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Abstract. Motivated by a phenomenon of phase transition in a model of alignment of self-
propelled particles, we obtain a kinetic mean-field equation which is nothing more than the Smolu-
chowski equation on the sphere with dipolar potential. In this self-contained article, using only
basic tools, we analyze the dynamics of this equation in any dimension. We first prove global well-
posedness of this equation, starting with an initial condition in any Sobolev space. We then compute
all possible steady states. There is a threshold for the noise parameter: over this threshold, the
only equilibrium is the uniform distribution, and under this threshold, the other equilibria are the
Fisher–von Mises distributions with arbitrary direction and a concentration parameter determined
by the intensity of the noise. For any initial condition, we give a rigorous proof of convergence of the
solution to a steady state as time goes to infinity. In particular, when the noise is under the threshold
and with nonzero initial mean velocity, the solution converges exponentially fast to a unique Fisher–
von Mises distribution. We also found a new conservation relation, which can be viewed as a convex
quadratic entropy when the noise is above the threshold. This provides a uniform exponential rate of
convergence to the uniform distribution. At the threshold, we show algebraic decay to the uniform
distribution.
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1. Introduction. Phase transition and large time behavior of large interacting
oriented/rod-like particle systems and their mean field limits have shown to be inter-
esting in many physical and biological complex systems. Examples are paramagnetism
to ferromagnetism phase transition near Curie temperature, nematic phase transition
in liquid crystal or rod-shaped polymers, emerging of flocking dynamics near critical
mass of self-propelled particles, etc.

The dynamics on orientation for self-propelled particles proposed by Vicsek et al.
[22] to describe, for instance, fish schooling or bird flocking present such a behavior in
numerical simulations. As the density increases (or as the noise decreases) and reaches
a threshold, one can observe strong correlations between the orientations of particles.
The model is discrete in time, and particles move at a constant speed following their
orientation. At each time step, the orientation of each particle is updated, replaced
by the mean orientation of its neighbors, plus a noise term.

A way to provide a time-continuous version of this dynamical system, which allows
one to take a mean-field limit (and even a macroscopic limit), has been proposed by
Degond and Motsch [7]. Instead of replacing the orientation at the next time step,
they introduce a parameter playing the role of a rate of relaxation towards this mean
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Toulouse, France (amic.frouvelle@math.univ-toulouse.fr).
‡Department of Physics and Department of Mathematics, Duke University, Durham, NC 27707

(Jian-Guo.Liu@duke.edu). The research of this author was partially supported by NSF grant DMS
10-11738.

791



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

792 AMIC FROUVELLE AND JIAN-GUO LIU

orientation. Unfortunately the mean-field limit of this model does not present phase
transition. In [12], the first author of the present paper proved the robustness of the
behavior of this model when this rate of relaxation depends on a local density. In
particular, phase transition is still absent. However, when this parameter is set to be
proportional to the local momentum of the neighboring particles, we will see that the
model presents a phenomenon of phase transition as the intensity of the noise crosses
a threshold. This phenomenon occurs on the orientation dynamics, so here we will
consider only the spatial homogeneous dynamics.

In a joint work [6] with Pierre Degond, we have formally derived macroscopic
limits for the inhomogeneous case. Using the results of the present paper, we have
obtained, in the hydrodynamic limit, that the phase transition now appears as the
local density crosses a threshold. Under this threshold, the local equilibria are uniform
in orientation, and the corresponding macroscopic model is a nonlinear diffusion for
the density. Above this threshold, the system is locally ordered, and the evolution
of the local density and orientation is given by a nonconservative first-order system,
which appears to be nonhyperbolic.

The particular model is described as follows: we have N oriented particles, de-
scribed by vectors ω1, . . . , ωN belonging to S, the unit sphere of Rn, and satisfying
the following system of coupled stochastic differential equations (which must be un-
derstood in the Stratonovich sense), for k ∈ �1, N�:

dωk = (Id− ωk ⊗ ωk)Jk dt+
√
2τ (Id− ωk ⊗ ωk) ◦ dBk

t ,(1)

Jk =
1

N

N∑
j=1

ωj.(2)

The term (Id− ωk ⊗ ωk) denotes the projection on the hyperplane orthogonal to ωk

and constrains the norm of ωk to be constant. The terms Bk
t stand for N independent

standard Brownian motions on Rn, and then the stochastic term (Id−ωk ⊗ωk)◦dBk
t

represents the contribution of a Brownian motion on the sphere S to the model. For
more details on how to define Brownian motion on a Riemannian manifold, see [13].

Without this stochastic term, (1) can be written as

ω̇k = ∇ω(ω · Jk)|ω=ωk
,

where ∇ω is the tangential gradient on the sphere (see the beginning of section 2.1
for some useful formulas on the unit sphere). So the model can be understood as a
relaxation towards a unit vector in the direction of Jk subjected to a Brownian motion
on the sphere with intensity

√
2τ . The only difference with the model proposed in [7]

(in the spatial homogeneous case) is that there Jk is replaced by νΩk, where Ωk is
the unit vector in the direction of Jk and the frequency of relaxation ν is constant
(or dependent on the local density in [12]). One point to emphasize is that, in that
model, the interaction cannot be seen as a sum of binary interactions, contrary to the
model presented here. Here the mean momentum Jk does not depend on the index k
(but this is not true in the inhomogeneous case, where the mean is taken among the
neighboring particles).

To simplify notation, we work with the uniform measure of total mass 1 on the
sphere S. We denote by fN : R+×S → R+ the probability density function (depending
on time) associated with the orientation of one particle. Then, as the number N of
particles tends to infinity, fN tends to a probability density function f satisfying

(3) ∂tf = Q(f),
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with

Q(f) = −∇ω · ((Id− ω ⊗ ω)J [f ]f) + τΔωf,(4)

J [f ] =

∫
S

ω f(., ω) dω.(5)

In the model of [7], J [f ] is replaced just in (4) by ν Ω[f ], where Ω[f ] is the unit vector
in the direction of J [f ].

The first term of Q(f) can be formally derived using a direct computation with
the empirical distribution of particles. The diffusion part comes from Itô’s formula. In
a recent work [2], a rigorous derivation of this mean-field limit has been provided, even
in the inhomogeneous case. This derivation is linked with the so-called propagation
of chaos property. We refer the reader to [21] for an introduction to this notion.
The laboratory example given in this reference is the original model of McKean [18],
which is a more general version of our system in Rn instead of S (in that case, (3) is
called the McKean–Vlasov equation). The main point is to adapt the theory in the
framework of stochastic analysis on Riemannian manifolds.

Notice that (3) can be written in the form

∂tf = ∇ · (f∇Ψ) + τΔf,

with

Ψ(ω, t) = −ω · J(t) =
∫
S

K(ω, ω̄) f(t, ω̄) dω̄.

This equation is known as the Smoluchowski equation (or the nonlinear Fokker–Planck
equation) and was introduced by Doi [8] as the gradient flow equation for the Onsager
free energy functional

(6) F(f) = τ

∫
S

f(., ω) ln f(., ω)dω + 1
2

∫
S×S

K(ω, ω̄)f(., ω) f(., ω̄) dωdω̄.

This functional was proposed by Onsager [19] to describe the equilibrium states of
suspensions of rod-like polymers. They are given by the critical points of this func-
tional.

Defining the chemical potential μ as the first-order variation of F(f) under the
constraint

∫
S
f = 1, we get μ = τ ln f +Ψ, and the Smoluchowski equation becomes

∂tf = ∇ · (f∇μ).

In the original work of Onsager [19], the kernel has the form K(ω, ω̄) = |ω × ω̄|,
but there is another form, introduced later by Maier and Saupe [17], which leads to
similar quantitative results: K(ω, ω̄) = −(ω · ω̄)2. In our case, the potential given
by K(ω, ω̄) = −ω · ω̄ is called the dipolar potential. This is a case where the arrow of
the orientational direction has to be taken in account.

One of the interesting behaviors of the Smoluchowski equation is the phase tran-
sition bifurcation. This is indeed easy to see (here with the dipolar potential) from
the following linearization around the uniform distribution: if f is a probability den-
sity function, the solution of (3), we write f = 1 + g, so

∫
S
g dω = 0 and we can

get the equation for g. We multiply the equation by ω and integrate using the for-
mula

∫
S
ω ⊗ ω dω = 1

n Id (this is a matrix with trace one and commuting with any
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rotation) and the tools in the beginning of section 2.1. We get the linearized equation
for g and J [g]

∂tg = τΔωg + (n− 1)ω · J [g] +O(g2),

d

dt
J [g] = (n− 1)

(
1

n
− τ

)
J [g] +O(g2).

Therefore if we take the linear part of this system, we can solve the second equation
directly, and the first one becomes the heat equation with a known source term.
Finally, around the constant state, the linearized Smoluchowski equation is stable
if τ � 1

n and unstable if τ < 1
n . We expect to find another kind of equilibrium in

this regime. The work has initially been done in [10] for the dimension n = 3; the
distribution obtained is called the Fisher–von Mises distribution [23].

A lot of work has been done to study the equilibrium states for the Maier–Saupe
potential and in particular to show the axial symmetry of these steady states. A com-
plete classification has been achieved for the two- and three-dimensional cases in [16]
(see also [24], including the analysis of stability under a weak external shear flow).
The interesting behavior, besides the phase transition, is the hysteresis phenomenon:
before a first threshold, only one family of anisotropic equilibria is stable; then, in
addition, the uniform equilibrium becomes stable, and after a second threshold, the
only equilibrium is the uniform distribution. In the case of a coupling between the
Maier–Saupe and the dipolar potentials, it is shown in [14], [15], [26] that the only
stable equilibrium states are axially symmetric. To our knowledge, less work has been
done to study the dynamics of the Smoluchowski equation, in particular the rate at
which the solution converges to a steady state.

The purpose of this paper is to give a rigorous proof of the phase transition in
any dimension for the dipolar potential and to study the large time dynamics and the
convergence rates towards equilibrium states.

In section 2, we give some general results concerning (3). We provide a self-
contained proof for existence and uniqueness of a solution with an initial nonnegative
condition in any Sobolev space. We show that the solution is instantaneously positive
and in any Sobolev space (and actually analytic in the space variable), and we obtain
uniform bounds in time for each Sobolev norm.

In section 3, we use the Onsager free energy (decreasing in time) to analyze the
general behavior of the solution as time goes to infinity. We prove a kind of LaSalle
principle, implying that the solution converges, in the ω-limit sense, to a given set
of equilibria. We determine all the steady states and see that the value 1

n is indeed
a threshold for the noise parameter τ . Over this threshold, the only equilibrium is
the uniform distribution. When τ < 1

n , two kinds of equilibria exist: the uniform
distribution, and a family of nonisotropic distributions (called Fischer–von Mises dis-
tributions), with a concentration parameter κ depending on τ .

Finally, in section 4, we show that the solution converges strongly to a given
equilibrium. We first obtain a new conservation relation, which plays the role of an
entropy when τ � 1

n and shows a global convergence to the uniform distribution with
rate proportional to τ − 1

n . Then we prove that, in the supercritical case τ < 1
n ,

the solution converges to a nonisotropic equilibrium if and only if the initial drift
velocity |J [f0]| is nonzero (if it is zero, the equation reduces to the heat equation, and
the solution converges exponentially fast to the uniform distribution). We prove in
that case that the convergence to this steady state is exponential in time, and we give
the asymptotic rate of convergence. Finally, in the critical case τ = 1

n , we show that
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the speed of convergence to the uniform distribution is algebraic (more precisely, the
decay in any Sobolev norm is at least C√

t
).

2. General results.

2.1. Preliminaries: Some results on the unit sphere. This subsection con-
sists essentially of a main lemma, allowing us to perform some estimates on the norm
of integrals of the form

∫
S
g∇ωh, where h and g are real functions with mean zero.

But let us start with some useful formulas. For V a constant vector in Rn, we
have

∇ω(ω · V ) = (Id− ω ⊗ ω)V,

∇ω · ((Id− ω ⊗ ω)V ) = −(n− 1)ω · V,
where ∇ω (resp., ∇ω·) stands for the tangential gradient (resp., the divergence) on the
unit sphere. When no confusion is possible, we will use just the notation ∇. Then,
taking the dot product with a given tangent vector field A or multiplying by a regular
function f and integrating by parts, we get∫

S

ω∇ω · A(ω)dω = −
∫
S

A(ω)dω,∫
S

∇ωfdω = (n− 1)

∫
S

ωfdω.

We then introduce some notation. We denote by Ḣs(S) the subspace composed of
mean zero functions of the Sobolev space Hs(S). This is a Hilbert space, associated
with the inner product 〈g, h〉2

Ḣs
= 〈(−Δ)sg, h〉, where Δ is the Laplace–Beltrami

operator on the sphere. This also has a sense for any s ∈ R by spectral decomposition
of this operator. We will denote by ‖ · ‖Ḣs the norm on this Hilbert space.

We then define the so-called conformal Laplacian Δ̃n−1 on the sphere (see [1])
which plays a role in some Sobolev inequalities. This is a positive definite op-
erator (pseudodifferential operator of degree n − 1, mapping Ḣs(S) continuously
into Ḣs−n+1(S), which is a differential operator when n is odd) given by

(7) Δ̃n−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

0�j� n−3
2

(−Δ+ j(n− j − 2)) for n odd,

(−Δ+ (n2 − 1)2
) 1

2
∏

0�j� n
2 −2

(−Δ+ j(n− j − 2)) for n even.

Equivalently, it can also be defined by

(8) Δ̃n−1 Y� = �(�+ 1) . . . (�+ n− 2)Y� for any spherical harmonic Y� of degree �.

Here is the main lemma.
Lemma 2.1 (estimates on the sphere, valid for any s ∈ R).

1. If h is in Ḣ−s+1(S) and g is in Ḣs(S), the following integral is well defined
and we have

(9)

∣∣∣∣∫
S

g∇h

∣∣∣∣ � C‖g‖Ḣs‖h‖Ḣ−s+1 ,

where the constant C depends only on s and n.
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2. We have the following estimation for any g ∈ Ḣs+1(S):

(10)

∣∣∣∣∫
S

g∇(−Δ)sg

∣∣∣∣ � C‖g‖2
Ḣs ,

where the constant C depends only on s and n.

3. We have the following identity for any g ∈ Ḣ−n−3
2 :

(11)

∫
S

g∇Δ̃−1
n−1g = 0.

Let us make some remarks on these statements. The first one expresses just the
fact that the gradient operator (or, more precisely, any of its component e · ∇ for
a given unit vector e) is well defined as an operator sending Ḣ−s+1(S) continuously
into Ḣ−s(S) for any s.

The second one is actually a commutator estimate. It is equivalent to the fact
that for any given unit vector e and for any g, h ∈ Ḣs+1, we have∣∣∣∣∫

S

ge · ∇(−Δ)sh+ he · ∇(−Δ)sg

∣∣∣∣ � C̃‖g‖Ḣs‖h‖Ḣs .

Defining the operator F by

Fg = e · ∇(−Δ)sg − (−Δ)s∇ · ((Id− ω ⊗ ω)eg)

and integrating by parts, this inequality becomes
∣∣∫

S
hFg

∣∣ � C̃‖g‖Ḣs‖h‖Ḣs . In other

words, F sends Ḣs(S) continuously into Ḣ−s(S) for any s.
So since F = [e·∇, (−Δ)s]+(n−1)(−Δ)se·ω, this second statement (10) expresses

that the commutator [∇, (−Δ)s] is an operator of degree 2s.
With the same point of view, (11) gives an exact computation of the commutator

of the gradient and the inverse of conformal Laplacian.
This says just that [∇, Δ̃−1

n−1] = −(n − 1)Δ̃−1
n−1ω or, multiplying left and right

by Δ̃n−1, that [∇, Δ̃n−1] = (n− 1)ωΔ̃n−1.
The proof of this lemma relies on some computations on spherical harmonics and

is given in section A.1.

2.2. Existence, uniqueness, positivity, and regularity. We present here a
self-contained proof of well-posedness of the problem (3), working in any Sobolev space
for the initial condition. Some analogous claims are given in [5], without proof, start-
ing for a continuous nonnegative function. They are based on arguments of [3], stating
that the Galerkin method based on spherical harmonics converges (exponentially fast)
to the unique solution. They are weaker with respect to the initial conditions and
the positivity but stronger for the regularity of the solution (analytic in space). As a
remark we will give the same regularity result and prove it in section A.2.

Definition 2.2 (weak solution for some s ∈ R). For T > 0, the function f ∈
L2((0, T ), Hs+1(S)) ∩H1((0, T ), Hs−1(S)) is said to be a weak solution of (3) if, for
almost all t ∈ [0, T ], we have for all h ∈ H−s+1(S),

(12) 〈∂tf, h〉 = −τ〈∇ωf,∇ωh〉+ 〈f, J [f ] · ∇ωh〉,
where 〈·, ·〉 is the usual duality product for distributions on the sphere S.

Since it is sometimes more convenient to work with mean zero functions (in order
to use the main lemma of the previous subsection), we reformulate this problem in
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another framework. We set f = 1 + g so that f is a weak solution if and only
if g ∈ L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)) with, for almost all t ∈ [0, T ] and for
all h ∈ Ḣ−s+1(S),

(13) 〈∂tg, h〉 = −τ〈∇ωg,∇ωh〉+ (n− 1)J [g] · J [h] + 〈g, J [g] · ∇ωh〉.

It makes sense to look for a weak solution with prescribed initial condition in Hs,
since it always belongs to C([0, T ], Hs(S)), as stated by the following proposition.

Proposition 2.3. If g ∈ L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)), then, up to
redefining it on a set of measure zero, it belongs to C([0, T ], Ḣs(S)), and we have

max
[0,T ]

‖u(t)‖2
Ḣs � C

∫ T

0

‖u‖2
Ḣs+1 + ‖∂tu‖2Ḣs−1 ,

where the constant C depends only on T .
The proof in the case s = 0 is the same as in [9, section 5.9.2, Thm. 3]. To do the

general case, we apply the result to (−Δ)
s
2 g.

Theorem 2.4. Given an initial probability measure f0 in Hs(S), there exists a
unique weak solution f of (3) such that f(0) = f0. This solution is global in time.
Moreover, f ∈ C∞((0,+∞)× S), with f(t, ω) > 0 for all positive t.

We also have the following instantaneous regularity and uniform boundedness
estimates (for m ∈ N, the constant C depends only on τ , m, and s) for all t > 0:

‖f(t)‖2Hs+m � C

(
1 +

1

tm

)
‖f0‖2Hs .

The proof consists of several steps, which we will treat as propositions. We first use
a Galerkin method to prove existence on a small interval. We then show the continuity
with respect to initial conditions on this interval (and hence the uniqueness). Next,
we prove the positivity of 1 + g for regular solutions. This gives us a better estimate
of J [g]. Repeating the procedure on the following small interval, and so on, we can
show that this extends to any t > 0. Regularizing the initial condition then gives
global existence in any case.

We finally obtain the instantaneous regularity and boundary estimates by decom-
posing the solution between low and high modes.

For the proof of all propositions, we will denote by C0, C1, . . . some positive
constants which depend only on s and τ . We will also fix one parameter K > 0
(which will be a bound on the norm of initial condition) and denote by M0,M1, . . .
some positive constants which depend only on s, τ , and K.

Proposition 2.5 (existence: Galerkin method). We set

(14) T =
1

C1
ln

(
1 +

1

1 + 2C2K

)
,

where the constants C1 and C2 will be defined later.
If ‖g0‖Ḣs � K, then we have existence of a weak solution on [0, T ] satisfying (13),

uniformly bounded in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)) by a constant M1.
Proof. We denote by PN the space spanned by the first N (nonconstant) eigen-

vectors of the Laplace–Beltrami operator. This is a finite-dimensional vector space,
included in Ḣp(S) for all p and containing the functions of the form ω 
→ V · ω (see
section A.1 for more details).
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Let gN ∈ C1(I, PN ) be the unique solution of the following Cauchy problem,
defined on a maximal interval I ⊂ R+ (“nonlinear” ODE on a finite-dimensional
space): {

d
dtg

N = ΠN

[
τΔωg

N −∇ω · ((Id− ω ⊗ ω)J [gN ](1 + gN )
)]
,

gN (0) = ΠN (g0),

where ΠN is the orthogonal projection on PN . The first equation is equivalent to the
fact that for any h ∈ PN , we have

(15)
d

dt
〈gN , h〉 = −τ〈∇ωg

N ,∇ωh〉+ (n− 1)J [gN ] · J [h] + 〈gN , J [gN ] · ∇ωh〉.

The goal is to prove that [0, T ] ⊂ I and that there exists an extracted sequence Nk

such that, as k → ∞,
• gNk converges weakly in L2((0, T ), Ḣs+1(S)) to a function g,
• ∂tg

Nk converges weakly to ∂tg in L2((0, T ), Ḣs(S)), and
• J [gNk ] → J [g] uniformly.

We have that (−Δ)sgN ∈ PN , so we can take it for h, put it in (15), and use the
second part of Lemma 2.1 to get

1

2

d

dt
‖gN‖2

Ḣs + τ‖gN‖2
Ḣs+1 � C0|J [gN ]|‖gN‖2

Ḣs + (n− 1)s|J [gN ]|2(16)

� C1‖gN‖2
Ḣs(1 + C2‖gN‖Ḣs).(17)

Indeed, any component of ω belongs to any Ḣ−s; then J [gN ] = 〈ω, gN 〉 is controlled
by any Ḣs norm of gN .

Solving this inequality, we obtain for 0 � t < C−1
1 ln(1 + (C2‖ΠN (g0)‖Ḣs)−1),

‖gN‖Ḣs � ‖ΠN (g0)‖Ḣs

e−C1t − C2‖ΠN (g0)‖Ḣs(1− e−C1t)
.(18)

Then we have ‖gN(t)‖Ḣs � 2‖g0‖Ḣs for all t in [0, T ]. There is no finite-time blow up
in [0, T ]; then the ODE (15) has a solution on [0, T ] for any N ∈ N.

Now we denote by M0 a bound for |J [gN ]| on [0, T ]. The inequality (16) gives

d

dt
‖gN‖2

Ḣs + 2τ‖gN‖2
Ḣs+1 � (1 +M0)C3‖gN‖2

Ḣs .

Solving this inequality, we get for t ∈ [0, T ],

(19) ‖gN‖2
Ḣs + 2τ

∫ t

0

‖gN‖2
Ḣs+1 � ‖g0‖2Ḣse

(1+M0)C3t.

We then use the ODE (15) to control the derivative of g. Taking h ∈ Ḣ−s+1(S), we
write hN = ΠN (h), and we get

〈∂tgN , h〉 = 〈∂tgN , hN 〉
� τ‖gN‖Ḣs+1‖hN‖Ḣ−s+1 + C4‖gN‖Ḣs‖hN‖Ḣ−s+1 +M0‖gN‖Ḣs‖hN‖Ḣ−s+1

�
(
τ‖gN‖Ḣs+1 + C4‖gN‖Ḣs +M0‖gN‖Ḣs

)‖h‖Ḣ−s+1 ,
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and thus we obtain

‖∂tgN‖2
Ḣs−1 � 2τ2‖gN‖2

Ḣs+1 + 2(C4 +M0)
2‖gN‖2

Ḣs .

Integrating in time, we get, together with the estimate (19),∫ T

0

‖∂tgN‖2
Ḣs−1 �

[
τ + 2(C4+M0)

2

(1+M0)C3

]‖g0‖2Ḣse
(1+M0)C3T .

Then we can take M2
1 = K2e(1+M0)C3T max

(
τ−1, τ + 2(C4+M0)

2

(1+M0)C3

)
, and we get that gN

is bounded by M1 in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)).
Now, we need just estimates for d

dtJ [g
N ]. We can take h = ω ·V for any constant

vector V in the ODE (15) and use the tools given in the beginning of this section.
We finally get∣∣∣∣ ddtJ [gN ]

∣∣∣∣ = ∣∣∣∣n− 1

n
(1− τn)J [gN ]−

∫
S

(Id− ω ⊗ ω)J [gN ]gN dω,

∣∣∣∣
� (C5 +M0C6)‖g0‖Ḣse

1
2 (1+M0)C3T .

Indeed, again, since any component of Id − ω ⊗ ω is in Ḣ−s, we can control the
term

∫
S
(Id− ω ⊗ ω)gN dω by any Ḣs norm of gN , uniformly in N and in t ∈ [0, T ].

In summary if we suppose that g0 is in Ḣs(S), for some s ∈ R, we have that gN

is bounded in L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)), and that J [gN ] and d
dtJ [g

N ]
are uniformly bounded in N and t ∈ [0, T ].

Then, using weak compactness and the Ascoli–Arzela theorem, we can find an
increasing sequence Nk, a function g ∈ L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)), and
a continuous function J : [0, T ] → Rn such that, as k → ∞,

• J [gNk ] converges uniformly to J on [0, T ], and
• gNk converges weakly to g in L2((0, T ), Ḣs+1(S)) and in H1((0, T ), Ḣs−1(S)).

The limit g is also bounded by M1 in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)).

Then, since we have
∫ T

0

∫
S
ϕ(t)ω(gNk − g) dω dt → 0 for any smooth function ϕ,

we get
∫ T

0 ϕ(t)(J [g]− J) dt = 0, and so J = J [g].
For a fixed h ∈ PM passing the weak limit in (15) (for Nk � M), we get for

almost every t ∈ [0, T ] that

∀h ∈ PM , 〈∂tg, h〉 = −τ〈∇ωg,∇ωh〉+ (n− 1)J [g] · J [h] + 〈g, J [g] · ∇ωh〉.

This is valid for any M (except on a countable union of subsets of [0, T ] of zero
measure). By density (and using the first part of Lemma 2.1), we have that g is a
weak solution of our problem.

Now for any h ∈ Ḣ−s+1(S), we have that 〈gN (t) − ΠN (g0), h〉 =
∫ t

0
〈∂tgN , h〉

is controlled by M1

√
t‖h‖Ḣ−s+1 , uniformly in N . So, passing to the limit, we get

that g(t) → g0 in Ḣ−s+1(S) as t → 0. But since we know that g ∈ C([0, T ], Hs(S)),
by uniqueness, we get g(0) = g0.

Proposition 2.6 (continuity with respect to the initial condition). Suppose that
we set T = 1

C1
ln(1 + 1

1+2C2K
) as in (14) and that we have two solutions g and g̃,

with ‖g(0)‖Ḣs � K and ‖g̃(0)‖Ḣs � K.

Then there exists a constant M3 such that g− g̃ is bounded in L2((0, T ), Ḣs+1(S))
and in H1((0, T ), Ḣs−1(S)) by M3‖g(0)− g̃(0)‖Ḣs .
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This automatically gives uniqueness of a weak solution on (0, T ) with initial con-
dition g0.

Proof. Putting h = (−Δ)sg ∈ Ḣ−s+1 in (13), we do the same estimations as in
the previous proposition. We have the same estimate as (16)–(17):

1

2

d

dt
‖g‖2

Ḣs + τ‖g‖2
Ḣs+1 � C0|J [g]|‖g‖2Ḣs + (n− 1)s|J [g]|2(20)

� C1‖g‖2Ḣs(1 + C2‖g‖Ḣs).(21)

So if we set T = C−1
1 ln(1 + (1 + 2C2K)−1), we can solve this inequality on [0, T ],

exactly as in (18). These solutions are then uniformly bounded in L2((0, T ), Ḣs+1(S))
and in H1((0, T ), Ḣs−1(S)) (by the constant M1).

Taking u = g − g̃ and using (13) gives an equation for u: for almost all t ∈ [0, T ]
and for all h ∈ Ḣ−s(S),

(22) 〈∂tu, h〉 = −τ〈∇ωu,∇ωh〉+ (n− 1)J [u] · J [h] + 〈u, J [g] · ∇ωh〉+ 〈g̃, J [u] · ∇ωh〉.
Now we take h = (−Δ)su and use the first and second parts of Lemma 2.1 to get

1

2

d

dt
‖u‖2

Ḣs + τ‖u‖2
Ḣs+1 � (1 +M1)C3‖u‖2Ḣs + C7‖u‖Ḣs‖g̃‖Ḣs+1‖(−Δ)su‖Ḣ−s

� M2(1 + ‖g̃‖Ḣs+1)‖u‖2Ḣs .(23)

Grönwall’s lemma then gives the following estimate:

‖u‖2
Ḣs + τ

∫ T

0

‖u‖2
Ḣs+1 � ‖u0‖2Ḣs exp

(
M2

∫ T

0

(1 + ‖g̃‖Ḣs+1)

)
� ‖u0‖2Ḣse

M2(T+M2
1 ).

Using (22), we get that u is bounded in L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)) by
a constant M3 times ‖u(0)‖Ḣs .

Proposition 2.7 (positivity for regular solutions (maximum principle)). Sup-
pose that g0 is in Ḣs(S), with s sufficiently large (according to the Sobolev embeddings,
so s > n+3

2 is enough) so that the (unique) solution belongs to C0([0, T ], C2(S)).
Here T is defined as in (14), with K = ‖g0‖Ḣs . We go back to the original formula-
tion f = 1 + g. Then f is a classical solution of (3).

If f0 is nonnegative, then f is positive for any positive time, and, more precisely,
we have the following estimates for all t ∈ (0, T ] and ω ∈ S (if f0 is not equal to the
constant function 1):

(24) e−(n−1)
∫ t
0
|J[f ]|min

S

f0 < f(t, ω) < e(n−1)
∫ t
0
|J[f ]|max

S

f0.

Proof. Since the solution is in C0([0, T ], C2(S)), we can do the reverse integration
by parts in the weak formulation (12). We get that, as an element of L2((0, T ), Hs−1(S)),
the function ∂tf is equal (almost everywhere) to τΔωf − ∇ω · ((Id − ω ⊗ ω)J [f ]f),
which is an element of C0([0, T ]× S). So up to redefining it on a set of measure zero,
the function f belongs to C1([0, T ], C(S)) ∩ C0([0, T ], C2(S)) and satisfies the PDE.

Applying the chain rule and using the tools given in the beginning of this section,
we get another formulation of the PDE (3):

(25) ∂tf = τΔωf − J [f ] · ∇ωf + (n− 1)J [f ] · ω f.
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The next part of the proposition is just a classical strong maximum principle.
Here we prove only the left part of the inequality; the other part is very similar, once
we have that f is positive.

Suppose first that f0 is positive. We denote by T̃ > 0 the first time that the
minimum on the unit sphere of f is zero (or T̃ = T if f is always positive).

Then we have for t ∈ [0, T̃ ] that ∂tf � τΔωf − J [f ] · ∇ωf − (n− 1)|J [f ]|f . If we
write f̃ = f e−(n−1)

∫ t
0
|J[f ]|, we get

(26) ∂tf̃ � τΔω f̃ − J [f ] · ∇ω f̃ .

Then the weak maximum principle (see [9, section 7.1.4, Thm. 8], which is also valid

on the sphere) gives us that the minimum of f̃ on [0, T̃ ] × S is reached on {0} × S.
That means that we have a nonstrict version of the left part of the inequality (24):

(27) ∀t ∈ [0, T̃ ], ∀ω ∈ S, f(ω, t) � e−(n−1)
∫

t
0
|J[f ]| min

S

f0.

Consequently, we have that minS f(T̃ ) > 0, and so T̃ = T . If now f0 is only
nonnegative, take fε

0 = f+ε
1+ε , and by continuity with respect to initial condition, in-

equality (27) is still valid. That gives that f is nonnegative on [0, T ], and consequently

we have that inequality (26) is valid on [0, T̃ ].
Now we can use the strong maximum principle (see [9, section 7.1.4, Thm. 11]),

which gives that if the inequality (27) is an equality for some t > 0 and ω ∈ S, then f̃
is constant on [0, t]× S. So f0 is the constant function 1.

Proposition 2.8 (global existence, positivity). Suppose f0 is a probability mea-
sure belonging to Hs(S) (this is always the case for s < −n−1

2 , according to Sobolev
embeddings). Then there exists a global weak solution of (3), which remains a proba-
bility measure for any time.

We remark that the uniqueness of the solution on any time interval remains by
Proposition 2.6.

Proof. We first prove this proposition in the case s > n+3
2 .

We define a solution by constructing it on a sequence of intervals.
We set T1 = 1

C1
ln(1+ 1

1+2C2‖g0‖Ḣs
) as in (14). This gives existence to a solution g

in C([0, T1], Ḣ
s(S)). By induction, we define Tk+1 = Tk +

1
C1

ln(1 + 1
1+2C2‖g(Tk)‖Ḣs

),

which gives existence to a solution g ∈ C([Tk, Tk+1], Ḣ
s(S)).

So we have a solution on [0, T ], provided that T � Tk for some integer k.
Now by the previous proposition, this solution f = 1 + g is nonnegative. We

obviously have |J [g]| = |J [f ]| �
∫
S
|ω|f = 1. Then we can do better estimates,

starting from (20):

1

2

d

dt
‖g‖2

Ḣs + τ‖g‖2
Ḣs+1 � C0|J [g]|‖g‖2Ḣs + (n− 1)s|J [g]|2

� C8‖g‖2Ḣs .(28)

Then, Grönwall’s lemma gives us that ‖g(Tk)‖Ḣs � ‖g0‖ḢseC8Tk . Suppose now
that the sequence (Tk) is bounded; then ‖g(Tk)‖Ḣs is also bounded. By the defi-
nition of Tk+1, the difference Tk+1 − Tk does not tend to zero, which implies that
the increasing sequence (Tk) is unbounded, and this is a contradiction. So we have

that Tk
k→∞→ ∞, and the solution is global in time.
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Now we do the general case for any s. Take gk0 as a sequence of elements of Ḣ
n
2 +2

converging to g0 in Ḣs and such that fk
0 = 1 + gk0 are positive functions. Let gk be

the solutions associated with these initial conditions.
Then we have the same estimates as before; since we still have |J [g]| � 1, solv-

ing (28) gives

‖gk(t)‖2
Ḣs + τ

∫ t

0

‖gk(t)‖2
Ḣs+1 � ‖gk0‖Ḣse

C8t.

We want to prove that gk is a Cauchy sequence, so we study the difference u = gj−gk

(in the same way as what was done for g− g̃ in (22)–(23) to prove uniqueness), which
satisfies, for any h ∈ Ḣ−s(S),

(29) 〈∂tu, h〉 = −τ〈∇ωu,∇ωh〉+(n−1)J [u] ·J [h]+〈u, J [gj ] ·∇ωh〉+〈gk, J [u] ·∇ωh〉.
We take h = (−Δ)su and use the first and second parts of Lemma 2.1 to get

1

2

d

dt
‖u‖2

Ḣs + τ‖u‖2
Ḣs+1 � C9‖u‖2Ḣs + C7‖u‖Ḣs‖gk‖Ḣs+1‖(−Δ)su‖Ḣ−s

� C10(1 + ‖gk‖Ḣs+1)‖u‖2Ḣs .(30)

If we fix T > 0, Grönwall’s lemma then gives the following estimate:

‖u‖2
Ḣs + τ

∫ T

0

‖u‖2
Ḣs+1 � ‖u0‖2Ḣs exp

(
C10

∫ T

0

(1 + ‖gk‖Ḣs+1)

)
� ‖u0‖2Ḣs exp

(
C10(T + τ−1

√
T‖gk0‖Ḣse

C8T )
)
.

Since ‖gk0‖Ḣs is bounded (because gk0 converges in Ḣs), together with (29), we finally

get that u is bounded in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)) by a constant CT

times ‖u(0)‖Ḣs . This gives that gk is a Cauchy sequence in that space, and then it
converges to a function g, which is a weak solution of our problem (by Proposition 2.3,
we have that g(0) = g0). This is valid for any T > 0, so this solution is global.

If we take ϕ in C∞(S), since fk(t) = 1+ gk(t) is a positive function with mean 1,
we have that

−‖ϕ‖∞ = 〈fk(t),−‖ϕ‖∞〉 � 〈fk(t), ϕ〉 � 〈fk(t), ‖ϕ‖∞〉 = ‖ϕ‖∞.

Passing to the limit gives |〈g(t), ϕ〉| � ‖ϕ‖∞. Furthermore, we have 〈fk(t), 1〉 = 1
so that 〈f(t), 1〉 = 1, and if ϕ is a nonnegative function, then 〈fk(t), ϕ〉 � 0 and we
get 〈f(t), ϕ〉 � 0. This gives that f(t) is a positive Radon measure with mass 1, which
is a probability measure.

Proposition 2.9 (instantaneous regularity and boundedness estimates). If f0 is
a probability measure, then the solution f belongs to C∞((0,+∞)× S) and is positive
for any time t > 0, and we have the following estimates for all s ∈ R and m � 0:

‖f(t)‖2Hs+m � C

(
1 +

1

tm

)
‖f0‖2Hs ,

where the constant C depends only on τ , s, and m.
In particular we have that for t0 > 0, f is uniformly bounded on [t0,+∞) in

any Hs norm.
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Proof. Suppose f0 ∈ Hs(S), and fix t > 0. The solution f is in C([0,+∞), Hs(S))
and in L2((0, t), Hs+1(S)). Then there exists s < t such that f(s) ∈ Hs+1(S). So we
can construct a solution belonging to C([s,+∞), Hs+1(S)). But this solution is also
a weak solution in L2((s, T ), Hs+1(S)) ∩ H−1((s, T ), Hs−1(S)) for all T > s, so by
uniqueness it is equal to f . Then f belongs to C([t,+∞), Hs+1(S)). Since this is true
for all t > 0, then f belongs to C((0,+∞), Hs+1(S)). We can repeat this argument
and have that f belongs to C((0,+∞), Hp(S)) for any p, and is a positive classical
solution, by Proposition 2.7. Using the equation, differentiating in time gives that it
is also in Ck((0,+∞), Hp(S)) for any p and any k, so by Sobolev embeddings it is
a C∞ function of (0,+∞)× S.

Since we have positivity, we can have estimates for any of the modes of f = 1+g.
Let us denote by fN the orthogonal projection of f on the N first eigenspaces of the
Laplacian and by gN = f − fN the projection on the other ones (high modes).

We have a Poincaré inequality on this space: ‖gN‖2
Ḣs

� 1
(N+1)(N+n−1)‖gN‖2

Ḣs+1

(we recall that the eigenvalues of −Δ are given by �(�+n− 2) for � ∈ N). We use the
estimate (20):

1

2

d

dt
‖g‖2

Ḣs + τ‖g‖2
Ḣs+1 � C0|J [g]|‖g‖2Ḣs + (n− 1)s|J [g]|2

� C0

(N + 1)(N + n− 1)
‖g‖2

Ḣs+1 + (n− 1)s|J [g]|2 + C0‖fN − 1‖2
Ḣs .(31)

Now we have, since f is a probability measure, that

‖fN − 1‖2
Ḣs =

∫
S

(−Δ)sfNfdω � ‖(−Δ)sfN‖L∞ � KN‖fN − 1‖Ḣs ,

the last inequality being the equivalence between norms in finite dimension. Dividing
by this last norm, this gives that the low modes of f are uniformly bounded in time
by a constant KN . Then we have, taking N sufficiently large,

1

2

d

dt
‖g‖2

Ḣs +
τ

2
‖g‖2

Ḣs+1 � C11.

Now multiplying this formula by t at order s+ 1, we get

1

2

d

dt
(t‖g‖2

Ḣs+1) +
τ

2
t‖g‖2

Ḣs+2 � C12t+
1

2
‖g‖2

Ḣs+1,

and finally

1

2

d

dt

(
‖g‖2

Ḣs +
τ

2
t‖g‖2

Ḣs+1

)
+

τ

4

(
‖g‖2

Ḣs+1 +
τ

2
t‖g‖2

Ḣs+2

)
� C11 + C12

τ

2
t.

Together with the Poincaré inequality, solving this inequality gives us

‖g‖2
Ḣs +

τ

2
t‖g‖2

Ḣs+1 � ‖g0‖2Ḣse
−(n−1) τ

4 t + C13(1 + t).

So we have the result for ‖f‖2Hs = 1 + ‖g‖2
Ḣs

, and m = 1:

‖f(t)‖2Hs+1 � C

(
1 +

1

t

)
‖f0‖2Hs .
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Then we apply this inequality between 0 and t
2 and the inequality at order m be-

tween t
2 and t to get the result at order m+1. The case where m is any nonnegative

real also works by interpolation.
This last proposition ends the proof of Theorem 2.4. Let us here make two

small comments concerning the analyticity of the solution and the limit case with no
noise: τ = 0.

Remark 2.10 (analyticity of the solution). We can show, as claimed in [4], [5],
that at any time t > 0 the solution is analytic in the space variable. The idea is to
show, following [5] (based on [3], [11]), that the solution is in some Gevrey class of
functions, defined by a parameter depending on time. This class is a subset of the set
of real analytic functions on the sphere. More details and a complete proof are given
in section A.2. We could have dealt with this classes of functions instead of working
in the Sobolev spaces directly, but we will not need these properties of analyticity in
the following. In any case, to prove analyticity we need the initial condition to be

in H−n−1
2 (S), so this study of instantaneous regularization was necessary.

Remark 2.11 (case where τ = 0: no noise). The proof is also valid, except that
the solution belongs to L∞((0, T ), Hs(S))∩H1((0, T ), Hs−1(S)) if the initial condition
is in Hs(S). By an optimal regularity argument, we can get that a solution is in fact
in C([0, T ], Hs(S)). The nonnegativity argument is then also valid, and so the solution
is global. Obviously, we do not have the instantaneous regularity and boundedness
estimates.

3. Using the free energy. In this section, we derive the Onsager free energy (6)
for Smoluchowski equation (3) and use it to get general results on the steady states.

3.1. Free energy and steady states. We rewrite (3) as

∂tf = Q(f) = ∇ω · (τ∇ωf −∇ω(ω · J [f ])f) = ∇ω · (f∇ω(τ ln f − ω · J [f ])).
Since any solution is in C∞((0,+∞) × S) and positive for any t > 0, there is no
problem with using ln f and doing any integration by parts. We multiply the equation
by τ ln f − ω · J [f ] and integrate by parts, and we get∫

S

∂tf(τ ln f − ω · J [f ]) dω = −
∫
S

f |∇ω(τ ln f − ω · J [f ])|2 dω.

Since the left part can be recast as a time derivative, this is a conservation relation.
We define the free energy F(f) and the dissipation term D(f) by

F(f) = τ

∫
S

f ln f − 1
2 |J [f ]|2,(32)

D(f) =

∫
S

f |∇ω(τ ln f − ω · J [f ])|2,(33)

and we have the following energy dissipation relation:

(34)
d

dt
F +D = 0.

We define a steady state as a (weak) solution which does not depend on time.
Here are some characterizations of the steady states.

Proposition 3.1 (steady states). The steady states of Smoluchowski equa-
tion (3) are the probability measures f on S which satisfy one of the following equiv-
alent conditions:
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1. Equilibrium: f ∈ C2(S) and Q(f) = 0.
2. No dissipation: f ∈ C1(S) and D(f) = 0.
3. The probability density f ∈ C0(S) is positive and a critical point of F (under

the constraint of mean 1).
4. There exists C ∈ R such that τ ln f − J [f ] · ω = C.

Proof. By definition, a steady state f is a solution independent of t. Since it
is a solution, it is positive and C∞, and we get that Q(f) = 0 . By the conserva-
tion relation (34), we get that d

dtF = 0, so D(f) = 0. Since it is positive, we get
that ∇ω(τ ln f − ω · J [f ]) = 0, so there exists C ∈ R such that τ ln f − J [f ] · ω = C.

Now we do a variational study of F around f . We take a small perturbation f+h
of f which remains a probability density function (which means that

∫
S
h = 0).

We can expand the function x 
→ x ln x around f , since f � ε > 0, and we have

F(f + h) = τ

∫
S

(f ln f + h ln f + h)− 1

2
|J [f ]|2 − J [f ] ·

∫
S

ωh+O(‖h‖2∞)

= F(f) +

∫
S

h(τ ln f − J [f ] · ω) +O(‖h‖2∞)

= F(f) +O(‖h‖2∞),

which means that f is a critical point of F . So f satisfies the four conditions.
Conversely, if f ∈ C2(S) and Q(f) = 0, then f is obviously a steady state.
If τ ln f − J [f ] · ω = C, then f ∈ C2(S) and Q(f) = 0. We will show that the

second and third conditions reduce to this fourth condition.
Doing the above computation around a positive f ∈ C0(S) gives that if f is a

critical point for the free energy, then
∫
S
h(τ ln f − J [f ] · ω) is zero for any h with

mean zero. This is exactly saying that τ ln f − J [f ] · ω is constant.
Finally, if we suppose f ∈ C1(S) and D(f) = 0, at any point ω0 ∈ S such

that f(ω0) > 0 we have that ∇(τ ln f − J [f ] · ω) = 0 on a neighborhood of ω0.
The function ϕ defined by ϕ(ω) = τ ln f − J [f ] · ω is then locally constant at any

point where it is finite, so ϕ−1({C}) is open in S for any C ∈ R.

Now if ϕ(ωk) = C, with ωk converging to ω∞, then f(ωk) = exp(C+J[f ]·ωk

τ ).

Passing to the limit, we get that f(ω∞) = exp(C+J[f ]·ω∞
τ ), which gives ϕ(ω∞) = C.

So ϕ−1({C}) is closed.
Since f is not identically zero, there exists C ∈ R such that ϕ−1({C}) �= ∅, and

by connectedness of the sphere, we get ϕ−1({C}) = S, so τ ln f − J [f ] · ω = C.

3.2. LaSalle principle. We give here an adaptation of LaSalle’s invariance prin-
ciple to our PDE framework.

Proposition 3.2 (LaSalle’s invariance principle). Let f0 be a probability measure
on the sphere S. We denote by F∞ the limit of F(f(t)) as t → ∞, where f is the
solution to Smoluchowski equation (3) with initial condition f0.

Then the set E∞ = {f ∈ C∞(S) such that D(f) = 0 and F(f) = F∞} is not
empty.

Furthermore, f(t) converges in any Hs norm to this set of equilibria in the fol-
lowing sense:

lim
t→∞ inf

g∈E∞
‖f(t)− g‖Hs = 0.

Proof. First of all, F(f(t)) is decreasing in time and bounded below by − 1
2 , so F∞

is well defined.
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Let (tn) be an unbounded increasing sequence, and suppose that f(tn) converges
in Hs(S) to f∞ for some s ∈ R. We first remark that f(tn) is uniformly bounded
in Hs+2p(S) (using Theorem 2.4), and then by a simple interpolation estimate we get
that ‖f(tn)− f(tm)‖2

Ḣs+p � ‖f(tn) − f(tm)‖Ḣs‖f(tn)− f(tm)‖Ḣs+2p , and f(tn) also

converges in Hs+p(S). So f∞ is in any Hs(S).
We want to prove that D(f∞) = 0. Supposing this is not the case, we write

D(f) = τ2
∫
S

|∇ωf |2
f

+ J [f ] ·
∫
S

(Id− ω ⊗ ω)f J [f ]− 2τJ [f ] ·
∫
S

∇ωf

= τ2
∫
S

|∇ωf |2
f

+ (1− 2(n− 1)τ)|J [f ]|2 −
∫
S

(ω · J [f ])2f.(35)

Now we take s sufficiently large such that Hs(S) ⊂ L∞(S) ∩H1(S). If f∞ is positive,
then D, as a function from the nonnegative elements ofHs(S) to [0,+∞], is continuous
at the point f∞. In particular since D(f∞) > 0, there exist δ > 0 and M > 0 such
that if ‖f − f∞‖Hs � δ, then we have D(f) � M . We want to show the same result
in the case where f∞ is only nonnegative. We define

Dε(f) = τ2
∫
S

|∇ωf |2
f + ε

+ (1 − 2(n− 1)τ)|J [f ]|2 −
∫
S

(ω · J [f ])2f.

We have by monotone convergence that Dε(f∞) converges to D(f∞) as ε → 0. So
there exists ε > 0 such that Dε(f∞) > 0. Now by continuity of Dε at the point f∞, we
get that there exist δ > 0 and M > 0 such that if ‖f − f∞‖Hs � δ, then Dε(f) � M .
The fact that D(f) � Dε(f) gives the same result as before.

Now since ∂tf is uniformly bounded in Hs (for t � t1 > 0), there exists η > 0
such that if |t− t′| � η, then ‖f(t)− f(t′)‖Hs � δ

2 . We then take N sufficiently large

such that ‖f(tn)− f∞‖Hs � δ
2 for all n � N .

Then we have that for n � N , D(f) � M on [tn, tn + η]. Up to extracting, we
can assume that tn+1 � tn + η, so we have

F(f(tN ))−F(f(tN+p)) =

∫ tN+p

tN

D(f) � pηM.

Since the left term is bounded by F(f(tN ))−F∞, taking p sufficiently large gives the
contradiction.

Now if we suppose that for a given s the distance (in Hs norm) between f(t)
and E∞ does not tend to 0, we get ε > 0 and a sequence tn such that for all g ∈ E∞,
we have ‖f(tn) − g‖Hs � ε. Since f(tn) is bounded in Hs+1(S), by a compact
Sobolev embedding, up to extracting we can assume that f(tn) is converging in Hs(S)
to f∞. By the previous argument, f ∈ C∞(S) and we have D(f∞) = 0. Obviously,
since F(f) is decreasing in time, we have that F(f∞) = F∞. So f∞ belongs to E∞,
and then ‖f(tn)− f∞‖Hs � ε for all n. This is a contradiction.

Since the distance between f(t) and E∞ tends to 0, obviously this set is not
empty.

3.3. Computation of equilibria. Define, for a unit vector Ω ∈ S and κ � 0,
the Fisher–von Mises distribution with concentration parameter κ and orientation Ω
by

(36) MκΩ(ω) =
exp(κω · Ω)∫

S
exp(κ υ · Ω)dυ .
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Note that the denominator depends only on κ. We have that the density of MκΩ is 1,
and the flux is

(37) J [MκΩ] =

∫
S
ω exp(κω · Ω)dω∫
S
exp(κω · Ω)dω = c(κ)Ω,

where

(38) c(κ) =

∫ π

0
cos θ eκ cos θ sinn−2 θ dθ∫ π

0 eκ cos θ sinn−2 θ dθ
.

If f is an equilibrium, τ ln f − J [f ] · ω is constant, and then f = C exp(τ−1J [f ] · ω).
Since f is a probability density function, we get f = MκΩ with κΩ = τ−1J [f ] (in the
case where |J [f ]| = 0, then κ = 0 and we can take any Ω; this is just the uniform
distribution). Finally, with (37) we get J [f ] = c(κ)Ω, which gives the following
compatibility condition:

(39) c(κ) = τκ.

We give the solutions of this equation in a proposition.
Proposition 3.3 (compatibility condition).
• If τ � 1

n , there is only one solution to the compatibility condition: κ = 0. The
only equilibrium is the constant function f = 1.

• If τ < 1
n , the compatibility condition has exactly two solutions: κ = 0, and

one unique positive solution that we will denote κ(τ). Apart from the constant
function f = 1 (the case κ = 0), the equilibria form a manifold of dimen-
sion n−1: the functions of the form f = Mκ(τ)Ω, where Ω ∈ S is an arbitrary
unit vector.

Proof. Let us denote τ̃ (κ) = c(κ)
κ . A simple Taylor expansion gives τ̃(κ) →

κ→0

1
n .

Since the function τ̃ tends to 0 as κ → +∞ (because c(κ) � 1), it is sufficient to prove
that it is decreasing. Indeed, the function is then a one-to-one correspondence from R∗

+

to (0, 1
n ), and the compatibility condition for κ > 0 is exactly solving τ = τ̃ (κ).

But we have (after one integration by parts) that τ̃ ′(κ) = 1
κ (1 − nτ̃ (κ) − c(κ)2),

which, by the following lemma, is negative for κ > 0.
Lemma 3.4. Define β = c(κ)2 +nτ̃(κ)− 1. Then for any κ > 0, we have β > 0.
Proof. Define [γ(cos θ)]κ =

∫ π

0
γ(cos θ) eκ cos θ sinn−2 θ dθ.

Then we have by definition β =
κ[cos θ]2κ+n[cos θ]κ[1]κ−κ[1]2κ

κ[1]2κ
. So we need only show

that the numerator is positive. We will prove in fact that the Taylor expansion of this
term in κ has only positive terms.

We have, if we denote ap = 1
(2p)!

∫ π

0
cos2p θ sinn−2 θ dθ � 0,

[1]κ =

∞∑
p=0

apκ
2p and [cos θ]κ =

∞∑
p=0

(2p+ 2) ap+1κ
2p+1.

Now doing an integration by parts in the definition of ap+1, we get

ap+1 =
2p+ 1

n− 1

(
ap

(2p+ 1)(2p+ 2)
− ap+1

)
,

which gives

(40) (2p+ 2) ap+1 =
ap

2p+ n
.
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We have, for κ > 0,

βκ[1]2κ =
∞∑
k=0

⎛⎝∑
p+q=k−1

(2p+ 2) ap+1(2q + 2) aq+1 +
∑
p+q=k

n(2p+ 2) ap+1aq − apaq

⎞⎠ κ2k+1

=

∞∑
k=0

⎛⎝ ∑
p+q=k,p�1

2p ap
1

2q+naq +
∑

p+q=k

( n
2p+n − 1) apaq

⎞⎠κ2k+1

=

∞∑
k=0

⎛⎝ ∑
p+q=k

2p
(

1
2q+n − 1

2p+n

)
apaq

⎞⎠ κ2k+1

=

∞∑
k=0

⎛⎝ ∑
p+q=k

(
p( 1

2q+n − 1
2p+n ) + q( 1

2p+n − 1
2q+n )

)
apaq

⎞⎠κ2k+1

=

∞∑
k=0

⎛⎝ ∑
p+q=k

2(p−q)2

(2p+n)(2q+n) apaq

⎞⎠κ2k+1.

So we finally get

β =

( ∞∑
p=0

apκ
2p

)−1 ∞∑
k=0

⎛⎝ ∑
p+q=k

2(p−q)2

(2p+n)(2q+n) apaq

⎞⎠κ2k,

which gives that β > 0 when κ > 0.
Remark 3.5. We can do another proof, following an argument of [25], which does

not need to compute β explicitly.
The idea is that we compute τ̃ ′′ = (n − 1) β

κ2 − 2τ̃(τ̃ − β), so we see (except in

the case κ = 0) that if τ̃ ′ = −β
κ = 0, then τ̃ ′′ < 0 (indeed, we will easily see in (46)

that τ̃ −β is positive). For the case κ = 0, we can compute the Taylor expansion of τ̃
up to order 2: τ̃ (κ) = 1

n − 1
n2(n+2)κ

2 +O(κ4). So we have that any critical point of τ̃

is a maximum. Since there is a local maximum at κ = 0, the function is decreasing.
We can have an asymptotic expansion of the order parameter c(κ(τ)) as τ reaches

the critical value 1
n . Indeed, we have that τ − 1

n ∼ − 1
n2(n+2)κ(τ)

2 by the expansion

of τ̃ in the previous remark. So

(41) c(κ(τ)) ∼ 1
nκ(τ) ∼

√
(n+ 2)( 1n − τ) as τ → 1

n .

Proposition 3.6 (minimum of the free energy).
• If τ � 1

n , the minimum of the free energy is 0, reached only by the uniform
distribution. Any solution converges to the uniform distribution in any Hs

norm.
• If τ < 1

n , the minimum of the free energy is negative, reached only by any
nonisotropic equilibrium Mκ(τ)Ω.

Proof. By the LaSalle principle (Proposition 3.2), we have that

min
f∈C∞(S), f>0

F(f) = min
f∈C∞(S), f>0,D(f)=0

F(f).

Indeed, for any positive initial condition f in C∞(S), there exists an equilibrium f∞
such that F(f∞) = F∞ � F(f). This gives

inf
f∈C∞(S), f>0

F(f) = inf
f∈C∞(S), f>0,D(f)=0

F(f).
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Since the set of equilibria is compact (either a single point, or one point and a manifold
homeomorphic to S), this infimum is a minimum.

Furthermore, if f0 is not an equilibrium, then D(f0) > 0, and then F(f(t)) is
decreasing in the neighborhood of t = 0. So the minimum of F cannot be reached
for f0.

In the case τ � 1
n , this gives the result since the only equilibrium is the constant

function 1. By the LaSalle principle, we also get that the solution is converging to
the constant solution in any Hs norm.

In the case τ < 1
n , we have that F(1 + εω · Ω) ∼ 1

n (τ − 1
n )ε

2 for a fixed unit
vector Ω ∈ S, so there exists f0 such that F(f0) < 0. Then the uniform distribution
cannot be a global minimizer. Since F(Mκ(τ)Ω) is independent of Ω, we get that this
value is the minimum.

4. Convergence to equilibrium. In this section, we establish and study the
convergence of the solution to an equilibrium for any initial condition in the three
different regimes, depending on whether τ is greater, less than, or equal to 1

n .

4.1. A new entropy, application to the subcritical case τ > 1
n
. In this

section we derive a convex entropy, which shows global decay to the uniform distri-
bution in the case τ > 1

n .

On Ḣ−n−1
2 (S) we define the norm ‖ · ‖

H̃−n−1
2

by ‖g‖2
H̃−n−1

2

=
∫
S
gΔ̃−1

n−1g, where

the conformal Laplacian Δ̃n−1 is defined by (7). This norm is equivalent to ‖·‖
Ḣ−n−1

2
.

We also define ‖ · ‖
H̃−n−3

2
by ‖g‖2

H̃−n−3
2

=
∫
S
ΔgΔ̃−1

n−1g, and this norm is equivalent

to the ‖ · ‖
Ḣ−n−3

2
norm.

Taking h = Δ̃−1
n−1g in the weak formulation (13) and using the last part of

Lemma 2.1, we obtain a conservation relation:

(42)
1

2

d

dt
‖g‖2

H̃−n−1
2

= −τ‖g‖2
H̃−n−3

2
+

1

(n− 2)!
|J [g]|2.

We remark that this is a conservation law between quadratic quantities, as would be
the case for a linear equation.

Since the component of g on the space of spherical harmonics of degree 1 is
given by nω · J [g], a simple computation shows that this component’s contribu-
tion to ‖g‖2

H̃−n−1
2

is equal to n
(n−1)! |J [g]|2. Then the last term of the conservation

relation (42) is bounded by n−1
n ‖g‖2

H̃−n−1
2

. Together with the Poincaré inequal-

ity ‖g‖2
H̃−n−3

2

� (n− 1)‖g‖2
H̃−n−1

2

, we get the following estimate:

1

2

d

dt
‖g‖2

H̃−n−1
2

� (n− 1)

(
1

n
− τ

)
‖g‖2

H̃−n−1
2

.

This gives in the case τ > 1
n an exponential decay of rate (n − 1)(τ − 1

n ) for the
norm ‖ · ‖

H̃− n−1
2

:

‖g‖
H̃−n−1

2
� ‖g0‖

H̃−n−1
2

exp(−(n− 1)(τ − 1
n )t).

In the general case, if f0 ∈ Hs(S) with s > −n−1
2 , we use the estimate (31):

1

2

d

dt
‖g‖2

Ḣs+τ‖g‖2
Ḣs+1 � C0

(N + 1)(N + n− 1)
‖g‖2

Ḣs+1+(n−1)s|J [g]|2+C0‖fN−1‖2
Ḣs .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

810 AMIC FROUVELLE AND JIAN-GUO LIU

Now we have, since f is a probability measure,

(n−1)s|J [g]|2+C0‖fN−1‖2
Ḣs � KN‖fN−1‖2

H̃−n−1
2

� KN‖g0‖2
H̃− n−1

2
e−2(n−1)(τ− 1

n )t,

the first inequality being the equivalence between norms in finite dimension. For
any ε < 1

n , taking N sufficiently large, together with the Poincaré inequality we get

1

2

d

dt
‖g‖2

Ḣs + (n− 1)(τ − ε)‖g‖2
Ḣs � C‖g0‖2

H̃−n−1
2

e−2(n−1)(τ− 1
n )t,

where the constant C depends only on s.
Solving this equation, we get

‖g‖2
Ḣs � ‖g0‖2Ḣse

−2(n−1)(τ−ε)t + C
(n−1)( 1

n−ε)
‖g0‖2

H̃− n−1
2

e−2(n−1)(τ− 1
n )t.

Taking, for example, ε = 1
2n , since s > −n−1

2 , we get

‖g‖2
Ḣs � (1 + 2C̃ n

n−1 )‖g0‖2Ḣse
−2(n−1)(τ− 1

n )t.

In summary, we have the following theorem.
Theorem 4.1 (new entropy). For a given probability density function f , we de-

fine the quantities H(f) = ‖f−1‖2
H̃−n−1

2

and D̃(f) = 2τ‖f−1‖2
H̃−n−3

2

− 2
(n−2)! |J [f ]|2.

We have the following conservation relation for any solution f of Smoluchowski
equation (3):

(43)
d

dt
H(f) + D̃(f) = 0.

When τ � 1
n , the term D̃(f) is nonnegative, so the new entropy H(f) is decreasing

in time.
Furthermore, if τ > 1

n , then in any Sobolev space Hs(S) with s � −n−1
2 , we have

global exponential decay of the solution to the uniform distribution, with the rate given
by (n− 1)(τ − 1

n ).
More precisely, there is a constant C depending only on s such that for any initial

condition f0 ∈ Hs(S), we have

‖f − 1‖Hs � C‖f0 − 1‖Hse−(n−1)(τ− 1
n )t.

Let us make a small remark here. Actually this conservation relation is true for
any solution, without any positivity condition. We need only that the mean of f
be 1. Since we have existence and uniqueness in small time for any initial condition,
with the same instantaneous regularity results (valid only for a short time existence),

we get that the solution belongs to H−n−1
2 (S) at some time. But the conservation

relation then gives that we have a global solution. So we can state a stronger theorem
of existence and uniqueness.

Theorem 4.2. Given an initial condition f0 in Hs(S) (not necessarily nonnega-
tive), there exists a unique weak solution f of (3) such that f(0) = f0. This solution
is global in time (Definition 2.2 is valid for any time T > 0). Moreover, f is a classical
solution belonging to C∞((0,+∞)×S) (and even analytic in space; see section A.2).

Remark 4.3. In this case, we do not have any uniform bound on Hs(S), and we
can derive the same existence theorem for the case τ = 0 (see Remark 2.11), but only
for the case s � −n−1

2 (which does not include all radon signed measures).
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Another remark is that if we change the sign in front of the alignment term in
Smoluchowski equation (3) (taking K(ω, ω̄) = ω · ω̄, every particle tends to go away
from the mean direction), then we can derive a conservation relation in the same

way. But here the “dissipation term” is D̃(f) = 2τ‖f − 1‖2
H̃−n−3

2

+ 2
(n−2)! |J [f ]|2 �

2τ(n − 1)H(f), without any condition on τ > 0. So in any Sobolev space Hs(S),
with s > −n−1

2 we have global exponential decay of the solution to the uniform
distribution, with rate (n− 1)τ .

4.2. Study of the supercritical case τ < 1
n
. In this section, we fix τ < 1

n
and we study the behavior of a solution as t → +∞. We will write κ for κ(τ) and c
for c(κ(τ)). We first establish that the limit set of equilibria E∞ given by the LaSalle
principle (Proposition 3.2) depends only on the fact that J [f0] is zero or not.

Proposition 4.4. If J [f0] = 0, then E∞ is reduced to the uniform distribution.
Equation (3) becomes the heat equation. We have exponential decay to the uniform
distribution with rate 2nτ in any Hs(S).

If J [f0] �= 0, then J [f(t)] �= 0, for all t > 0. The limit set E∞ = {MκΩ,Ω ∈ S}
consists of all the nonisotropic equilibria. Furthermore, we have for any s ∈ R,

(44) lim
t→∞ ‖f(t)−MκΩ(t)‖Hs = 0,

where Ω(t) = J[f(t)]
|J[f(t)]| is the mean direction of f(t).

Proof. First of all, we write the equation for J [f ], multiplying (3) by ω and
integrating on the sphere. We get

d

dt
J [f ] = −τ(n− 1)J [f ] +

(∫
S

(Id− ω ⊗ ω) f dω

)
J [f ]

=

(
(1− (n− 1)τ)Id−

∫
S

ω ⊗ ω f

)
J [f ],(45)

which can be viewed as a first-order linear ODE of the form d
dtJ [f ] = M(t)J [f ].

The matrix M is a smooth function of time, so we have a global unique solution.
Consequently, if J [f(t0)] = 0 for t0 � 0, then we have J [f(t)] = 0 for all t � 0 and
(3) reduces to the heat equation. The distribution f has no component on the first
eigenspace of the Laplace–Beltrami operator, and the second eigenvalue is 2n, so we
have exponential decay with rate 2nτ in any Hs norm.

Now we suppose that J [f0] �= 0, so by the previous argument we have J [f(t)] �= 0
for all t � 0. There are two possibilities for the limiting set: either the uniform
distribution, or the set {MκΩ,Ω ∈ S} (by Proposition 3.6, they do not have the same
level of free energy).

In the first case, by the LaSalle principle, f(t) converges to the uniform distribu-
tion. Then the matrixM(t) = (1−(n−1)τ)Id−∫

S
ω⊗ω f converges to (n−1)( 1n−τ)Id.

Using the ODE for J [f ], we get

1

2

d

dt
|J [f ]|2 = J [f ] ·M(t)J [f ] �

(
(n− 1)

(
1

n
− τ

)
− ε

)
|J [f ]|2

for t sufficiently large. Taking ε sufficiently small, we get that |J [f ]| tends to infinity,
which is a contradiction.

So we have that E∞ = {MκΩ,Ω ∈ S}. Now suppose that ‖f(t)−MκΩ(t)‖Hs does
not tend to 0. We take tn tending to infinity such that ‖f(tn)−MκΩ(tn)‖Hs � ε > 0.
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By our LaSalle principle, there exists Ωn ∈ S such that ‖f(tn) −MκΩn‖Hs → 0. Up
to extracting, we can suppose that Ωn → Ω∞ ∈ S, so f(tn) → MκΩ∞ in Hs(S). In
particular we have that J [f(tn)] → c(κ)Ω∞, and then Ω(tn) → Ω∞. Then MκΩ(tn)

converges to MκΩ∞ , giving that ‖f(tn) − MκΩ(tn)‖Hs → 0, which is a contradic-
tion.

Now we focus on the case J [f0] �= 0. We define Ω(t) as in the previous proposi-
tion, and we will expand the solution around MκΩ(t). We first show the convergence
in L2(S) to a given equilibrium, with exponential rate, assuming conditions on the
initial data.

Proposition 4.5. There exists an “asymptotic rate” r∞(τ) > 0 satisfying the
following property.

Suppose that ‖f(t)−MκΩ(t)‖Hs is uniformly bounded on [t0,+∞) by a constant K,

with s > 3(n−1)
2 . Then for all r < r∞(τ), there exist Ω∞ ∈ S and δ, C > 0 such that

if ‖f(t0)−MκΩ(t0)‖L2 � δ, we have

‖f(t)−MκΩ∞‖L2 � C‖f(t0)−MκΩ(t0)‖L2e−r(t−t0).

The constants δ and C depend only on τ , s, K, and r. Moreover, as τ → 1
n , we have

that r∞(τ) � 2(n− 1)( 1n − τ) +O(( 1
n − τ)

3
2 ).

Proof. We first introduce some notation. When there is no confusion, we write
just Ω for Ω(t), and we will always assume t � t0. We write cos θ = ω ·Ω. We denote
by 〈·〉MκΩ the mean of a function against the probability measure MκΩ.

We have the following identities (we recall, by Lemma 3.4, that β = c2 + nτ − 1
is positive):

〈ω〉MκΩ = 〈cos θ〉MκΩΩ = cΩ,

〈cos2 θ〉MκΩ = 1− (n− 1)τ,

〈(cos θ − c)2〉MκΩ = 1− (n− 1)τ − c2 = τ − β > 0.(46)

We can write f = (1 + h)MκΩ; then we have 〈h〉MκΩ = 0. Since Ω is the direction
of J [f ] = 〈(1 + h)ω〉MκΩ , we get that 〈hω〉MκΩ = 〈h cos θ〉MκΩΩ.

So we can do an expansion of the free energy and its dissipation in terms of h.
Since we know that MκΩ(t) is a critical point of F , we already know that the expansion
of F((1 + h)MκΩ) − F(MκΩ) will contain no term of order 0 or 1 in h. We get,
using (32),

F((1 + h)MκΩ)−F(MκΩ) = τ 1
2 〈h2〉MκΩ − 1

2 |〈hω〉MκΩ |2 +O(‖h‖3∞).

Using Sobolev embedding and interpolation, we have (writing C for a generic constant,
depending only on τ , s, and K)

‖f −MκΩ‖∞ � C‖f −MκΩ‖
H

n−1
2

� C‖f −MκΩ‖1−
n−1
2s

L2 K
n−1
2s .

So since 1 − n−1
2s > 2

3 and f − MκΩ = hMκΩ, with MκΩ uniformly bounded below
and above, we get that ‖h‖3∞ = o(〈h2〉MκΩ) (and, more precisely, for any ε > 0, there
exists η > 0 depending only on ε, τ , s, and K such that ‖h‖3∞ � ε〈h2〉MκΩ as soon
as 〈h2〉MκΩ � η). We get

(47) F(f)−F(MκΩ) =
1
2 [τ〈h2〉MκΩ − 〈h cos θ〉2MκΩ

] + o(〈h2〉MκΩ).
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We use the definition (33) of D(f):

D(f) = 〈(1 + h)|∇(τ ln(MκΩ(1 + h))− 〈(1 + h)ω〉MκΩ · ω)|2〉MκΩ

= 〈(1 + h)|∇(τ ln(1 + h)− 〈h cos θ〉MκΩ cos θ)|2〉MκΩ

� (1− ‖h‖∞)〈|∇(τ ln(1 + h)− 〈h cos θ〉MκΩ cos θ)|2〉MκΩ .

Now we can derive a Poincaré inequality of the form

〈|∇g|2〉MκΩ � Λκ〈(g − 〈g〉MκΩ)
2〉MκΩ .

Indeed, we use the fact that MκΩ is positive and bounded:

〈|∇g|2〉MκΩ � minMκΩ

∫
S

|∇g|2

� minMκΩ(n− 1)

∫
S

(g − ∫
S
g)2

� minMκΩ

maxMκΩ
(n− 1)〈(g − ∫

S
g)2〉MκΩ

� (n− 1)e−2κ〈(g − 〈g〉MκΩ)
2〉MκΩ .(48)

Actually this is a rough estimate; we have here Λκ � (n − 1)e−2κ, but a more
precise study of Λκ can be done using separation of variables and is given in the
appendix of [6]. The problem then reduces to finding the smallest eigenvalue of a
one-dimensional Sturm–Liouville problem, but even in that case, we did not manage
to find a better estimate for now.

So we finally get

D(f) � (1− ‖h‖∞)Λκ〈[τ ln(1 + h)− τ〈ln(1 + h)〉MκΩ− 〈h cos θ〉MκΩ (cos θ − c)]2〉MκΩ

� (1− ‖h‖∞)Λκ〈[τh− 〈h cos θ〉MκΩ(cos θ − c) +O(‖h‖2∞)]2〉MκΩ

� (1− ‖h‖∞)Λκ(τ
2〈h2〉MκΩ − (β + τ)〈h cos θ〉2MκΩ

) +O(‖h‖3∞).

With the same argument as before, we get that

(49) D(f) � Λκ(τ
2〈h2〉MκΩ − (β + τ)〈h cos θ〉2MκΩ

) + o(〈h2〉MκΩ).

The goal is now to express the bounds in (49) and (47) as the sum of positive terms.
Indeed, we expect to have a Grönwall inequality which will give a rate of convergence.

We set α = 1
τ−β 〈h cos θ〉MκΩ , and we write h = α(cos θ − c) + g. Using (46), we

have that α is well defined since τ − β > 0 and we get 〈g〉MκΩ = 0 and 〈gω〉MκΩ = 0.
Plugging 〈h2〉MκΩ = (τ − β)α2 + 〈g2〉MκΩ into (47) and (49) gives

F(f)−F(MκΩ) =
1
2 [β(τ − β)α2 + τ〈g2〉MκΩ ] + o(〈h2〉MκΩ),(50)

D(f) � Λκ(β
2(τ − β)α2 + τ2〈g2〉MκΩ) + o(〈h2〉MκΩ)

� Λκβ(β(τ − β)α2 + τ〈g2〉MκΩ) + o(〈h2〉MκΩ).

So for all r < Λκβ, if 〈h2〉MκΩ is sufficiently small, we have D(f) � r(F(f)−F(MκΩ)).
Using the conservation relation (43), there exists δ0 > 0 (depending only on τ , s, K,
and r) such that if ‖f(t)−MκΩ(t)‖L2 � δ0, we have

d

dt
[F(f)−F(MκΩ)] = −D(f) � −2r[F(f)−F(MκΩ)].
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Then we obtain, for all T , such that ‖f −MκΩ‖L2 � δ0 on [t0, T ],

F(f(T ))−F(MκΩ(T )) � [F(f(t0))−F(MκΩ(t0))]e
−2r(T−t0),

and then, using the estimate (50), we get that for t ∈ [t0, T ],

(51) ‖f −MκΩ‖L2 � C0‖f(t0)−MκΩ(t0)‖L2e−r(t−t0).

So if we take δ < δ0
C0

� δ0 and we start with ‖f(t0) − MκΩ(t0)‖L2 � δ, we get
that ‖f −MκΩ‖L2 � δ0 on [t0, T ] for all T � t0. Otherwise, the largest of such a T
would satisfy δ0 = ‖f(T ) − MκΩ(T )‖L2 � Cδe−r(T−t0) < δ0. So the inequality (51)
holds for all t ∈ [t0,+∞).

It remains to prove that Ω(t) converges to some Ω∞ if we want to have strong
convergence to a given steady state. This is possible using the ODE satisfied by Ω.

Indeed, we have J [f ] = cΩ+ 〈hω〉MκΩ = (c+ α(τ − β))Ω, and then

d

dt
J [f ] = (c+ α(τ − β))

d

dt
Ω + (τ − β)Ω

d

dt
α.

So applying Id−Ω⊗Ω to the ODE (45) gives an ODE for Ω in terms of α and g. We
get

(Id− Ω⊗ Ω)
d

dt
J [f ] = −(Id− Ω⊗ Ω)

(∫
S

ω ⊗ ω f dω

)
J [f ]

= −(c+ α(τ − β))(Id − Ω⊗ Ω)[〈h cos θ ω〉MκΩ + 〈cos θ ω〉MκΩ ].

Since 〈(cos θ − c) cos θ ω〉MκΩ and 〈cos θ ω〉MκΩ are parallel to Ω, we get that

(c+ α(τ − β))
dΩ

dt
= −(c+ α(τ − β))(Id− Ω⊗ Ω)〈g cos θ ω〉MκΩ .

Since (c+ α(τ − β)) is the norm of J [f ], it is never zero, and we get (the notation C
standing for a generic constant depending only on r, s, τ , and K)∣∣∣∣dΩdt

∣∣∣∣ � C
√

〈g2〉MκΩ � C‖f −MκΩ‖L2 .

So we have exponential decay of dΩ
dt with rate r; in particular, Ω is converging to

some Ω∞ ∈ S. More precisely,

|Ω(t)− Ω∞| �
∫ ∞

t

|dΩdt |dt � C‖f(t0)−MκΩ(t0)‖L2e−r(t−t0).

Now we have that ‖MκΩ(t) − MκΩ∞‖L2 � C|Ω(t) − Ω∞| (the function Ω 
→ eκω·Ω

from S to R is globally Lipschitz with a constant independent of ω ∈ S). So we get
the final estimation:

‖f−MκΩ∞‖L2 � ‖f−MκΩ‖L2+‖MκΩ(t)−MκΩ∞‖L2 � C‖f(t0)−MκΩ(t0)‖L2e−r(t−t0).

So the proposition is true with r∞(τ) = Λκβ > 0. By the estimate (48), we know
that Λκ � (n− 1)e−2κ. By the expansions of c and κ as τ → 1

n given in (41), we get

that r∞(τ) � 2(n− 1)( 1n − τ) +O(( 1
n − τ)

3
2 ).
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By Proposition 4.4, we have that f(t) −MκΩ(t) tends to zero in any Hs(S). So
the hypotheses of Proposition 4.5, for any r < r∞(τ), are satisfied for some t0 > 0.

Once more, by interpolation and uniform boundedness on [t0,+∞) of the Hp

norm, we have

‖f −MκΩ∞‖Hs � C‖f −MκΩ∞‖1−
s
p

L2 ‖f −MκΩ∞‖
s
p

Hp

� C̃‖f(t0 −MκΩ(t0)‖
1− s

p

L2 e−r(1− s
p )(t−t0),

so taking p sufficiently large, we also get exponential convergence for the Hs norm,
with rate r(1 − δ) for any δ > 0.

Finally, we have that for all r < r∞(τ) and s, there exist some time t0 and C > 0
such that ‖f −MκΩ∞‖Hs � Ce−rt for t � t0. We can even get rid of the constant C
since for any r̃ < r and t sufficiently large, Ce−rt � e−r̃t.

4.3. Study of the critical case τ = 1
n
. For any τ ∈ (0,+∞) \ { 1

n}, we have
exponential convergence to some equilibrium. However, the rate of convergence tends
to 0 when τ is close to 1

n (in the case where J [f0] �= 0). So we do not expect to have
a similar rate of convergence in the critical case.

First of all, we know by Proposition 3.6 that the solution converges (in anyHs(S))
to the uniform distribution as time goes to infinity. The goal of this section is to
estimate the speed of convergence to this equilibrium.

Proposition 4.6. Suppose that ‖f(t)− 1‖Hs is uniformly bounded on [t0,+∞)

by a constant K, with s > 7(n−1)
2 .

Then for all C > 1, there exists δ > 0 such that if ‖f(t0) − 1‖L2 � δ, we have,
for t � t0,

‖f(t)− 1‖L2 � C√
1√

2(n+2)‖f(t0)−1‖L2

+ 2(n−1)
n(n+2) (t− t0)

.

The constant δ depends only on τ , s, K, and C.
Proof. As in the previous section, we work on [t0,+∞). We write f = 1+ h, and

as in the previous case, we suppose that J [f0] �= 0. By the same argument used in
Proposition 4.4, we have that J [f(t)] �= 0 for all t > 0, so we define Ω(t) as the unit

vector J[f(t)]
|J[f(t)]| . Similarly we denote 〈·〉 for the mean of a function on the unit sphere

and cos θ for ω · Ω.
We have 〈h〉 = 0. Since Ω is the direction of J [f ] = 〈(1 + h)ω〉 = 〈hω〉, we get

that 〈hω〉 = 〈h cos θ〉Ω.
We perform an expansion of the free energy and its dissipation in terms of h. We

get, using (32) and taking τ = 1
n ,

F(1 + h) = 1
n (

1
2 〈h2〉 − 1

6 〈h3〉+ 1
12 〈h4〉)− 1

2 〈h cos θ〉2 +O(‖h‖5∞).

Now we write α = n〈h cos θ〉 and we define

(52) g = h− α cos θ − 1
2α

2(cos2 θ − 1
n )− 1

6α
3(cos3 θ − 3

n+2 cos θ).

We have 〈cos4 θ〉 = 3
n(n+2) (we have used the formula (40) to compute 4!a2

a0
= 〈cos4 θ〉).

Since we have 〈cos3 θ〉 = 〈cos θ〉 = 0 and 〈cos2 θ〉 = 1
n , we get 〈g〉 = 〈g cos θ〉 = 0.

We will see that the terms of order 2 in g will not vanish in the expansion of the free
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energy and the dissipation term. But we will need to expand the free energy in α up
to order 4 and the dissipation term in α up to order 6. We have

1
2 〈h2〉 = 1

2 〈g2〉+ 1
2nα

2 + n−1
4n2(n+2)α

4 + 1
2α

2〈g cos2 θ〉+O(α3‖g‖∞ + α5),(53)

− 1
6 〈h3〉 = − n−1

2n2(n+2)α
4 − 1

2α
2〈g cos2 θ〉+O(‖g‖3∞ + α‖g‖2∞ + α3‖g‖∞ + α5),

1
12 〈h4〉 = 1

4n(n+2)α
4 +O(‖g‖4∞ + α‖g‖3∞ + α2‖g‖2∞ + α3‖g‖∞ + α5).

We finally get

(54) F(1 + h) = 1
2n 〈g2〉+ 1

4n3(n+2)α
4 +O(‖g‖3∞ + α‖g‖2∞ + α3‖g‖∞ + α5).

Using the inequality apbq � sa
p
s +(1−s)b

q
1−s for s ∈ (0, 1), with a = α and b = ‖g‖∞,

we get that α‖g‖2∞ � 1
5α

5 + 4
5‖g‖

2+1
2∞ and α3‖g‖∞ � 3

5α
5 + 2

5‖g‖
2+ 1

2∞ .
By Sobolev embedding and interpolation, as in the previous section, we have

(55) ‖g‖∞ � C‖g‖1−
n−1
2s

L2 ‖g‖
n−1
2s

Hs ,

with 1− n−1
2s > 6

7 .
Since α is controlled by ‖h‖Hs , using the definition (52) of g, we have a bound

for ‖g‖Hs on [t0,+∞), depending only on s and K. We finally get ‖g‖2+ 1
2∞ � C〈g2〉μ,

with μ > 1
2 (2 +

1
2 )

6
7 > 1.

So using (53) and (54), we get that for any ε > 0, there exists δ > 0 such that
if ‖h‖L2 � δ, we have

(1− ε)(〈g2〉+ 1
nα

2) � 〈h2〉 � (1 + ε)(〈g2〉+ 1
nα

2),

(1− ε)( 1
2n 〈g2〉+ 1

4n3(n+2)α
4) � F(1 + h) � 1+ε

4n3(n+2) (2n
2(n+ 2)〈g2〉+ α4).(56)

From that, up to taking a smaller δ, we obtain

(57) 1−ε
1+ε 2nF(1 + h) � 〈h2〉 � 1+ε√

1−ε
2
√
n(n+ 2)F(1 + h).

We now estimate the dissipation term. We use the definition (33) of D(f) and the
Poincaré inequality to get

D(f) = 〈(1 + h)|∇( 1
n ln(1 + h)− 〈(1 + h)ω〉 · ω)|2〉

= 〈(1 + h)|∇( 1
n ln(1 + h)− 〈h cos θ〉 cos θ)|2〉

� n−1
n2 (1− ‖h‖∞)〈[ln(1 + h)− 〈ln(1 + h)〉 − n〈h cos θ〉 cos θ︸ ︷︷ ︸

S(h)

]2〉.(58)

We have

S(h) = ln(1 + h)− 〈ln(1 + h)〉 − n〈h cos θ〉 cos θ
= h− 〈h〉 − α cos θ − 1

2 (h
2 − 〈h2〉) + 1

3 (h
3 − 〈h3〉) +O(‖h‖4).

We compute

h− 〈h〉 − α cos θ = g + 1
2α

2(cos2 θ − 1
n ) +

1
6α

3(cos3 θ − 3
n+2 cos θ),

− 1
2 (h

2 − 〈h2〉) = − 1
2 (α

2 + α3 cos θ)(cos2 θ − 1
n ) +O(‖g‖2 + α‖g‖∞ + α4),

1
3 (h

3 − 〈h3〉) = 1
3α

3 cos3 θ +O(‖g‖3∞ + α‖g‖2∞ + α2‖g‖∞ + α4).
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So

〈S(h)2〉 = 〈[g + 1
6α

3( 3n − 3
n+2 ) cos θ)]

2〉+ O(‖g‖3 + α‖g‖2 + α4‖g‖∞ + α7)

= 〈g2〉+ 1
n3(n+2)2α

6 +O(‖g‖3∞ + α‖g‖2∞ + α4‖g‖∞ + α7).(59)

As before, we get that α‖g‖2∞ � 1
7α

7 + 6
7‖g‖

2+ 1
3∞ and α4‖g‖∞ � 4

7α
7 + 3

7‖g‖
2+ 1

3∞ .

Using (55), we get ‖g‖2+ 1
3∞ � C〈g2〉μ, with μ > 1

2 (2+
1
3 )

6
7 = 1. So using (58) and (59),

up to taking a smaller δ, we have, for ‖h‖L2 � δ,

D(f) � (1− ε)n−1
n2 (〈g2〉+ 1

n3(n+2)2α
6).

Now for any C,C′ > 0, if we take α and g sufficiently small (so again up to taking a

smaller δ), we have that C〈g2〉+ α6 � (C′〈g2〉+ α4)
3
2 . So we get

D(f) � (1 − ε) n−1
n5(n+2)2 (2n

2(n+ 2)〈g2〉+ α4)
3
2 .

Putting this together with (56) and the conservation relation (43), we get that for
any 0 < ε < 1, there exists δ0 > 0 such that, as soon as ‖h‖L2 � δ0, we have

d

dt
F(f) = −D(f) � − 8(n− 1)(1− ε)

(1 + ε)
3
2

√
n(n+ 2)

[F(f)]
3
2 .

Then we obtain, for all T such that ‖h‖L2 � δ0 on [t0, T ],

(60) F(f(T ))−
1
2 � F(f(t0))

− 1
2 + 4(n−1)(1−ε)

(1+ε)
3
2
√

n(n+2)
(t− t0).

Then, using (57), we get that for t ∈ [t0, T ],

‖h‖−2
L2 �

√
1−ε

(1+ε) 2
√

n(n+2)

[√
2n(1−ε)

1+ε ‖h(t0)‖−1
L2 + 4(n−1)(1−ε)

(1+ε)
3
2
√

n(n+2)
(t− t0)

]
.

We write C = (1+ε)
5
4

(1−ε)
3
4
(a one-to-one correspondence between 0 < ε < 1 and C > 1),

and we get

(61) ‖h‖L2 � C

[
1√

2(n+2)‖h(t0)‖L2

+ 2(n−1)
n(n+2) (t− t0)

]− 1
2

.

So if we take δ < min(δ0,
1

C2
√

2(n+2)
δ20) and ‖h(t0)‖L2 � δ, we get that ‖h‖L2 � δ0

on [t0, T ] for all T � t0. Otherwise, the largest of such a T would satisfy

δ0 = ‖h(T )‖L2 � C

[
1√

2(n+2)δ

]− 1
2

< δ0.

So the inequality (61) holds for all t ∈ [t0,+∞), which ends the proof.
With this proposition, since f tends to the uniform distribution in any Hs(S), we

get that for any r < 2(n−1)
n(n+2) , there exists t0 such that we have ‖f(t)− 1‖L2 � 1√

r(t−t0)

for t � t0. We can even get rid of the t0 in this inequality since for any r < r̃ < 2(n−1)
n(n+2) ,

for t sufficiently large, we have 1√
r̃(t−t0)

� 1√
rt
.
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As in the previous section, using interpolation to deal with the other Sobolev
norms of the solution would lead, for any η > 0 and t sufficiently large, to an inequality
of the form ‖f(t)− 1‖Hp � Cηt

− 1
2+η. But we can actually do slightly better. Indeed,

we have, following the notation of the proof and using (52),

‖h‖Hs � |α|‖ cos θ‖Hp + C2α
2 + C3|α|3 + ‖g‖Hp .

We have ‖ cos θ‖Hp = (n − 1)
p
2 . We take t0 > 0 satisfying the conditions of the

proposition and such that ‖h‖L2 � δ. We have that g is uniformly bounded in
any Hp(S), and so by interpolation, we have ‖g‖Hs � Cη‖g‖1−η

L2 for any η > 0. Now
using (60) and (56), we get

( 1
2n 〈g2〉+ 1

4n3(n+2)α
4)−

1
2 � 4(n−1)(1−ε)

3
2

(1+ε)
3
2
√

n(n+2)
(t− t0),

which gives ‖g‖L2 = O(t−1) and α2 � (1+ε)
3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

. So finally, for any η > 0,

we have that ‖h‖Hp � (n− 1)
p
2

√
(1+ε)

3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

+O(t−1+η). This gives that there

exists t1 � t0 such that for t � t1, we have ‖h‖Hp � (1+ε)(n−1)
p
2

√
(1+ε)

3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

.

This is true for any ε > 0. In conclusion, we have that for any r < 2
n(n−1)p−1(n+2) ,

there exists t1 such that for t � t1, we have ‖f(t)− 1‖Hp � 1√
rt
.

4.4. Summary. In summary we can state the following theorem.
Theorem 4.7 (convergence to equilibrium). Suppose f0 is a probability measure

belonging to Hs(S) (this is always the case for some s < −n−1
2 ).

Then there exists a unique weak solution f to Smoluchowski equation (3) satisfying
the initial condition f(0) = f0.

Furthermore, this is a classical solution, positive for all time t > 0 and belonging
to C∞((0,+∞)× S).

If J [f0] �= 0, then we have the following three cases, depending on τ :
• If τ > 1

n , then f converges exponentially fast to the uniform distribution, with
global rate (n− 1)(τ − 1

n ) in any Hp norm.
More precisely, for all t0 > 0, there exists a constant C > 0 depending only
on t0, s, p, n, and τ such that for all t � t0, we have

‖f(t)− 1‖Hp � C‖f0‖Hse−(n−1)(τ− 1
n )t.

• If τ < 1
n , then there exists Ω ∈ S such that f converges exponentially fast

to MκΩ, with asymptotic rate r∞(τ) > 0 in any Hp norm.
More precisely, for all r < r∞(τ), there exists t0 > 0 (depending on f0) such
that for all t > t0, we have

‖f(t)−MκΩ‖Hp � e−rt.

When τ is close to 1
n we have that r∞(τ) ∼ 2(n− 1)( 1n − τ).

• If τ = 1
n , then f converges to the uniform distribution in any Hp norm, with

asymptotic rate

√
n(n−1)p−1(n+2)

2t .
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More precisely, for all r < 2
n(n−1)p−1(n+2) , there exists t0 > 0 (depending

on f0) such that for all t > t0, we have

‖f(t)− 1‖Hp � 1√
rt
.

If J [f0] = 0, then the equation reduces to the heat equation on the sphere, so f
converges to the uniform distribution exponentially with global rate 2nτ in any Hp

norm.
For the subcritical case τ > 1

n , we used Theorem 4.1. In the case where p < −n−1
2 ,

a simple embedding gives ‖f(t)− 1‖Hp � ‖f(t)− 1‖
H−n−1

2
, so we need only show the

result for p � −n−1
2 . We get

‖f − 1‖2Hp � C‖f(t0)− 1‖Hpe−(n−1)(τ− 1
n )(t−t0) � C‖f(t0)‖Hpe−(n−1)(τ− 1

n )(t−t0).

The last inequality comes from the fact that f(t0) is a probability density function,
so f(t0)− 1 is the orthogonal projection of f(t0) on the space of mean zero functions.
Using Proposition 2.9, we get ‖f(t0)‖Hp � Ct0‖f0‖Hs in the case p � s. Otherwise
we use just a simple embedding to first get ‖f(t0)‖Hp � ‖f(t0)‖Hs and then by the
same proposition ‖f(t0)‖Hp � C‖f0‖Hs .

Then the results in the case τ < 1
n and τ = 1

n are a summary of the conclusions
of the two previous subsections. However, although it gives a clear understanding of
how fast the solution converges to the equilibrium, in some sense, this summary is
not as accurate as Propositions 4.5 and 4.6, which give a kind of stability: starting
close to an equilibrium, the solution stays close.

5. Conclusion. In this paper, we have investigated all the possible dynamics
in large time for the Smoluchowski equation (3) with dipolar potential. We have
obtained a rate of convergence towards the equilibrium given any initial condition
and any noise parameter τ > 0 for any dimension n � 2.

The rate of convergence to the anisotropic steady state, in the case τ < 1
n ,

depends on a Poincaré constant which does not seem easy to estimate. A better
knowledge of the behavior of this constant, for example as the noise parameter τ
tends to zero, would be useful for understanding the limiting case τ = 0, where
we have existence and uniqueness of the solution. In this limit, the steady states
are given by the sum of two antipodal Dirac masses (1 − α)δΩ + αδ−Ω with Ω ∈ S

and 0 � α � 1
2 . We conjecture that if the initial condition is continuous (and with

nonzero initial momentum), then the solution converges to one of these steady states,
with α = 0.

It should also be possible to get the same kind of rates for the Maier–Saupe
potential, but there the classification of the initial conditions leading to a given type
of equilibria is much more difficult, in particular in the case where two types of
equilibria are stable.

Appendix A.

A.1. Using the spherical harmonics. For the following we will use the spher-
ical harmonics, so we recall some preliminaries results. We fix n � 2 and work on R

n

and its unit sphere Sn−1.
Definition A.1. A spherical harmonic of degree � on Sn−1 is the restriction

to Sn−1 of a homogeneous polynomial of degree � in n variables (seen as a func-
tion Rn → R) which is a harmonic function (a function P such that ΔP = 0, where Δ
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is the usual Laplace operator in Rn). We denote by H(n)
� the set of spherical harmonics

of degree � on Sn−1 (including 0, so they are vector spaces).
We know that the space of homogeneous polynomials of degree � in n variables

has dimension
(
n+�−1
n−1

)
(the number of n-tuples (i1, . . . , in) of sum �). Writing an

arbitrary homogeneous polynomial P of degree � under the form P =
∑�

i=0 Q�−iX
i
n,

with the polynomials Qi being homogeneous of degree i in the first n − 1 variables,
and imposing that P be a harmonic function gives the following conditions (taking
the term in X i−2

n ) for i ∈ �0, � − 2�: ΔQ�−i + (i + 1)(i + 2)Q�−i−2 = 0. Finally, the
polynomial P is determined only by the polynomials Q� and Q�−1 in n− 1 variables
of respective degrees � and � − 1. This gives the dimension of the space of spherical
harmonics.

Proposition A.2. The dimension of H(n)
� is given by

k
(n)
� =

(
n+�−2
n−2

)
+

(
n+�−3
n−2

)
=

(
n+�−1
n−1

)− (
n+�−3
n−1

)
.

The second expression comes from two successive applications of Pascal’s triangle
rule and will be useful in the following. It can also be seen by the following property:1

every homogeneous polynomial P of degree � can be decomposed in a unique way
as H+ |X |2Q, where H is harmonic of degree � and Q is homogeneous of degree �−2.
Iterating this decomposition, we get

P = H� + |X |2H�−2 + |X |4H�−4 + · · ·+
{
|X |�H0, � even,

|X |�−1H1, � odd,

where the polynomials Hi are harmonic of degree i. This shows that any restriction of
a polynomial on the sphere is equal to a sum of spherical harmonics (the terms |X |2i
are constant when restricted to the sphere). This gives, with the Stone–Weierstrass
theorem, that the sums of spherical harmonics are dense in L2(Sn−1) (since they
are dense in the continuous functions). Together with the radial decomposition of
the Laplacian Δ = 1

rn−1 ∂r(r
n−1∂r) +

1
r2Δω (where Δω is the Laplace–Beltrami op-

erator on the sphere Sn−1, which is self-adjoint in L2(Sn−1)), we get the following
result.

Proposition A.3. The spaces H(n)
� , for � ∈ N, are the eigenspaces of the

Laplace–Beltrami operator Δω on the sphere Sn−1 for the eigenvalues −�(�+ n− 2).
They are pairwise orthogonal and complete in L2(Sn−1).

We can construct a basis of H(n)
� by induction on the dimension using the sepa-

ration of variables. We describe this construction and will use it in the following.
For a given unit vector en ∈ Rn, we take an orthonormal basis (e1, . . . , en) of R

n.
Any ω ∈ Sn−1 \ {en,−en} can be written as ω = cos θen + sin θv, with θ ∈ (0, π)
and v ∈ Sn−2. We identify Rn−1 with the vector space spanned by (e1, . . . , en−1).
The special case n = 2 works if we consider S0 = {e1,−e1}.

By convention, the only spherical harmonics on S0 are the constant functions (of
degree 0) and the functions e1 
→ c, −e1 
→ −c (of degree 1).

1This can be shown using the appropriate inner product (P,Q) �→ P (D)Q on the space of

homogeneous polynomials P of degree �, where P (D) is defined as ∂�

∂
α1
X1

...∂
αn
Xn

if P = Xα1
1 . . .Xαn

n ,

and extended by linearity (so, for example, we have that |X|2(D) = Δ). If we denote by E the space
of polynomials of the form P = |X|2Q, with Q of degree �− 2, then the orthogonal of E consists of
all the polynomials P such that for all Q of degree �−2, we have (|X|2Q)(D)P = Q(D)ΔP = 0, that
is, in all the polynomials P such that ΔP = 0. So the claimed decomposition is just the orthogonal
decomposition on E and E⊥.
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Now, for n � 1, we choose an orthonormal basis (Z1
m, . . . , Z

k(n−1)
m

m ) of H(n−1)
m for

any m ∈ N and we have the following result.
Proposition A.4. There exist polynomials Q�,m of degree � − m such that

if we denote Y k
�,m(ω) = Q�,m(cos θ) sinm θZk

m(v), then the Y k
�,m for m ∈ �0, ��, k ∈

�1, k
(n−1)
m � form an orthonormal basis of H

(n)
� .

Proof. Writing Y k
�,m(ω) = Q�,m(cos θ) sinm θZk

m(v) and asking it to be a spheri-
cal harmonic is equivalent to the following linear ODE for Q�,m (we recall that the
Laplace–Beltrami operator is given by sin2−n θ∂θ(sin

n−2 θ∂θ) +
1

sin2 θ
Δv in these co-

ordinates):

sin2−n ∂θ(− sinn+m−1 θQ′
�,m(cos θ) +m cos θ sinn+m−3 θQ�,m(cos θ))

−m(m+ n− 3)Q�,m(cos θ) sinm−2 θ = −�(�+ n− 2)Q�,m(cos θ) sinm θ.

We write x = cos θ, and this equation transforms into

(1− x2)Q′′
�,m − (n+ 2m− 1)xQ′

�,m + (� −m)(�+ n+m− 2)Q�,m = 0.

This equation is a particular form of the Jacobi differential equation, where the two
parameters α and β are equal (also called the Gegenbauer differential equation).
One solution of this differential equation is a polynomial, called the ultraspherical
polynomial (a particular case of the Jacobi polynomials, also called the Gegenbauer

polynomials) and denoted by P
(λ)
i following the notation of Szegö in [20]. Precisely,

it satisfies the differential equation

(1− x2)y′′ − (2λ+ 1)xy′ + i(i+ 2λ)y = 0.

Taking λ = m − 1 + n
2 and i = � − m, we get a solution Q�,m = α�,mP

(m−1+
n
2 )

�−m ,

where α�,m is a positive constant of normalization such that Y k
�,m is of norm 1

in L2(Sn−1). We have to be careful here because P
(λ)
i is not defined for λ = 0, and

so the only special case is n = 2, m = 0, for which we have a solution Q�,0 =
√
2T�,

where T�(cos θ) = cos �θ (the Chebyshev polynomial of first order of degree �).
So for a fixed �, we have constructed a family of spherical harmonics Y k

�,m of

degree � for m ∈ �0, ��, k ∈ �1, k
(n−1)
m �. They are pairwise orthogonal in L2(Sn−1)

since the Zk
m are pairwise orthogonal in L2(Sn−2). The size of this family is ex-

actly

(62)

�∑
m=0

k(n−1)
m =

�∑
m=0

(
n+m−2
n−2

)− (
n+m−4
n−2

)
=

(
n+�−2
n−2

)
+

(
n+�−3
n−2

)
= k

(n)
� ,

which is the dimension of H
(n)
� , so we get that the Y k

�,m for m ∈ �0, ��, k ∈ �1, k
(n−1)
m �

form an orthonormal basis of H
(n)
� .

From now on, we will use the construction done in the proof. We have that, for a
fixed m � 0, the polynomials Q�,m for � � m are a family of orthogonal polynomials

for the inner product (P,Q) 
→ ∫ 1

−1
P (x)Q(x)(1 − x2)m−1+

n−1
2 dx.

We will use three properties on the Gegenbauer polynomials (see [20]) for the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

822 AMIC FROUVELLE AND JIAN-GUO LIU

following for i � 0, λ �= 0, and λ > − 1
2 (with the convention P

(λ)
−1 = 0):∫ 1

−1

(P
(λ)
i (x))2(1− x2)λ−

1
2 dx =

21−2λπΓ(i+ 2λ)

(i+ λ)Γ2(λ)Γ(i + 1)
,(63)

(i + 1)P
(λ)
i+1 = 2(i+ λ)XP

(λ)
i − (i+ 2λ− 1)P

(λ)
i−1,(64)

(1−X2)(P
(λ)
i )′ =

1

2(i+ λ)

(
(i+ 2λ− 1)(i+ 2λ)P

(λ)
i−1 − i(i+ 1)P

(λ)
i+1

)
.(65)

We have the following normalization for the Q�,m:∫ 1

−1

Q2
�,m(x)(1 − x2)m−1+n−1

2 dx =

∫ 1

−1

(1− x2)
n−1
2 −1dx.

This gives the following relation, together with (63):

(66) α2
�+1,m =

(�+n
2 )(�+1−m)

(�+n
2 −1)(�+m+n−2)

α2
�,m.

By the previous construction, we can decompose g =
∑

k,�,mck�,mY k
�,m and we

have
∫
Sn−1

g2 =
∑

k,�,m |ck�,m|2. Since g is of mean zero, we have c10,0 = 0 (the only

spherical harmonic of degree 0 is the constant function 1). So from now on, the

indices k, �,m of the sum will mean � > 0,m ∈ �0, ��, k ∈ �1, k
(n−1)
m �.

We decompose h =
∑

k,�,mdk�,mY k
�,m in the same way. We give a first formula in

the form of a lemma.
Lemma A.5. We have

(67) en ·
∫
Sn−1

g∇h =
1

2

∑
k,�,m

b�,m[(�+ n− 1)ck�,mdk�+1,m − �ck�+1,mdk�,m],

where b�,m =
√
�−m+1

√
�+m+n−2√

�+n
2 −1

√
�+n

2

� 1.

Proof. We have

en · ∇Y k
�,m = − sin θ∂θY

k
�,m =

[
(1 −X2)Q′

�,m −mXQ�,m

]
(cos θ) sinm θZk

m(v),

and using the inductions formulas (64), (65), and (66), we get

(68) (1 −X2)Q′
�,m −mXQ�,m =

1

2
[b�−1,m(�+ n− 2)Q�−1,m − b�,m�Q�+1,m],

where b�,m is given in the statement of the lemma. In the special case n = 2, m = 0,
using the formula Q�,0(cos θ) = cos �θ gives the same formula as (68), with b�,0 = 1.

So we have that
∫
Sn−1

en · ∇Y k
�,mY k′

�′,m′ can be nonzero only if m = m′, k = k′,
and � = �′ ± 1. By bilinearity, together with the fact that Y k

�,m form an orthonormal
basis, this gives the claimed formula.

Now we have all the tools to prove Lemma 2.1 (we recall it here).
Lemma 2.1 (estimates on the sphere).
1. If h is in Ḣ−s+1(S) and g is in Ḣs(S), the following integral is well defined

and we have ∣∣∣∣∫
S

g∇h

∣∣∣∣ � C‖g‖Ḣs‖h‖Ḣ−s+1 ,

where the constant depends only on s and n.
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2. We have the following estimation for any g ∈ Ḣs+1(S):∣∣∣∣∫
S

g∇(−Δ)sg

∣∣∣∣ � C‖g‖2
Ḣs ,

where the constant depends only on s and n.

3. We have the following identity for any g ∈ Ḣ−n−3
2 :∫

S

g∇Δ̃−1
n−1g = 0.

Proof. Using Lemma A.5, we get

en ·
∫
Sn−1

g∇h � 1
2

∑
k,�,m

√
�+n−1
�+1

(
λ�+1

λ�

) s
2 |λ s

2

� c
k
�,m||λ

−s+1
2

�+1 dk�+1,m|

+ 1
2

∑
k,�,m

√
�

�+n−2

(
λ�

λ�+1

) s
2 |λ s

2

�+1c
k
�+1,m||λ

−s+1
2

� dk�,m|

� C‖g‖Ḣs‖h‖Ḣ−s+1,

where λ� = �(� + n − 2) (the eigenvalue of −Δ for the spherical harmonics of

degree �). The last line comes from the fact that the sequences
√

�+n−1
�+1 (λ�+1

λ�
)

s
2

and
√

�
�+n−2 (

λ�

λ�+1
)

s
2 are bounded (they tend to 1), together with a Cauchy–Schwarz

inequality. This gives the first part of the lemma, since this is true for any unit
vector en.

Now we take h = (−Δ)sg, which is replacing dk�,m by λs
�c

k
�,m in Lemma A.5. We

get

en ·
∫
Sn−1

g∇(−Δ)sg =
∑
k,�,m

1
2b�,mck�+1,mck�,m[(� + n− 1)λs

�+1 − �λs
� ]

�
∑
k,�,m

|λ s
2

�+1c
k
�+1,m||λ s

2

� c
k
�,m||(� + n− 1)

(
λ�+1

λ�

) s
2 − �

(
λ�

λ�+1

) s
2 |

� C‖g‖2
Ḣs .

Indeed, we have that λ�+1

λ�
= 1 − 2

� + O(�−2), so |(� + n − 1)(λ�+1

λ�
)

s
2 − �( λ�

λ�+1
)

s
2 | is

bounded (it tends to (n− 1) + 2s). Since this computation is now valid for any unit
vector en, this gives the second part of the lemma.

The last part is straightforward by taking h = Δ̃−1
n−1g with Lemma A.5. According

to the definition given in (8), we have dk�,m = 1
�(�+1)...(�+n−2) c

k
�,m. We get

en ·
∫
Sn−1

g∇Δ̃−1g =
∑
k,�,m

1
2b�,mck�+1,mck�,m[ �+n−1

(�+1)...(�+n−1) − �
�(�+1)...(�+n−2) ] = 0,

which is true for any unit vector en.

A.2. Analyticity of the solution. Following [5], we will show that the solution
belongs to a special Gevrey class. We define the space Gr as the set of functions g

(with mean zero) such that Δ̃
− 1

2
n−1e

r(−Δ)
1
2 g is in L2(S). Using the notation of the
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previous proof, this is a Hilbert space associated with the inner product

〈g, h〉Ġs
r
=

∑
k,�,m

e2r
√

�(�+n−2)

�(�+ 1) . . . (�+ n− 2)
ck�,mdk�,m.

The norm on this Hilbert space will be written as ‖ · ‖Gr .
Theorem A.6. We define r(t) = δmin{1, t}.
If δ > 0 is sufficiently small, then for any solution of Smoluchowski equation (3)

of the form f = 1 + g, with g(0) ∈ Ḣ−n−1
2 (S), we have that g(t) is bounded in Gr(t)

uniformly for t � 0.

Before giving a proof, we remark that the condition g(0) ∈ Ḣ−n−1
2 (S) is not very

strong since, by instantaneous regularization (Proposition 2.9), we have it for any
time t > 0. The shape of r(t) is not optimal, and we will provide a more precise
condition in the proof. Now since Gr, for r > 0, is a subset of the set of analytical
functions on the sphere, we get that any solution becomes instantaneously analytic
in space.

Proof. We take r as an arbitrary function of t, and we will denote its time

derivative by ṙ. For a given solution f = 1 + g, we put h = Δ̃−1
n−1e

2r(−Δ)
1
2 g in (13).

The left-hand side is

〈∂tg, Δ̃−1
n−1e

2r(−Δ)
1
2 g〉 =

∑
k,�,m

e2r
√

�(�+n−2)

�(�+ 1) . . . (� + n− 2)
ck�,m

d

dt
ck�,m

=
∑
k,�,m

1

2

d

dt

(
e2r

√
�(�+n−2)

�(�+ 1) . . . (� + n− 2)
|ck�,m|2

)
− ṙ

e2r
√

�(�+n−2)|ck�,m|2√
�(� + 1) . . . (�+ n− 1)

√
�+ n− 2

=
1

2

d

dt
‖g‖2Gr

− ṙ‖(−Δ)
1
4 g‖2Gr

.

Using Lemma A.5, we get

en · 〈g,∇Δ̃−1
n−1e

2r(−Δ)
1
2 g〉 = 1

2

∑
k,�,m

b�,mck�+1,mck�,m
e2r

√
(�+1)(�+n−1) − e2r

√
�(�+n−2)

(�+ 1) . . . (� + n− 2)

� 1

2

∑
k,�,m

4
√
(�+ 1)(�+ n− 1)er

√
(�+1)(�+n−1)√

(�+ 1) . . . (� + n− 2)(�+ n− 1)
|ck�+1,m|

4
√
�(�+ n− 2)er

√
�(�+n−2)√

�(�+ 1) . . . (�+ n− 2)
|ck�,m|

×
4
√
�(�+ n− 1)

4
√
(�+ 1)(�+ n− 2)

(
e
r
(√

(�+1)(�+n−1)−
√

�(�+n−2)
)
− e

−r
(√

(�+1)(�+n−1)−
√

�(�+n−2)
))

� sinh(r(
√
2n−√

n− 1))‖(−Δ)
1
4 g‖2Gr

.

Indeed, the expression
√
(�+ 1)(�+ n− 1) − √

�(�+ n− 2) is a decreasing function
of � � 0. Since this is valid for any unit vector en, we get∣∣∣∣J [g] · 〈g,∇Δ̃−1

n−1e
2r(−Δ)

1
2 g〉

∣∣∣∣ � sinh(r(
√
2n−√

n− 1))‖(−Δ)
1
4 g‖2Gr

.

Now since ‖(−Δ)
1
4 g‖2Gr

� 1√
n−1

‖(−Δ)
1
2 g‖2Gr

and |J [h]| � e2r
√

n−1

(n−1)! |J [g]|, we fi-

nally get

1

2

d

dt
‖g‖2Gr

+

[
τ − 1√

n− 1
(ṙ + sinh(r(

√
2n−√

n− 1)))

]
‖(−Δ)

1
2 g‖2Gr

� e2r
√
n−1

(n− 2)!
.
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As soon as ṙ+sinh(r(
√
2n−√

n− 1)) < (τ − ε)
√
n− 1 and r is bounded in time

(for example, the shape given in the statement of the theorem, r(t) = δmin(1, t),
for δ sufficiently small), using the Poincaré inequality, we have that ‖g‖2Gr

satisfies
an inequality of the form ẏ+ ay � b with some positive constants a and b. Therefore
this quantity is uniformly bounded, provided g(0) is in Gr(0). So if we have r(0) = 0,

we need only that g(0) be in Ḣ−n−1
2 (S).
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