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scheme is “asymptotic preserving” in the quasineutral limit (i.e., when the Debye length ε tends to
zero), which means that it becomes consistent with the limit model when ε → 0. In the present
work, we show that the stability domain of the present scheme is independent of ε. This stability
analysis is performed on the Fourier transformed (with respect to the space variable) linearized
system. We show that the stability property is more robust when a space-decentered scheme is used
(which brings in some numerical dissipation) rather than a space-centered scheme. The linearization
is first performed about a zero mean velocity and then about a nonzero mean velocity. At the various
stages of the analysis, our scheme is compared with more classical schemes and its improved stability
property is outlined. The analysis of a fully discrete (in space and time) version of the scheme is also
given. Finally, some considerations about a model nonlinear problem, the Burgers–Poisson problem,
are also discussed.
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1. Introduction. In a previous work [9] (see also [7]), a new numerical dis-
cretization of the Euler–Poisson system was proposed. The Euler–Poisson system
under consideration consists of the isentropic Euler equations for the particle and mo-
mentum densities coupled with the Poisson equation through a source term modeling
the electrostatic force. In dimensionless units, the coupling constant can be expressed
in terms of a parameter ε which represents the scaled Debye length. When ε is small,
the coupling is strong. In this situation, the particle density is constrained to be
close to the background density of the oppositely charged particle, which we suppose
to be uniform and equal to 1 in scaled units. The velocity then evolves according
to the incompressible Euler equation. The limit ε → 0 is called the quasineutral
limit, since the charge density almost vanishes identically. When two or more particle
species are considered, the limit ε → 0 leads to a more complex model usually referred
to in the physics literature as a quasineutral model. In the present work, we restrict
ourselves to the case of a single particle species as described above.

The scheme which has been proposed in [9] and [7] is “asymptotic preserving”
(AP) in the quasineutral limit, which means that it becomes consistent with the limit
model when ε → 0. The goal of the present work is to analyze the stability properties
of this scheme in a one-dimensional framework and to show that its stability domain is
independent of ε. This stability analysis is performed on the Fourier transformed (with
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respect to the space variable) linearized system. We show that the stability property is
more robust when a space-decentered scheme is used (which brings in some numerical
dissipation) rather than a space-centered scheme. The linearization is first performed
about a zero mean velocity and then about a nonzero mean velocity. At the various
stages of the analysis, our scheme is compared with more classical schemes and its
improved stability property is outlined. The analysis of a fully discrete (in space and
time) version of the scheme is also given. Finally, some considerations about a model
nonlinear problem, the Burgers–Poisson problem, are also discussed.

The Euler–Poisson model is one of the most widely used fluid models in plasma
and semiconductor physics (see, e.g., [21], [1] for plasmas and [25] for semiconductors).
It can be derived from a moment expansion of kinetic models such as the Vlasov or
Boltzmann–Poisson equations supplemented with a convenient closure assumption
(see the references cited above).

There are two important physical length and time scales associated with this
model (see, e.g., [1], [21]): the Debye length and the electron plasma period. These
two scales are related one to each other by the thermal speed, which is an order one
quantity. We are interested in the quasineutral regime where both parameters can
be very small compared with typical macroscopic length and time scales. A standard
explicit scheme must resolve these microscale phenomena in order to remain stable.
The satisfaction of these constraints requires huge computational resources which
make the use of explicit methods almost impracticable.

The search for schemes free of such constraints has been the subject of a vast
literature. A number of works deal with particle-in-cell (PIC) methods, which are
specific discretizations of the kinetic model, the Vlasov–Poisson system (see, e.g., the
direct implicit method [3], [23] and the implicit moment method [26], [27]). These
methods have proved extremely efficient in a number of situations, but there are
still regions where short time steps must be used (see, e.g., the recent discussion in
[19]). So the improvement of classical time-stepping strategies, if possible, would offer
attractive perspectives. More references can be found in [9]. We also mention that
the strategy developed in the present paper has been applied to PIC codes in [10].

The present work deals with fluid models. For fluid models the literature is
comparatively less abundant. We can refer the reader to the pioneering work [16] and
the more recent works [2], [4], [28], [29]. When the fluid models are drift-diffusion
models, implicit strategies have been proposed in [31], [32], [24].

To cancel the fast scales associated with electron plasma frequency, quasineutral
models have been very frequently considered [15] (see also references in [9]). Recently,
two-fluid quasineutral models have been studied [6], [8], [11], [12], [13], [14].

However, in situations where quasineutral and nonquasineutral regions coexist, a
specific treatment is needed to connect the quasineutral model with a nonquasineutral
model across the interface. Such situations arise in sheath problems (see, e.g., [18],
[20], [12]; other references can be found in [9]). In such problems, one has often to
deal with a dynamic interface—the tracking of which gives rise to a complex numerical
problem. Additionally, the interface dynamics is not a priori known and either must
be derived from an asymptotic analysis like in [12], [13], or [20] or must be inferred
from physical considerations. In both cases, great care is required to ensure that the
proper dynamics is implemented. Another problem is related to the fact that the
quasineutral to nonquasineutral transition may not be a sharp transition, but rather
a fairly diffuse one, and its approximation into a sharp interface may actually lead to
some unphysical behavior.
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For these reasons, it is highly desirable to develop numerical methods which au-
tomatically shift from a quasineutral to a nonquasineutral model across the transition
region when such a transition is encountered. The scheme proposed in [9] serves this
purpose. Additionally, it has been shown that the numerical cost of this scheme is the
same as the standard strategy (we refer the reader to [9] for more details). The goal
of the present work is to provide elements toward a rigorous analysis of its stability
properties. We shall mostly restrict ourselves to a linearized stability analysis (except
in section 5), although linearized stability analysis is insufficient when the solution is
not close to the reference state.

The paper is organized as follows. In section 2, we present the model and our AP
strategy. Our AP scheme consists in an implicit time-differencing of both the flux term
in the mass balance equation and the source term in the momentum equation. For
this reason, we shall refer to it as an implicit-implicit II scheme. It will be compared to
schemes in which either one or the other or both terms are treated explicitly (referred
to as the IE, EI, or EE schemes). For instance, the IE scheme is implicit in the mass
flux term and explicit in the momentum source term. The classical strategy is the
EI scheme, where the mass flux term is explicit and the momentum source term is
implicit [16]. The EE strategy is unconditionally unstable as was shown by Fabre in
[16] and as reviewed below. We will always consider an explicit time-differencing for
the momentum flux term, so there will be no mention of it in our terminology.

In section 3, the Euler–Poisson system is linearized about zero mean velocity. The
linearized Euler–Poisson LEP system has a wave-equation–like formulation, which is
indeed a Klein–Gordon equation with an O(ε) mass term, as shown in section 3.1.

The Fourier transformed (with respect to the space variable) system is considered
in section 3.2, and the stability of the time-stepping strategy is analyzed on this model
system. This analysis is a model for the analysis of a fully discrete scheme (in space
and time) using a centered space-differencing. Indeed, the symbol of the continuous
space derivative and that of a centered space-differencing are both purely imaginary
and therefore behave in a similar way for stability considerations. Using the symbol
of the continuous operator instead of the discrete one makes the computations a little
bit simpler (we shall see that they are already quite complex) while still providing a
significant insight into the properties of the fully discrete scheme. Of course, to mimic
the fact that a fully discrete scheme cannot resolve large wave-numbers, the range of
admissible wave-numbers is limited to a value π/Δx, where Δx is the value of the
underlying space discretization. To support this approach, the fully discrete scheme
will be analyzed in a particular situation.

In this section, we show that the AP strategy (i.e., the II scheme) is stable uni-
formly with respect to ε while the IE scheme is limited by a stability constraint of the
form δ ≤ O(ε), where δ is the time step. The IE scheme corresponds to an explicit
time discretization of the wave-equation formulation of the LEP system, while the II
is an implicit one. In the case of the II scheme, a stability analysis of a fully discrete
scheme is given. This analysis shows that the scheme is stable provided that ε is small
enough (compared to Δx). This can be easily understood since, when ε is large, the
system is close to the standard Euler system for which a centered space-differencing is
known to be unstable (even though the mass flux term is treated implicitly, the mo-
mentum flux is treated explicitly, and the standard instability of the centered scheme
manifests itself).

For this reason, in section 3.3, the influence of a decentered space-differencing is
investigated. The numerical diffusion is modeled by a diffusion term added to the mass
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and momentum balance equations in the continuous model, leading to a linearized
viscous Euler–Poisson (LVEP) model. Energy estimates for this system and for a space
discretization of this system are given. The similarity of these estimates encourages
us to discard the space discretization, and instead, we consider the Fourier transform
(with respect to the space variable) of the continuous system, and we perform a
stability analysis of the various time discrete schemes under consideration. The AP
strategy (i.e., the II scheme) is compared with the EI scheme (which corresponds to
the standard approach; see, e.g., [16]) and the EE scheme. Only the II scheme has a
uniform stability with respect to ε. The EI scheme has a stability constraint of the
form δ ≤ O(ε), while the EE scheme is unconditionally unstable, as already noted by
Fabre [16].

Only the II scheme has the desired asymptotic stability property. It remains to
check if this property remains true when the system is linearized about a nonzero
velocity u0. This is performed in section 4. In this section, we restrict ourselves
to the II scheme, but we investigate the influence of the space discretization by
looking first at the Fourier transformed nonviscous LEP system (mimicking a space-
centered differencing) and then at the LVEP system. As already pointed out, the
II scheme for the nonviscous LEP system is only “marginally” uniformly stable in
the sense that it is stable if ε is small enough (depending on u0 and other param-
eters such as Δx), while the II scheme for the LVEP system is uniformly stable
with respect to ε: there exists a stability region for δ which is independent of ε
for ε ranging in the whole interval [0,∞). This result shows that the II scheme
associated with a decentered space-differencing has the requested uniform stability
property with respect to ε. This has been observed numerically in the simulations
shown in [9].

There remains the question of knowing whether these results which are proved
for the linearized system translate to the fully nonlinear system. In section 5, we
consider a toy model for the Euler–Poisson system: the Burgers–Poisson system. We
show that this system has an entropy-entropy flux pair and that a space semidiscrete
system shares this property with the continuous model. This leads to a stability
result for this semidiscrete scheme which allows us to prove a convergence estimate
(at least as long as the solution of the Burgers–Poisson problem remains regular).
The question whether an II time discretization of this model would show the same
stability property is still an open question which will be investigated in future work.
Another open problem is to show the stability of this scheme for weak solutions in
the presence of shocks. This is a difficult question which has also been put aside in
the present work (see, e.g., [5], [22] for the convergence analysis of numerical schemes
for entropy solutions in the case of a standard hyperbolic problem).

The extension of the present analysis to two or more space dimensions is still an
open problem. For example, in section 4, we restrict ourselves to waves propagating
in the same direction as the constant velocity u0 about which the linearization is
performed. A more general setting would be a propagation at an oblique angle with
respect to u0. However, the analysis of section 4 is already quite complicated, and
we shall leave this extension to future work. Let us just mention that the numerical
simulations reported in [9] suggest that the scheme is actually uniformly stable also
in the two-dimensional case.

A short conclusion is drawn in section 6.
A last short comment is in order to address the issue of convergence. Here, we

are seeking stability for large time steps compared with ε. Therefore, the scheme
cannot be a good approximation of the original (ε perturbed) problem but should
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be an approximation of the limit quasineutral model. In the present one-dimensional
linearized setting, the quasineutral limit is trivial (the linearized solution is identically
zero). It is readily seen that taking the limit ε and Δt to 0 keeping ε � Δt in all the AP
schemes developed below leads to this limit, showing that they are all consistent with
the quasineutral model. Using this remark, and the Wendroff technique combining
stability and consistency, it is certainly possible to show the convergence of the AP
scheme toward the solution of the quasineutral model. However, we shall not pursue
this route in this paper.

2. Quasineutral limit of the Euler–Poisson system and asymptotically
stable schemes.

2.1. Quasineutral limit. In this work, we are mainly concerned with the Euler–
Poisson model. For the sake of simplicity, we shall restrict ourselves to a one-species
model, but our scheme construction can be easily extended to any number of charged-
particle species (see [7], [9]). The scaled one-species Euler–Poisson model (EP) is
written

∂tn + ∇ · q = 0,(2.1)

∂tq + ∇ ·
(
q ⊗ q

n

)
+ ∇p(n) = n∇φ,(2.2)

ε2Δφ = n− 1,(2.3)

where n = n(x, t) is the particle number density, p(n) is the hydrodynamic pressure,
q = q(x, t) is the momentum (i.e., q = nu, where u(x, t) is the average velocity),
p(n) = nγ is the pressure law with γ ≥ 1, and φ = φ(x, t) is the potential, where
x ∈ R

d is the position and t > 0 is the time. The scheme construction can be easily
extended to a model including the full energy equation in place of the isentropic
assumption on the pressure.

Here, we consider negatively charged electrons (with scaled charge equal to −1),
and the right-hand side of the Poisson equation involves a uniform ion background
density equal to 1 in the present scaled variables. Again, this simplification is for the
sake of clarity only and a space-dependent ion background density or a model with
simultaneously evolving electrons and ions could be considered as well (see [7], [9]).

The dimensionless parameter ε = λD/L is the scaled Debye length, i.e., the ratio
of the actual Debye length λD to the macroscopic length scale L. We recall that the
Debye length has the following expression in physical variables:

λD =

(
ε0kBT

e2n0

)1/2

,

where ε0 is the vacuum electric permittivity, kB the Boltzmann constant, T the av-
erage plasma temperature, e the absolute electron charge, and n0 the average plasma
density.

In many instances, the Debye length is very small compared to the macroscopic
length and thus ε � 1. In this case, the quasineutral limit ε → 0 of system (2.1)–(2.3)
can be considered. It leads to n = 1; i.e., the electron density must be everywhere
equal to the background ion density and to the following quasineutral model (QN)
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for the flux q:

∇ · q = 0,(2.4)

∂tq + ∇ · (q ⊗ q) = ∇φ.(2.5)

We note that φ is now the Lagrange multiplier of the incompressibility constraint
(2.4) and, upon changing φ into −π, that the quasineutral model is nothing but the
incompressible Euler equations with hydrostatic pressure π.

In the present paper, our goal is to analyze a class of numerical schemes for EP
which remains uniformly stable in the limit ε → 0. Such schemes have first been
proposed and tested in [7], [9], where their uniform stability with respect to ε has
been demonstrated.

The design of this class of scheme is based on the following remark. In the passage
from EP to QN, the equation for the electric potential φ changes dramatically, from
the Poisson equation (2.3) into

Δφ = ∇2 : (q ⊗ q),(2.6)

where ∇2 denotes the Hessian matrix and “:” the contracted product of rank two
tensors. Any attempt to design a uniformly stable scheme in the limit ε → 0 requires
finding a different (and equivalent) formulation of the Poisson equation (2.3) in which
the transition toward (2.6) when ε → 0 appears explicitly.

Such a formulation is provided by the following equation:

−∇ · ((n + ε2∂2
tt)∇φ) + ∇2 : f(n, q) = 0,(2.7)

where the momentum flux tensor f(n, q) is given by

f(n, q) =
q ⊗ q

n
+ p(n)Id.(2.8)

Equation (2.7) is formally equivalent to the Poisson equation provided (n, q) satisfies
the mass and momentum equations (2.1), (2.2) and that the Poisson equation and its
time derivative are satisfied at t = 0:

(ε2Δφ− n + 1)|t=0 = 0, (∂t(ε
2Δφ− n + 1))|t=0 = 0.

We refer the reader to [7], [9] for a proof of this equivalence. Essentially, it relies on a
second order (wave-like) formulation of the Euler equations and replacing the second
time derivative of the density in this formulation by the second time derivative of the
Laplacian of the potential (thanks to the Poisson equation). We shall see below the
importance of using a wave-like formulation of the Euler equations in this matter.

We remark that solving the elliptic equation (2.7) (after time discretization) is
no more costly than solving the Poisson equation (2.3) since both of them are elliptic
equations. However, one important advantage of (2.7) over (2.3) is that it does not
degenerate when ε → 0 and moreover reduces to the QN elliptic equation (2.6) for φ
when ε = 0. Therefore, we can expect that the asymptotic stability with respect to ε
is obtained if a suitable time discretization is used.
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2.2. Asymptotically stable scheme in the quasineutral limit. The ques-
tion of finding an asymptotically stable scheme in the QN limit is in the first place a
question of time discretization. We propose a time discretization which formally sat-
isfies this asymptotic stability property. Below, we shall suppose that the symbol D
stands for space discretizations of the ∇ operator, and we shall postpone the question
of finding suitable expressions of such operators to forthcoming sections.

First, we describe the most standard time marching procedure for solving the EP
system. Suppose nm, qm, φm are approximations at time tm of n, q, and φ, and let
δ = tm+1 − tm. Then, the standard procedure consists in discretizing (2.1)–(2.3) by

δ−1 (nm+1 − nm) + D · qm = 0,(2.9)

δ−1 (qm+1 − qm) + Df(nm, qm) = nm+1Dφm+1,(2.10)

ε2D2φm+1 = nm+1 − 1.(2.11)

We note that the scheme involves an implicit computation of the electric force in the
momentum equation but the cost stays the same as that of a fully explicit scheme.
Indeed, nm+1 can be computed first by the mass equation (2.9). Then, φm+1 is ob-
tained by the Poisson equation (2.11). Finally, the momentum qm+1 can be advanced
using (2.10). It is common wisdom in plasma physics that the stability of this scheme
is constrained by the condition

δ
≤∼ ε,(2.12)

which is very penalizing in the QN regime ε � 1.
Let us note that if an explicit electric force discretization is used at the right-hand

side of (2.10), the scheme is simply unconditionally unstable [16].
Our new AP strategy consists in computing the mass flux in (2.9) implicitly. More

precisely, we consider the following scheme:

δ−1 (nm+1 − nm) + D · qm+1 = 0,(2.13)

δ−1 (qm+1 − qm) + Df(nm, qm) = nmDφm+1,(2.14)

ε2D2φm+1 = nm+1 − 1.(2.15)

By reproducing the procedure which, in the continuous case, allowed us to pass
from the standard formulation of the Poisson equation (2.3) to the reformulated one
(2.7), we can transform the discrete Poisson equation (2.15) into a reformulated one:

−D · ((δ−2ε2 + nm)Dφm+1)

= −D2 : f(nm, qm) − δ−2(2nm − nm−1 − 1) := G(nm, qm, nm−1).(2.16)

This is a new elliptic equation for φm+1 which is formally equivalent to the original
one (2.15), is as easy to solve, and does not degenerate when ε → 0.

The first important remark about this scheme is that it provides a discretization
of the QN Euler system (2.4), (2.5) when ε = 0; i.e., it is an AP scheme when ε → 0.
To see this, we can use either of the formulations (2.15) or (2.16) of the Poisson
equation, coupled with (2.13)–(2.14). Of course, we suppose that at step m, the data
nm and qm satisfy nm = 1 and D · qm = 0. If we let ε → 0 in (2.15), we first find
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that nm+1 = 1. Then, given that nm = 1, (2.13) yields D · qm+1 = 0. Finally, (2.14)
leads to

δ−1 (qm+1 − qm) + Df(1, qm) = Dφm+1,

which clearly gives a discretization of the QN Euler system (2.4), (2.5). Note that
the standard scheme (2.9)–(2.11), which has an explicit mass flux, would lead to
D · qm = 0, the other limiting equations remaining unchanged, and that this would
not allow us to compute φm+1.

If one uses (2.16) instead of (2.15), then one first lets ε → 0 in (2.16) leading to

−D · (Dφm+1) = −D2 : f(1, qm)

(since nm = 1), which is a discretization of the quasineutral potential equation (2.6).
Then, by acting operator D· on (2.14) and using that D · qm = 0, we deduce that
D · qm+1 = 0. Finally, inserting this into (2.13), we get that nm+1 = nm = 1, and
again, we get a discretization of the QN Euler system (2.4), (2.5). Here, using the
standard scheme (2.9), (2.10) (which has an explicit mass flux) in conjunction with
the modified Poisson equation (2.16) would also lead to an AP scheme. However, it
has been numerically experienced that this scheme is unstable, and so this possibility
will be disregarded.

The second important remark is that the reformulated Poisson equation (2.16)
allows us to compute φm+1 in terms of known quantities G(nm, qm, nm−1) from the
previous time step. Indeed, once φm+1 is known after solving (2.16), qm+1 can be
computed by advancing the momentum equation (2.14), and then, nm+1 in turn is
obtained by using the density equation (2.13). Therefore, the time marching procedure
of the AP scheme (2.13)–(2.15) involves the same computational cost as that of the
standard scheme (2.9)–(2.11).

Finally, even more importantly, we claim that, by contrast with the standard
scheme, the AP scheme (2.13)–(2.15) is not constrained by the stability condition
(2.12) but rather has a stability condition of the form

δ = O(1) as ε → 0.(2.17)

We stress, however, that the scheme is still constrained by the CFL condition of the
hydrodynamic system (which is an O(1) quantity in our scaled units), and this can be
penalizing for electrons due to their very small mass. It is possible, however, to extend
this strategy into a scheme which is asymptotically stable also in the small mass limit
(see remark in [9]). This strategy will be developed in future works. We also note
that similar ideas can be applied to the low Mach number limit of compressible Euler
equations and to the drift approximation of highly magnetized plasmas (works also
in progress).

The stability estimate (2.17) is so far formal. It has been verified in numerical
computations using different types of space discretizations in [7], [9]. However, no rig-
orous arguments have been available so far. The goal of the present paper is to provide
some rigorous support to the estimate (2.17) by analyzing the linearized system.

Two types of analyses will be performed. The first one uses Fourier analysis and
keeps the time semidiscrete framework, mimicking space discretization by suitable
Fourier symbols. The second one considers both a space semidiscrete setting (the so-
called method of lines) and a full time and space discretization and develops energy
estimates. Both methods show that the AP strategy gives rise to a stability constraint
of the type (2.17) while the standard strategy has the more severe stability constraint
(2.12).
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3. The linearized system about zero velocity.

3.1. The linearization of the Euler–Poisson system. We linearize system
(2.1)–(2.3) about the stationary homogeneous solution n0 = 1, q0 = 0, ∂xφ0 = 0. We
denote by ζ � 1 the size of the initial perturbation to this stationary state. Then, we
can formally expand the solution as follows: n = 1 + ζn′ + O(ζ2), q = ζu′ + O(ζ2),
φ = ζφ′+O(ζ2). Retaining only terms of order ζ, we are led to the following linearized
Euler–Poisson LEP system (where the primes have been dropped for the sake of
clarity):

∂tn + ∂xu = 0,(3.1)

∂tu + c2s∂xn = ∂xφ,(3.2)

ε2∂xxφ = n,(3.3)

where cs =
√
p′(1) is the speed of sound.

We note that both φ and u can be eliminated and the LEP system can be
rephrased into a wave-like formulation (specifically a Klein–Gordon equation with
mass equal to 1/ε2):

∂2
ttn− c2s∂

2
xxn +

1

ε2
n = 0.(3.4)

By a partial Fourier transform with respect to the x-variable, and denoting n̂(ξ, t),

û(ξ, t), φ̂(ξ, t) the transforms of n, u, and φ, we obtain

∂tn̂ + iξû = 0,(3.5)

∂tû + iξc2sn̂ = iξφ̂,(3.6)

−ε2ξ2φ̂ = n̂.(3.7)

After elimination of φ̂, the system reduces to a 2 × 2 system of the form(
∂tn̂

∂tû

)
+

(
0 iξ

iξc2s + i
ε2ξ 0

)(
n̂

û

)
= 0.(3.8)

Its solutions are of the form(
n̂(ξ, t)

û(ξ, t)

)
=

(
n̂+(ξ)

û+(ξ)

)
eiθ

ε(ξ)t +

(
n̂−(ξ)

û−(ξ)

)
e−iθε(ξ)t,(3.9)

where

(3.10) θε(ξ) =

(
c2sξ

2 +
1

ε2

)1/2

.

The quantities s± = ±iθε(ξ) are the two eigenvalues of the matrix A at the left-hand

side of (3.8). The vectors (n̂±(ξ), û±(ξ))
T

are obtained as the projections of the initial

data (n̂0, û0)
T

onto the associated eigenspaces of A (here the exponent T denotes the
transpose).
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From (3.9) and the fact that |e±iθ(ξ)t| = 1, we see that the L2 norm of the solution
in Fourier space stays bounded in time, which by Plancherel’s identity shows that the
corresponding L2 norm in physical space also stays bounded in time. Additionally,
when ε → 0, we have

θε ∼ 1

ε
→ ∞,

which shows that the solution has high frequency time oscillations of frequency ∼ 1
ε ,

irrespective of the value of the wave-number ξ.
Therefore, the quasineutral limit ε → 0 gives rise to high frequency oscillations

which are nothing but the ubiquitous plasma oscillations of the physics literature.
Explicit schemes are constrained to resolve these oscillations as a condition for their
stability, as we shall see below.

Another viewpoint which emphasizes the wave-like behavior of this system is that
of energy estimates. Multiplying (3.4) by 2nt, one has

∂t

(
(∂tn)2 + c2s(∂xn)2 +

1

ε2
n2

)
= 2c2s∂x

(
∂xn∂tn

)
.(3.11)

Integrating over the computational domain, say, (a, b), to fix the idea, we get

∂t

∫ b

a

(
(∂tn)2 + c2s(∂xn)2 +

1

ε2
n2

)
dx = 2c2s

(
∂xn∂tn

)∣∣∣b
a
.(3.12)

If periodic or homogeneous Dirichlet or homogeneous Neumann conditions are im-
posed at the boundary points, the right-hand side of the above equation vanishes and
conservation of energy follows:

∂t

∫ b

a

(
(∂tn)2 + c2s(∂

2
xn)2 +

1

ε2
n2

)
dx = 0.(3.13)

This energy estimate indicates a wave-like behavior. When ε → 0, more and more
energy is stored in the last term, which can be interpreted as a potential.

Below, we state stability criteria for various kinds of time discretizations of the
LEP system.

3.2. AP strategy with centered-like space-differencing. For the LEP sys-
tem in Fourier variables (3.5)–(3.7), our scheme (2.13)–(2.15) reads

n̂m+1 − n̂m

δ
+ iξûm+1 = 0,(3.14)

ûm+1 − ûm

δ
+ iξc2sn̂

m +
i

ε2ξ
n̂m+1 = 0.(3.15)

It is easy to see that this scheme can be recast into an implicit scheme for the wave-
equation (3.4) expressed in Fourier variables, i.e.,

∂2
ttn̂ + c2sξ

2n̂ +
1

ε2
n̂ = 0.(3.16)

Indeed, taking the time difference of (3.14) and combining it with (3.15) to eliminate
the velocity leads to

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2sξ

2n̂m +
1

ε2
n̂m+1 = 0.(3.17)
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By contrast, let us consider the following explicit scheme for the wave-equation
formulation:

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2sξ

2n̂m +
1

ε2
n̂m = 0.(3.18)

This scheme can be obtained by eliminating the velocity from the original formulation
of the LEP system. Two schemes for the original LEP system lead to the same scheme
(3.18). The first one is implicit in the mass flux and explicit in the momentum flux
and in the source term:

n̂m+1 − n̂m

δ
+ iξûm+1 = 0,(3.19)

ûm+1 − ûm

δ
+ iξc2sn̂

m +
i

ε2ξ
n̂m = 0.(3.20)

The second one is explicit in the mass flux and implicit in the momentum flux and
the source term:

n̂m+1 − n̂m

δ
+ iξûm = 0,(3.21)

ûm+1 − ûm

δ
+ iξc2sn̂

m+1 +
i

ε2ξ
n̂m+1 = 0.(3.22)

We see that the schemes (3.14)–(3.15) and (3.19)–(3.20) are both implicit in the mass
flux. The first one is also implicit in the source term while the second one is explicit.
For these reasons, we shall refer to the first scheme as the II scheme (for implicit-
implicit) while the second one is the IE scheme (for implicit-explicit). What the
equivalence of scheme (3.21), (3.22) with the scheme (3.18) shows is that if the mass
flux is taken to be explicit, there is no way to obtain a uniformly stable scheme, no
matter how implicit one takes the momentum flux or the source term to be.

If additionally the momentum flux is taken as explicit and only the source term
is taken as implicit, one is led to the following scheme:

n̂m+1 − n̂m

δ
+ iξûm = 0,(3.23)

ûm+1 − ûm

δ
+ iξc2sn̂

m +
i

ε2ξ
n̂m+1 = 0,(3.24)

which is equivalently written in the wave-equation formulation as follows:

n̂m+1 − 2n̂m + n̂m−1

δ2
+ c2sξ

2n̂m−1 +
1

ε2
n̂m = 0.(3.25)

In this scheme the mass flux is taken as explicit and the source term as implicit. For
this reason, we call this scheme the EI scheme. We shall analyze the stability of this
scheme in the next section in relation to decentered space-differencing. Indeed, we
know already that with a centered space-differencing, the hydrodynamic part of this
scheme will be unconditionally unstable and that it is unlikely that the implicit source
term restores stability, and if it does so, it will do it only marginally.

For all the reasons previously exposed, in the remainder of this paper, we will
always treat the momentum flux explicitly. We will consider various combinations of
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explicit or implicit schemes for the mass flux and the source term, and the terminology
will refer to these terms. For instance, the IE scheme refers to a scheme that is implicit
in the mass flux but explicit in the source term.

Looking at the stability of a time-semidiscretized scheme in Fourier space gives
a good indication of the behavior of a fully discretized scheme associated with a
space-centered discretization. Indeed, the symbol of a space-centered discretization
is purely imaginary, like the symbol of the continuous space derivative. Of course,
there might exist some quantitative differences between the fully discrete scheme and
the semidiscrete scheme in Fourier space, but we believe that this analysis gives a
correct rough picture. Using the space continuous Fourier transform allows us also to
considerably simplify the computations and to express the results in a more compact
form, which makes them easier to interpret.

In view of a space discretization of mesh size Δx, we assume that the range of
admissible wave-numbers ξ is |ξ| ≤ ξ∗ = π/Δx.

We can show (the proof is technical and is omitted) that a sufficient stability
condition for the II scheme for a given wave-number ξ is

δ ≤ δii(ξ) :=
2( 1

ε2 + c2sξ
2)1/2

c2sξ
2

.(3.26)

The II scheme is stable over the range of admissible wave-numbers ξ as soon as

δ ≤ δ∗ii := δii(ξ
∗) = 2

(
Δx

πcs

)2 (
1

ε2
+
(πcs

Δx

)2
)1/2

.(3.27)

By contrast, the stability domain of the IE scheme for a given wave-number ξ is
given by

δ ≤ δie(ξ) :=
2

( 1
ε2 + c2sξ

2)1/2
.(3.28)

The IE scheme is stable over the range of admissible wave-numbers iff

δ ≤ δ∗ie := δie(ξ
∗) =

2

( 1
ε2 +

(
πcs
Δx

)2
)1/2

.(3.29)

The stability domain of the IE scheme shrinks when ε → 0, while that of the II
scheme turns out to be uniformly stable with respect to ε. Furthermore, the II scheme
is also consistent with the limit model when ε → 0 (AP property) as we have seen in
section 2.2 in the case of the fully nonlinear equation (the proof is the same for the
linearized equation and is left to the reader).

Indeed, we see that δ∗ie = O(ε) as ε → 0 with a fixed Δx, while δ∗ii = O(ε−1),
showing the announced behavior. More precisely, δ∗ii ∼ 2( Δx

2πcs
)2 1

ε . We note that this
increased stability with respect to ε is paid for by a more restrictive CFL condition
of diffusion type with respect to the acoustic waves. By contrast, in the absence of a
source term or, equivalently, when Δx → 0 for a fixed ε, the stability constraints for
both the IE and II schemes reduce to δ ≤ 2 Δx

πcs
, which is similar to a CFL condition.

We can also show that the II scheme damps the plasma oscillations. At each time
step, the amplitude of the oscillation is multiplied by a factor ε/δ (in the limit ε → 0
for fixed δ). When ε is very small, the damping is very strong. At each time step, the
phase of the solution is multiplied by the factor e±iθ with

(3.30) θ = cos−1 (1 − 1
2δ

2c2sξ
2)

(1 + δ2

ε2 )1/2
ε→0−→ π

2
,
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which means that, in the limit ε → 0, a shift of π/2 is added to the phase of the
oscillation at each time step. In this limit, the period of the plasma oscillations stays
bounded, equal to 4δ.

To support the conclusions of this Fourier analysis of the scheme, we show below
that the same stability and dissipation properties are still valid when we use a fully
discretized scheme in both time and space.

We denote by D2u = ui+1−2ui+ui−1

h2 the standard second order difference oper-

ator and by D−u = ui−ui−1

h and D+u = ui+1−ui

h the standard one-sided difference

operator. Then D2 = D+D− = D−D+. Denote D̃ = (D+ + D−)/2. Here h is the
space step.

We consider a space discretization of (3.4) by replacing the continuous second
order space derivative by the discrete operator D2:

∂2
ttn− c2sD

2n +
1

ε2
n = 0.(3.31)

Applying the II time-difference scheme (3.17) to this equation leads to

(3.32)
nm+1 − 2nm + nm−1

δ2
− c2sD

2nm +
1

ε2
nm+1 = 0.

This scheme can be viewed as a wave-type version of the following scheme for the
original LEP system (3.1)–(3.3):

nm+1 − nm

δ
+ D−u

m+1 = 0,(3.33)

um+1 − um

δ
+ c2sD+n

m = D+φ
m+1,(3.34)

ε2D2φm+1 = nm+1.(3.35)

Indeed, eliminating u between (3.33) and (3.34), one has

(3.36)
nm+1 − 2nm + nm−1

δ2
− c2sD

2nm + D2φm+1 = 0,

and using (3.35) we get (3.32). We can also eliminate nm+1 from (3.36) using (3.35)
and get a discretization of the reformulated Poisson equation (2.7) (in linearized form):

(3.37)

(
ε2

δ2
+ 1

)
D2φm+1 =

2nm − nm−1

δ2
+ c2sD

2nm.

We can show (the proof is technical and is omitted) that this scheme is stable
provided that 2εcs ≤ h. We observe that the scheme is asymptotically stable in the
limit ε → 0 but is not stable if ε is large. This feature can easily be explained.
When ε → ∞ the electric field term disappears and we are left with the standard
LEP system discretized via centered differences. A time explicit discretization will
be unconditionally unstable. Here, the time-differencing is implicit in the mass flux
term but still explicit in the momentum flux. This semi-implicit discretization is
not implicit enough to stabilize the space-centered discretization. It is a remarkable
fact that the electric field contributes to stabilize the instability of the space-centered
scheme. However, this scheme cannot be used in a far from quasineutrality regime,
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which is a severe drawback in situations close to quasineutrality in some regions but
far from it in others. This unpleasant feature will also be found via Fourier analysis
when linearizing the Euler–Poisson system about a nonzero velocity (see section 4).
This drawback will be overcome by means of a space-decentered discretization.

We also note that the implicit treatment of the last term in (3.32) gives a strong
dissipation (like in the Fourier analysis case). This can be seen from the use of the
so-called equivalent equation (i.e., the equation obtained by retaining the leading
order term in the Taylor expansion of the time semidiscrete scheme). This equivalent
equation is written

∂2
ttn− c2s∂

2
xxn +

1

ε2
n +

δ

ε2
nt = 0,(3.38)

which can be recast as an LEP system with a damping term

∂tn + ∂xu = − δ
ε2n,(3.39)

∂tu + c2s∂xn = ∂xφ,(3.40)

ε2∂2
xxφ = n.(3.41)

The energy estimate (3.13) for (3.38) becomes

∂t

∫ b

a

(
(∂tn)2 + c2s(∂xn)2 +

1

ε2
n2

)
dx +

2δ

ε2

∫ b

a

(∂tn)2 dx = 0,(3.42)

and we observe the strong damping of the energy with a rate which tends to infinity
as ε → 0 (for fixed δ) as fast as 1/ε2.

The use of centered differencing associated with only a partial implicit time-
differencing may lead to stability problems when the coupling with the field term
is weak, i.e., ε is large. This will be particularly clear with the analysis of the LEP
system about a nonzero velocity in section 4. For this reason, we now analyze schemes
associated with decentered space-differencing, which we shall mimic by looking at the
LEP system with diffusion.

3.3. AP strategy associated with upwind space-decentered differenc-
ing. In order to mimic the influence of a decentered space-difference, we consider
the following two viscous perturbation of the LEP system. The linearized viscous
Euler–Poisson (LVEP) system reads either as

∂tn + ∂xu = 0,(3.43)

∂tu + c2s∂xn = ν∂2
xxu + ∂xφ,(3.44)

ε2∂xxφ = n(3.45)

if numerical diffusion is added only to the momentum balance equation or as

∂tn + ∂xu = β∂2
xxn,(3.46)

∂tu + c2s∂xn = ν∂2
xxu + ∂xφ,(3.47)

ε2∂xxφ = n(3.48)
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if we also consider numerical diffusion in the mass conservation equation. Here, β
and ν are artificial viscosity coefficients. These systems will be referred to below,
respectively, as the LVEP-1 and LVEP-2 systems. The LVEP-1 system is of course a
particular case of the LVEP-2 system by taking β = 0.

Eliminating u and φ, the LVEP-1 system reduces to the following Klein–Gordon
equation with a viscoelastic term:

∂2
ttn = c2s∂

2
xxn− 1

ε2
n + ν∂3

txxn.(3.49)

For the LVEP-2 system, following Slemrod, we introduce v = u − β∂xn. Then the
above system is equivalent to

∂tn + ∂xv = 0,(3.50)

∂tv + c2s∂xn = (ν + β)∂2
xxu + νβ∂3

xxxn + ∂xφ,(3.51)

ε2∂2
xxφ = n.(3.52)

Eliminating v and φ, we are led to the following Klein–Gordon equation with vis-
coelastic and capillary-type terms:

∂2
ttn = c2s∂

2
xxn− 1

ε2
n + (ν + β)∂3

txxn− νβ∂4
xxxxn.(3.53)

We now perform Fourier and energy analyses for the LVEP-2 system which in-
cludes the LVEP-1 system as a particular case. After a partial Fourier transform with
respect to x, the system reads

∂tn̂ + iξû + βξ2n̂ = 0,(3.54)

∂tû + iξc2sn̂ + νξ2û = iξφ̂,(3.55)

−ε2ξ2φ̂ = n̂,(3.56)

or, equivalently, after elimination of φ̂,

(
∂tn̂

∂tû

)
+

(
βξ2 iξ

iξc2s + i
ε2ξ νξ2

)(
n̂

û

)
= 0.(3.57)

For |ξ| not too large, the eigenmodes of the LVEP-2 system are given by

s± = rβ,ν(ξ) ± iθε(ξ) :=
β + ν

2
ξ2 ± i

(
1

ε2
+ c2sξ

2 − (β + ν)2

4
ξ4

)1/2

.(3.58)
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Now the oscillations are damped by an exponential factor e−rβ,νt which is independent
of ε and proportional to β + ν. Moreover, the phase oscillates with a frequency O( 1

ε )
when ε → 0, independently of ξ.

In order to derive energy estimates, we multiply (3.53) with ∂tn and get

∂t

(
1
2 (∂tn)2

)
= c2s ∂tn∂2

xxn− 1
ε2 ∂t

(
1
2n

2
)

+ (ν + β) ∂tn∂3
txxn− νβ ∂tn∂4

xxxxn.

Simple computations give

∂tn∂2
xxn = ∂x(∂xn∂tn ) − ∂xn∂2

txn = ∂x(∂xn∂tn ) − ∂t

(
1
2 (∂xn )2

)
,

∂tn∂3
txxn = ∂x(∂2

txn∂tn ) − (∂2
txn )2,

∂tn∂4
xxxxn = ∂x(∂3

xxxn∂tn − ∂2
txn∂2

xxn ) + ∂3
txxn∂2

xxn

= ∂x(∂3
xxxn∂tn − ∂2

txn∂2
xxn ) + ∂t

(
1
2 (∂2

xxn )2
)
.

Summing up, we get

∂t
1
2

(
(∂tn )2 + c2s(∂xn )2 + 1

ε2n
2 + νβ(∂2

xxn )2
)

+ (β + ν)(∂2
txn )2

= ∂x

(
c2snx∂tn + (ν + β)∂2

txn∂tn − νβ(∂3
xxxn∂tn − ∂2

txn∂2
xxn )

)
.

For periodic or homogeneous Neumann boundary conditions, we obtain

∂t
1
2

∫ b

a

(
(∂tn )2 + c2s(∂xn )2 + 1

ε2n
2 + νβ(∂2

xxn )2
)
dx + (β + ν)

∫ b

a

(∂2
txn )2 dx = 0.

Again we see that the second order dissipative coefficient is dependent only on ν + β.
This energy estimate is still true for a space-discrete version of the LVEP-2 system

with β = ν (simply referred to as the LVEP system). Indeed, the natural finite
difference space discretization for the LVEP system is given by (with the same notation
as above):

∂tn + D̃u = βD2n,(3.59)

∂tu + c2sD̃n = βD2u + D̃φ,(3.60)

ε2D2φ = n,(3.61)

where D̃ = (D+ + D−)/2 and D2 = D+D−.
Both the upwinding and Lax–Friedrichs schemes for LEP (3.1)–(3.3) take the

same form with β = csh/2 and β = h2

2δ , respectively, as we will explain below. This
is also true for the modified Lax–Friedrichs scheme used in [7] and [9], because in the
linearized case, the modified Lax–Friedrichs scheme and the upwind scheme coincide.
Indeed, for the upwinding scheme, we first diagonalize the LEP system (3.1)–(3.3)
and then take upwind difference as follows:

∂t(u + csn) + csD−(u + csn) = D̃φ,

∂t(u− csn) − csD+(u− csn) = D̃φ,

ε2D2φ = n.
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Recast to the original form, it can be written

∂tn + D̃u =
cs
2

(D+ −D−)n,

∂tu + c2sD̃n =
cs
2

(D+ −D−)u + D̃φ,

ε2D2φ = n.

Note that D+ −D− = hD2. The above is the same as (3.59)–(3.61) with β = csh/2.
For the Lax–Friedrichs scheme we first write the scheme in its usual form:

(nm+1 − nm)/δ + D̃um =
h2

2δ
D2nm,

(um+1 − um)/δ + c2sD̃nm =
h2

2δ
D2um + D̃φm+1,

ε2D2φm+1 = nm+1.

We can regard it as a time discretization scheme of (3.59)–(3.61) with β = h2

2δ .
We can show that the time continuous scheme (3.59)–(3.61) has the following

energy estimate for the periodic boundary condition case:

∂t
1
2

(
c2s‖D−n‖2 + ‖D−u‖2 +

1

ε2
‖n‖2

)
+ β(c2s‖D2n‖2 + ‖D2u‖2)

+
1

ε2
‖D−n‖2 = 0.(3.62)

This indicates that the space discretization has the same behavior as the space-
continuous model. For this reason, from now on, we shall consider only the problem
of the stability of the time discretization and replace the influence of the space dis-
cretization by a Fourier transform, limiting the admissible wave-numbers to a bounded
interval (the latter being related to the space step Δx).

In the remainder of this analysis, we will be using the LVEP-2 system (3.46)–
(3.48) with β = ν and will simply refer to it as the LVEP system. The coefficient β
is linked with numerical diffusion. For most schemes,

β = O(csΔx).(3.63)

Again, we suppose that |ξ| ≤ ξ∗ = π/Δx, having in mind that this mimics a space
discretization of mesh step Δx. Therefore, assuming (3.63), there exists a constant
C∗ > 0 such that

β|ξ|
cs

≤ C∗.(3.64)

The AP strategy (II scheme) for the LVEP system reads as follows:

n̂m+1 − n̂m

δ
+ iξûm+1 + βξ2n̂m = 0,(3.65)

ûm+1 − ûm

δ
+ iξc2sn̂

m + βξ2ûm +
i

ε2ξ
n̂m+1 = 0.(3.66)
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We shall compare this strategy with an explicit time-differencing of the mass flux
term that is still implicit in the Poisson source term. Such a scheme (EI scheme)
reads

n̂m+1 − n̂m

δ
+ iξûm + βξ2n̂m = 0,(3.67)

ûm+1 − ûm

δ
+ iξc2sn̂

m + βξ2ûm +
i

ε2ξ
n̂m+1 = 0.(3.68)

Note that in section 3.2, we mentioned the converse strategy (implicit in the mass
flux, and explicit in the Poisson source term; see system (3.19), (3.20)) called the IE
scheme and we showed that in the nonviscous case, the stability requirement scales
down to 0 as ε → 0. It is unlikely that the use of an artificial viscosity can cure this
instability, since the cause of this instability is clearly linked to the coupling with
the field (because of its dependence with respect to ε) while the motivation of the
artificial viscosity is to compensate for the instability of the space-centered scheme
of the purely hydrodynamic part of the model. For this reason and for the sake of
conciseness, we do not consider the IE scheme in the viscous case.

For completeness, we mention the full explicit scheme, in both mass flux and
Poisson source term. This scheme (EE scheme) reads as follows:

n̂m+1 − n̂m

δ
+ iξûm + βξ2n̂m = 0,(3.69)

ûm+1 − ûm

δ
+ iξc2sn̂

m + βξ2ûm +
i

ε2ξ
n̂m = 0.(3.70)

We mention that the EE and EI schemes for the nonviscous system would be un-
conditionally unstable because of the well-known instability of space-centered schemes
for hydrodynamics. It is easy to check this instability directly. The computation is
left to the reader.

For these schemes, a stability analysis (omitted) leads to the following conclusions.
The AP II scheme shows a uniform stability condition with respect to the parameter
ε, as expected. More precisely, a sufficient stability condition is

δ ≤ 2β

c2s
F (C∗),(3.71)

where F (C∗) is a convenient function of the constant C∗ (see (3.64)). Again, this
looks like a CFL condition, which depends only on the purely hydrodynamic part of
the scheme and not on ε.

By contrast, the EI scheme has a stability domain which shrinks down to 0 as
ε → 0. The analysis is simplified by making the following assumption:

δ ≤ 2β

c2s

1

1 + C∗2 := δ∗,(3.72)

where C∗ is given by (3.64). This condition is again similar to a CFL condition (see
(3.63)). Under this condition, a sufficient stability constraint for this scheme is of the
form

δ ≤ 2√
1 + C∗2

ε ∀ε ∈
[
0,

β

c2s

√
1 + C∗2

]
.(3.73)
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Additionally if δ satisfying (3.72) is such that δ > 2ε, the scheme is unstable. There-
fore, the stability domain is an interval of size exactly O(ε). This scheme is the
linearized version of the standard scheme used for the Euler–Poisson problem. The
conditional stability of this scheme in a fully discrete version was proved earlier by
Fabre in [16].

Finally, the fully explicit EE scheme has disastrous behavior. Its stability condi-
tion for a given wave-number ξ is given by

δ ≤ δee(ξ) :=
2βξ2

β2ξ4 + c2sξ
2 + 1

ε2

.(3.74)

Over the range of admissible wave-numbers [0, ξ∗], the minimal value of δee(ξ) is zero,
showing that the scheme is actually unstable. Therefore, numerical diffusion is not
sufficient to stabilize the EE scheme. This was proved by Fabre for a fully discrete
version of the scheme in [16].

To summarize, the EE scheme is unconditionally unstable, even used in conjunc-
tion with a decentered space discretization of the hydrodynamic fluxes. The EI scheme
is conditionally stable: the time step must be kept proportional to ε. Finally, the II
scheme is asymptotically stable when ε → 0. Its stability requirement involves only
a CFL condition related to the space discretization of the hydrodynamic part of the
model.

In the next section, we investigate if these conclusions remain true when the LEP
system is linearized about a nonzero velocity. We show that the II scheme remains
uniformly stable in the viscous case (i.e., for a space-decentered discretization) but
not in the nonviscous case (for a space-centered scheme).

4. The LEP system about nonzero velocity. Linearizing system (2.1)–(2.3)
about the stationary homogeneous solution n0 = 1, u0 = a, a being constant (but not
equal to 0), and ∂xφ0 = 0, leads to the following LEP system:

∂tn + a∂xn + ∂xu = 0,(4.1)

∂tu + a∂xu + c2s∂xn = ∂xφ,(4.2)

ε2∂2
xxφ = n.(4.3)

When |a| < |cs|, it can be reduced to a wave-like formulation (specifically a
Klein–Gordon equation with mass equal to 1/ε2):

∂2
ttn + 2a∂2

txn− (c2s − a2)∂2
xxn +

1

ε2
n = 0.(4.4)

We can get an energy estimate for this system by multiplying by ∂tn. We have

(4.5) ∂t

(
(∂tn)2 +(c2s−a2)(∂xn)2 +

1

ε2
n2

)
= 2(c2s−a2)∂x

(
∂xn∂tn

)
−2a∂x

(
(∂tn)2

)
.

If periodic or homogeneous Dirichlet boundary conditions are imposed at the bound-
ary points, conservation of energy follows:

∂t

∫ b

a

(
(∂tn)2 + (c2s − a2)(∂xn)2 +

1

ε2
n2

)
dx = 0.(4.6)
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We consider a space discretization of (4.4) by replacing the continuous second
order space derivative by the discrete operator D2, with the same meaning as above
for D̃:

∂2
ttn + 2a∂tD̃n− (c2s − a2)D2n +

1

ε2
n = 0.(4.7)

Applying the II time-difference scheme (3.17) to this equation leads to

nm+1 − 2nm + nm−1

δ2
+ 2a

D̃nm − D̃nm−1

δ
(4.8)

+ a2D2nm−1 − c2sD
2nm +

1

ε2
nm+1 = 0.

This scheme can be viewed as a wave-type version of the following scheme for the
original LEP system (4.1)–(4.3):

nm+1 − nm

δ
+ aD−n

m + D−u
m+1 = 0,(4.9)

um+1 − um

δ
+ aD+u

m + c2sD+n
m = D+φ

m+1,(4.10)

ε2D2φm+1 = nm+1.(4.11)

Indeed, eliminating u between (4.9) and (4.10), one has

nm+1 − 2nm + nm−1

δ2
+ 2a

D̃nm − D̃nm−1

δ
(4.12)

+ a2D2nm−1 − c2sD
2nm + D2φm+1 = 0,

and using (4.11), we get (4.8). We can also eliminate nm+1 from (4.12) using (4.11)
and get a discretization of the reformulated Poisson equation (2.7) (in linearized form):(

ε2

δ2
+ 1

)
D2φm+1 =

2nm − nm−1

δ2
+ c2sD

2nm(4.13)

− 2a
D̃nm − D̃nm−1

δ
− a2D2nm−1.

We also note that the implicit treatment of the last term in (4.8) gives a strong
dissipation (like in the Fourier analysis case). This can be seen from the use of the
so-called equivalent equation (i.e., the equation obtained by retaining the leading
order term in the Taylor expansion of the time semidiscrete scheme). This equivalent
equation is written

∂2
ttn + 2a∂2

txn− (c2s − a2)∂2
xxn +

1

ε2
n = − δ

ε2
∂tn + a2δ∂3

txxn + aδ∂3
ttxn.(4.14)

The first two terms on the right-hand side are dissipative terms, while the nature of
the last term is less clear.

By examining the LEP system about zero velocity, we have shown that schemes
that are implicit in both the mass flux term and the electric field source term are
asymptotically stable in the small Debye length limit ε → 0.
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Two schemes have been shown to have this property. A first scheme is associated
with centered space-differencing: the II scheme for the LEP system without diffu-
sion. A second scheme is associated with a decentered shock-capturing–type space
discretization: the II scheme for the viscous linearized Euler–Poisson (LVEP) system
(see section 3.3). We have seen in section 3.2 that the II scheme for the inviscid LEP
system is not uniformly stable with respect to ε when ε → ∞ and that this lack of
uniformity is related to the space-centered differencing.

We are now concerned with the stability of these two schemes for the LEP problem
about nonzero velocity. This analysis will confirm that the II scheme without diffusion
is uniformly stable in the limit ε → 0 but not in the limit ε → ∞ while the II scheme
with diffusion is uniformly stable for all values of ε, however small or large.

We linearize system (2.1)–(2.3) about the stationary homogeneous solution n0 =
1, q0 = Constant (but not equal to 0), and ∂xφ0 = 0. We denote by ζ � 1 the size
of the initial perturbation to this stationary state. Then, we can formally expand the
solution as follows: n = 1+ζn′+O(ζ2), q = q0+ζ(q0n

′+u′)+O(ζ2), φ = ζφ′+O(ζ2).
Retaining only terms of order ζ, we are led to the following LEP system (where the
primes have been dropped for the sake of clarity):

∂tn + ∂xu = 0,(4.15)

∂tu + ∂x(2q0u− q2
0n) + c2s∂xn = ∂xφ,(4.16)

ε2∂xxφ = n.(4.17)

After a Fourier transform in space, the system reads

∂tn̂ + iξû = 0,(4.18)

∂tû + iξ(2q0u− q2
0n) + iξc2sn̂ = iξφ̂,(4.19)

−ε2ξ2φ̂ = n̂.(4.20)

After elimination of φ̂, the system reduces to a 2 × 2 system of the form(
∂tn̂

∂tû

)
+

(
0 iξ

−iq2
0ξ + iξc2s + i

ε2ξ 2iq0ξ

)(
n̂

û

)
= 0.(4.21)

Its solutions are of the form(
n̂(ξ, t)

û(ξ, t)

)
=

(
n̂+(ξ)

û+(ξ)

)
eiθ

ε
+(ξ)t +

(
n̂−(ξ)

û−(ξ)

)
eiθ

ε
−(ξ)t,(4.22)

where

(4.23) θε±(ξ) = −q0ξ ±
(
c2sξ

2 +
1

ε2

)1/2

.

These eigenmodes are obtained by shifting the phase by the quantity −q0ξ. Indeed,
the linearization about a uniform nonzero velocity can be deduced from a linearization
about a zero velocity by a Galilean transformation x′ = x + q0t, v′ = v thanks to
the Galilean invariance of the nonlinear Euler problem. A Galilean shift translates in
Fourier space into a constant phase shift.
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It should not be inferred, however, that the stability of the schemes for the lin-
earization about a nonzero velocity can be deduced from considerations concerning
the linearized system about a zero velocity. Indeed, the mass and momentum flux
terms are treated differently (one is implicit while the other one is explicit), which
breaks this Galilean invariance.

Now, the II scheme for the inviscid Euler–Poisson system linearized about nonzero
velocity reads

n̂m+1 − n̂m

δ
+ iξûm+1 = 0,(4.24)

ûm+1 − ûm

δ
+ iξ(2q0u

m − q2
0n

m) + iξc2sn̂
m +

i

ε2ξ
n̂m+1 = 0,(4.25)

while the II scheme for the viscous system is written

n̂m+1 − n̂m

δ
+ iξûm+1 + βξ2n̂m = 0,(4.26)

ûm+1 − ûm

δ
+ iξ(2q0u

m − q2
0n

m) + iξc2sn̂
m + βξ2ûm +

i

ε2ξ
n̂m+1 = 0.(4.27)

We recall that the inviscid linearized system in Fourier space mimics a centered spa-
tial discretization while the viscous system mimics a decentered spatial discretization
associated with a numerical diffusion equal to β.

We can prove that the II scheme for the inviscid system is uniformly stable in the
limit ε → 0. But ε must be large enough. To state a more precise result, we recall
that the range of admissible wave-numbers ξ is limited to the interval |ξ| ≤ ξ∗ = π

Δx
in order to mimic the influence of a space discretization Δx. Then, for all K < 1,
there exists a δ∗ > 0 such that for all δ < δ∗ and all ε such that ε < Kδ, the II scheme
for the inviscid system is stable. We note that as K gets closer to 1, δ∗ tends to 0.
In particular, the scheme is not stable when ε = O(1) and δ → 0, which would be the
situation if we wanted to resolve the plasma period scale. We can show that if ε = 0,
the scheme is unstable. Therefore, the II scheme for the inviscid system cannot be of
practical usefulness.

We now turn to the II scheme for the viscous system. We assume that the diffusion
constant β is proportional to the time step: β = Bδ. Then, the result we can prove is
that if B is large enough (depending only on q0 and cs), then there exists an interval
of time steps [0, δ∗] (again, depending only on q0 and cs) such that for all δ’s in this
interval, all admissible wave-numbers ξ (i.e., such that |ξ| ≤ ξ∗) and all ε ≥ 0, the
scheme is stable. Usually, the diffusion constant is taken proportional to Δx (or to
Δx2/δ in the case of the Lax–Friedrichs scheme) rather than to δ. The result would
also remain true in this case, but the proof would be more complex. Indeed, supposing
that β = O(δ) allows us to express the problem in terms of the CFL variable, X = ξδ
only, which simplifies the (already quite technical) proof. Also, the result in itself is
interesting as it shows that the scheme is stable even with a vanishingly small diffusion
proportional to δ.

These results show that, at least for the linearized problem about any uniform
state (of zero or nonzero velocity), the II scheme associated with a decentered space-
differencing is uniformly stable with respect to all values of ε small or large.
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5. Burgers–Poisson equation. In a preliminary attempt to analyze the non-
linear effects, we consider the following model consisting of a nonlinear Burgers–
Poisson system:

∂tu + u∂xu = −∂xφ,(5.1)

ε2∂2
xxφ = u.(5.2)

This equation appears as a model describing high-frequency wave propagation in
relaxing media [30, 17]. In [30], special soliton solutions called “loop solitons” are
constructed using inverse scattering theory. However, these solutions are multivalued
and cannot be computed by the method developed below. Note that the quasineutral
limit has been investigated theoretically in [17].

This system owns the entropy pair (u
2

2 , u3

3 +
ε2φ2

x

2 ). Indeed, simple computations
show that

∂t

(
u2

2

)
+ ∂x

(
u3

3
+

ε2(∂xφ)2

2

)
= 0.(5.3)

The theoretical study of this equation will be reported in a future paper.
We consider the conservative scheme

∂tuj +
uj+1 + uj + uj−1

3

uj+1 − uj−1

2h
= −φj+1 − φj−1

2h
,(5.4)

ε2φj+1 − 2φj + φj−1

h2
= uj ,(5.5)

where h = Δx is the grid size. The above scheme may generate some oscillations near
shocks due to the dispersive nature of the scheme. We can recast the above scheme
in a conservative form,

∂tuj +
fj+1/2 − fj−1/2

h
= −φj+1 − φj−1

2h
,(5.6)

ε2φj+1 − 2φj + φj−1

h2
= uj ,(5.7)

where fj+1/2 = 1
6 (u2

j + ujuj+1 + u2
j+1). We have a discrete entropy pair

∂t

(
u2
j

2

)
+

gj+1/2 − gj−1/2

h
= 0,(5.8)

where gj+1/2 = 1
6 (u2

juj+1 + uju
2
j+1) + ε2

2 (
φj+1−φj

h )2. As a direct consequence, we can
prove a stability result for the space semidiscretization of this model. We can also get
some convergence results assuming the solution is smooth.

More precisely, we consider only the periodic boundary condition case for sim-
plicity. Let φ(x), u(x) be the exact solution. Let Φj = φ(xj), Uj = ε2 Φj+1−2Φj+Φj−1

h2 .
Assuming that the initial data are approximated up to second order, we have

‖uh − u‖ =

√∑
j

(uj − u(xj))2h ≤ Ch2
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and

ε‖φh − φ‖ = ε

√∑
j

(φj − φ(xj))2h ≤ Ch2

for all ε ≤ ε0, with arbitrary ε0 > 0 and where C = C(u, φ, ε0).
This analysis indicates that a similar implicit time discretization as in the LVEP

system will provide asymptotic stability with respect to ε → 0. The investigation of
this problem will be the topic of future work.

6. Conclusion. In this paper, we have analyzed the stability property of a re-
cently proposed numerical scheme for the Euler–Poisson system [9]. For this anal-
ysis, we have considered the linearized Euler–Poisson system about both zero and
nonzero velocities, and, after a Fourier transform in space, we have applied the time
discretization under scrutiny. We have mimicked the influence of a space-decentered
discretization by adding viscosity terms in both the mass and momentum conservation
equations. We have shown that the resulting scheme is uniformly stable with respect
to the Debye parameter ε. By contrast, other schemes with less implicit treatment
or with centered space-differencing are shown to lose the uniform stability property.
Elements of a nonlinear stability analysis have been given by considering a model
Burgers–Poisson problem. The analysis of this strategy for the kinetic version of this
model [10] is in progress.
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