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Abstract. We consider the completely positive discretizations of fractional ordinary differential
equations (FODEs) on nonuniform meshes. Making use of the resolvents for nonuniform meshes, we
first establish comparison principles for the discretizations. Then we prove some discrete Gr\"onwall
inequalities using the comparison principles and careful analysis of the solutions to the time contin-
uous FODEs. Our results do not have restriction on the step size ratio. The Gr\"onwall inequalities
for dissipative equations can be used to obtain the uniform-in-time error control and decay estimates
of the numerical solutions. The Gr\"onwall inequalities are then applied to subdiffusion problems and
the time fractional Allen--Cahn equations for illustration.

Key words. resolvent kernel, complete positivity, comparison principle, nonuniform mesh,
dissipative equation

MSC codes. 34A08, 45E10, 65L05, 65R20

DOI. 10.1137/24M1631614

1. Introduction. The time fractional differential equations with Caputo deriv-
atives [1, 5, 12] have been widely used to model the power law memory effects of
energy dissipation for some anelastic materials, and soon became a useful modeling
tool in engineering and physical sciences to construct physical models for nonlocal
interactions in time (see [35]). The models with Caputo derivatives may also result
from the complexity reduction and the generalized Langevin dynamics [13, 19]. The
Caputo derivatives are more suitable for studying the initial value problems as it re-
moves the singularity in the Riemann--Liouville derivatives [16]. In analyzing these
models, especially the a priori energy estimates for time fractional PDEs, it is crucial
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2197

to have the comparison principles and Gr\"onwall inequalities for the time fractional
ordinary differential equations (FODEs) that take values in \BbbR .

The FODE taking values in \BbbR with Caputo derivative of order \alpha \in (0,1) can be
written as

D\alpha 
c u= f(t, u), u(0) = u0,(1.1)

where f : [0,\infty )\times \BbbR \rightarrow \BbbR is assumed to be locally Lipschitz and u : [0, T )\rightarrow \BbbR for some
T > 0 is the unknown function. Here, the Caputo derivative is defined by

D\alpha 
c u=

1

\Gamma (1 - \alpha )

\int t

0

u\prime (s)

(t - s)\alpha 
ds,(1.2)

where \Gamma (\cdot ) is the gamma function. Often the comparison principles may involve func-
tions u that are continuous but not absolutely continuous so the generalized definitions
of Caputo derivatives in [16, 17] might be considered in these cases. One may refer
to section 2.1 for more details. The FODE (1.1) is equivalent to the integral equation
(see [5] and also [16, 17] for generalized versions)

u(t) = u0 +
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1f(s,u(s))ds.(1.3)

In other words, the FODE is equivalent to a Volterra equation with the Abel integral
kernel

g\alpha (t) :=
1

\Gamma (\alpha )
t\alpha  - 1
+ ,(1.4)

where t+ = t1t\geq 0 and 1t\geq 0 is the standard Heaviside step function. The kernel
g\alpha is known to be completely monotone [34, 31], and thus log-convex and com-
pletely positive [3]. A function a : (0,\infty ) \rightarrow \BbbR is said to be completely monotone
if ( - 1)na(n)(t) \geq 0 for n = 0,1, . . .. A completely monotone function that is not
identically zero is strictly positive (i.e., bigger than zero everywhere on (0,\infty )) by
the Bernstein theorem [34, 31]. A locally integrable function a : [0,\infty ) \rightarrow \BbbR is said
to be completely positive if the resolvent kernels given in Definition 2.4 below are
nonnegative (see the original paper [3] for more details). It has been pointed out in
[3] that completely monotone functions are completely positive (as locally integrable
functions, the definition at t= 0 does not matter). Using the integral formulation, it
is clear that as \alpha \equiv 1, (1.1) reduces to the usual ODE.

The first type of comparison principle is for two solution curves of (1.1) or (1.3).
If the initial value of one solution is smaller, the solution is always smaller. Such
results are well-established and one may refer to [9, 6] for examples. A more useful
type of comparison principle is for inequalities, which can give estimates to some
energy functionals and norms for the solutions. Such results using the differential
inequalities are actually also well-known [30, 9] but the proofs there are not easy
to generalize to numerical schemes. For uniform meshes, the comparison principles
for the differential form have been established in [18] and [20]. The proof there,
however, heavily relies on the discretization and is intrinsically different from the
proof for the time continuous version in [30, 9]. It is thus desired that the proof can
be motivated from the analysis for the time continuous equations. Besides, due to the
weak singularity in the memory kernels, the FODE models often exhibit multiscale
behaviors and the solution has singulairty at t = 0 [4, 32, 33]. The adaptive time-
stepping is often adopted to address this issue [28, 23, 32, 15, 26]. Hence, it is desired
to establish the comparison principles for the variable step discretizations.
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2198 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

Establishing explicit bounds for the discrete time fractional inequalities, or the
discrete Gr\"onwall inequalities, is of great significance to get a priori bounds and to
prove stability of numerical schemes. The Gr\"onwall inequalites with linear function
f(u) = \beta u + c may be established using the comparison principles because the solu-
tions to the FODEs with linear f(\cdot ) are explicitly known. There are several results
about the discrete Gr\"onwall inequalities in literature [8, 21, 23]. The Gr\"onwall in-
equality in [8] is restricted to uniform meshes. The ones in [21] are based on the
special form of L1 scheme so they only apply to L1 discretizations. The ones in [23]
can apply to a broader class but there is step ratio restriction and are not directly
applicable to estimate the decaying rate of solutions. Often the error control for dis-
sipative systems like the subdiffusion problems relies on the maximum principles [32]
so it cannot get the decay bounds for the numerical solutions.

In this work, we aim to establish the comparison principles and Gr\"onwall in-
equalities for completely positive discretizations on nonuniform meshes (detailed in
section 2.3). Our new approach is to discover a different proof for the comparison
principles for time continuous FODEs based on the resolvents [3, 29], using similar
techniques as in [9, 7]. With the so-called pseudo-convolution (see the details in sec-
tion 2.2), one can define the resolvent kernels for nonuniform meshes as well. Then,
we can establish the comparison principles for the variable-step discretizations using
the resolvent kernels by generalizing the argument for the continuous case. Based on
the comparison principles, we establish Gr\"onwall inequalities for the discretizations
making use of some key properties of the solutions to continuous equations. There is
no monotonicity assumption on the function f . The main results can be summarized
as below.

Theorem 1.1 (informal version of Theorems 4.3 and 4.8). Consider the dis-
cretization of the differential form (2.17) that is completely positive and assume that
cnn - j is comparable to the average of g1 - \alpha (tn  - \cdot ) on the jth interval in some sense
(see the corresponding sections for the details). If a nonnegative sequence vn satisfies
that \scrD \alpha 

\tau vn \leq  - \lambda vn+c for \lambda > 0, then for some constants \nu > 0 and \~\sigma > 0, it holds that
(a) vn \leq v0E\alpha ( - \nu  - 1\lambda t\alpha n) + (c/\lambda )(1 - E\alpha ( - \nu  - 1\lambda t\alpha n)) if v0 \leq c/\lambda ;
(b) vn \leq (v0  - c/\lambda )E\alpha ( - \~\sigma \lambda t\alpha n) + c/\lambda if v0 > c/\lambda .

For the two cases, the final statements are similar. We divide them into v0 \leq c/\lambda 
and v0 > c/\lambda because the proofs rely on different properties of the solutions to the
continuous equations. The result in (a) is useful for the uniform bound estimate of
the numerical solutions while the result in (b) is useful to get the decay rate of the
solutions. One may obtain the decay estimates of norms of the numerical solutions
and the uniform-in-time error estimates for dissipative systems based on these results.
Another result is the following.

Theorem 1.2 (informal version of Theorem 4.13). Consider the discretization of
the differential form (2.17) that is completely positive. Assume that cnn - j is comparable
to the average of g1 - \alpha (tn - \cdot ) on the jth interval and the stepsize \tau n satisfies that \lambda \tau \alpha n \leq 
\delta for some \delta > 0 (see the corresponding section for the details). If \scrD \alpha 

\tau vn \leq \lambda vn+ c for
\lambda > 0, then it holds for some \mu > 0 that vn \leq (v0 + c/\lambda )E\alpha (\mu 

 - 1\lambda t\alpha n) - c/\lambda .

In this result, we have removed the usual constraint on the stepsize ratio in
literature. The result is based on the comparison principles and careful analysis of
the asymptotic behaviors of the solutions to the continuous equation.

The rest of this paper is organized as follows. In section 2, some preliminary
concepts and results are reviewed, including the definition of generalized Caputo
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2199

derivatives, the behaviors of the Mittag--Leffler functions, and the discretization we
conisder in this work on nonuniform meshes. In section 3, we present a new proof of
comparision principles using the resolvent kernels for the time continuous equations
and then generalize it to completely positive discretizations on nonuniform meshes.
Our main results for Gr\"onwall inequalities are then established in section 4 and some
applications to dissipative systems are presented in section 5.

2. Preliminaries and setup. In this section, we review some basic concepts
and results for later sections.

2.1. The generalized Caputo derivatives and the resolvent kernels. In
this subsection, we summarize the generalized Caputo derivative introduced in [16, 17].
This generalized definition is theoretically convenient, since it allows us to use the
underlying group structure. Moreover, the generalized definition allows us to consider
the fractional inequalities for functions that are merely continuous.

The standard one-sided convolution for two functions u and v defined on [0,\infty )
is given by

(u \ast v)(t) =
\int 
[0,t]

u(s)v(t - s)ds,(2.1)

which can be generalized to distributions whose supports are on [0,\infty ) (see [16, sec-
tions 2.1 and 2.2]). Recall the Abel integral kernels for \alpha > 0 in (1.4). Let g0 = \delta 
and

g\beta (t) =
1

\Gamma (1 + \beta )
D
\Bigl( 
t\beta +

\Bigr) 
, \beta \in ( - 1,0).(2.2)

Here D means the distributional derivative on \BbbR . Then, for any \beta 1 > - 1 and \beta 2 > - 1,

g\beta 1
\ast g\beta 2

= g\beta 1+\beta 2
.(2.3)

We remark that g\beta can indeed be defined for \beta \in \BbbR (see [16]) so that \{ g\beta : \beta \in \BbbR \} 
forms a convolutional group. We introduce the generalized definition.

Definition 2.1 (see [16, 17]). Let 0<\alpha < 1 and T > 0. For u\in L1
loc[0, T ) and a

given u0 \in \BbbR , the \alpha th order generalized Caputo derivative of u associated with initial
value u0 is a distribution with support in [0, T ) given by

D\alpha 
c u= g - \alpha \ast 

\Bigl( 
(u - u0)1t\geq 0

\Bigr) 
.(2.4)

It has been verified in [16] that if the function u is absolutely continuous, the
generalized definition reduces to the classical definition (1.2). A function u\in L1

loc[0, T )
is a weak solution to (1.1) on [0, T ) with initial value u0 if the equality holds in
distribution. A weak solution u is a strong solution if limt\rightarrow 0+

1
t

\int t

0
| u(s) - u0| ds = 0

and both sides of (1.1) are locally integrable on [0, T ). Using the group property (2.3),
one may obtain directly the following.

Proposition 2.2 (see [16, Proposition 4.2]). Suppose f \in L\infty 
loc([0,\infty ) \times \BbbR ;\BbbR ).

Fix T > 0. Then, u(t) \in L1
loc[0, T ) with initial value u0 is a strong solution of (1.1)

on (0, T ) if and only if it solves the following integral equation:

u(t) = u0 +
1

\Gamma (\alpha )

\int t

0

(t - s)\alpha  - 1f(s,u(s))ds \forall t\in (0, T ).(2.5)

Using this integral formulation, the following has been shown in [16].
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2200 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

Lemma 2.3. Suppose f : [0,\infty )\times (u\ast , u
\ast )\rightarrow \BbbR is continuous and locally Lipschitz

in u where u\ast \in [ - \infty ,\infty ) and u\ast \in ( - \infty ,\infty ]. For any u0 \in (u\ast , u
\ast ), there is a

maximum time Tb > 0 and a unique weak solution on [0, Tb) satisfying u(0+) = u0.
This weak solution is a strong solution, and if Tb <\infty , then either limsupt\rightarrow T - 

b
u(t) =

u\ast or lim inft\rightarrow T - 
b
u(t) = u\ast .

Since the weak solution becomes the strong solution and, in fact, belongs to
C1(0, Tb)\cap C[0, Tb), the Caputo derivative then reduces to the classical one. Consider
the following linear FODE:

D\alpha 
c v= \beta v+ c.(2.6)

The solution exists globally (i.e., Tb =\infty ) and is given by

v=

\biggl( 
v0 +

c

\beta 

\biggr) 
E\alpha (\beta t

\alpha ) - c

\beta 
.(2.7)

Here, E\alpha (z) := E\alpha ,1(z) and the Mittag--Leffler function E\alpha ,\beta is an entire function
given by (see, for example, [27, 10])

E\alpha ,\beta (z) =

\infty \sum 
k=0

zk

\Gamma (\alpha k+ \beta )
, \alpha > 0, z \in \BbbC .(2.8)

It is then clear that E\prime 
\alpha (z) =

E\alpha ,0(z)
\alpha z = \alpha  - 1E\alpha ,\alpha (z). The function E\alpha ,\beta (z) has the

following integral representation (see [10]) for \alpha \in (0,2):

E\alpha ,\beta (z) =

\left\{         
1

\alpha 
z(1 - \beta )/\alpha ez

1/\alpha 

+
1

2\pi i\alpha 

\int 
\gamma (\epsilon ;\delta )

e\zeta 
1/\alpha 

\zeta (1 - \beta )/\alpha 

\zeta  - z
d\zeta , z \in R+,

1

2\pi i\alpha 

\int 
\gamma (\epsilon ;\delta )

e\zeta 
1/\alpha 

\zeta (1 - \beta )/\alpha 

\zeta  - z
d\zeta z \in R - ,

(2.9)

where \gamma (\epsilon ; \delta ) is the curve consisting of \{ re - i\delta : r \geq \epsilon \} , \{ \epsilon ei\theta : - \delta \leq \theta \leq \delta \} , and \{ rei\delta :
r \geq \epsilon \} , going from \infty e - i\delta to \infty ei\delta . The parameter \delta satisfies \pi \alpha 

2 < \delta \leq min(\alpha \pi ,\pi ).
The region R+ is the one on the right of \gamma (\epsilon ; \delta ) while R - is on the left. Note that the
two expressions appear different, but they are actually connected continuously across
the curve \gamma (\epsilon ; \delta ).

Next, we recall the resolvent kernels (see [2, 3, 29]). In [8], the resolvent kernels
have been used to establish the monotonicity of the solutions to autonomous fractional
ODEs, and then generalized to discrete schemes on nonuniform meshes in [7].

Definition 2.4 (see [3, 29]). Let \lambda > 0. The resolvent kernels r\lambda and s\lambda for a
are defined, respectively, by

r\lambda + \lambda r\lambda \ast a= \lambda a, s\lambda + \lambda s\lambda \ast a= 1t\geq 0.(2.10)

It has been shown in [7, Proposition 2.1] that both r\lambda and s\lambda are completely
monotone for all \lambda > 0 if a is completely monotone. For the kernel a = g\alpha , r\lambda and
s\lambda are thus completely monotone and strictly positive. Hence, the Abel kernel g\alpha is
completely positive for \alpha \in (0,1). In fact, it has been mentioned in the proof of [8,
Lemma 3.4] that the resolvent r\lambda for g\alpha = 1

\Gamma (\alpha ) t
\alpha  - 1
+ is

r\lambda (t) = - d

dt
E\alpha ( - \lambda t\alpha )> 0,(2.11)

and thus s\lambda (t) = 1 - E\alpha ( - \lambda t\alpha )> 0.
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2201

2.2. Discretization on nonuniform meshes. There are two ways to discretize
the fractional ODEs. One is to discretize the differential form (1.1) even though the
derivative may be understood in the generalized one (2.4), and the other way is to
discretize the integral form (1.3).

Let the computational time interval be [0, T ], and let 0 = t0 < t1 < t2 < \cdot \cdot \cdot < tN =
T be the grid points. We allow T = \infty in some applications and in this case, there
are infinitely many grid points tn. Define \scrN := \{ 1, . . . ,N\} or \scrN = \BbbN + when T =\infty .
For n\in \scrN , define

\tau n := tn  - tn - 1.(2.12)

Let un be the numerical solution at tn.
The integral form (1.3) may be discretized for \theta \in [0,1] by

un = u0 +

n\sum 
j=1

\=ann - jf
\theta 
j \tau j = u0 +

n\sum 
j=1

ann - jf
\theta 
j =: u0 + \scrI \alpha 

\tau f
\theta 
n.(2.13)

Here, \{ \=ann - j\} is an approximation of the average of g\alpha (tn  - s) = 1
\Gamma (\alpha ) (tn  - s)\alpha  - 1 on

[tj - 1, tj ] while ann - j is like the integral of g\alpha (tn - s) on this interval. The notation f\theta 
j

means an approximation of f at (1 - \theta )tj + \theta tj - 1. We consider two examples here.
The first is

f\theta 
j = (1 - \theta )f(tj , uj) + \theta f(tj+1, uj+1)(2.14)

while the second is

f\theta 
j = f(t\theta j , u

\theta 
j ), t\theta j := (1 - \theta )tj + \theta tj - 1, u\theta 

j := (1 - \theta )uj + \theta uj - 1.(2.15)

These two approximations will have no big difference in our analysis later.
Next, we consider discretization of the differential form (1.1). One can first ap-

proximate the derivative and define

\nabla \tau uj := uj  - uj - 1.(2.16)

One may then introduce the following approximation inspired by (1.2):

\scrD \alpha 
\tau un :=

n\sum 
j=1

cnn - j\nabla \tau uj = f\theta 
n, n\in \scrN .(2.17)

Here, \nabla \tau uj \approx u\prime (tj)\tau j so cnn - j is an approximation of the average of g1 - \alpha (tn  - s) on
[tj - 1, tj).

We remark that (2.13) and (2.17) are related by the so-called pseudo-convolution
in [7] (also used in [24] for defining the discrete orthogonal convolution (DOC) kernel).
We arrange the kernel (ann - j) into a lower triangular array A of the following form
with size | \scrN | \times | \scrN | 

A=

\left[        

a10
a21 a20

\cdot \cdot \cdot 
...

...
ann - 1 \cdot \cdot \cdot an1 an0

\cdot \cdot \cdot 
...

...
...

\right]        .(2.18)
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2202 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

The pseudo-convolution \=\ast between two array kernels is given by the usual matrix
product between two arrays of the form (2.18) [7]. In particular, C =A\=\ast B is given by

cnk =

k\sum 
j=0

ank - jb
n+j - k
j or cnn - k =

n\sum 
j=k

ann - jb
j
j - k.(2.19)

There are some special kernels that play important roles. The first is I with Inn - j = \delta nj .
This is the kernel that is 1 on the diagonal. The other one is L with Ln

n - j = 1 for all
j \leq n. This kernel corresponds to the Heaviside function 1t\geq 0 for the continuous case.
The inverse of L, L( - 1), satifies that (L( - 1))nn - j = 1 for j = n, (L( - 1))nn - j =  - 1 for
j = n - 1 and 0 otherwise. This corresponds to the finite difference operator in (2.16).
It can be verified that I is the identify for the pseudo-convolution, and the following
properties hold.

(a) The pseudo-convolution is associative.
(b) If B is an inverse of A, namely A\=\ast B = I, then B \=\ast A= I.

The pseudo-convolution provides us a convenient way to investigate the properties of
the kernels. For example, the monotonicity preserving properties of some discretiza-
tions have been established using such tools in [6].

For a given A, the kernel CR with A\=\ast CR = L is called the right complementary
kernel. The kernel CL with CL \=\ast A= L is called the left complementary kernel. The
kernel CR is, in fact, the so-called right convolutional complementary (RCC) kernel
(see [22]) and CL is the discrete complementary convolution (DCC) kernel (see [23]).
If A is a kernel that is invertible, then direct verification tells us that CR =A( - 1)\=\ast L
and CL = L\=\ast A( - 1). Moreover, anj is nonincreasing in n if and only if the inverse of
CR has nonpositive off-diagonals; anj is nonincreasing in j if and only if the inverse of
CL has nonpositive off-diagonals.

The pseudo-convolution is also defined between a kernel and a vector x= (xj)j\in \scrN :

y=A\=\ast x \Leftarrow \Rightarrow yn =

n\sum 
j=1

ann - jxj \forall n\in \scrN ,(2.20)

then it holds that A\=\ast (B\=\ast x) = (A\=\ast B)\=\ast x.
One has the following simple conclusion.

Lemma 2.5. Consider the kernel C := (cnn - j) for \scrD \alpha 
\tau in (2.17) and the kernel

A := (ann - j) for \scrI \alpha 
\tau in the integral scheme (2.13). If C is the right complementary

kernel of A, then the two schemes are equivalent.

Proof. It is clear that \scrD \alpha 
\tau un =C\=\ast \nabla \tau un =C\=\ast L( - 1)\=\ast (u - u0)n, while \scrI \alpha 

\tau f(t
\theta 
n, u

\theta 
n) =

A\=\ast f\theta 
n. Hence, if C is the right complementary kernel of A, C\=\ast L( - 1) is the inverse of

A and the claim follows.

Below, we will mainly focus on schemes for the differential form. We then have

B :=A - 1 =C\=\ast L - 1 \leftrightarrow bn0 = cn0 , bnn - j = cnn - j  - cnn - j - 1, j \leq n - 1.(2.21)

Regarding the solvability, the following is straightforward and we omit the proof.

Lemma 2.6. Suppose f(t, \cdot ) is uniformly Lipschitz with constant M . If \theta Man0 <
1 or, equivalently, \theta M < cn0 for all n \in \scrN , the numerical solution to (2.13) or,
equivalently, to (2.17) is uniquely solvable.

Remark 2.7. As commented in [6], if cn0 is like the average of g1 - \alpha (tn  - s), then
an0 = 1/cn0 is like the integral of g\alpha on [tn - 1, tn) so the discussion above is quite natural.
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2.3. Completely positive discretizations. In this subsection, we introduce
the class of variable-step discretizations we consider in this work.

One may define the resolvent R\lambda using the pseudo-convolution similar to the
continuous case as in Definition 2.4,

R\lambda + \lambda R\lambda \=\ast A= \lambda A \Leftarrow \Rightarrow A - R\lambda \=\ast A=
1

\lambda 
R\lambda .(2.22)

The resolvent kernels have the following simple facts as proved in [7].

Lemma 2.8. Suppose the diagonal elements of A are positive. The resolvent kernel
R\lambda always exists for \lambda > 0 and R\lambda \=\ast A=A\=\ast R\lambda . Moreover, as \lambda \rightarrow \infty ,

R\lambda = I  - \lambda  - 1A( - 1) +O(\lambda  - 2),(2.23)

where the O(\lambda  - 2) is elementwise.

As a discrete analogue of the complete positivity for the continuous kernels stud-
ied in [3], namely those with nonnegative resolvents, we say the kernel A (or the
discretization) is completely positive if for all \lambda > 0, R\lambda has nonnegative entries,
0< (R\lambda )

n
0 < 1 and

\sum n
j=1(R\lambda )

n
n - j \leq 1.

The following basic condition is present for many usual discretizations [23].

Condition 2.9 (equivalent condition for complete positivity). The array kernel
A is invertible and the inverse B =A( - 1) = (bnn - j) satisfies for all n\in \scrN that

bn0 > 0, bnn - j \leq 0 \forall j < n,
n\sum 

j=1

bnn - j \geq 0.
(2.24)

The following has been proved in [7, Theorem 5.1].

Proposition 2.10. The array kernel A is completely positive if and only if it
satisfies Condition 2.9.

The class of discretizations we study, therefore, would be those satisfying Condi-
tion 2.9, or equivalently, those are completely positive. For such discretizations, one
has the following observation which might be used in applications. The proof uses
the signs in B =A( - 1) and is similar to those in [18, Theorem 3] and [20, Proposition
2.2]. We thus omit the proof.

Lemma 2.11. Suppose H is a Hilbert space with inner product \langle \cdot , \cdot \rangle and \varphi :H \rightarrow \BbbR 
is a convex function. If the kernel B =C\=\ast L( - 1) for \scrD \alpha 

\tau satisfies (2.24), then

\scrD \alpha 
\tau \varphi (un)\leq \langle \varphi \prime (un),\scrD \alpha 

\tau un\rangle .(2.25)

In particular, if un \not = 0, then one has

\scrD \alpha 
\tau \| un\| \leq 

\biggl\langle 
un

\| un\| 
,\scrD \alpha 

\tau un

\biggr\rangle 
.(2.26)

The following gives a simple condition for complete positivity.

Lemma 2.12. If an - 1
j - 1 \geq anj for all n \in \scrN , n \geq 2, and j \leq n - 1, and the inverse

B satisfies bn0 > 0, bnn - j \leq 0 \forall j < n, then A is completely positive.
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In fact, if bn0 > 0 and bnn - j \leq 0 for all j < n, A must have nonnegative entries by

[7, Lemma 4.3]. Then, together with the fact that an - 1
j - 1 \geq anj , one can easily verify

that C =A( - 1)\=\ast L is nonnegative.
Below we look at examples of discretizations on nonuniform meshes. We say a dis-

cretization is completely positive if the corresponding kernel A is completely positive
(note that the schemes for differential form and the integral form are equivalent by
Lemma 2.5). The L1 scheme [25, 32] is the most popular and simplest discretization,
obtained by piecewise linear interpolation of the derivative u in the differential form,
which can be written as

D\alpha u(tn)\approx \scrD \alpha 
\tau un :=C\=\ast \nabla \tau un =C\=\ast L( - 1)\=\ast (u - u0)n,(2.27)

where

cnn - j =
1

\tau j\Gamma (1 - \alpha )

\int tj

tj - 1

(tn  - s) - \alpha ds.(2.28)

It can be verified directly that B( - 1) :=C\=\ast L( - 1) satisfies (2.24) so that A is completely
positive. Hence, the L1 scheme is completely positive (see also [6, section 6]).

One can also approximate the integral formulation. In [6, section 6], the integral
scheme

un = u0 +

n\sum 
j=1

ann - jf(tj , uj), ann - j =
1

\Gamma (\alpha )

\int tj

tj - 1

(tn  - s) - \alpha ds(2.29)

is proposed as approximation and has been proved to be completely positive.
For uniform schemes, all the CM-preserving schemes discussed in [20] are com-

pletely positive. This includes the standard Gr\"unwald--Letnikov (GL) scheme, the
convolutional quadrature (CQ) with \theta -method etc. The GL and CQ methods are
not easy to generalize to nonuniform meshes. The requirement on completely posi-
tive schemes is quite reasonable. Some related discussions can be found in [23, 22].
The schemes considered in [23] are a subclass of completely positive schemes. More-
over, the second order Crank--Nicolson scheme with the L1+ discretization can be
decomposed into a completely positive scheme plus a local difference operator and
the comparison principle can be established similarly, as we shall see in section 3.2.

Remark 2.13. The completely positive schemes may have some order barrier,
which means that the high order schemes cannot be completely positive. Often, in
these high order schemes, only the first few bnj terms (like j = 1,2) cause issues. It is
possible to decompose the kernel for a high order scheme into a completely positive
kernel and the kernel for some local difference operator. We leave this for future study.

3. The comparison principles. In this section, we establish some comparison
principles. First, we give an alternative proof for continuous problems based on the
resolvents. Then, we generalize the proof to discrete schemes.

3.1. Comparison principles for time continuous case.
Theorem 3.1. Suppose f is continuous and locally Lipschitz in u. Let y and z be

two continuous functions satisfying D\alpha 
c y \geq f(t, y), D\alpha 

c z \leq f(t, z) in the distributional
sense, with y(0) \geq z(0), then y(t) \geq z(t) on the common interval of existence. If
y(0)> z(0), then y(t)> z(t) on the interval considered.

This result is, in fact, known. One can refer to [30, Theorem 2.3] or [9, Theorem
2.2] for the generalized version with less regularity. However, the proof there relies
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on the continuity of the continuous functions, which is not applicable for discrete se-
quences. We provide another proof using the resolvents, which can then be generalized
the discrete schemes.

By the definition (2.4), D\alpha 
c u = g - \alpha \ast ((u - u0)1t\geq 0). Using the definition of the

resolvent, we find that r\lambda \ast g - \alpha = \lambda (\delta  - r\lambda ). Hence, one has

\lambda  - 1r\lambda \ast D\alpha 
c u= (u - u0)1t\geq 0  - r\lambda \ast (u - u0).(3.1)

If u is absolutely continuous, one can see this more clearly. In fact, g - \alpha \ast (1t\geq 0(u - 
u0)) = g1 - \alpha \ast (u\prime ). Here, g1 - \alpha is the complementary kernel of g\alpha in the sense that
g1 - \alpha \ast g\alpha = 1t\geq 0. It can then be derived from the definition of the resolvent that

r\lambda \ast g1 - \alpha = \lambda s\lambda = \lambda (1t\geq 0  - r\lambda \ast 1t\geq 0).(3.2)

The main observation is that r\lambda is nonnegative so that the inequality can be
preserved when convolving both sides with \lambda  - 1r\lambda .

Proof of Theorem 3.1. Define u := y  - z. Taking the difference between the two
relations, one has (in the distributional sense) that

D\alpha 
c u\geq h(t)u(t), h(t) =

\int 1

0

\partial uf(\eta y+ (1 - \eta )z)d\eta .

Convolving both sides with \lambda  - 1r\lambda , which is nonnegative, one then has

(u - u0)1t\geq 0  - r\lambda \ast (u - u0)\geq \lambda  - 1r\lambda \ast (hu).

This implies for t\geq 0 that

u(t)\geq (u0  - r\lambda \ast u0) + r\lambda \ast (u+ \lambda  - 1hu)

= u0s\lambda +

\int t

0

r\lambda (t - s)(1 + h(s)/\lambda )u(s)ds.
(3.3)

If u0 > 0, one can see that u(t) > 0 for t small enough. Then, for all t > 0
considered, we can take \lambda large enough such that 1 + h(s)/\lambda > 0 on [0, t], and (3.3)
implies that u(t)> 0.

Consider u0 = 0. If u(t) < 0 somewhere, we set t1 \geq 0 to be the first time when
u(t) < 0 on (t1, t1 + \epsilon ) for some \epsilon > 0. Then, u(t1) = 0. It is clear that u(t) = 0
on [0, t1], otherwise (3.3) would yield a contradiction by setting t = t1 and \lambda large
enough. Take \lambda large enough such that 1 + h(s)/\lambda > 0 on (t1, t1 + \epsilon ) and set

A := sup
s\in (t1,t1+\epsilon )

1 + h(s)/\lambda .

Take \delta \leq \epsilon such that
\int \delta 

0
r\lambda (s)ds\leq 1/(2A). Moreover, let

t2 = argmins\in [t1,t1+\delta ]u(s)\in (t1, t1 + \delta ].

Then, u(t2)< 0 and

u(t2)\geq 
\int t2

t1

r\lambda (t2  - s)(1 + h(s)/\lambda )u(s)ds\geq Au(t2)

\int t2

t1

r\lambda (t2  - s)ds\geq u(t2)/2.

This is then a contradiction. Hence, the claim is proved.

If the inequality is given in integral form, the technique here does not apply, since
\delta  - r\lambda is not nonnegative. Currently, the comparison principle is known to hold for
integral forms only when the function f(t, \cdot ) is nondecreasing as in [16]. Whether it
can be generalized to general f is an interesting question.
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3.2. Comparison principles for numerical schemes. The argument in [30,
Theorem 2.3] or [9, Theorem 2.2] cannot be generalized to discrete schemes easily as
it relies on the continuity. Motivated by the proof above based on resolvents and the
pseudo-convolution, we are then able to establish a series of comparison principles for
the discrete schemes.

The following is for the implicit scheme (\theta = 1).

Theorem 3.2. Suppose that the discretization is completely positive and C is the
corresponding right complementary kernel. If y0 \geq z0 and for all n\in \scrN ,

\scrD \alpha 
\tau yn \geq f(t, yn), \scrD \alpha 

\tau zn \leq f(t, zn),(3.4)

then the following comparison principles hold:
(1) If f(t, \cdot ) is nonincreasing for all t, then yn \geq zn. If C has positive entries,

then y0 > z0 implies that yn > zn.
(2) Suppose that f(t, \cdot ) is uniformly Lipschitz such that | \partial uf(t, u)| \leq M for all

t, u, and the discretization satisfies the stability condition M/cn0 < 1, then one
has yn \geq zn. If C has positive entries, then y0 > z0 implies that yn > zn.

Proof. Define un = yn  - zn. Then, it holds that

\scrD \alpha 
\tau un \geq hnun,(3.5)

where hn =
\int 1

0
\partial uf(\eta yn + (1 - \eta )zn)d\eta . Recall

\scrD \alpha 
\tau un =C\=\ast (\nabla \tau un) =A( - 1)\=\ast un.

Taking pseudo-convolution with \lambda  - 1R\lambda on both sides of (3.5) and noting that R\lambda has
nonnegative entries, one has

un \geq u0

\left(  1 - 
n\sum 

j=1

(R\lambda )
n
n - j

\right)  +R\lambda \=\ast [(1 + hn/\lambda )un].

Hence,

(1 - (R\lambda )
n
0 (1 + hn/\lambda ))un \geq u0

\left(  1 - 
n\sum 

j=1

(R\lambda )
n
n - j

\right)  +

n - 1\sum 
j=1

(R\lambda )
n
n - j(1 + hj/\lambda )uj .

Assume that uj \geq 0 for j \leq n - 1 has been established. For fixed n, one can choose \lambda -
large enough such that the coefficients on the righthand side are all nonnegative, and
also such that 1 - 

\sum n
j=1(R\lambda )

n
n - j > 0 if C has positive entries by Lemma 2.8.

If f is nonincreasing, 1 - (R\lambda )
n
0  - hn/\lambda > 0 always holds, then simple induction

yields that un \geq 0 if u0 \geq 0.
If f is assumed to be Lipschitz, then by Lemma 2.8, (R\lambda )

n
0 = 1 - \lambda  - 1bn0 +O(\lambda  - 2)

and bn0 = cn0 . Consequently,

1 - (R\lambda )
n
0 (1 + hn/\lambda ) = \lambda  - 1(cn0  - hn) +O(\lambda  - 2).

Hence, if cn0 >M , one can choose \lambda large enough such that the coefficient is positive.
Then, un > 0.

Taking f(t, u)\equiv 0, then \scrD \alpha 
\tau yn \geq 0 implies that yn \geq 0, which gives the following.
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Corollary 3.3. For any completely positive discretization, if \scrD \alpha 
\tau xn \geq \scrD \alpha 

\tau yn for
all n\in \scrN and x0 \geq y0, then xn \geq yn.

Below, we consider weighted implicit schemes for \theta \in [0,1).

Theorem 3.4. Assume the discretization is completely positive and C is the corre-
sponding right complementary kernel. Suppose y and z are two sequences with y0 \geq z0
and satisfy the following for \theta \in [0,1) and all n\in \scrN :

\scrD \alpha 
\tau yn \geq f\theta 

n[y], \scrD \alpha 
\tau zn \leq f\theta 

n[z],(3.6)

where f\theta 
n[y] and f\theta 

n[z] are either given by (2.14) or (2.15).
(1) Suppose f is nondecreasing in u. If cn0 > \theta M , then yn \geq zn.
(2) If f(t, \cdot ) is uniformly Lipschitz with constant M , cn0 > \theta M , and cn0  - cn1 \geq 

(1  - \theta )M , then yn \geq zn. Moreover, if C has positive entries, then y0 > z0
implies that yn > zn.

Proof. Define un = yn  - zn. It holds that

\scrD \alpha 
\tau un =CR\=\ast L( - 1)\=\ast (u - u0)n \geq \theta hn,1un + (1 - \theta )hn,2un - 1.

In the case of (2.14), hn+1,2 = hn,1 =
\int 1

0
\partial uf(tn, \eta yn + (1  - \eta )zn)d\eta . In the case of

(2.15), hn,1 = hn,2 =
\int 1

0
\partial uf(t

\theta 
j , \eta y

\theta 
n + (1 - \eta )z\theta n)d\eta .

Taking the pseudo-convolution with R\lambda on the left for both sides, one has by the
nonnegativity of the elements of \lambda  - 1R\lambda that

un  - u0  - R\lambda \=\ast (u - u0)\geq \lambda  - 1R\lambda \=\ast (\theta hn,1un + (1 - \theta )hn,2un - 1),

which implies that

(1 - (R\lambda )
n
0 (1 + \theta hn,1/\lambda ))un \geq 

\left(  1 - 
n\sum 

j=1

(R\lambda )
n
n - j + \lambda  - 1(1 - \theta )(R\lambda )

n
n - 1h1,2

\right)  u0

+

n - 1\sum 
j=1

\bigl( 
(R\lambda )

n
n - j(1 + \theta hj,1/\lambda )

+\lambda  - 1(1 - \theta )(R\lambda )
n
n - j - 1hj+1,2

\bigr) 
uj .(3.7)

The observation is that un does not depend on \lambda so for each n one can inductively
take \lambda large enough to show un \geq 0.

If f(t, \cdot ) is nondecreasing, then hn,\ell \geq 0, \ell = 1,2 and the coefficients on the
right-hand side of (3.7) are all nonnegative. By Lemma 2.8 and (2.21),

(R\lambda )
n
0 = 1 - \lambda  - 1cn0 +O(\lambda  - 2).

Since | hn,\ell | \leq M , if cn0 > \theta M , then 1  - (R\lambda )
n
0 (1 + \theta hn,1/\lambda ) > 0 for \lambda large enough.

This then implies that un \geq 0 for all n\in \scrN if u0 \geq 0.
Now, we focus on the second case. Due to the same reason as above, if cn0 > \theta M ,

then the coefficient of un is positive when \lambda is large enough. Again, by Lemma 2.8
and (2.21), one has

n\sum 
j=1

(R\lambda )
n
n - j = 1 - \lambda  - 1

n\sum 
j=1

bnn - j +O(\lambda  - 1) = 1 - \lambda  - 1cnn - 1 +O(\lambda  - 2).
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Moreover, (R\lambda )
n
n - 1 = - \lambda  - 1bnn - 1 +O(\lambda  - 2). Hence, the leading term in the coefficient

of u0 is \lambda  - 1cnn - 1 with cnn - 1 \geq 0. For the last term in (3.7), as \lambda \rightarrow \infty , the coefficient
for j = n - 1 satisfies

(R\lambda )
n
1 (1 + \theta hn - 1,1/\lambda ) + \lambda  - 1(1 - \theta )(R\lambda )

n
0hn,2 = \lambda  - 1( - bn1 + (1 - \theta )hn,2) +O(\lambda  - 2).

If cn0  - cn1 \geq (1  - \theta )M , then noting  - bn1 = cn0  - cn1 and | hn - 1| \leq M , one finds that
the leading term in the coefficient for j = n  - 1 is \lambda  - 1( - bn1 + (1  - \theta )hn,2) with
 - bn1 + (1  - \theta )hn,2 \geq 0. For j < n  - 1, the coefficient is like (R\lambda )

n
n - j + O(\lambda  - 2) =

\lambda  - 1( - bnn - j) +O(\lambda  - 2). Since  - bnn - j = cnn - j - 1  - cnn - j \geq 0, then one can multiply \lambda on
both sides to take the limit \lambda \rightarrow \infty . This then yields that un \geq 0 by simple induction.

If C has positive entries, cnn - 1 > 0. The coefficient of u0 is like \lambda  - 1cnn - 1 when \lambda is
large enough. The coefficients in other terms at this order are all nonnegative. This
will then naturally yield un > 0 by choosing \lambda sufficiently large.

For a typical scheme, since cnj is like the average of g1 - \alpha (tn - s) on (tn - j - 1, tn - j),

cn0 \sim 1

\Gamma (2 - \alpha )
\tau  - \alpha 
n , cn1 \sim 1

\Gamma (2 - \alpha )

(\tau n + \tau n - 1)
1 - \alpha  - \tau 1 - \alpha 

n

\tau n - 1
.

Hence, when the step sizes are small, the conditions listed above are expected to hold.
Below, we perform a discussion for the Crank--Nicolson scheme. Consider the

so-called L1+ scheme for the derivative at tn - 1/2:

(\scrD \alpha 
\tau u)

n - 1/2 =
1

\tau n

\int tn

tn - 1

\int t

0

g1 - \alpha (t - s)(\Pi 1u)
\prime (s)ds,(3.8)

where \Pi 1u(s) is the piecewise linear approximation of u such that \Pi 1u(tj) = uj .
Define

\chi n
n - j =

1

\tau n\tau k

\int tn

tn - 1

\int min(t,tk)

tk - 1

g1 - \alpha (t - s)dsdt, 1\leq j \leq n.(3.9)

Then, the Crank--Nicolson scheme is given by

(\scrD \alpha 
\tau u)

n - 1/2 =

n\sum 
j=1

\chi n
n - j\nabla \tau uj = f1/2

n [u].(3.10)

It has been shown in [22] that \chi n
j is not monotone in j because \chi n

0 could be smaller
than \chi n

1 . Only when \alpha > \alpha c for some critical value \alpha c \in (0,1), one has \chi n
0 > \chi n

1 . If
one defines

cn0 = 2\chi n
0 , cnj = \chi n

j , j \geq 1,(3.11)

then C = (cnn - j) is monotone along both the columns and rows with the log-convex

condition cn - 1
j - 1 c

n
j+1 \geq cnj c

n - 1
j . The kernel associated with C is completely positive

(see [6]). The Crank--Nicolson scheme can then be written as

C\=\ast \nabla \tau un =C\=\ast L( - 1)\=\ast (u - u0)n = \chi n
0 (un  - un - 1) + f1/2

n [u].(3.12)
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2209

Proposition 3.5. If \alpha > \alpha c, the Crank--Nicolson scheme satisfies the following
comparison principle. Suppose f(t, \cdot ) is uniformly Lipschitz with constant M , and

two sequences \{ yn\} , \{ zn\} satisfy (\scrD \alpha 
\tau y)

n - 1/2 \geq f
1/2
n [y], (\scrD \alpha 

\tau z)
n - 1/2 \leq f

1/2
n [z], with

y0 \geq z0. If the discretization satisfies that \chi n
0 >M/2 and \chi n

0 - \chi n
1 \geq M/2, then yn \geq zn.

If the function is nondecreasing, one only needs \chi n
0 >M/2 for the comparison principle

to hold.

The sequence un = yn  - zn satisfies

C\=\ast L( - 1)\=\ast (un  - u0)\geq \chi n
0 (un  - un - 1) +

1

2
(hn,1un + hn,2un - 1),(3.13)

where hn,\ell (\ell = 1,2) are the same as in the proof of Theorem 3.4. The argument
above can then be carried here with minor modification. We thus skip the proof here.

We remark that some versions of the comparison principles above can also be
established using the technique as in the proof of [18, Theorem 3], using the signs
of A( - 1). However, such a proof heavily relies on the properties in the discretized
scheme and has no analogue for the time continuous version.

4. Gr\"onwall inequalities for completely positive schemes. In this section,
we will establish some Gr\"onwall inequalities. The versions for f(u) = - \lambda u+ c, \lambda > 0
could be used for uniform error control and decay estimates for dissipative systems.
We will only consider implicit schemes. The Gr\"onwall inequality for the weighted
implicit or explicit schemes can be obtained similarly.

We start with some basic facts under the following assumption. We recall that
T \in (0,\infty ] (we allow T =\infty ) and \scrN is the set of index n such that tn \in (0, T ]\cap (0,\infty ).

Assumption 4.1. There exists \nu > 0 such that for all n\in \scrN one has

cnn - j \geq \nu 
1

\tau j

\int tj

tj - 1

g1 - \alpha (tn  - s)ds \forall 1\leq j \leq n.(4.1)

This assumption says that cnn - j is bounded by from below by a fraction of the
average of g1 - \alpha (tn  - \cdot ) on (tj - 1, tj ], which is clearly natural for the approximation of
the continuous derivative in (1.2).

Lemma 4.2. Under Assumption 4.1, one has for concave function v(\cdot ) with v\prime (\cdot )\geq 
0 that

\scrD \alpha 
\tau v(tn)\geq \nu 

1

\Gamma (1 - \alpha )

\int tn

0

(tn  - s) - \alpha v\prime (s)ds= \nu D\alpha v(tn) \forall n\in \scrN .(4.2)

Moreover, for the L1 scheme, \nu = 1.

Proof. By Assumption 4.1, consider each term in \scrD \alpha 
\tau v(tn), one has

cnn - j(v(tj) - v(tj - 1))\geq \nu 
1

\tau j

\int tj

tj - 1

g1 - \alpha (tn  - s)ds

\int tj

tj - 1

v\prime (s)ds.

Here, v\prime (s) is nonincreasing. By Chebyshev's sorting inequality [11, item 236], one
has

1

\tau j

\int tj

tj - 1

g1 - \alpha (tn  - s)ds

\int tj

tj - 1

v\prime (s)ds\geq 
\int tj

tj - 1

g1 - \alpha (tn  - s)v\prime (s)ds.
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2210 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

In fact, a direct computation can also verify this:\int tj

tj - 1

\int tj

tj - 1

g1 - \alpha (tn  - s)v\prime (z)dsdz  - 
\int tj

tj - 1

\int tj

tj - 1

g1 - \alpha (tn  - s)v\prime (s)dsdz

=

\int tj

tj - 1

\int s

tj - 1

[g1 - \alpha (tn  - s) - g1 - \alpha (tn  - z)](v\prime (z) - v\prime (s))dsdz \geq 0.

The equality above is by changing the order of integration for the second term. Sum-
ming over j and using (4.1), one then obtains the desired result.

As a special case, one has

\scrD \alpha 
\tau 

\biggl( 
1

\Gamma (1 + \alpha )
t\alpha n

\biggr) 
\geq \nu , n\in \scrN .(4.3)

4.1. A Gr\"onwall inequality for uniform bound. Next, we will consider
T =\infty and suppose Assumption 4.1 holds. In this case, | \scrN | =\infty and we consider all
n\geq 1. We aim to establish a Gr\"onwall inequality that is useful for the uniform bound
if the system is dissipative. This could be useful for a uniform-in-time error estimate.

Theorem 4.3. Suppose the discretization is completely positive and Assump-
tion 4.1 holds for some \nu > 0 and all n \geq 1. Consider a nonnegative sequence
\{ vn\} n\in \{ 0\} \cup \scrN satisfying for some \lambda \geq 0 that

\scrD \alpha 
\tau vn \leq  - \lambda vn + c, n\in \scrN .(4.4)

If \lambda > 0 and v0 \leq c/\lambda , then one has

vn \leq (v0  - c/\lambda )E\alpha ( - \nu  - 1\lambda t\alpha n) + c/\lambda .(4.5)

If \lambda = 0 and v0 \geq 0, then one has

vn \leq v0 + \nu  - 1c
1

\Gamma (1 + \alpha )
t\alpha n.(4.6)

Proof. Consider only \lambda > 0 (\lambda = 0 is similar). Consider the auxiliary problem

D\alpha y\nu = \nu  - 1( - \lambda y\nu + c), y\nu (0) = v0.

If v0 \leq c/\lambda , the solution is concave using the explicit formula (2.7) and the fact that
t \mapsto \rightarrow E\alpha ( - \lambda t\alpha ) is completely monotone. Then,

\scrD \alpha 
\tau y

\nu \geq \nu (\nu  - 1( - \lambda y\nu + c)) = - \lambda y\nu + c.

Since v \mapsto \rightarrow  - \lambda v + c is nonincreasing, the comparison principle in Theorem 3.2 holds
for any completely positive discretization. Then, it holds that vn \leq y\nu (tn), which is
the desired result.

This results above hold with no restriction on the step size ratio and the largest
step size. They imply that the solution vn of the implicit scheme \scrD \alpha 

\tau vn = - \lambda vn+ c is
bounded above by the exact solution when \scrD \alpha 

\tau is defined using the L1 approximation.
In fact, if \alpha = 1 (the ODE case), it is known that vn = (v0  - c/\lambda )(1 + \lambda \tau ) - n + c/\lambda \leq 
(v0  - c/\lambda )e - \lambda n\tau + c/\lambda = y(tn).

Often for a dissipative system, one may obtain that the error satisfies

\scrD \alpha 
\tau \| en\| 2 \leq  - \lambda \| en\| 2 +C\tau \beta ,(4.7)

for some \beta > 0. Provided that \| e0\| = 0, the error is controlled uniformly in time as

\| en\| 2 \leq 
C\tau \beta 

\lambda 
(1 - E\alpha ( - \nu  - 1\lambda t\alpha n))\leq 

C

\lambda 
\tau \beta .(4.8)
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2211

4.2. A Gr\"onwall inequality for decay estimates. In this subsection, we
consider a Gr\"onwall inequality that can control a sequence above by a decreasing
sequence. In particular, consider the discrete inequality

\scrD \alpha 
\tau un \leq f(un),(4.9)

where f(u0)< 0. We aim to find an upper boud for un. We first explain our strategy.
Suppose that for a class of nonnegative functions w(t), there is a constant \rho such that

cnn - j

\int tj

tj - 1

w(s)ds\leq \rho 

\int tj

tj - 1

g1 - \alpha (tn  - s)w(s)ds \forall j \leq n.(4.10)

Consider the function u\rho (\cdot ) solving

D\alpha u\rho = \rho  - 1f(u\rho ), u\rho (0) = u0.(4.11)

Then t \mapsto \rightarrow u\rho (t) is nonincreasing and w(t) =  - d
dtu

\rho (t) \geq 0 for t > 0. If w(\cdot ) is in the
class such that (4.10) holds, one then has

\scrD \alpha 
\tau (u

\rho (tn))\geq \rho D\alpha u\rho = f(u\rho ).(4.12)

The comparison principle in Theorem 3.2 implies that un \leq u\rho (tn).
To establish (4.10), we introduce another assumption.

Assumption 4.4. There exists \rho 1 > 0 such that for all n\in \scrN ,

cnn - j \leq \rho 1
1

\tau j

\int tj

tj - 1

g1 - \alpha (tn  - s)ds \forall 1\leq j \leq n.(4.13)

This assumption is a mirror version of Assumption 4.1, which says that the cnn - j is
bounded above by a multiple of the average of g1 - \alpha (tn - \cdot ) on (tj - 1, tj ]. We emphasize
that these two assumptions put no restriction on the step size ratio. In fact, for L1
schemes, cnn - j equals exactly the average so these two assumptions hold. Clearly, for
any nonuniform grid, one can define the L1 scheme.

Since it holds for s\prime \in (tj - 1, tj) that

1

\tau j

\int tj

tj - 1

(tn  - s) - \alpha ds\leq 1

tn  - tj - 1

\int tn

tj - 1

(tn  - s) - \alpha ds\leq 1

1 - \alpha 
(tn  - s\prime ) - \alpha ,(4.14)

one has the following.

Lemma 4.5. Suppose Assumption 4.4 holds. Then (4.10) holds with \rho = \rho 1

1 - \alpha .

The above constant \rho is not satisfactory. In fact, if \alpha is close to 1, it blows up,
which should not happen in practice. Below, we will consider the special case

f(u) = - \lambda u+ c, \lambda > 0(4.15)

and make use of the information of the solution given by (2.7), with \beta = - \lambda . Clearly,
it suffices to consider y(t) =E\alpha ( - \lambda t\alpha ). Define

w(t) := - y\prime (t).(4.16)

Since y(\cdot ) is completely monotone, w is also completely monotone. Our observation
is that there could be another constant \sigma such that

1

\tau j

\int tj

tj - 1

w(s)ds\leq \sigma w(tj),(4.17)

which is good for \alpha \in [1/2,1). Then, one can take \rho = \rho 1min(1/(1  - \alpha ), \sigma ) for
\alpha \in [1/2,1).
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2212 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

Lemma 4.6. The function w(t) in (4.16) is a completely monotone function so

that t \mapsto \rightarrow w(t+\tau )
w(t) is nondecreasing for any \tau > 0. Consequently, for \alpha \in [1/2,1) and \tau n

with \lambda \tau \alpha n \leq 1, one has for two universal constants c1, c2 such that

1

\tau j

\int tj

tj - 1

w(s)ds\leq c2
c1

max(21 - \alpha , \alpha  - 1)w(tj).(4.18)

One can thus take \sigma = 2c2/c1 > 1 for (4.17).

Proof. Since y(\cdot ) is completely monotone, w(t) = - y\prime (t) is completely monotone
by definition. By the discussion in [2, 29], t \mapsto \rightarrow w(t+ \tau )/w(t) is nondecreasing. Let n0

be the smallest one such that \lambda t\alpha n0
\geq 1. For all t \geq tn0

and \tau with \lambda \tau \alpha \leq 1, one has
\tau \leq tn0 . Recalling that w(t) = \alpha \lambda t\alpha  - 1(\alpha  - 1E\alpha ,\alpha ( - \lambda t\alpha )), one thus has

w(t)

w(t+ \tau )
\leq w(tn0

)

w(tn0
+ \tau )

=

\biggl( 
tn0

tn0
+ \tau 

\biggr) \alpha  - 1 \alpha  - 1E\alpha ,\alpha ( - \lambda t\alpha n0
)

\alpha  - 1E\alpha ,\alpha ( - \lambda (tn0
+ \tau )\alpha )

.

The right-hand side can be bounded easily. In fact, the function (see [27])

z \mapsto \rightarrow \alpha  - 1E\alpha ,\alpha ( - z) =

\infty \sum 
k=0

(k+ 1)( - 1)kzk

\Gamma ((k+ 1)\alpha + 1)
=E\prime 

\alpha ( - z) =

\int \infty 

0

M\alpha (r)re
 - rz dr

is positive, continuous, and nonincreasing in z > 0 (M\alpha (\cdot ) is nonnegative). More-
over, it is continuous in \alpha on [1/2,1]. Hence, there exist 0 < c1 < c2 such that
for all \alpha \in [1/2,1) and all z \leq 3, c1 \leq \alpha  - 1E\alpha ,\alpha (z) \leq c2. Clearly, \lambda (tn0 - 1 + \tau n0

+
\tau )\alpha \leq 3\alpha \lambda max(tn0 , \tau n0 , \tau )

\alpha \leq 3\alpha . Then, \lambda (tn0 + \tau )\alpha \in (0,3] and w(t)/w(t + \tau ) \leq 
w(tn0)/w(tn0 + \tau )\leq 21 - \alpha c2/c1. Hence, for j \geq n0,

1

\tau j

\int tj

tj - 1

w(s)ds\leq 21 - \alpha c2
c1

w(tj).

Next, for j \leq n0  - 1, one has c1\lambda \alpha t
\alpha  - 1 \leq w(t)\leq c2\lambda \alpha t

\alpha  - 1. It follows that

1

\tau j

\int tj

tj - 1

w(s)ds\leq 1

tj

\int tj

0

w(s)ds\leq 
c2\lambda t

\alpha  - 1
j

\alpha 
\leq c2

c1\alpha 
w(tj).

Combining these two cases, the conclusion then follows.

Remark 4.7. The upper bound in \lambda \tau \alpha n \leq 1 is not crucial. In fact, for fixed \gamma > 0,
if we restrict \lambda \tau \alpha n \leq \gamma , then we can find corresponding constant \sigma .

One can then establish the following Gr\"onwall inequalities.

Theorem 4.8. Consider a variable-step completely positive discretization and a
nonnegative sequence \{ vn\} n\in \{ 0\} \cup \scrN . Let \lambda > 0 and v0 > c/\lambda .

(1) Suppose Assumption 4.1 holds for some \nu > 0. If \scrD \alpha 
\tau vn \geq  - \lambda vn + c for all

n\in \scrN , then it holds that

vn \geq 
\Bigl( 
v0  - 

c

\lambda 

\Bigr) 
E\alpha ( - \nu  - 1\lambda t\alpha n) +

c

\lambda 
.(4.19)

(2) Suppose Assumption 4.4 holds for some \rho 1 > 0. If \scrD \alpha 
\tau vn \leq  - \lambda vn + c for all

n\in \scrN , then it holds that

vn \leq 
\Bigl( 
v0  - 

c

\lambda 

\Bigr) 
E\alpha 

\biggl( 
 - \lambda (1 - \alpha )

\rho 1
t\alpha n

\biggr) 
+

c

\lambda 
.(4.20)
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2213

If, moreover, it holds that \lambda \tau \alpha n \leq 1 for all n \in \scrN , then for the universal
constant \sigma introduced in Lemma 4.6, it holds that

vn \leq 
\Bigl( 
v0  - 

c

\lambda 

\Bigr) 
E\alpha 

\biggl( 
 - \lambda 

\sigma \rho 1
t\alpha n

\biggr) 
+

c

\lambda 
.(4.21)

Proof. (1) Consider the auxiliary equation

D\alpha 
c y

\nu = \nu  - 1( - \lambda y\nu + c), y\nu (0) = y0.

Now that v0 > c/\lambda , y\nu is a nonincreasing, convex function. Then, one may apply
Lemma 4.2 to  - y\nu to obtain

\scrD \alpha 
\tau y

\nu \leq \nu D\alpha y\nu (tn) = - \lambda y\nu + c.

The comparison principle in Theorem 3.2 then implies vn \geq y\nu (tn), giving the desired
result.

(2) Consider the auxiliary problem

D\alpha 
c y

\rho = \rho  - 1( - \lambda y\rho + c), y\rho (0) = y0.

By Lemma 4.5, one can take \rho = \rho 1/(1 - \alpha ) and then

\scrD \alpha 
\tau y

\rho \geq  - \lambda y\rho + c.

Then, by Theorem 3.2, one concludes that y(tn)\leq y\rho (tn).
If the discretization satisfies \lambda \tau \alpha n \leq 1, motivated by Lemmas 4.5 and 4.6, one can

take for all \alpha \in (0,1) that

\rho = \rho 1
2c2
c1

= \rho 1\sigma .

Note that for \alpha \leq 1/2, \rho 1/(1 - \alpha ) < \rho 1\sigma so taking \rho = \rho 1\sigma also works for \alpha \leq 1/2.
Now, since \rho > 1, \rho  - 1\lambda \tau \alpha n \leq 1 holds, Lemma 4.6 applying to y\rho (\cdot ) then gives

\scrD \alpha 
\tau y

\rho (tn)\geq  - \lambda y\rho + c.

The comparison principle in Theorem 3.2 then yields the last result.

Corollary 4.9. Consider a variable-step completely positive discretization. If
\scrD \alpha 

\tau vn \leq  - \lambda vn for a nonnegative sequence \{ vn\} n\in \{ 0\} \cup \scrN and some \lambda > 0, vn has an
upper bound vn \leq v0E\alpha ( - \lambda 

\rho t
\alpha 
n), where \rho = \rho 1/(1 - \alpha ). If \lambda \tau \alpha n \leq 1 for all n \in \scrN , one

can take \rho = \rho 1\sigma .

Remark 4.10. For L1 scheme, the solution to the implicit scheme satisfies\Bigl( 
v0  - 

c

\lambda 

\Bigr) 
E\alpha ( - \lambda t\alpha n) +

c

\lambda 
\leq vn \leq 

\Bigl( 
v0  - 

c

\lambda 

\Bigr) 
E\alpha 

\biggl( 
 - \lambda 

\rho 
t\alpha n

\biggr) 
+

c

\lambda 
,(4.22)

where \rho 1 = 1 so that \rho =min(1/(1 - \alpha ), \sigma ). The lower bound holds for any discretiza-
tion, while the upper bound holds for \lambda \tau \alpha n \leq 1. This means that the solution of the
implicit scheme is above the exact solution.
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4.3. A Gr\"onwall inequality for growing linear functions. We aim to es-
tablish a Gr\"onwall inequality for f(u) = \lambda u+ c. Compared to [23], we aim to remove
the requirement on the step size ratio. The key is again to show for some \mu \in (0,1]
that \scrD \alpha 

\tau y \geq \mu D\alpha y where y is the solution to the auxiliary equation. We assume
Assumption 4.1 and need

cnn - j(y(tj) - y(tj  - 1))\geq \mu 

\Gamma (1 - \alpha )

\int tj

tj - 1

(tn  - s) - \alpha y\prime (s)ds.(4.23)

There are two special cases to guarantee this:
\bullet If y\prime \prime (s)\leq 0 for s\in [tj - 1, tj ], then under Assumption 4.1, one can take \mu = \nu .
\bullet If cnn - j \geq \mu 1(tn  - s) - \alpha or \tau  - 1

j (y(tj) - y(tj - 1))\geq \mu 1y
\prime (s) for s\in [tj - 1, tj ], one

can then take \mu = \nu \mu 1.
The function y(s) is not concave unless \lambda = 0. It is concave only near t= 0. In fact,
using y\prime (s) = \lambda s\alpha  - 1E\alpha ,\alpha (\lambda s

\alpha ) and the power series of Mittag--Leffler function in (2.8),
one has the following claim.

Lemma 4.11. Let w(t) = y\prime (t) where y(t) =E\alpha (\lambda t
\alpha ), \lambda > 0 and \alpha \in (0,1). Then,

there exists t\ast > 0 such that w is decreasing on (0, t\ast ) while increasing on (t\ast ,\infty ).

Proof. Since w(t) = \lambda t\alpha  - 1E\alpha ,\alpha (\lambda t
\alpha ), we set z = \lambda t\alpha . Then,

w= \lambda 1/\alpha z(\alpha  - 1)/\alpha E\alpha ,\alpha (z) =: F (z).

Recalling the power series of E\alpha ,\alpha (z) in (2.8), one has

\lambda  - 1/\alpha F \prime (z) = (1 - \alpha  - 1)z - \alpha  - 1

E\alpha ,\alpha (z) + z1 - \alpha  - 1

E\prime 
\alpha ,\alpha (z)

= z - \alpha  - 1
\infty \sum 
k=0

(1 - \alpha  - 1 + k)zk

\Gamma (\alpha (k+ 1))
.

Let k0 be the integer such that 1 - \alpha  - 1 + k0 \leq 0 while 1 - \alpha  - 1 + k0 + 1> 0. Such k0
exists and k0 \geq 0. Define

A(z) =

k0\sum 
k=0

(\alpha  - 1  - k - 1)zk

\Gamma (\alpha (k+ 1))
, B(z) =

\infty \sum 
k=k0+1

(1 - \alpha  - 1 + k)zk

\Gamma (\alpha (k+ 1))
.

Let z\ast be the first point such that A(z\ast ) =B(z\ast ). It is clear that z\ast exists and z\ast > 0.
For z < z\ast , B(z) - A(z)< 0. For any z > z\ast , let \xi := z/z\ast > 1. Then, it is clear that
A(z)\leq \xi k0A(z\ast ) while B(z)> \xi k0B(z\ast ). Then, B(z) - A(z)> \xi k0(B(z\ast ) - A(z\ast )) = 0.
This means that there is only one point z\ast such that F \prime (z) is zero and thus only one
t\ast such that w\prime (t\ast ) = 0.

Then, for tn < t\ast , one can use the concavity as in Lemma 4.2. For large tn, we
turn to the second case above. Clearly, cnn - j \geq \mu 1(tn  - s) - \alpha for s \in [tj - 1, tj ] cannot
hold if s is near tn. Hence, we seek a lower bound for y\prime (t)/y\prime (t+ \tau ). By the integral
representation (2.9), one finds that

E\alpha ,\beta (\lambda t
\alpha ) =

1

\alpha 
\lambda (1 - \beta )/\alpha t(1 - \beta )e\lambda 

1/\alpha t +
1

2\pi i\alpha 

\int 
\gamma (\epsilon ;\delta )

e\zeta 
1/\alpha 

\zeta (1 - \beta )/\alpha 

\zeta  - \lambda t\alpha 
d\zeta .(4.24)

The first term grows exponentially while the second term goes to zero algebraically
as t\rightarrow \infty . This observation gives a way to control y\prime (t)/y\prime (t+ \tau ) for t large.
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2215

Lemma 4.12. Let u(t) = E\alpha (\lambda t
\alpha ) and w(t) := u\prime (t) = \lambda t\alpha  - 1E\alpha ,\alpha (\lambda t

\alpha ). For any
0 \leq t < t+ \tau \leq t\prime with \lambda \tau \alpha \leq 1 where t\prime is a given upper bound, there is a universal
constant \mu 1 \in (0,1) (independent of all parameters) such that

1

\tau 

\int t+\tau 

t

(t\prime  - s) - \alpha ds

\int t+\tau 

t

w(s)ds\geq \mu 1

\int t+\tau 

t

(t\prime  - s) - \alpha w(s)ds.(4.25)

Proof. Note that w decreases first and then increases. Let t\ast be the transition
point. We aim to find \mu 1 \in (0,1) such that when t\ast \leq s < s+ \tau \prime with \tau \prime \leq \tau such that

w(s)

w(s+ \tau \prime )
\geq \mu 1.(4.26)

We first prove the claim by assuming (4.26). In fact,
\bullet If t+ \tau \leq t\ast , then w is nonincreasing on this interval and thus,

1

\tau 

\int t+\tau 

t

(t\prime  - s) - \alpha ds

\int t+\tau 

t

w(s)ds\geq 
\int t+\tau 

t

(t\prime  - s) - \alpha w(s)ds.

\bullet If t\geq t\ast , then by (4.26), one has

1

\tau 

\int t+\tau 

t

(t\prime  - s) - \alpha ds

\int t+\tau 

t

w(s)ds\geq \mu 1

\int t+\tau 

t

(t\prime  - s) - \alpha w(t+ \tau )ds.

\bullet For t\ast \in (t, t+ \tau ), define

\~w(s) =

\Biggl\{ 
w(s), s\leq t\ast ,

w(t\ast ), s > t\ast 

Then, \~w is nonincreasing so one has by Chebyshev's sorting inequality that

1

\tau 

\int t+\tau 

t

(t\prime  - s) - \alpha ds

\int t+\tau 

t

w(s)ds\geq 1

\tau 

\int t+\tau 

t

(t\prime  - s) - \alpha ds

\int t+\tau 

t

\~w(s)ds

\geq 
\int t+\tau 

t

(t\prime  - s) - \alpha \~w(s)ds.

For s\geq t\ast , \~w(s) =w(t\ast )\geq \mu 1w(s). Hence, the claim still holds for this case.
Next, we establish (4.26). Letting z = \lambda t\alpha and taking \delta = \alpha \pi in (4.24), for

\alpha \in (0,1) and \beta = \alpha < 1 + \alpha , one can take \epsilon \rightarrow 0 to have

E\alpha ,\alpha (z) =
1

\alpha 
z(1 - \alpha )/\alpha ez

1/\alpha 

+
1

\pi \alpha 

\int \infty 

0

r(1 - \alpha )/\alpha e - r1/\alpha r sin(\pi (1 - \alpha ))

r2  - 2rz cos(\pi \alpha ) + z2
dr

=: I1 + I2.

Using sin(\pi \alpha /2)\geq \alpha and the simple bound e - r1/\alpha r1/\alpha \leq e - 1, one has

I2 \leq 
sin(\pi \alpha )

ze\pi \alpha 

\int \infty 

 - 1

1

y2 + 4(y+ 1)\alpha 2
dy\leq sin(\pi \alpha )

ze\pi \alpha 

\Bigl( \pi 

4\alpha 
+

\pi 

2
\surd 
2\alpha 

+ 1
\Bigr) 
\leq sin(\pi \alpha )

\pi \alpha 

\pi 

z\alpha e
.

Here, the integral is compared to that of 1/(y2 + 4\alpha 2), 1/(y2 + 2\alpha 2), and 1/y2, re-
spectively, for y\geq 0,  - 1/2\leq y < 0, and y < - 1/2. Hence, one has

I2(z)

I1(z)
\leq \pi 

z1/\alpha e1+z1/\alpha 
.(4.27)
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2216 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

Below, we consider two cases.
Case 1. \alpha \geq 1/2.
For z \geq 1, one has I2(z)/I1(z)\leq \pi /e2. Decompose

w(t) = \lambda t\alpha  - 1I1(\lambda t
\alpha ) + \lambda t\alpha  - 1I2(\lambda t

\alpha ) =:w1(t) +w2(t).

Then, w1(t) = \alpha  - 1\lambda 1/\alpha e\lambda 
1/\alpha t, and w2/w1 \leq \pi /e2, which implies that

w(t)

w(t+ \tau )
\geq w1(t)

w1(t+ \tau ) +w2(t+ \tau )
\geq 1

1 + \pi 
e2

w1(t)

w1(t+ \tau )
\geq 1

1 + \pi 
e2

e - 1.

For z \leq 1, one has

\alpha  - 1E\alpha ,\alpha (z) =

\infty \sum 
k=0

zk

\alpha \Gamma ((k+ 1)\alpha )
=

\infty \sum 
k=0

(k+ 1)zk

\Gamma ((k+ 1)\alpha + 1)
.

Since 4/5< \Gamma (1+\alpha )< 1 and the \alpha \mapsto \rightarrow \Gamma ((k+1)\alpha +1) is increasing since (k+1)\alpha +1\geq 
1.5, one finds that \alpha  - 1E\alpha ,\alpha (z) is uniformly bounded as

1\leq \alpha  - 1E\alpha ,\alpha (z)\leq 2E1/2,1/2(1) =: c\prime .

Then, one finds that \alpha \lambda t\alpha  - 1 \leq w(t)\leq \alpha \lambda t\alpha  - 1c\prime .
Combining these two results, if t\ast is the transition point for w, then for all t\ast \leq 

s\leq s+ \tau \prime with \lambda (\tau \prime )\alpha \leq 1:

w(s)

w(s+ \tau \prime )
\geq 1

c\prime 
1

1 + \pi 
e2

e - 1 =: \mu 1,1.

Case 2. \alpha \leq 1/2.
We take M > 1 to be determined later. For z \geq M - \alpha , one has by (4.27) that

I2(z)

I1(z)
\leq M\pi 

e1+1/M
.

Using similar argument as above, if z = \lambda t\alpha \geq M - \alpha , one has

w(t)

w(t+ \tau )
\geq 1

1 + M\pi 
e1+1/M

e - 1 =: \mu 1,2.

We show that w is monotone for z = \lambda t\alpha < M - \alpha if M is large so that \lambda t\alpha \ast \geq M - \alpha .
Then, taking \mu 1 =min(\mu 1,1, \mu 1,2) clearly makes (4.26) hold.

Recall

w(t) = F (\lambda t\alpha ), F (z) = \lambda 1/\alpha z(\alpha  - 1)/\alpha E\alpha ,\alpha (z).

Since dz/dt > 0, one need only consider

d

dz
logF (z) =

\alpha  - 1

\alpha z
+

F \prime 
1(z)

F1(z)
, F1(z) = \alpha  - 1E\alpha ,\alpha (z).

Noting that infa>0 \Gamma (a)> 0.8, one has

F \prime 
1(z) =

\infty \sum 
k=1

(k+ 1)kzk - 1

\Gamma ((k+ 1)\alpha + 1)
\leq 5

4

\infty \sum 
k=1

(k+ 1)kzk - 1 =
5

4

1

(1 - z)3
.
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Moreover, since \Gamma (a)< 1 for a\in (1,2), one has

F1(z) =

\infty \sum 
k=0

(k+ 1)zk

\Gamma ((k+ 1)\alpha + 1)
\geq 

[1/\alpha ]\sum 
k=0

(k+ 1)zk =
d

dz

1 - z[1/\alpha ]+2

1 - z
\geq d

dz

1 - z1/\alpha 

1 - z
.

Here, we used the fact that d
dz

zm

1 - z = zm - 1[m(1 - z)+z]
(1 - z)2 is decreasing in m for m> 1. In

fact, the derivative of m \mapsto \rightarrow log(zm - 1[m(1 - z) + z]) is negative. These imply that

F \prime 
1(z)

F1(z)
\leq 5

2

1

(1 - z)(1 - (1 - z + \alpha z)z1/\alpha /(\alpha z))
.

Consider the expression

A := (1 - z + \alpha z)z1/\alpha /(\alpha z) = (1 - z)
z1/\alpha 

\alpha z
+ z1/\alpha < (1 - z)

z1/\alpha 

\alpha z
+M - 1.

Optimizing over \alpha \in (0,1/2], one has

z1/\alpha 

\alpha 
\leq 

\left\{   2z2, z \leq 1/
\surd 
e,

1

 - ln(z)e
, z > 1/

\surd 
e.

Then, one finds that A < 1/2 + 1/M (note that e - 1(z - 1  - 1)/ ln(1 + (z - 1  - 1)) is
monotone in the case z > 1/

\surd 
e). Hence, for z <M - \alpha ,

F \prime 
1(z)

F1(z)
\leq 5

1 - 2M - 1

1

1 - z
.

Moreover, 1 - z \geq 1 - M - \alpha >\alpha (lnM)M - \alpha >\alpha (lnM)z. Then, for z <M - \alpha , one has

d

dz
logF (z)<

\alpha  - 1 + 5/(lnM(1 - 2M - 1))

\alpha z
, \alpha \leq 1/2.

Hence, for M large enough, this is negative. This means that \lambda t\alpha \ast \geq M - \alpha .

Theorem 4.13. Consider a variable-step completely positive discretization. Sup-
pose Assumption 4.1 holds for some \nu > 0. Let \mu := \nu \mu 1 where \mu 1 is the constant in
Lemma 4.12. Assume \lambda \tau \alpha n <min(\mu ,\nu /\Gamma (2 - \alpha )) for all n\in \scrN . Suppose a nonnegative
sequence \{ vn\} n\in \{ 0\} \cup \scrN satisfies for some \lambda > 0 that

\scrD \alpha 
\tau vn \leq \lambda vn + c, n\in \scrN .(4.28)

Then one has for n\in \scrN that

vn \leq 
\Bigl( 
v0 +

c

\lambda 

\Bigr) 
E\alpha (\mu 

 - 1\lambda t\alpha n) - 
c

\lambda 
.(4.29)

Proof. Consider the equation

D\alpha y\mu = \mu  - 1(\lambda y\mu + c), y\mu (0) = y0.

Note that \mu  - 1\lambda \tau \alpha n < 1. By Lemma 4.12, one has

\scrD \alpha 
\tau y

\mu (tn)\geq \lambda y\mu + c.

If \lambda \tau \alpha n < \nu /\Gamma (2  - \alpha ), one then has cn0 > M . By the comparison principle in
Theorem 3.2 and formula (2.7), one has vn \leq y\mu (tn), which is the desired result.
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2218 YUANYUAN FENG, LEI LI, JIAN-GUO LIU, AND TAO TANG

5. Applications to dissipative systems. In this section, we consider two ex-
amples for the dissipative systems to illustrate how the Gr\"onwall inequalities above
can be applied. The first is the standard subdiffusion equation while the second is
the time fractional Allen--Cahn equation.

5.1. Example 1: Subdiffusion equation. Consider the following subdiffusion
equation on a bounded domain \Omega \subset \BbbR d with d\geq 1:

D\alpha 
c u=\Delta u+ f(x), x\in \Omega 

u| \partial \Omega = 0, u(x,0) = u0(x).
(5.1)

Consider the approximation where the time derivative is discretized by the L1
scheme on nonuniform mesh (i.e., (2.27)--(2.28)) and the Laplace operator \Delta is dis-
cretized by the centered difference method \Delta h with spatial step h. Then, one has

\scrD \alpha 
\tau un =\Delta hun + f(x).(5.2)

The truncation error for spatial derivative is clearly O(h2). Regarding the temporal
truncation error, if the solution is assumed to be smooth, the truncation error for
L1 scheme is \tau 2 - \alpha [25], where \tau is the maximum time step. However, taking into
account the singularity near t = 0, the truncation error reduces to \tau . Using graded
mesh, tn = T (n/N)r can improve the accuracy [32]. Here, we consider the truncation
error on a general nonuniform mesh

Rn :=\scrD \alpha 
\tau u(\cdot , tn) - D\alpha 

c u(\cdot , tn) =\scrD \alpha 
\tau u(\cdot , tn) - (\Delta hu(\cdot , tn) + f(\cdot )).(5.3)

Let \Omega h be the set of spatial grid points and consider

\langle u, v\rangle \Omega h
:=

\sum 
x\in \Omega h

u(x)v(x)hd, \| u\| 2\ell 2 := \langle u,u\rangle \Omega h
.(5.4)

Then, the truncation error is bounded by

\| Rn\| \ell 2 \leq C(\tau + h2),(5.5)

where \tau =maxi \tau i, C is independent of n.
For the discrete Laplacian \Delta h, there exists a constant \kappa > 0 such that for all

discrete functions v being zero on \partial \Omega h, one has

 - \langle v,\Delta hv\rangle \Omega h
\geq \kappa \| v\| 2\ell 2 .(5.6)

We have the following conclusions.

Proposition 5.1. Let u\infty be the steady solution of (5.1), and let uh
\infty be the

steady solution of the numerical scheme. If \kappa \tau \alpha n \leq 1, then for the universal constant
\sigma introduced in Lemma 4.6, one has

\| un  - uh
\infty \| \ell 2 \leq \| u0  - uh

\infty \| \ell 2E\alpha ( - \sigma  - 1\kappa t\alpha n).(5.7)

Moreover, the error satisfies

sup
n

\| un  - u(tn)\| \ell 2 \leq 
C

\kappa 
(\tau + h2)(1 - E\alpha ( - \kappa t\alpha n)).(5.8)

Consequently, \| u\infty  - uh
\infty \| \ell 2 \leq C(\tau + h2).
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GR\"ONWALL INEQUALITIES FOR DISCRETE FODEs 2219

Proof. Since uh
\infty is a steady solution to the numerical scheme, one has

\scrD \alpha 
\tau (un  - uh

\infty ) =\Delta h(un  - uh
\infty ).

Then, by Lemma 2.11,

\scrD \alpha 
\tau \| un  - uh

\infty \| \ell 2 \leq 
\biggl\langle 

un  - uh
\infty 

\| un  - uh
\infty \| \ell 2

,\scrD \alpha 
\tau (un  - uh

\infty )

\biggr\rangle 
\leq  - \kappa \| un  - uh

\infty \| \ell 2 .

Theorem 4.8 then gives the desired result (Assumption 4.4 holds with \rho 1 = 1 for L1
discretization).

By the definition of truncation error,

\scrD \alpha 
\tau u(\cdot , tn) =\Delta hu(\cdot , tn) + f(\cdot ) +Rn.

If one defines the error en := un  - u(\cdot , tn), one has

\scrD \alpha 
\tau en =\Delta hen  - Rn.

Pairing with en
\| en\| , one has

\scrD \alpha 
\tau \| en\| \ell 2 \leq  - \kappa \| en\| \ell 2 +C(\tau + h2).

Applying Theorem 4.3 (with v0 = 0 and \nu = 1) gives the desired control to the error.

5.2. Example 2: Time fractional Allen--Cahn equation. We consider the
following one-dimensional (1D) time fractional Allen--Cahn equation as an example
[14]:

D\alpha 
c u= \kappa 2\partial xxu+ (u - u3), x\in \BbbT ,

u| t=0 = u0.
(5.9)

Here, \BbbT is the 1D torus with length 2\pi (i.e., [ - \pi ,\pi ) with periodic boundary condition).
The equation is associated with a free energy

E(u) =

\int 
\BbbT 

\kappa 2

2
| \partial xu| 2 +

1

4
(u2  - 1)2 dx,(5.10)

and the equation is actually the time fractional gradient flow of this free energy in
L2(\BbbT ),

D\alpha 
c u= - \delta E

\delta u
.(5.11)

See [18] for some discussion on how one uses the discretization to analyze the behaviors
of time fractional gradient flows.

Below, we consider \kappa > 1 and the discretization with L1 scheme:

\scrD \alpha 
\tau un = \kappa 2D2un + (un  - u3

n).(5.12)

Here, D2 means that the spatial derivative is discretized by the Fourier spectral
method with uniform spatial stepsize h. For any p > 0, there exists C > 0 such that
the truncation error satisfies

rn := \| \scrD \alpha 
\tau u(\cdot , tn) - (\kappa 2\partial xxun + (un  - u3

n))\| \ell 2 \leq C(\tau + hp).(5.13)

The truncation error for the time discretization has been discussed above in the first
example. The spatial truncation error is standard for spectral method. For spectral
discretization, one has for a sequence v with zero Fourier mode \^v0 = 0 that

 - \langle v,D2v\rangle \geq \| v\| 2\ell 2 .(5.14)
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Proposition 5.2. Suppose that u0 is an odd function on [ - \pi ,\pi ] and \kappa 2 > 1.
Assume also that (\kappa 2 - 1)\tau \alpha n \leq 1, then the L2 norm of the numerical solution satisfies

\| un\| \ell 2 \leq CE\alpha ( - \sigma  - 1(\kappa 2  - 1)t\alpha n)\sim Ct - \alpha 
n , n\rightarrow \infty .(5.15)

The error satisfies

\| u(tn) - un\| \ell 2 \leq 
C(\tau + hp)

\kappa 2  - 1

\bigl( 
1 - E\alpha ( - (\kappa 2  - 1)t\alpha n)

\bigr) 
.(5.16)

If u0 is an odd function, then the zero Fourier mode of un preserves to be zero.
Then, \biggl\langle 

un

\| un\| \ell 2
, \kappa 2D2un + (un  - u3

n)

\biggr\rangle 
\leq  - \kappa 2\| un\| \ell 2 + \| un\| \ell 2  - 

1

\| un\| \ell 2
\| un\| 4\ell 4

\leq  - (\kappa 2  - 1)\| un\| \ell 2 .
(5.17)

The detailed proof would be the same as that for Proposition 5.1, so we omit it.
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