
Numerical Methods for Oscillatory 
Solutions to Hyperbolic Problems 

BJORN ENGQUIST 
University of California, Los Angeles 

AND 

JIAN-GUO LIU 
Courant Institute 

Abstract 

Difference approximations of hyperbolic partial differential equations with highly oscillatory co- 
efficients and initial values are studied. Analysis of strong and weak convergence is carried out in 
the practically interesting case when the discretization step sizes are essentially independent of the 
oscillatory wave lengths. 01993 John Wiley & Sons, Inc. 

1. Introduction 

In order to guarantee a good numerical approximation to an oscillatory solution 
of a differential equation a fine computational grid is in general needed. There 
must often be a substantial number of grid points or elements per wave length in 
the oscillation; see [ 101. 

There are many computational problems in physics and engineering with highly 
oscillatory solutions. They range from well understood linear problems in classi- 
cal acoustics to the computation of turbulent flow. For many of these problems 
the requirement of several grid points per wave length is unrealistic in practical 
calculations. 

One alternative is to replace the original problem with effective or homoge- 
nized equations; see, e.g., [4]. This is, however, not always possible or practical 
and the question naturally arises if the original formulation can be used, even if 
the oscillation in the continuous solution is not well resolved on the grid. There 
still may be some quantities in the solution which are well approximated. Modem 
shock capturing schemes are successful approximations of this type. The shock 
profile is not well approximated but the approximation may still converge in in- 
tegral norms; see [5] and [15]. A similar study was initialed in [7] for problems 
with oscillatory solutions. 

In the traditional definition of convergence, the error decreases for a fixed 
problem as the grid step size decreases. This concept is too weak and does not 
discriminate between solutions which are highly oscillatory and those which are 
not. A new concept of convergence was suggested in [7] to describe the con- 
vergence essentially independent of the wave length of the oscillation. With the 
expression essentially independent we mean that a set of arbitrary small measure 
in the ratio between the wave length and the grid size must be avoided (see the 
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definition below). This notion of convergence is weak enough for a rigorous anal- 
ysis but strong enough to be used as a convergence concept in practical cases. It is 
similar to the convergence for almost all sequences of random numbers in Monte 
Car10 methods; see 1131. Convergence fully independent of the oscillatory wave 
length is too strong a concept and will never be satisfied; see [7]. 

DEFINITION 1.1. Let uE represent a family of oscillatory solutions parame- 
terized by E ( E  usually represents the oscillatory wave length), and let u i  be a 
numerical approximation of uE with grid step size h. The approximation u i  con- 
verges in norm ( 1  . 1 1  as h - 0 essentially independent of E to uE if for any 6 > 0, 
there exists ho > 0, independent of E,  and measurable sets Y(E, ho) C (0, ho) with 
Lebesgue measure I Y(E, ho) I 2 (1 - 6)ho such that 

is valid for all 0 < E < 1 and h E Y ( ~ , h g ) .  

Numerical simulations and their rigorous justifications under the above defini- 
tion of convergence have recently been successfully carried out in many impor- 
tant cases; see [2], [6]-[9], and [12]. Linear and semilinear hyperbolic equations 
with rapidly oscillating initial values, as well as elliptic equations with oscillatory 
coefficients have been considered. The purpose of this paper is to study some 
fundamental properties of oscillatory approximations. (Most results are new, a 
few of the results appeared in an unpublished report and they are referred to in 
the papers listed above.) 

In this paper, we shall discuss numerical methods for two quite general classes 
of linear hyperbolic systems. In the first class, the initial values and forcing terms 
in the differential equations are rapidly oscillatory. As a result, the amplitude of 
the oscillations in the solutions does not vanish in the limit as the wave length 
converges to zero. It is referred to as singular homogenization problems (see [ 141) 
or large amplitude oscillation problems. In the other class, the coefficients in the 
differential equations are rapidly oscillatory but the solutions converge strongly 
to the solutions of homogenized equations. It is often referred to as regular ho- 
mogenization problems (see [ 141) or small amplitude oscillation problems. 

Although we can not expect to resolve the oscillatory solutions in detail without 
large amounts of computations, we can still “capture” their most important feature 
- the weak limit or local average with reasonable amounts of computations. We 
average the numerical solution by a convolution with a kernel function which has 
a support of range as small as square root of the computational grid size. 

It is sometimes essential that not only the average of the approximation be- 
haves well. The amplitude and the location of the oscillations should also be well 
approximated. This is a necessary step for the analysis of nonlinear problems. 
In the singular homogenization problems, numerical dissipation and numerical 
dispersive could cause O(1) errors in the amplitude and the location of the os- 
cillations. The oscillations in dissipative schemes are dampened out very fast. 
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Unitary schemes are more favorable but even they produce approximations with 
large errors in the location of the oscillations due to numerical dispersion and 
thus errors in the group velocities. These errors in the amplitude and the location 
of the oscillations are hidden by the averaging process in linear problems. Some 
oscillatory behavior in nonlinear dispersive schemes were discussed in [ 1 11. 

The design of numerical schemes for linear convection problems in an oscil- 
latory velocity field, an important physical problem which has been extensively 
studied recently (see [ 3 ] ) ,  needs particular care. Since the coefficients in the nu- 
merical schemes are highly oscillatory, we need some sampling conditions for the 
oscillatory coefficients instead of the consistency condition in Lax's equivalence 
theorem which is not valid in this case. Numerical schemes, which are stable for 
constant coefficients, sometimes become unstable when the coefficients are highly 
oscillatory. 

The organization of this paper is as follows: in Section 2, we generalize the 
definition of the essential convergence in order to analyze the convergence rate. 
We shall give a sampling lemma for periodic oscillations with two scales. We also 
give some equivalent statements of the essential convergence. 

In Section 3 ,  the singular homogenization problems are considered. We shall 
prove essential convergence for consistent and stable difference approximation for 
linear systems with smooth coefficients and rapidly oscillatory initial values and 
forcing terms. We shall also discuss the damping of the oscillations in dissipative 
schemes and propagation of the oscillations in unitary schemes. 

In Section 4, the regular homogenization problems are studied. We shall give 
convergence proof for finite difference methods and particle methods for one- 
and two-dimensional linear hyperbolic systems with oscillatory coefficients. For 
linear hyperbolic equations with both oscillatory coefficients and initial values, we 
remark on the weakly essential convergence for a special case by a probability 
method. 

Finally, we shall present some numerical experiments in Section 5. The quan- 
titative information in these experiments is consistent with our theoretical results. 

2. Definition, Sampling Errors, and Averaging Operator 

In order to analyze the convergence rates, we give a more precise definition of 
the essential convergence below. 

DEFINITION 2.1. Let U' represent a family of oscillatory solutions parameter- 
ized by &, and let $, be a numerical approximation of U' with grid step size h. 
The numerical approximations ui converges of order a in norm 11 . 1 1  as h - 0 
essentially independent of E to u', if there are an increasing continuous function 
V ( T )  with v(0) = 0 and a constant C independent of E and h, such that for all 
E > 0 and 7 > 0 
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where pT is the normalized Lebesgue measure on ( 0 , ~ )  and defined by pT(A) = 
$ I A n ( o , T )  1 .  

Sampling lemma. Our main attention will be focused on periodic oscillations 
with two scales which appear in the coefficients, the initial values, and the forcing 
terms of the differential equations. We use functions of the form a(x, X / E )  to rep- 
resent the oscillations, where x = ( x ' ,  x2,  . . . , x ~ ) ~  € Rd and a(x, y )  is unit periodic 
in all the components of y = ( y ' ,  y2,.  . . , f)'. We denote x,  = (j 'h,  j2h , .  . . , jdh)', 
the computation grid in the domain Q = [0, 1Id, where h is the grid size, nh = 1, 
and j = ( j ' ,  j 2 ,  . . . , jd)T E Z d .  We denote by C a generic constant which may not 
be the same in different formulas. 

We first state the following sampling lemma. Some similar results can be 
found in [13], Section 5, [7], Theorem 1, and [2], Lemma 1, except for the order 
estimates and for allowing rational dependence between E and h. 

LEMMA 2.1. Let a(x,y)  E W'y" (R$, W39"(Qy)) with unit period in all the 
components of y .  For any E > 0 and 

h E yak) 

we have 

where j and J are multi-index with each component of values 0,1,. . . , n. 

Results of the type in Lemma 2.1 are standard in ergodic theory; see [ 11. We 
sketch a few points here and refer to [2] and [12] for a more detailed discussion. 
Expanding a(x, y )  in a Fourier series and noting the rapid decrease of the Fourier 
coefficients, one has 

6 hu 
m t O  
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for any E > 0 and h E Y,(E). The definition of set Ya(&) implies 

& 
(0,r) \Y,(&) c { h E (0,r) : ( h  - 1 < 71-a 6k5/2 , for some k 2 1,0 5 e 5 - 

This fact leads to 

Remark 2. I. 
(a) The above lemma implies that the summation co, j s J - l  a(xj ,  x j / e )  hd 

converges in Loo of order a, 0 < a < 1, essential independent of E to the integra- 
tion so 

(b) In the lemma above, we restrict h / ~  away from rational numbers with 
the denominator smaller than h-”/4. This restriction can always be achieved in 
practical calculations. 

(c) The estimate of (2.2) can be represented by the following Koksma-Hlawka 
inequality in Monte-Carlo methods; see [ 131. 

x, JQ a(x, y )  d y  dx. 

where T V ( f )  is the total variation of function f and D i  is the discrepancy of the 
set {yi}, y j  = x i / &  mod 1, which is a key concept in Monte Carlo methods and 
is defined by 

(d) The techniques used here are common in ergodic analysis and the method 
of good lattice points in Monte Carlo methods; see [13]. The key concept is the 
Diophantine numbers, or strong irrational number; see [ 11. 

Averaging operator. We denote u; as an approximate numerical solution of 
u ( x , t )  at point (x,,?,) which may be highly oscillatory. In order get the “mean” 
value, one needs to define the following averaging operator: 

where 
disc and sp O(x)dx = 1. 

= h-pdO(h-sx,) and O(x) is a kernel function with support in the unit 
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LEMMA 2.2. Suppose V ( X )  E Hi(Rd).  Let df be the averaging operator 
defined by (2.5). Then 

(2.6) ll . .lhp.(Xj) - (= Ch'llvllHI - 

Proof One can get directly from the definition of averaging operator (2.5) 
that 

d f V ( X j )  - V ( X j )  = c O(kh'-s) (v(xj+k) - V ( X j ) )  h(l-P)d. 
Ikl 5 h0-l 

Schwartz inequality implies 

Therefore, 

This completes the proof of the lemma. 

LEMMA 2.3. Suppose a(x, y )  E W'," ( R f ,  W3,"(Qy)) and is unit periodic in 
all the components of y. Let Y&) be the set defined by (2.2), df be the averaging 
operator defined by (2.5), and ii(x) = JQy a(x,  y )  dy .  Then 

B (2.7) m e  I d h a ( X j , X j / E )  - & j )  1 5 C(h"'l-p) + ha) IIaIIwi,m ( e , W 3 , m ( Q y ) )  
J 

is valid for any E > 0 and h E Y&). 

Proof We decompose the error between the averaging operator and the mean 
value into the following 

dfa(Xj,Xj/&) - a b j )  = c Ofhd ( a ( X j + k , X j + k / E )  - & j , X j + k / & ) )  
k 

4- c 8fhd ( U ( X j , X j + k / E )  - & j ) )  11 + 12 . 
k 
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Since the support of the kernel function 00 is in [-hP,ha], the first term can be 
estimated directly, 

Denoting hl = h'-O and E I  = &@, one can easily see that h E 9'&) always 
imply hl E G,(EI). Hence, applying Lemma 2.2 to function a(x,, y ) ,  one gets 

The lemma now follows directly from the above two estimates. 

Some equivalent statements. The following three propositions discuss the 
relation between Definition 1.1, Definition 2.1, and some of their equivalent state- 
ments. 

PROPOSITION 2.1. Let ug represent the numerical approximations to the os- 
cillatory solutions uE with grid step h, E represent the wave length of oscillations 
in the solutions. Let 1-1. be the normalized Lebesgue measure on (0, r). Then the 
following are equivalent. 

(1) As h - 0, the approximations converge to uE essentially independent 
of E.  

( 2 )  For any 6 > 0, there exist T O  < 1 independent of E such that, for any 
O < E < 1 .  

(3) For any 5 > 0, there exist a sequence {r,}, r ,  - 0, independent of E 

such that, for any 0 < E < 1, 

Proof: Clearly, (2) is just a restatement of (1). (3) 3 (2) is obvious. We 
only need to show (2)  - (3). If (3) is not true, then there are 60 > 0, EO > 0, 
and T *  < 1 such that 
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From (2), for 6 = T * ~ O  there is a TO < 1 such that 

Let T = min(.ro, r*). From (2.10) it follows that 

Above we have used the fact that 6 5 60 and TO 5 1, and we get a contradiction. 

PROPOSITION 2.2. Let ui represent the numerical approximations to the oscil- 
latory solutions uE with grid step h, E represent the wave length of oscillations in 
the solutions. Let pT be the united Lebesgue measure on (0,~). Then the following 
are equivalent. 

(1 )  If there is a monotone continuous function U ( T )  with v(0) = 0 and there 
are measurable sets Y(E) C (0,l) with measure pTY(e) 2 1 - V ( T )  

for all r,  E E (0 , l )  and if for any 6 > 0, there is a TO > 0 such that 
1 1  U‘ - ui 1 1  5 6 for all 0 < E < 1 and h E Y(E) n (O,TO). 

(2) For any 6 > 0, there exist 0 < TO < 1 independent of E such that 

is valid for all 0 < E < 1. 

Proof Assume (1 )  holds. There is a monotonic continuous function V ( T )  

with v(0) = 0 and measurable sets Y(E) such that for any 6 > 0 there exist TO, 
0 < v(7-0) < 6, IIuE -uiII 5 6 is valid for all0 < E < 1, and h E Y ( E ) n ( O , . r o ) .  
This fact implies 

Therefore, 

Thus, (2) holds. Now, we show (2) - (1) .  From (2), we know that there is a 
monotonic continuous function y(6) with y(0) = 0 such that, for any 0 c E < 1 
a n d O < 6 < 1 ,  
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Denote V ( T )  as the inverse function of y(S), which is also a monotone continuous 
function and v(0) = 0. Construct sets 

and 

It is easy to check that Y(E)  C (0,l) and 

I Y " ( E )  I 2 y ( 2 - " + ' )  - 7 4 2 - " )  - 2-"-ly(2-"+1) . 

For any 0 < T < 1, there is an integer n, y (2-" ) 5 ?- < y (2-"+l )  , such that 

Therefore, 

For any 6 > 0, there is an integer n, 2-" 5 6 < 2-"+l, such that 

for 0 < E < 1, h E Y(E) f l  ( O , h ) ,  and ho = y ( 2 - " ) .  (1) now holds. 

PROFWITION 2.3. 
sential convergence. 

The statement (2.11) is stronger than the definition ofes- 

Proof We construct the following sequence of functions 
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where an = 2-n2 and b n -  - 2-n2-2n . For any 6 > 0, there is a n, 2-2n d 6 < 
2-2n-2, such that for 70 = a, 

Therefore, the statement (2.8) holds. While for 6 = 1/2 one has 

The statement (2.1 1) can not be true for all 0 < 70 < 1. 

3. Hyperbolic Systems with Rapidly Oscillatory Data 

In this section we shall discuss the singular homogenization problems or large 
amplitude oscillation problems. We shall first prove the weak convergence for 
consistent and stable difference schemes for the linear systems with oscillatory 
initial values and forcing terms. Then, we shall discuss the damping and propa- 
gation of the oscillations in dissipative and unitary schemes. 

Convergence of difference schemes. For the linear hyperbolic system with 
oscillatory initial values and forcing terms, 

we use the difference scheme, 

as the approximation scheme, where ~ ( x ,  y) and f ( x ,  t, y) are smooth functions 
of compact support with respect to x and unit period in all components of y. 
It is known that the solution of (3.1) converges weakly in L" to the following 
homogenized equation, 

(3.3) 
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where iio(x) = sQ uo(x, y )  dy and f ( x ,  t )  = sQ f (x ,  t ,  y) dy. Denote the solution 
operators of (3.3) and (3.2) by S ( t ,  t l )  and S,, respectively. The solutions of them 
can be represented by 

U ( X ,  t )  = S ( t ,  0 )  & ( X )  + S(t - S, s ) ~ ( x ,  S) ds Lt 
and 

(3.4) 

We shall assume that the equation (3.3) is well posed in both L2 and H I ,  

IIu(.,t)lI~z 5 Cllu(.,o)II~2 and Ilu(.,t)llHi 5 Cllu(.,O)ll~l , 

and assume the difference scheme (3.2) is stable, 

THEOREM 3.1. Let uj” be the numerical solution of (3.2), u(x, t )  be the solution 
of the homogenized equation (3.3), YJE) be the set defined by (2.21, and d[ be the 
averaging operator defined by (2.5). Then, for any 0 < a < 1, 0 < P < 1, E > 0, 
and h E Ya(&), we have 

(3.7) 

Furthermore, if the coeflcient matrices A,,,, m = 1,2,. . . , d, and B in (3.1) are 
constant matrices, then 

(3.8) I I d f u j ”  - u(x,,tn)IIL2 5 C (ha“-P) + h p )  

where c = CI ( II~(lWl.m(~,W3~co(Qy)) -t I l f  tIW1,”(~xR,W3.”(Qv))) and c1 is a constant 
independent of h and E. 

I I d [ u ;  - u(x j ,  tn)1 I H - ]  5 C ( + ha)  . 

Proof (1) For the constant coefficient case, the average operator and solution 
operator are commutate, 

P 
&snuj = c 4 c Ptuj+t+k = c &uj+k+t = S n d h u j  

k e  e k 
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Decompose the error between the average of the numerical solution and the ho- 
mogenized solution into 

d f u "  - u( . , tn)  = s; ( d f u :  - Po) 

= 11 + 1 2  + 1 3  + 14  . 

Lemma 2.3 and the stability (3.5) tell us that 

11 4 I Idhuo B E  - U O ( ( ~ ~  s ~ ( ~ ( 1 - 0 )  + ha) I I ~ O I I W ~ . ~  . 

The estimate of 1 3  follows from the consistent condition (3.6) and the well- 
posedness of (3.3) in HI, 

1 3  = 1 1  ( S ( t n )  - ~ : ) ~ 0 1 1 ~ 2  I Chmfx I1S(tk)POllH1 I ChlliiollH1 . 

One can similarly get estimates for 1 2  and 1 4  and thus (3.8) holds. 
(2) For the smooth variable coefficient case, decompose the error terms into 

a f u n  - u( . , tn)  

(3.9) 

The estimates of the last four terms on the right-hand side of the above are the 
same as the estimates in the constant coefficient case, i.e., 

(3.10) 1z3 + z4 + z5 + 161 s ~ ( h ~ ( l - 0 )  + hB) . 
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For any v E HI, duality gives 

1339 

One has from the stability (3.5) that 

Similar to the constant coefficient case. one has estimates 

Similarly, one can get the following estimate for 12, 

Now, (3.7) follows directly from (3.9), (3.10), (3.11) and above inequality. This 
completes the proof of the theorem. 

Damping and propagation of oscillations. In the analysis of the previous 
subsection we showed that the presence of oscillations in the general cases does 
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not distort the convergence of the averaged approximation to the &-weak limit 
as h - 0. But this does not mean that we resolved the oscillations. The group 
velocity for the differential equation and the corresponding discretization may 
be quite different; see Figure l(c). We shall in this subsection briefly consider 
another measure of the shape of the solutions. We want a measure that gives more 
information on the size and the location of the oscillations than the local average. 
This is needed for an understanding of approximations to nonlinear equations. It 
is natural to study the powers or the moments of the solution first. We shall give 
two simple results regarding the weak limit of the squares of the solutions. The 
purpose is to point out the effect of errors in the amplitude or in the location of the 
oscillations due to numerical dissipation and numerical dispersive. We shall show 
that the oscillations in dissipative schemes are almost vanished after a few time 
steps and the oscillations in the dispersive schemes have wrong group velocities. 

For the constant coefficient case, the coefficients ,f?i in (3.2) become constants. 
We denote 

&(w) = P k  exp{ikwh} = p(w) exp{iWw)At} 
k 

as the symbol for the difference operator. We say the difference scheme (3.2) is 
dissipative if 

(3.12) l $ h ( ~ ) l  5 1 - Slwh(*' , V JwhJ S n , 

for some constants S > 0 and some positive integers r. We say the difference 
scheme (3.2) is unitary if 

(3.13) ISh(W)l = 1 . 
We apply the difference scheme (3.2) to the following scalar equation in one 

space dimension, 

(3.14) 
au au - + - = o ,  
a t  ax 

Denoting h/E = wh mod 2n, we have 

s h  exp{ix/e} = C ,f?k exp{i(x + kh)/e} 
k 

= C Pk exp{ikwh} exp{ix/e} = &(w> exp{ix/s} . 
k 

Simple calculations lead to 

S: JZ sin(x) sin(x/s) 
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where h/E 5 h = w+h mod 27~. 

tained by the weak limit of ( u " ) ~  which is given by 
The most information on the size and the location of the oscillations is con- 

2 

2 
(3.15) LX?! (S i  sin(x) sin(x/e)) - p2"(w) sin2 (x - 

as h - 0. The error in the size and the location of the oscillation can be described 

P 
by 

E(Xj, t ,) = LX?h ( U ( X j ,  t")2 - ( u y )  . 
From (3.15) it follows that, 

(3.16) 

as h - 0. For the dissipative scheme, if h and E satisfy 11 - exp{ih/s)l 2 CO, 

for some co > 0, then lwhl 2 arcsin(c0). One can get from (3.12) that 

p(w) s 1 - 6arcsin2'(co) = 60 < 1 . 

Therefore, 
~ ~ ~ ( . , t f l ) ~ ~ L =  2 1 - b$ . 

For the unitary scheme, where p(w) = 1 ,  if the order accuracy of the difference 
approximation is finite, then there exists an interval I such that 

(R(w+) - R(w-))/2 f 1 

for h/E E I. From (3.16), we know there exists a constant 60 > 0 independent of 
E and h such that 

for h/E E I, t ,  5 T .  Thus, we have the following theorem. 
IEbj,tn)I 2 60 tn 

THEOREM 3.2. Let E(xj,t,,) be the errorfinction dejined by (3.15) for the 

( 1 )  I f  (3 .2)  is a dissipative scheme and h and E satisfy I 1 - exp{ih/s)I 2 
CO,  for some co > 0, then there exists a constant 60 < 1 independent of 
E and h such that 

scheme (3.2) approximating (3.14). 

IE(Xj,t,)l L 1 - 62 . 
(2 )  If(3.2) is a unitary scheme, then 

IE(xj,tn)I 5 Ctn 

for some C independent of h and E. Furthermore, if the order of accuracy 
of (3.2) is$nite, then there exist constants 60 > 0, T > 0 and an interval 
I such that 

for h /e  E I ,  t ,  5 T.  
IE(xj9tn)l 2 60 1, 
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4. Hyperbolic Equations with Rapidly Oscillatory Coefficients 

In this section, we shall discuss the regular homogenization problems or small 
amplitude oscillation problems. We shall consider difference methods and par- 
ticle methods for linear hyperbolic equations with oscillatory coefficients. First, 
we shall prove essential convergence of the upwind scheme for the linear sys- 
tems. Then we discuss stability and convergence for more general schemes in the 
one-dimensional scalar case. Finally, we shall consider the particle methods for 
multidimensional scalar problems. 

Consider the following linear hyperbolic system with micro inhomogeneous 
coefficients 

(4.1) 
dU" 
dX [ + A"(x, t)- + B(x, t )  U" = f ( x ,  t )  , 

I U " ( X , O )  = uo(x) . 
In many cases, the solution of (4.1) converges to that of a homogenized equation 
(see bl), 

(4.2) 
dU 
dX 

[ $ + A * (x, t)- + B(x, t)u = f ( x ,  t )  , 

In the periodic oscillatory case, e.g., A"(x, t )  = A(x, t ,  X / E )  and A(x, t ,  y )  is a smooth 
function with unit period in y ,  we know the corresponding homogenized coefficient 
is 

(4.3) 

and the solutions of (4.1) converge strongly in L" to the solution of (4.21, (4.3); 
see [12]. We approximate to (4.1) with the following difference method, 

(4.4) 

where x j  = j h  and tn = nAt. For the upwind scheme, assuming A" is positive for 
simplicity, we take 

(4.5) & = 1 ,  po1=-1; 

for the Crank-Nicholson scheme, we take 
po - 1 1 (4.6) 1 - = 1/4, = /3-1 = -1/4 ; 
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for the backward Euler scheme, we take 

(4.7) 0; = 1/2 ,  p!1 = -1/2 . 

In order to guarantee that the difference scheme (4.4) converges to the homog- 
enized equation (4.2), we need a stability condition for (4.4) and a good sample 
of the oscillatory coefficients of the numerical schemes. 

Convergence of the upwind scheme. We denote the sampling error as 

IS'(xj, t n + l )  - SE(xj,tn)l 
A t  S(E, h)  = IS"(xj, tn)l + 

J." ( 
(4.8) j 

S"(xj,  t n )  = C ( (AE)- 'h,  I n )  - (A*)-'(Xk, t.)) h . 
k = l  

In the periodic oscillatory case, e.g., A"(& t )  = A(x, t ,  x / E ) ,  one has from Lemma 
2.1 that 

lIS(E,h)(I 5 Ch" 

for all E > 0 and h E Y&). We assume the following CFL condition is always 
held: 

(4.9) 
At 
- max((AE(x,f)ll < 1 . h x,t 

THEOREM 4.1. Assume an upwind scheme (4.4), (4.5) approximating (4.1) sat- 
isjes the CFL condition (4.9). Let uj" be the approximated numerical solution, 
u(x, t )  be rhe solution of the corresponding homogenized equation (4.2), and S(E, h)  
be the sampling error (4.8). Then we have 

(4.10) SUP I U! - U ( x j ,  t n )  I S C (S(E,  h)  + h )  ( I  I UO I Iw2.x + I I f I Iw1.2 ) 
I." 

where C is a constant independent of E and h. 

Proof For simplicity, we assume A t  = h. Let 

(4.1 1) 

where Sy = SE(x j , f f l ) ,  
upwind scheme for the homogenized equation 

= A*(?,,, x j ) ,  and I!JY is the solution of the following 
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Manipulating from (4.4), ( 4 3 ,  (4.1 l), and (4.12), one gets 

Since (4.12) is the scheme for the smooth equation (without small parameter E in 
it), it is easy to get estimate 

Clearly, 

Together with the stability of scheme (4.13), one has 

lwjl 0 5 cp;l IIuOIIWL- . 

max 1lwj"ll 5 c max ( IR?I  + lwy1) 
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From (4.11) and the above inequality, it follows that 

This completes the proof of the theorem. 

COROLLARY 4.1. Assume the CFL condition is held and the coeficient matrix 
of the equation (4.1) has the form A" = A(x, t , x / ~ ) ,  where A(x, t, y) is a smooth 
positive matrix with unit period in y. Then the upwind scheme (4.41, (4.5) is 
essential convergence of order (Y for all a < 1. 

Remark 4.1. 
at time variables, 

For the linear hyperbolic equation with coefficients oscillating 

where A ( x , t , ~ )  > 0 is a smooth matrix with unit period in 7, we can similarly 
prove the essential convergence for its standard upwind schemes. In this case, the 
corresponding homogenized coefficient matrix becomes 

A* (x, t )  = A(x, t ,  7 )  d7 . I'  
Stability analysis. We shall now discuss stability and convergence for the 

more general scheme (4.4). There are large classes of algorithms with stabil- 
ity even for the oscillatory coefficients. Monotone schemes, such as the upwind 
scheme and the Lax-Friedrichs scheme, satisfy the maximum principle and are 
stable even for oscillatory coefficients. For the L2 stable schemes, such as the 
Crank-Nicholson scheme and the backward Euler scheme, the stability may be 
lost if the eigenvalues of the oscillatory coefficient matrix AE(x,, t,) has both signs. 
For the Crank-Nicholson approximation with initial values and the function AE(x)  
given below 

0 j = - 1  0 j = - 1  
-1  j = o  
1 j = 1  ' 

0 j = 2  
(YO j = l  
0 j = 2  
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the algorithm, 

AtA? 
(u;+, - u;-1) 1 u;+1 + - (uj+l uj-1) = u; - - At'? n + l -  n+l 

4h 4h 

has a solution u; that blows up for j = 0, 1 independently of the values of u and 
A f o r j < - I a n d j > 2 ,  

1 + At/(4h) 
1 - At/(4h) 

f f n  E u? = -uj , j = -1,0,1,2, ff = 
ff0 

I 

Local blowups of this type are difficult to control with sampling properties. But 
if we modify the space differing 

1 
2 

A& - - (AjDo + DoAj) (u;" + u;) , 

then the Crank-Nicholson scheme is stable in L2 

Convergence for general schemes. The original consistency condition for 
the scheme (4.4) with smooth coefficients is given by 

cP:= CPi=O, c ( P : + P i ) k = 2 .  
Ikl d ko Ikl 5 ko Ikl d ko 

Clearly, the difference scheme (4.4) is not consistent with the homogenized equa- 
tion. In the case where the oscillatory coefficient AE = AE(x) depends only on the 
space variables, we can show that some schemes, such as the upwind scheme, the 
Crank-Nicholson scheme, and the backward Euler scheme, are consistent with the 
homogenized equation after redefining the computational grid. More precisely, 
we need the following equivalence conditions: there is a set of grid points {y,} 
and numbers S(E, h), S(E, h) essentially converge to zero, such that 

(4.14) a"(Xj) ( P i  + &) y j+k  = a*(xj)h 
Ikl d ko 

and 

THEOREM 4.2. Let u(x,t) be the solution of (4.2) and u? be the solution of 
scheme (4.4). Assume the coeficient a" = a"(x) only dependent on x and the 
numerical scheme (4.4) is stable and satisfies equivalent condition (4.14) (4.15). 
Then, we have 

(4.16) IIun-U(*,tn)II < = C (S(E, h) + h)  , for t, 5 T 
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where C is a constant independent of E and h. 

Proof The equivalent condition (4.14) gives 

Plug the above identity into (4.4) to get 

(4.17) 

Taking y ,  as computation grids, we construct the following scheme for the ho- 
mogenized equation (4.2) 

Since (4.2) is a smooth equations, i.e., does not involve small parameter E ,  and 
scheme (4.18) are stable and consistent to (4.2), one has the following error esti- 
mate 

Now, we estimate the error between (4.17) and (4.18). Denote wy = uy - vy. 
Subtracting (4.18) from (4.171, one gets 
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From the Lipschitz continuity of functions a * ,  b and f, one knows 

The stability of scheme (4.18) implies 

Clearly, 

One has from the stability of (4.20) that 

0 Iwj I = 1 Uo(xj) - d y j )  I 5 CS(E, h)  

Therefore, it follows from (4.15), (4.19), and above inequality that 

This completes the proof of the theorem. 

COROLLARY 4.2. Assume CFL condition (4.9) is valid and the coeficient in the 
equation (4.1) has the form a" = a(x, x / E ) ,  a(x,  y) is a smooth positivefunction with 
unit period in y. Then the upwind scheme (4.4), (4.9, the backward scheme (4.4), 
(4.6), and the Crank-Nicholson scheme (4.4), (4.7) are essentially convergence of 
order a, for all a < 1. 

Proof The convergence of the upwind scheme is covered by Corollary 4.1. 
For the backward Euler scheme and the Crank-Nicholson scheme. we take 

It is easy to check that 

and 
Iyj -xjI 5 Ch*,  V E > 0,h E Y,(E) .  

The equivalence condition (4.14) and (4.15) is satisfied. The corollary now follows 
directly from Theorem 4.2. 
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Remark 4.1. If both of the coefficients and initial values in the linear hy- 
perbolic equations are highly oscillatory, then the behavior of solutions is very 
complicate (see [ 121). In here, we consider the difference methods for the follow- 
ing model equations which share some similarity with the general linear equations 

coefficients, initial values, and forcing terms with highly oscillatory 

(4.21) 

Letting v' = u(x/E)u', then (4.21) becomes 

I VE(X, 0 )  = a(x/s)uo(x)  . 

The solution of (4.21) is highly oscillatory and it converges weakly to the following 
homogenized equation (see [12]) 

(4.22) 

where a' is the harmonic average of a(x). We approximate (4.21) with the fol- 
lowing upwind scheme, 

MY+' - U; 
uj = U O ( X j )  . 

u ( x ~ / E ) u ~  - a(xj- l /E)u;- l  
= fJ" 3 h 

(4.23) { o a t  + 

Assume Ar = h, h / E  = y is held fixed and y is any irrational number. The above 
equation can be rewritten as 

ug+l = a ( ( j  - 1)y) .;-I + (1 - a ( j y ) )  uy + h f; . 

We can view the above equation as a renewal equation describing the distribution 
of the particles: initially, they have distribution uo(x,) at position j ;  at each time 
step, particles have probability a ( j y  ) of jumping one unit to the right and proba- 
bility 1 - a ( j y  ) of staying fixed if the particles local at position j .  We can show, 
by a stochastic analysis, that the upwind scheme (4.23) converges weakly of order 
1/2 essential independent of E to the homogenized equation (4.22). We refer to 
[12] for a detailed discussion. 

Particle methods. Particle methods or the method of characteristic have been 
successfully used in numerical simulation of the semi-linear hyperbolic systems 
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with oscillatory initial values; see [7]-[lo]. In this subsection, we apply the particle 
method to the following linear convection equation, 

(4.24) [ g + a,(x) * VU" = f (x ,  t )  , 

I U " ( X , O )  = U&) . 
We suppose the velocity field a,(x) is periodic oscillatory at one direction c and 
divergence free. Consequently, there is a smooth unit periodic function a(y) with 
c + u(y) = CO, such that a, = a(c x / E ) .  Equations of the above form are typical 
models for miscible displacement problems in the oil reservoir simulation. The 
unknown uE corresponds to the concentration of the invading fluid. 

Denote X E ( x ,  t )  as the solution of the following equation 

d 
- X E ( X ,  t )  = a(c f X / & )  , 
dt 

(4.25) XE(O,X) = x . 

Taking the scalar product with c to get d(c X " ) / d t  = CO. Therefore, 

d 
dt 
-XE(X,  t )  = a ( (c  ax + C O t ) / E )  . 

This leads to the following homogenized behavior: if co f 0, then 

(4.26) 

if co = 0, then 

(4.27) 

XE(X,  t )  - x + ta ; 

X " ( X ,  t )  = x + ta (c .  X / & )  . 

THEOREM 4.3. The particle method for (4.24) is essential convergence of order 
ff < 1. 

The proof follows from the convergence of the following Euler method for 
(4.25) 

(4.28) y + 1  = X" + U(C * x"/&)At . 
Taking the scalar product with c to get 

c - x "  = c . x o  + cona t .  

Therefore, 

x" = x"-' + a ( ( c  - xo + co(n - l )A t ) / c  ) At 
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If co = 0, then 
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(4.29) x“ = x O + u ( c . X O / & ) t n ;  

if co f 0, Lemma 2.1 implies that 

for all 0 < E < 1 and coat E YJE). The above theorem follows from (4.261, 
(4.27), (4.29), and (4.30). 

5. Numerical Experiments 

Numerical experiments are carried out for the algorithms discussed in Section 
3 and Section 4 for linear hyperbolic equations with oscillatory coefficients and 
oscillatory initial values. In the numerical experiments, we take the time step size 
At equal to the space grid size h (the CFL condition is satisfied) and always com- 
pare the numerical results with the “homogenized” solution which is obtained by 
using the same numerical schemes for the corresponding homogenized differential 
equations. 

Experiment 5.1 (unitary and dissipative schemes): For the linear convection 
eauation. 

au au - + - = o ,  
at ax 

with initial oscillatory pulse, 

1 cos(nx)( 1 + cos(nx/e)) , for - 0.5 < x < 0.5 , 
otherwise, 

u(x,O) = 

we use the leapfrog scheme (a unitary scheme), 

u y + l  - - .y-, 
= 0 , u: = Z&j,XJ/E) , 2h 

+ 
2At 

and the Lax-Friedrichs scheme (a dissipative scheme), 

We choose grid size h = 0.02 and E = 0.0141423, and plot the initial oscillation 
pulse in Figure l(a). The exact solution at time t = 2 is plotted in Figure l(b), the 
numerical solution for the leapfrog scheme at time t = 2 in Figure l(c), and the 
numerical solution for the Lax-Friedrichs scheme at time t = 2 in Figure l(d). 



1352 B. ENGQUIST AND J . 4 .  LIU 

We can see that both the unitary scheme and the dissipative scheme give good 
approximations in the weak sense (Theorem 3.2). We can also see that the oscilla- 
tion pulse in the dissipative scheme is dampen out very fast; see Figure l(d). For 
the unitary scheme, the oscillation pulse moves at its own numerical group veloc- 
ity instead of the convection velocity; see Figure l(c). Even the oscillations move 
to the wrong location instead of being with the average, the oscillatory pulse has 
a zero local average so that the averaged solution is well approximated (Theorem 
3.1). When the oscillatory plus is propagated in a nonlinear equation, it then also 
contributes to the smooth part of the solution too. 

Experiment 5.2 (upwind schemes): For the linear hyperbolic equation with 
oscillatory coefficient, 

(5.1) 
dU" 
- = o ,  

3.75 + 2.5 sin(2nx/e) dx 
82.4. + 1 - 
dt 

and initial condition, 

sin(2nx) , for 0 < x < 1 , 
0 ,  otherwise , 

we use the upwind scheme, 

u:+' - u? - u? 
+ U " ( X j )  I-' = 0 . 

At h 

We choose E = 0.0014142, grid size h = 0.1, 0.05, 0.025, and 0.0125 and 
plot the numerical results at time t = 1 .O in Figure 2(a)-(d), respectively. The grid 
size h >> E and the numerical solutions converge essentially to the "homogenized" 
solution. The rate of convergence is basically of order O(h) as showed by Corollary 
3.1. 

In Figure 3(a)-(c), we also plot the approximation errors and the sampling 
errors at different grid sizes in L' -norm, L2-norm, and Lw-norm, respectively. The 
approximation errors are linearly proportional to the sampling errors as proved 
in Theorem 3.1. In Figure 3(d), we plot the approximation errors in Lm-norm 
for h = 0.00625 in all time steps up to t = 1. The approximation errors are not 
increasing as the time increases. 

Figure 4 shows the sampling effect in the upwind schemes for the linear hy- 
perbolic equation, 

82.4. due 
- + (0.42 + 0.4sin(2nx/s) ) - = 0 . 
at d X  
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I 1 .  1 

- 0.5 - 
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I I -1 , I 
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-1 

, ! 1 , 

0.5 - +-A : 0 -  A- 
- -0.5 - 

- -1 

- 

I I I 

Figure 1 .  Leap-frog scheme and Lax-Friedrichs scheme for the equation u, + u, = 

0 with initial data uo(x) = 1 cos(x)(l + cos(x/e)), for - K  < x < K and equal to zero 
else. (a) Initial data. (b) Exact solution at time f = 2. (c) Numerical solution 
for leapfrog scheme at time t = 2 with grid size h = 0.02 and E = 0.0141423. (d) 
Numerical solution for Lax-Friedrichs scheme at time t = 2 with grid size h = 0.02 and 
E = 0.0141423. 
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h=0.2, t= 1, epsilon= 1.4142e-3 

(a> 

0.5 I 

- 1 '  I I 

0 0.5 1 1.5 2 
h=0.05, t=l, epsilon=1.4142e-3 

0.5 1 1.5 2 
h=0.1, t=l, epsilon=1.4142e-3 

(b) 

0.5 1 1.5 2 
h=0.025, t= 1, epsilon= 1.4142e-3 

(4 

Figure 2. Upwind scheme for the linear hyperbolic equation u, + 1h3.75 + 
2.5 sin( ~ ~ T X / E  ))u, = 0 .  The solid lines are direct approximation of the 'homogenized' 
solution. (a) h = 0.2. (b) h = 0.1.  (c) h = 0.05. (d) h = 0.025 for time = 1 and 
E = 1.4142e - 3 (about 0.14 points per wavelength). 
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s 
C .- 

grid size 
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0.21 

OS5 t 

grid sue 

(b) 

0.3 7 0.022 1- 

,/'- g 
- ; 0.02 

€ 
0 
E: 0.2 - 

1 
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.- 
2 0.1 - 

5 
0 0.016 
0 0.05 0.1 0 0.5 1 

Figure 3. Upwind scheme for the linear hyperbolic equation ut + 1/(3.75 + 
2.5 sin( ~ X X / E  ) )ux = 0 .  The solid lines are the approximation errors and the dish lines 
are the sample errors defined by (4.8). (a) L' -norm. (b) L2 -norm. (c) L" -norm, for 
a sequence of grid sizes, time = I and E lz1: 1.4142e - 3 .  (d) L" -norm, for all the time 
steps up to t = 1,  h = 0.00625 and E = 1.4142e - 3 .  
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1 ,  I 1 

"0 0.5 1 1.5 2 

(4 

h=0.01, epsilon= 1.0243e-3 

1 

0.5 

0 

-0.5 

0.5 1 1.5 2 
h=0.01, t=l, epsilon=1.0243e-3 

@) 

0 0.5 1 1.5 2 
h=0.01, epsilon=1.052e-3 

(c) 

0 0.5 1 1.5 2 
h=0.01, t=l, epsilon=1.052e-3 

(4 

Figure 4. Upwind scheme for the linear hyperbolic equation ut + (0.42 + 
0.4sin(27rx/e))ux = 0.  (a) h = 0.01 and E = 1.0243e - 3 give a good sample of 
oscillatory coefficients. (b) h = 0.01 and E = 1.0243e - 3 give a good approxima- 
tion of solutions. (c) h = 0.01 and E = 1.052e - 3 give a bad sample of oscillatory 
coefficients. (d) h = 0.01 and E = 1.052e - 3 give a bad approximation of solutions. 
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h=0.2, t = 1, epsilon=1.4142e-3 

(4 

h=O. 1, t= 1, epsilon=l.4142e-3 

0-9 

h=0.05, t=l, epsilon=1.4142e-3 

(4 

h=0.05, t=l 

(4 

Figure 5. Upwind scheme for the 2-D linear hyperbolic equation u, + (0.42 + 
O . ~ S ~ I I ( ~ K Y / E ) ) U ~  + 0 . 5 ~ ~  = 0 .  (a) h = 0.2. (b) h = 0.1. (c) h = 0.05, for t = 1.0 
and E = 1.4142e - 3 .  (d) The corresponding ‘homogenized’ solution. 
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0.5 1 
time 

Figure 6. Upwind scheme for the 2-D linear hyperbolic equation ut + (0.42 + 
0.4 sin( 2 r y / ~  ))u, + O h ,  = 0. The solid lines are the approximation errors and the 
dish lines are the sample errors. (b) L2 -norm. (c) Lm -norm, for a 
sequence of grid sizes, time = 1 and E = 1.4142e - 3 .  (d) Loo -norm, for all the time 
steps up to t = 1 ,  h = 0.0125 and E = 1.4142e - 3 .  

(a) L' -norm. 
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h=0.1, epsilon=0.14142 

(4 

1 

0.5 

0 
0 0.5 1 1.5 

h=0.025, epsilon=0.14142 

(4 

1.5 

1 

0.5 

0 
0.5 1 1.5 

h=0.05, epsilon=0.14142 

(b) 

1 

0.5 

0 
0 0.5 1 1.5 

h=0.0125, epsilon=0.14142 

(4 

Figure 7. Particle method for the equation u, + ( 1.2 + sin(2dx + Y ) / E ) ) u ~  + 
( 1 . 1  - sin(2a(x + Y ) / E )  )uy = 0 .  The cycles are numerical particle paths up to time 
f = 1.0 with starting point (0,O) and E TJ 0.14142. The solid lines are the corresponding 
‘homogenized’ particle paths (characteristic). (a) h = 0.1. (b) h = 0.05. (c) 
h = 0.025. (d) h = 0.0125. 
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We take h = 0.01 and E = 0.0010243 and E = 0.001052, respectively, plot the 
sample of the oscillatory coefficients in Figures 4(a) and 3(c) and plot the approx- 
imation in the solutions in Figures 4(b) and 3(d). We can see that a good sampling 
of the oscillatory coefficients leads to a good approximation of the solutions. 

For the following 2-D linear hyperbolic equation with oscillatory coefficient, 
dU" dU" dU" 
- + (0.42 + 0.4 sin(27ry/s)) - + 0.5- = 0 , 
at d X  8 Y  

and initial condition, 
sin(7rx)2 sin(m)* , for o < x, y < 1 , 

otherwise, 
we use the upwind scheme, 

We choose E = 0.0014142, grid size h = 0.2, h = 0.1, and h = 0.05 and plot 
the numerical results at time t = 1.0 in Figure 5(a)-(c), respectively. Comparing 
this with the corresponding "homogenized" solutions in Figure 5(d). We can see 
that the numerical solutions agree well with the "homogenized" solution. 

In Figure 6(a)-(d), we plot the approximation errors via sampling errors at 
different grid sizes, in L'-norm, L2-norm, and Lm-norm, with E = 0.0014142. We 
can see the rate of convergence is linear and the errors do not propagate with time. 

Experiment 5.3 (particle methods): Consider the two-dimensional linear 
convection equation, 

dU" 8U" dU" - +  (1.2+sin(27r(x+y)/~)- + (1.1-sin(27r(x+y)/~))- = O .  
at 8 X  dY 

We approximate it with the following particle method 

x"+l = X" + At (1.2 + sin(2n(xn + Y ) / E )  , { y"" = y" + At (1.1 - sin(2dx" + y " ) / ~ )  . 
We hold E = 0.14142 fixed, choose grid sizes h = 0.1,0.05,0.025, and 0.0125, 

and plot the numerical results up to time t = 1.0 in Figure 7(a)-(d), respectively. 
We can see that the numerical solutions converge to the "homogenized" solution. 
The rate of convergence is basically of order O(h). 
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