where we drop all ‘hats’, ‘tildes’ and ‘bars’):

ε
(
∂tf

ε + ∂x

(
V (x, y)f ε

)) = −∂y

(
Ff εf ε

) + d∂2
y

(
y2f ε

)
, (2.26)

Ff (x, y, t) = −∂yΦρ(x,t),νx,t , (2.27)

Φρ,ν(y) = ρξ(ρ)

∫

y′∈R+
φ
(
y − y ′)ν

(
y ′)dy ′, (2.28)

νx,t (y) = 1

ρ(x, t)
f (x, y, t), (2.29)

ρ(x, t) =
∫

y∈R+
f (x, y, t)dy. (2.30)

The goal is to derive the limit ε → 0 of this problem. For this purpose, we first consider the
homogeneous economic configuration case in the section below.

3 The Homogeneous Configuration Case

3.1 The Collision Operator Q

Here, we assume that the wealth dynamics is independent of the position in economic con-
figuration space and we restrict the system to the wealth variable y only. Then, f becomes
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a mapping from t ∈ [0,∞[ to f (t) ∈ L1(R+). Obviously, the density

ρ =
∫

y∈R+
f (y, t)dy, (3.1)

is conserved, i.e. ρ is independent of t . Consequently, the trading frequency ρξ(ρ) is a
constant which will be denoted by κ . Dividing Eq. (2.26) by the constant ρ, we can write it
as an equation for the probability density ν = νt = f (·,t)

ρ
as follows:

∂tν = Q(ν), (3.2)

Q(ν) = −∂y(Fνν) + d∂2
y

(
y2ν

)
, (3.3)

where Fν is given by

Fν(y) = −∂yΦν(y), (3.4)

Φν(y) = κ

∫

y′∈R+
φ
(
y − y ′)ν

(
y ′)dy ′, (3.5)

and with initial condition given by ν0. We have omitted the dependence of Φ upon ρ, since
now ρ is a constant. By analogy with classical kinetic theory of gases, we refer to Q as the
‘collision operator’.

We now introduce different expressions and a functional setting for Q. We start with
some definitions.

Definition 3.1 We define Ξν and μν : ν ∈ Pac(R+) �→ Ξν,μν ∈ C2(R+) such that:

∂yΞν(y) = 1

y2
∂yΦν(y) + 2d

y
, (3.6)

μν(y) = Ξν(y) + d lnν, (3.7)

The function Ξν will be referred to as the ‘twisted cost function’ and takes into account the
geometric effect of the Brownian noise. The function μν(y) will be referred to as the ‘aug-
mented cost function’. It takes the previous twisted cost function and adds the contribution
of the diffusion.

We now introduce the Gibbs equilibria, which will appear as the equilibria of Q. We note
that the importance of the Gibbs equilibria in economics and finance is reviewed in [36].

Definition 3.2 For any given cost function Ξ(y), we introduce the ‘Gibbs measure’ MΞ(y)

associated to Ξ by:

MΞ(y) = 1

ZΞ

exp

(
−Ξ(y)

d

)
, ZΞ =

∫

y∈R+
exp

(
−Ξ(y)

d

)
dy. (3.8)

Remark 3.1 (i) The definition of ZΞ is such that MΞ is a probability density, i.e. it satisfies

∫

y∈R+
MΞ(y)dy = 1. (3.9)
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Now, using the definitions above, we can recast Q into various forms below. First, intro-
duce the following definition.

Definition 3.3 To any twisted cost function Ξ ∈ C2(R+), we associate the linear collision
operator QΞ defined by the following equivalent expressions:

QΞ(ν)(y) = ∂y

(
y2

(
∂yΞ(y)ν(y) + d∂yν(y)

))
(3.10)

= ∂y

(
y2∂yμ(y)ν(y)

)
(3.11)

= d∂y

(
y2MΞ(y)∂y

(
ν(y)

MΞ(y)

))
, (3.12)

with μ = Ξ + d lnν.

Then, we have the following lemma, the proof of which is obvious:

Lemma 3.4 The operator Q given by (3.3) has the following expressions:

Q(ν)(y) = QΞν (ν). (3.13)

where the twisted cost function Ξν is defined by (3.6).

In the next section, we study the properties of Q in more detail. More specifically, we
are interested in the equilibria (i.e. the solutions of Q(ν) = 0) and the collision invariants
(i.e. the functions ψ(y) which cancel Q(f ) upon integration with respect to y). These two
concepts are key to the derivation of the macroscopic equations.

3.2 Properties of Q

We introduce a weak form of the operator Q. For this purpose, we define the following
functional spaces. Let Ξ ∈ C2(R+) be a given twisted cost function. Define

XΞ =
{
u such that

∫

y∈R+
|u(y)|2MΞ(y)

dy

y2
< ∞

}
,

HΞ =
{
u such that

∫

y∈R+

(|u(y)|2 + |y2∂yu(y)|2)MΞ(y)
dy

y2
< ∞

}
,

endowed with the associated norms ‖u‖XΞ
, and ‖u‖HΞ

. We also define

HΞ0 =
{
u ∈ HΞ such that

∫

y∈R+
u(y)MΞ(y)

dy

y2
= 0

}
.

The spaces XΞ and HΞ are respectively L2 and H 1 type spaces associated to the measure
MΞ(y)

dy

y2 and the space HΞ0 is similar to an H 1 space of functions having zero mean with
respect to this measure. Therefore, we can expect that a Poincaré inequality holds, provided
suitable assumptions on Ξ are made.

At this point, we will assume that such a Poincaré inequality holds. In Sect. 3.4 below,
we will prove this Poincaré inequality for quadratic trading interactions (the setting of [7]).
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Assumption 3.1 We assume that the function Ξ : y ∈ R+ �→ Ξ(y) ∈ R is such that Ξ ∈
C2(R+) and that there exists a constant C > 0 with

|u|HΞ
=

∫

y∈R+
|y∂yu(y)|2MΞ(y)dy ≥ C‖u‖HΞ

, ∀u ∈ HΞ0. (3.14)

This Poincaré inequality equivalently states that the semi-norm |u|HΞ
is a norm on HΞ0

which is equivalent to the norm ‖u‖HΞ
. The following lemma gives some properties of the

linear operator QΞ .

Lemma 3.5 We suppose that Ξ ∈ C2(R+) is given and satisfies Assumption 3.1.
(i) The weak form of the problem:

“Let g be given; find f such that : QΞ(f ) = g”, (3.15)

where f and g are sufficiently smooth functions on R+ is given by:

“Let ψ ∈ XΞ be given; find ϕ ∈ HΞ such that :
∫

y∈R+
∂yϕ(y)∂yσ (y)y2MΞ(y)dy = −

∫

y∈R+
ψσ(y)MΞ(y)dy, ∀σ ∈ HΞ ”, (3.16)

where

f = MΞϕ, g = MΞψ. (3.17)

(ii) If ψ = 0, the solution space for this problem is spanned by the constants. In terms of f ,
the solution space is the one-dimensional linear space spanned by MΞ .
(iii) If ψ �= 0, problem (3.16) admits a solution if and only if

∫

y∈R+
ψ(y)MΞ(y)dy = 0. (3.18)

If (3.18) is satisfied, there exists a unique solution ϕ0 ∈ HΞ0 and the solution space is the
one-dimensional affine space of functions of the form ϕ0 + Constant. In terms of g, the
solvability condition (3.18) is written

∫

y∈R+
g(y)dy = 0, (3.19)

and the solution space is the one-dimensional affine space of functions of the form (ϕ0 +
C)MΞ where C ∈ R is an arbitrary constant.

The proof is deferred to Appendix A
Now, for a given twisted cost function Ξ , we investigate the equilibria of the linear

operator QΞ defined at (3.13).

Definition 3.6 The equilibria of QΞ are the weak solutions ν ∈ Pac(R+) of

QΞ(ν) = 0. (3.20)
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i.e. are the functions ν ∈ Pac(R+) such that θ = ν
MΞ

belongs to HΞ and satisfies

∫

y∈R+
∂yθ(y)∂yσ (y)y2MΞ(y)dy = 0, ∀σ ∈ HΞ . (3.21)

We deduce the following:

Proposition 3.7 We suppose that Ξ is given and satisfies Assumption 3.1. Then ν is an
equilibrium of QΞ if and only if ν = MΞ where MΞ is given by (3.8).

Proof Let ν be an equilibrium of QΞ or equivalently let θ = ν
MΞ

∈ HΞ be a weak solution
of (3.21). By Lemma 3.5(ii), the unique solutions are θ = Constant. Hence, by the normal-
ization condition (3.1), the unique weak solution ν of (3.20) in Pac(R+) is f = MΞ . �

We now turn towards defining the equilibria of the nonlinear operator Q(ν) = QΞν (ν),
where Ξν is related to ν through (3.6). We define:

Definition 3.8 The equilibria of Q are the weak solutions ν ∈ Pac(R+) of

Q(ν) = QΞν (ν) = 0, (3.22)

where Ξν is related to ν through (3.6). These equilibria are the functions ν ∈ Pac(R+) such
that θ = ν

MΞν
belongs to HΞν and satisfies

∫

y∈R+
∂yθ(y)∂yσ (y)y2MΞν (y)dy = 0, ∀σ ∈ HΞν . (3.23)

The equilibria of Q are given in the next:

Proposition 3.9 ν is an equilibrium of Q if and only if ν is a solution of the fixed point
problem

ν = MΞν . (3.24)

Proof If ν is an equilibrium of Q, it is an equilibrium of QΞ for a certain twisted cost
function Ξ , namely Ξ = Ξν . Then, from Proposition 3.7, it is of the form ν = MΞν . Recip-
rocally, if ν satisfies (3.24), ν is an equilibrium of QΞν and so, satisfies QΞν (ν) = 0. But,
because of (3.13), we have Q(ν) = 0 and ν is therefore an equilibrium. �

Remark 3.2 In statistical physics, the equilibria are called the Thermodynamic Equilibria.

The fixed point equation (3.24) can be equivalently stated as a fixed point equation for
the twisted cost function Ξ . This equivalence is established in the following proposition, the
proof of which is obvious.

Proposition 3.10 ν is an equilibrium of Q if and only if ν = MΞ where the twisted cost
function Ξ is a solution of the fixed point problem:

Ξ = ΞMΞ
. (3.25)
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Proposition 3.9 or 3.10 do not say anything about the existence and uniqueness of the
equilibria. Such information requires the analysis of the fixed point equations (3.24) or
(3.25), and necessitates specific assumptions on the trading interaction potential φ. This
analysis is outside the scope of the present work. We now provide a game theoretical inter-
pretation of the equilibria in the next section.

3.3 Game Theoretical Interpretation

In this section, we show that the equilibria MΞ are Nash equilibria [25] for the mean-field
game (also known as non-cooperative non-atomic anonymous game with a continuum of
players [8]) associated to the cost function μν(y) given by (3.7). For such a game, a Nash
equilibrium measure νNE ∈ P(R+) is such that [8] (see also [5, 6]) there exists a constant K

and
{

μνNE(y) = K ∀y ∈ Supp(νNE),

μνNE(y) ≥ K ∀y ∈R+,
(3.26)

where Supp(νNE) denotes the support of νNE. This definition is equivalent to the following
statement [8]:

∫

y∈R+
μνNE(y)νNE(y)dy = inf

ν∈Pac(R+)

∫

y∈R+
μνNE(y)ν(y)dy. (3.27)

Equation (3.27) is called the ‘mean-field’ equation. Now, we have the following

Theorem 3.11 Let ν ∈ Pac(R+). Then the two following statements are equivalent:

(i) ν is an equilibrium (3.24),
(ii) ν is a Nash equilibrium (3.26) for the Mean-Field game associated to the cost function

μν given by (3.7).

Proof The proof is identical to that of Theorem 3.5 of [12]. We reproduce it here for the
sake of completeness.

(i) ⇒ (ii). Let ν = MΞν be an equilibrium (3.24). Then, we have by (3.7):

μν(y) = −d lnZΞν = Constant, ∀y ∈R+.

and hence, ν satisfies condition (3.26) characterizing Nash equilibria.

(ii) ⇒ (i). Let νNE be a Nash equilibrium (3.26). We show that Supp(νNE) = R+. Indeed,
by contradiction, suppose Supp(νNE) � R+. There exists y ∈ R+ such that νNE(y) = 0.
Then, because of the log inside (3.7) and the finiteness of ΞνNE(y) for 0 < y < ∞, we have
μνNE(y) = −∞ which is a contradiction to the second line of (3.26). Therefore, by the first
line of (3.26), μνNE is identically constant over the entire space R+. From the expression of
μνNE in (3.7), νNE is proportional to exp(−ΞνNE(y)/d), which means that it is an equilibrium
(3.24). �

The mean-field model (3.3)–(3.5) can be recast as a transport equation as follows

∂tν + ∂y · (vν) = 0, (3.28)

v = −∂yμν. (3.29)
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It describes the bulk motion of agents which move in the direction of the steepest descent
towards the minimum of μν . When all agents have reached the minimum of μν , then μν is a
constant and describes a Nash Equilibrium. Therefore, in the proposed dynamics, the agents’
actions result in a motion in the steepest descent direction towards the Nash equilibrium.

Let us now interpret the fixed point problems (3.24) or (3.25) in the framework of this
Nash equilibrium problem. Let first the agents be distributed according to the distribution ν.
Each of the them constructs a strategy by forming the twisted cost function Ξν calculated
from ν through (3.6). This cost function enables each agent to enforce a best-reply strat-
egy and move downwards the gradient of μν until reaching its minimum. By the discus-
sion above, when all the agents have reached the minimum of μν , their distribution is given
by MΞν . Now, this can only be an equilibrium if, when constructing a new twisted cost func-
tion ΞMΞν

based on this new distribution, we find the same twisted cost function as before,
i.e. Ξν . Indeed, otherwise, the new cost function will trigger a new motion along the gradi-
ents of the augmented cost function μMΞν

which will destroy the equilibrium MΞν . There-
fore, a condition for MΞ to be an equilibrium is that ΞMΞ

= Ξ which is (3.25). Within this
condition, no agent can find a better strategy, since when forming the twisted cost function
associated to this distribution, he finds the same cost as before which is already minimized.

The important conclusion of this discussion is that the fixed point problems (3.24) or
(3.25) express that the agents have found a Nash equilibrium associated to the augmented
cost function μν .

Remark 3.3 In [12], a variational structure for potential games [23]. is developed. A varia-
tional structure supposes that there exists a functional U(ν) such that

Ξν(y) = δU(ν)

δν
(y), ∀y ∈R+,

where δU(ν)

δν
is the functional derivative of U defined by

∫

y∈R+

δU(ν)

δν
(y)

(
ϕ(y) − ν(y)

)
dy = lim

s→0+
1

s

(
U

(
ν + s(ϕ − ν)

) − U(ν)
)
,

for any test function ϕ(y) ∈ Pac(R+). The existence of such a functional gives a very strong
constraint on Ξ . In the present case, we have not been able to find such a functional U(ν).
It seems that the present model provides an example of Mean-Field Game with no potential
structure.

The existence and uniqueness of Nash equilibria in the most general trading interaction
setting will be investigated in future work. We now examine the case of the quadratic trading
interaction setting of [7].

3.4 Quadratic Trading Interaction

In this case, we let φ(y) = |y|2
2 . From (3.5), we have

∂yΦν(y) = κ

∫

y′∈R+

(
y − y ′)ν

(
y ′)dy ′ = κ(y − Υν), (3.30)

where Υν is the mean wealth associated to the wealth distribution ν, given by:

Υν =
∫

y∈R+
yν(y)dy. (3.31)
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We see that the trading cost function Φν only depends on the mean wealth, i.e. the first
moment of the distribution ν, instead of depending on the whole functional shape of ν as in
the general trading interaction case treated so far. We will exploit this fact and express all
objects related to this interaction in terms of Υν only. On the other hand, this shows that the
quadratic trading interaction case is a degenerate case. Conclusions drawn from this case
might be non-generic and misleading.

The operator Q can be expressed as follows (which is similar to the Bouchaud and Mézart
form [7]):

Q(ν)(y) = QΥν (ν)(y), (3.32)

where, for all Υ ∈R+, we denote by QΥ (ν) the following linear operator:

QΥ (ν)(y) = ∂y

(
κ(y − Υ )ν + d∂y

(
y2ν

))
. (3.33)

From (3.6), (3.7), the twisted and augmented cost functions are given by:

Ξν(y) = Ξ̃Υν (y), μν(y) = Ξ̃Υν (y) + d lnν, (3.34)

where, for all Υ ∈R+, we denote by

Ξ̃Υ (y) = (κ + 2d) lny + κ
Υ

y
. (3.35)

In the remainder, we will omit the tilde on Ξ̃Υ when the context is clear.
The Gibbs measure MΥ associated with ΞΥ given by (3.35) through (3.8) is expressed

by

MΥ (y) = 1

ZΥ

1

y1+ κ+d
d

exp

(
−κΥ

dy

)
, (3.36)

where ZΥ is given by:

ZΥ =
∫ ∞

0

1

y1+ κ+d
d

exp

(
−κΥ

dy

)
dy.

It is well-defined for κ + d > 0. We have

ZΥ = Γ ( κ+d
d

)

( κΥ
d

)
κ+d

d

,

where Γ is the Euler Gamma function.
The condition κ +d > 0 guarantees the integrability of MΥ when y → ∞. The condition

κ > 0 implies that MΥ (0) = 0 because of the exponential factor. We have

MΥ = g κ+d
d

, κΥ
d

,

where gα,β is the inverse Gamma distribution

gα,β(y) = βα

Γ (α)

1

y1+α
e

− β
y ,
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with shape parameter α and scale parameter β . This distribution is also sometimes called
the scaled inverse chi-squared distribution. It is related to the Gamma distribution

γα,β(z) = βα

Γ (α)
zα−1e−βz, (3.37)

by the change of variables z = 1/y, i.e.

gα,β(y)dy = γα,β(z)dz. (3.38)

This distribution has been previously found in [7, 10, 13]. When y is large, the distribution
MΥ becomes the Pareto power law distribution [27], which has a very strong agreement
with economic data (see e.g. the review in [36]) and α is known as the Pareto index.

We note the important following consistency property, which is not a priori obvious:

Lemma 3.12 Let Υ ∈ R+ be given and let MΥ be the equilibrium (3.36). Then, the mean
wealth of MΥ exists and is given by:

ΥMΥ
= Υ. (3.39)

Proof We compute:

ΥMΥ
=

∫ ∞
0

1

y
κ+d

d

exp(− κΥ
dy

)dy

∫ ∞
0

1

y
1+ κ+d

d

exp(− κΥ
dy

)dy
. (3.40)

The assumption κ > 0 guarantees that the integrals at both the numerator and the denomi-
nator of (3.40) converge. Then, by the change of variables z = κΥ

yd
in (3.40) and integration

by parts, it is straightforward to show that (3.39) holds. �

In this case, Assumption 3.1 is a theorem. More precisely, we introduce the functional
setting:

XΥ =
{
u such that

∫

y∈R+
|u(y)|2MΥ (y)

dy

y2
< ∞

}
, (3.41)

HΥ =
{
u such that

∫

y∈R+

(|u(y)|2 + |y2∂yu(y)|2)MΥ (y)
dy

y2
< ∞

}
, (3.42)

endowed with the associated norms ‖u‖XΥ
, and ‖u‖HΥ

. We also define

HΥ 0 =
{
u ∈ HΥ such that

∫

y∈R+
u(y)MΥ (y)

dy

y2
= 0

}
. (3.43)

Now, we have the following lemma, which directly follows from the corresponding modified
Poincaré inequality for the Gamma distribution [3], formula (10) (see also [4, 19]):

Lemma 3.13 There exists a constant C > 0 such that

|u|HΥ
=

∫

y∈R+
|y∂yu(y)|2MΥ (y)dy ≥ C‖u‖HΥ

, ∀u ∈ HΥ 0. (3.44)
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The proof is deferred to Appendix B.
Then, Lemma 3.5 can be applied and we deduce the following lemma which lists all the

equilibria of the linear operator QΥ :

Proposition 3.14 The distribution ν is an equilibrium of QΥ if and only if ν = MΥ where
MΥ is given by (3.36).

We now turn to the equilibria of the nonlinear operator Q(ν) = QΥν (ν). They are char-
acterized in the following proposition:

Proposition 3.15 ν is an equilibrium of Q if and only if there exists Υ ∈ R+ such that
ν = MΥ .

Proof If ν is an equilibrium of Q, thanks to (3.32), it is an equilibrium of QΥ for a certain
value Υ . Therefore, it is of the form ν = MΥ for this value of Υ , thanks to Proposition 3.14.
Reciprocally, if ν = MΥ , then, ν is an equilibrium of QΥ by Proposition 3.14 and so, satisfies
QΥ (ν) = 0. But, thanks to Lemma 3.12, we have Υν = Υ . So, ν is a solution of QΥν (ν) = 0,
i.e. a solution of Q(ν) = 0 and is therefore an equilibrium. �

Remark 3.4 In the present case, the fixed point equation (3.25) reduces to (3.39). Indeed,
since the twisted cost function only depends on the mean wealth Υ , Eq. (3.25) reduces to a
fixed point equation on the mean wealth. This equation is deduced from (3.25) by replacing
Ξ by Υ , i.e. it takes the form of Eq. (3.39). But precisely, Lemma 3.12 states that this
equation is satisfied for any value of Υ . Therefore, for a given value of the mean wealth,
there exists a unique Nash equilibrium and the set of Nash equilibria is parametrized by
the mean wealth. In the case of more general trading interactions, the situation can be much
more complex. Therefore, the quadratic trading interaction case seems somehow degenerate.

4 The Inhomogeneous Configuration Case: Derivation of the Macroscopic Model

4.1 Framework

Now, we return to the model in the inhomogeneous configuration case (2.26)–(2.30) where
the positions of the agents in the economic configuration space is considered. The goal of
this section is to investigate the limit ε → 0 of this system. It will enable us to describe the
ensemble motion of the agents at large time scales, averaging out over their individual wealth
variables. Therefore, we will introduce a suitable coarse-graining procedure. Taking advan-
tage that at large times, individuals relax their wealth variables towards that corresponding
to a global Nash equilibrium given by (3.24), we use this equilibrium as a prescription for
the internal wealth variable distribution of the agents. In this section, we provide the details
of this coarse-graining process, known as the hydrodynamic limit in kinetic theory. In a first
part, we will consider general trading interaction potentials φ. In the second part, we will
focus on the particular case of quadratic trading interactions and will recover a result of [13].

In order to simplify the computations, we make the following assumption, which is not
essential but simplifies the computations:

Assumption 4.1 We assume that the trading frequency ρξ(ρ) is a constant given by

ρξ(ρ) = κ. (4.1)



Evolution of the Distribution of Wealth 771

Under this assumption, the cost function Φν becomes independent of ρ and reduces to
(3.5), which, in the present spatially inhomogenous setting, is written:

Φνx,t (y) = κ

∫

y′∈R+
φ
(
y − y ′)νx,t

(
y ′)dy ′, (4.2)

We write (2.26) as

∂tf
ε + ∂x

(
V (x, y)f ε

) = 1

ε
Q

(
f ε

)
. (4.3)

The interaction operator Q is given by

Q(f ) = QΞνx,t
(νx,t ), (4.4)

where, for Ξ ∈ C2(R+) and ν ∈ Pac(R+) ∩ C2(R+), QΞ(ν) is given by (3.10)–(3.12), and
where Ξνx,t is related to Φνx,t by (3.6). We recall that νx,t and ρ(x, t) are given by (2.29),
(2.30).

Here again, we emphasize that (x, t) now refers to slow variables. The left-hand side
of (4.3) describes how the distribution of agents as a function of economic neighborhood
and time evolves. This evolution is driven by the fast, local evolution of this distribution
as a function of individual wealth y described by the right-hand side. The parameter ε at
the denominator highlights the fact that the exchanges of wealth occur on a much faster
time-scale than the evolution of the agents in the economic configuration variable. The fast
evolution of the wealth drives the system towards an equilibrium, i.e., a solution of Q(f ) =
0. Such a solution is referred to in physics as a Local Thermodynamical Equilibrium (LTE).
Below, we use the results of the previous section to show that, in this case, the LTE’s are
Nash equilibria given in Propositions 3.7 and 3.9.

4.2 Local Thermodynamical Equilibria and Conservations

Applying Proposition 3.9 to Q given by (4.4), we immediately get the

Corollary 4.1 Let f : (x, y, t) ∈ R × R+ × R+ �→ f (x, y, t) ∈ R+ such that ∀(x, t) ∈
R × R+, the function y �→ f (x, y, t) belongs to L1(R+) ∩ C2(R+). Then, the following
two statements are equivalent:

(i) Q(f ) = 0 in the weak sense, where Q is the collision operator (4.4),
(ii) there exists ρ(x, t) > 0 and Ξx,t ∈ C2(R+) such that f is given by

f (x, y, t) = Feq,ρ(x,t),Ξx,t (y) := ρ(x, t)MΞx,t (y), ∀(x, y, t) ∈ R×R+ ×R+, (4.5)

where, for any Ξ ∈ C2(R+), MΞ denotes the Gibbs distribution (3.8). Additionally,
Ξx,t must satisfy the fixed point equation which characterizes the equilibria, namely:

ΞMΞx,t
= Ξx,t , ∀(x, t) ∈R×R+. (4.6)

Remark 4.1 The functions Feq,ρ,Ξ are the LTE of our wealth distribution dynamical model
and they depend on the local density ρ and on the local twisted cost function Ξx,t at given
location x in economic configuration and given time t > 0.
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We introduce the mean wealth Υ (x, t) associated with Feq,ρ,Ξ , defined by

Υ (x, t) =
∫

y∈R+
yMΞx,t (y)dy. (4.7)

Now, we can state a first result for the coarse-graining limit ε → 0 inside Eq. (4.3). We have
the

Theorem 4.2 Suppose that the solution f ε to (4.3) converges to a function f when ε → 0
smoothly, which means in particular that all derivatives of f ε converge to the corresponding
derivative of f . Then, formally f is given by an LTE (4.5). The agent density ρ(x, t) and
wealth density (ρΥ )(x, t) satisfy the following conservation law:

∂tρ + ∇x · (ρu(x;Ξx,t )
) = 0, (4.8)

∂t (ρΥ ) + ∇x · (ρE(x;Ξx,t )
) = 0, (4.9)

where, for any twisted cost function Ξ ∈ C2(R), we denote by

u(x;Ξ) =
∫

y∈R+
V (x, y)MΞ(y)dy, (4.10)

E(x;Ξ) =
∫

y∈R+
yV (x, y)MΞ(y)dy. (4.11)

The quantities u(x;Ξ) and E(x;Ξ) are respectively the agent’s and wealth average velocity
in configuration space for an equilibrium associated with the twisted cost function Ξ .

Proof From (4.3), we have that Q(f ε) = O(ε) and owing to the convergence assumptions
made on f ε , we have Q(f ) = 0. Thanks to Corollary 4.1, f is of the form (4.5). Now,
observe that 1 and y are collisional invariant of Q, meaning that

∫

y∈R+
Q(f )(y)dy = 0,

∫

y∈R+
Q(f )(y)ydy = 0, (4.12)

for all functions f (y). The first relation (4.12) easily comes upon integrating (3.3) with
respect to y and using Green’s formula (see also (3.19)). The second relation (4.12) is a
consequence of the evenness of the trading interaction potential φ (see Assumption 2.1).
Indeed, multiplying (3.3) by y, integrating it with respect to y and using Green’s formula
leads to:

∫

y∈R+
Q(f )(y)ydy = −

∫

y∈R+
∂yΦνx,t νx,t (y)dy

= −κ

∫

(y,y′)∈(R+)2
∂yφ

(
y − y ′)νx,t (y)νx,t

(
y ′)dydy ′ = 0, (4.13)

where we have used the fact that ∂yφ is odd and we recall that νx,t is related to f by (2.29).
Therefore, integrating (4.3) with respect to y leads to

∂tρ
ε + ∇x · (ρεuε

) = 0, (4.14)
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where ρε and νε
x,t (y) are obtained from f ε through (2.30) and (2.29) respectively, and uε ,

the mean velocity in configuration space associated to νε
x,t , is defined by:

uε(x, t) =
∫

y∈R+
V (x, y)νε

x,t (y)dy.

Similarly, multiplying (4.3) by y and integrating it with respect to y leads to

∂t

(
ρεΥ ε

) + ∇x · (ρεEε
) = 0, (4.15)

with Υ ε the mean wealth of f ε , associated to νε
x,t through (3.31) and Eε(x, t) the mean

wealth velocity in configuration space, defined by:

Eε(x, t) =
∫

y∈R+
yV (x, y)νε

x,t (y)dy.

Then, taking the limit ε → 0 in (4.14), (4.15), and using that ρε → ρ, Υ ε → Υ and
νε

x,t → MΞx,t , we get that uε(x, t) → u(x;Ξx,t ) and Eε(x, t) → E(x;Ξx,t ). Finally, the lim-
its of Eqs. (4.14), (4.15) are precisely Eqs. (4.8), (4.11). �

Equation (4.8) is a continuity equation which expresses how the number of agents in
a given domain of economic neighborhood changes in time. Indeed, let I = [a, b] be an
interval in economic neighborhood and denote by NI (t) the number of agents in this interval
at time t :

NI (t) =
∫

x∈I

ρ(x, t)dx.

Then, integrating (4.8) over x ∈ I , and using an integration by parts, we get

dNI

dt
= −(ρu)(b) + (ρu)(a).

This equation expresses that NI varies in time due to the flux of agents leaving I through
point b and entering I through point a. Therefore, ρu is the flux of agents crossing an arbi-
trary point and u(x;Ξx,t ) is the average velocity of the agents in economic neighborhood at
this point. A similar interpretation is valid for Eq. (4.9), replacing agents by wealth. Indeed,
the average wealth is transported in economic neighborhood with velocity E(x;Ξx,t ) as the
second term of Eq. (4.9) expresses.

In the present case of a general trading interaction potential φ, it is not clear if the macro-
scopic equations (4.8), (4.9) form a closed system of equations. For this to be true, we would
need to be able to reconstruct Ξx,t from the knowledge of ρ(x, t) and Υ (x, t). This is not
possible in general, unless the fixed point equation (3.24) has a unique solution among dis-
tributions ν of given mean wealth Υ . Such a uniqueness statement is by no means obvious.
There could exist a continuous family of solutions parametrized by a parameter belonging to
a d-dimensional manifold. In this case, we would need d additional macroscopic equations
to specify how these parameters evolve in configuration space and time. The characteriza-
tion of the manifold of equilibria strongly depends on the assumptions made on the trading
interaction potential φ and it not possible to make a general theory at this point.

Here as a matter of illustration, we investigate the quadratic trading interaction case and
show that the two conservation equations (4.8), (4.11) form a closed system of equations.
This obviously follows from the fact that the twisted cost function Ξ is fully determined
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by the knowledge of the mean wealth Υ . By doing so, we recover the framework of [13].
However, we note that this framework is very specific and cannot be generalized simply to
arbitrary trading interaction potentials.

4.3 Quadratic Trading Interaction Case

4.3.1 LTE and Conservations in the Quadratic Case

Here, we return to the quadratic trading interaction framework as developed in the homoge-
neous configuration case in Sect. 3.4. We first specify the results of Sect. 4.2 to the present
case.

Again, we make Assumption 4.1 for the sake of simplicity. We consider the spatially
inhomogeneous kinetic equation (4.3) where now, the collision operator Q is given by

Q(f ) = QΥνx,t
(νx,t ), (4.16)

where, for Υ ∈ R+ and ν ∈ Pac(R+) ∩ C2(R+), QΥ (ν) is given by (3.33), and where
Υν is the mean wealth of ν given by (3.31). We recall that νx,t and ρ(x, t) are given
by (2.29), (2.30).

The equilibria are given by the following corollary of Proposition 3.15:

Corollary 4.3 Let f : (x, y, t) ∈ R × R+ × R+ �→ f (x, y, t) ∈ R+ such that ∀(x, t) ∈
R × R+, the function y �→ f (x, y, t) belongs to L1(R+) ∩ C2(R+). Then, the following
two statements are equivalent:

(i) Q(f ) = 0 in the weak sense, where Q is the collision operator (4.16),
(ii) there exists ρ(x, t) > 0 and Υ (x, t) > 0 such that f is given by

f (x, y, t) = Feq,ρ(x,t),Υ (x,t)(y) := ρ(x, t)MΥ (x,t)(y),

∀(x, y, t) ∈R×R+ ×R+, (4.17)

where, for any Υ ∈R+, MΥ denotes the inverse gamma distribution (3.36).

Now, in the coarse-graining limit ε → 0 of (4.3) we get the agent and wealth density
conservation equations, stated in the following theorem:

Theorem 4.4 We consider the solution f ε to (4.3) supplemented with the collision operator
(4.16). We suppose that f ε converges to a function f when ε → 0 smoothly, which means in
particular that all derivatives of f ε converge to the corresponding derivative of f . Then, for-
mally f is given by an LTE (4.17). The agent density ρ(x, t) and wealth density (ρΥ )(x, t)

satisfy the following conservation law:

∂tρ + ∇x · (ρu
(
x;Υ (x, t)

)) = 0, (4.18)

∂t (ρΥ ) + ∇x · (ρE(
x;Υ (x, t)

)) = 0, (4.19)

where, for any Υ ∈R+, we denote by

u(x;Υ ) =
∫

y∈R+
V (x, y)MΥ (y)dy, (4.20)
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E(x;Υ ) =
∫

y∈R+
yV (x, y)MΥ (y)dy. (4.21)

We see that system (4.18), (4.19) forms a closed system of equations. There are two
unknown scalars ρ(x, t) and Υ (x, t) and two scalar conservation equations to determine
them. This model describes the combined evolution of the density ρ of agents and their
average wealth Υ in economic neighborhood and time. It resembles a gas dynamic system.
It is readily checked that the model is strictly hyperbolic (and hence, well-posed), provided
the following condition is satisfied:

(
u(Υ ) − Υ u′(Υ ) + E ′(Υ )

)2
> 4u2(Υ )

(
u

E

)′
(Υ ), ∀Υ ∈R+,

where primes denote derivatives with respect to Υ . Specific expressions of u(Υ ) and E(Υ )

will depend on the context.
This type of model has previously been derived in [13]. The derivation of [13] relies on a

moment method, where the zero-th and first order moments of the distribution function with
respect to the wealth variable are taken, and closure using the inverse gamma distribution.
Here, we wish to show a bit more, namely that there are no other independent conserva-
tion relation involved in the macroscopic system. If it were so, the limit system would be
determined by more equations than unknown functions parametrizing the equilibrium dis-
tribution. This would imply that the limit problem is ill-posed and would indicate that the
formal ε → 0 limit cannot lead to a rigorous result. Here, we show that the zero-th and first
order moments of the distribution functions are the only conserved quantities, indicating the
consistency of the limit model and the possibility of converting the present formal result
into a rigorous one. Proving this amounts to showing that the space of collision invariants is
spanned by the functions 1 and y. This is performed in the next section.

4.3.2 Collision Invariants

We recall the definition of a collision invariant (or ‘CI’).

Definition 4.5 A function χ : y ∈R+ → χ(y) ∈R in C2(R+) is called a Collision Invariant
(CI) if and only

∫

y∈R+
Q(ν)(y)χ(y)dy = 0, ∀ν ∈ Pac(R+) ∩ C2(R+). (4.22)

We denote by C the set of CI. This is a vector space. As seen before, χ(y) = 1 and
χ(y) = y are CI and corresponds to the conservation of the number of agents and the con-
servation of wealth through trading interactions. We prove that, in the quadratic trading
interaction case, C is actually the vector space spanned by these two functions, i.e. the di-
mension of C is equal to 2. This means that there are no other conservation relations involved
in the macroscopic limit than the conservations of the agent and wealth densities.

Proposition 4.6 We now suppose the additional condition κ > d . The set C of CI is the
two-dimensional vector space spanned by the functions 1 and y.
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Proof We first transform (4.22) into a variational formulation and then, apply Lemma 3.5.
Let χ ∈ C. Equation (4.22) is equivalently written:

∫

y∈R+
QΥν (ν)(y)χ(y)dy = 0, ∀ν ∈ Pac(R+) ∩ C2(R+). (4.23)

The difficulty is the nonlinearity induced by the fact that Υ appearing in Q is related to ν

by Υ = Υν . We first need to break this nonlinearity. For this purpose, let Y > 0 be fixed.
Obviously, (4.23) is equivalent to saying that for all Y ∈R+, we have

∫

y∈R+
QY (ν)(y)χ(y)dy = 0, ∀ν ∈ Pac(R+) ∩ C2(R+) such that Υν = Y. (4.24)

We first fix Y ∈ R+ and look for all function χY such that (4.24) holds. Let us denote by CY

the space of such functions χY . It is also a vector space. Obviously from (4.24), we have

C =
⋂

Y∈R+
CY .

Now, the constraint Υν = Y is a linear constraint on ν which can be written
∫

y∈R+
ν(y)(y − Y )dy = 0.

Therefore, χY ∈ CY if and only if the following implication holds for all ν ∈ Pac(R+) ∩
C2(R+):

∫

y∈R+
ν(y)(y − Y )dy = 0 =⇒

∫

y∈R+
QY (ν)(y)χY (y)dy = 0. (4.25)

Both expressions to the left and right hand sides of the arrow in (4.25) are linear forms of ν.
Therefore, by a classical duality argument, (4.25) is equivalent to the existence of a real
number c such that for all ν ∈ Pac(R+) ∩ C2(R+), we have:

∫

y∈R+
QY (ν)(y)χY (y)dy = c

∫

y∈R+
ν(y)(y − Y )dy. (4.26)

Now, we note that the operator QY is linear. Its L2 formal adjoint Q∗
Y is well-defined and

(4.26) can be written
∫

y∈R+
ν(y)Q∗

Y (χY )(y)dy = c

∫

y∈R+
ν(y)(y − Y )dy. (4.27)

Since this equality is valid for all ν, it is equivalent to saying that

Q∗
Y (χY )(y) = c(Y − y). (4.28)

Now, the derivation of the weak form of (4.28) is similar as in the proof of Lemma 3.5(i).
We recall the definitions (3.41), (3.42) and (3.43) of XY , HY , HY0. The weak form of (4.28)
consists in looking for χY ∈ HY such that:

∫

y∈R+
∂yχY (y)∂yσ (y)y2MY (y)dy = c

∫

y∈R+
(y − Y )σ(y)MY (y)dy, ∀σ ∈ HY , (4.29)
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By an argument already used in the proof of Lemma 3.5(ii), if c = 0, the only solutions
of problem (4.29) are the constants. Furthermore, by linearity, it is sufficient to look for the
solutions associated to c equal to a given non-zero constant. Here we choose c = κ

d
. Besides,

by Cauchy-Schwarz inequality, we have

∫

y∈R+
(y − Y )σ(y)MY (y)dy

≤
(∫

y∈R+
(y − Y )2y2MY (y)dy

)1/2(∫

y∈R+
σ 2(y)MY (y)

dy

y2

)1/2

.

Since σ ∈ XY , the right-hand side of (4.29) defines a bounded linear form if and only if

∫

y∈R+
(y − Y )2y2MY (y)dy < ∞.

This is indeed verified if the condition κ > d is satisfied. Additionally, thanks to (3.39), the
function y −Y satisfies the solvability condition (3.18). Therefore, applying Lemma 3.5(iii),
Problem (4.29) with c = κ

d
admits a unique solution belonging to HY0 which we denote

by χ1
Y . We have just proved that CY = Span{1, χ1

Y }.
Now, we define

y0 =
∫

y∈R+ MY (y)
dy

y∫
y∈R+ MY (y)

dy

y2

.

The function y − y0 belongs to HY0. Inserting y − y0 for χY into the left-hand side of
variational formulation (4.29), we get

∫

y∈R+
∂y(y − y0)∂yσ (y)y2MY (y)dy =

∫

y∈R+
∂yσ (y)y2MY (y)dy

= −
∫

y∈R+
σ(y)∂y

(
y2MY (y)

)
dy. (4.30)

But, by the definition of the equilibria MY , we have

κ(y − Y ) + d∂y

(
y2MY (y)

) = 0.

Hence, (4.30) leads to:

∫

y∈R+
∂y(y − y0)∂yσ (y)y2MY (y)dy = κ

d

∫

y∈R+
σ(y)(y − Y )dy.

Therefore, by uniqueness of the solution of (4.29) in HY0, we have (y − y0) = χ1
Y (y). Since

y0 is a constant, we finally get that CY = Span{1, y}. We see that CY does not depend on Y .
Hence,

C =
⋂

Y∈R+
CY = Span{1, y},

which is what needed to be proved. �
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5 Conclusion and Perspectives

In this paper we have presented and analyzed a kinetic model of rational agents which in-
teract by exchanging wealth and besides, evolve slowly in an economic configuration space
as a result of the fast trading exchanges. Each agent bases its decisions on minimizing a
cost functional. This results in a redistribution of wealth which drives the system towards a
Nash equilibrium. We have considered general cost functions while the literature is mostly
concerned with quadratic cost functions. On the large scales, this gives a hydrodynamic-
like model for the agent and wealth densities, which leads to a closed system in the case of
a quadratic cost function. There are several interesting questions left to be answered. The
most important ones are the characterization of the number of Nash equilibria and of their
stability in the case of a non-quadratic cost function, and the derivation of a closed system of
hydrodynamic equations in this case. The existence of multiple equilibria are the indications
of possible phase transitions. Such phase transitions could provide a paradigm for economic
cycles and fast societal transitions which appear when a new technology emerges.

Appendix A: Proof of Lemma 3.5

(i) Introducing the change of variables (3.17) into (3.15) and using Green’s formula, we
find (3.16). Green’s formula is applicable and the boundary terms disappear because of the
assumptions of smoothness made on f and g.
(ii) We just let σ = ϕ in (3.16).
(iii) Taking σ = Constant in (3.16), the left-hand side vanishes. Therefore, if (3.18) is not
satisfied, there cannot exist a solution. Supposing now that (3.18) is satisfied, we can restrict
the set of test functions σ to HΞ0 in the weak formulation (3.16). Indeed, from σ ∈ HΞ0,
we can construct an arbitrary test function in HΞ by simply adding a constant. But, because
(3.18) is satisfied, the weak formulation (3.16) is still true for this test function. Now, be-
cause of the assumed Poincaré inequality (3.14), the left-hand side of (3.16) is a coercive
bilinear form on HΞ0 while, because of the assumption that ψ ∈ XΞ , the right-hand side is
a continuous linear form on HΞ0. Therefore, Lax-Milgram’s theorem applies and there ex-
ists a unique solution ϕ ∈ HΞ0 to problem (3.16). The most general solution is of the form
ϕ + Constant because of point (ii). This ends the proof.

Appendix B: Proof of Lemma 3.13

Let v: z ∈R+ �→ v(z) ∈R such that
∫ ∞

0

(|v(z)|2 + |∂zv(z)|2)γα,β(z)dz < ∞, (B.1)

where γα,β(z) is the gamma distribution defined at (3.37). Then, formula (10) of [3] states
that there exists a constant Cα,β > 0 such that

∫ ∞

0
|v(z) − v̄|2γα,β(z)dz ≤ Cα,β

∫ ∞

0
|∂zv(z)|2γα,β(z)dz, (B.2)

where

v̄ =
∫ ∞

0
v(z)γα,β(z)dz. (B.3)
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Then, we make the change of variables z = 1/y in (B.1), (B.2), (B.3). We denote by u(y) =
v(z) and use (3.38). We remark that ∂zv(z) = −y2∂yu(y). Therefore, we have, denoting by
Cα,β generic constants only depending only on α and β:

∫ ∞

0
|u(y)|2gα,β(y)

dy

y2
=

∫ ∞

0
|v(z)|2z2γα,β(z)dz

= Cα,β

∫ ∞

0
|v(z)|2γα+2,β(z)dz,

and
∫ ∞

0
|y2∂yu(y)|2gα,β(y)

dy

y2
=

∫ ∞

0
|∂zv(z)|2z2γα,β(z)dz

= Cα,β

∫ ∞

0
|∂zv(z)|2γα+2,β (z)dz,

and finally,

ū =
∫ ∞

0
u(y)gα,β(y)

dy

y2
=

∫ ∞

0
v(z)z2γα,β(z)dz

= Cα,β

∫ ∞

0
v(z)γα+2,β (z)dz.

Now, letting (α,β) = ( κ+d
d

, κΥ
d

), we notice that v satisfies (B.1) (with α shifted to α + 2) if
and only if u ∈ HΥ . Furthermore, v̄ = 0 if and only if u ∈ HΥ 0. Now, the Poincaré inequality
(B.2) (with α shifted to α + 2) leads to (3.14).
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