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TRANSITION PATH THEORY FOR LANGEVIN DYNAMICS ON
MANIFOLDS: OPTIMAL CONTROL AND DATA-DRIVEN SOLVER\ast 

YUAN GAO\dagger , TIEJUN LI\ddagger , XIAOGUANG LI\S , AND JIAN-GUO LIU\P 

Abstract. We present a data-driven point of view for rare events, which represent conformational
transitions in biochemical reactions modeled by overdamped Langevin dynamics on manifolds in high
dimensions. We first reinterpret the transition state theory and the transition path theory from the
optimal control viewpoint. Given a point cloud probing the manifold, we construct a discrete Markov
chain with a Q-matrix computed from an approximated Voronoi tesselation via the point cloud. We
use this Q-matrix to compute a discrete committor function whose level set automatically orders the
point cloud. Then based on the committor function, an optimally controlled random walk on point
clouds is constructed and utilized to efficiently sample transition paths, which become an almost sure
event in O(1) time instead of a rare event in the original reaction dynamics. To compute the mean
transition path efficiently, a local averaging algorithm based on the optimally controlled random
walk is developed, which adapts the finite temperature string method to the controlled Monte Carlo
samples. Numerical examples on sphere/torus including a conformational transition for the alanine
dipeptide in vacuum are conducted to illustrate the data-driven solver for the transition path theory
on point clouds. The mean transition path obtained via the controlled Monte Carlo simulations
highly coincides with the computed dominant transition path in the transition path theory.

Key words. reaction rates, most probable path, committor function, controlled Markov process,
realize rare events almost surely, nonlinear dimension reduction
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1. Introduction. Complex molecular dynamics in chemical/biochemical reac-
tions usually have cascades of time scales. For instance, the molecular vibrations
occur in a femtosecond time scale, while the conformational transitions occur in a mi-
crosecond time scale. Assume the states \{ x(t)\} of the original molecular dynamics are
in a high dimensional space \BbbR p, and suppose the most important slow dynamics such
as conformational transitions can be described by a reduced overdamped Langevin
dynamics in terms of reaction coordinates y on an intrinsic low-dimensional manifold
\scrN \subset \BbbR \ell , where \ell \ll p [CL06]. Then the slow dynamics on \scrN is guided by a reduced
free energy U\scrN (y), y \in \scrN , whose local minima indicate several metastable states (say
a, b) of the dynamics. Those conformational transitions from one metastable state a
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2 Y. GAO, T. LI, X. LI, AND J.-G. LIU

to another metastable state b are rare (but significant) events compared with typical
relaxation dynamics in each energy basin. Thus efficient simulation and computation
of transition rates or reaction pathways for the conformational transitions are chal-
lenging and important problems, which has been one of the core subjects in applied
mathematics in recent years; see the recent review in [EVE10].

To make the discussion precise, we denote the overdamped Langevin dynamics of
yt by

dyt =  - \nabla \scrN U\scrN (yt) dt+
\surd 
2\varepsilon 

d\sum 
i=1

\tau \scrN i (yt)\otimes \tau \scrN i (yt) \circ dBt,(1.1)

where \varepsilon > 0 corresponds to the thermal energy in physics, the symbol \circ means
the Stratonovich integration, Bt is \ell -dimensional Brownian motion, d is the intrinsic
dimension of the manifold \scrN , and \{ \tau \scrN i ; 1 \leq i \leq d\} are orthonormal bases of tangent
plane Tyt

\scrN . Here\nabla \scrN :=
\sum d
i=1 \tau 

\scrN 
i \nabla \tau \scrN 

i
=
\sum d
i=1 \tau 

\scrN 
i \otimes \tau \scrN i \nabla is the surface gradient and

\nabla \tau \scrN 
i

= \tau \scrN i \cdot \nabla is the tangential derivative in the direction of \tau \scrN i . Given the manifold
\scrN and potential U\scrN (y), when \varepsilon is small, the study of rare events by direct simulation
of (1.1) is not feasible. This motivates the need for theoretical developments. In the
limit \varepsilon \rightarrow 0, the optimal transition path problem can be well described through the
large deviation theory [FW12]. This was formulated as the minimum action method
(MAM) [ERVE04] and was extended to the manifold case in [LLZ16]. In the gradient
case, the optimal transition path by MAM is actually the minimal energy path (MEP)
connecting two metastable states, which was realized by the string method [ERVE02];
see also recently developed computational methods for the zero noise transition paths
[VEH08, HVE08, GVE17, GVE19]. The string method was further extended to the
finite \varepsilon case, i.e., the finite temperature string method for gradient systems [ERVE05].
In the general finite noise case, the transition path theory (TPT) was first proposed by
E and Vanden-Eijnden in [EVE06] to obtain the transition paths and transition rates,
etc., by the committor function q (see (3.3)). A mathematically rigorous interpretation
of TPT was given in [LN15] (see precise statement in [LN15, Theorem 1.7]). The
generalization of TPT to Markov jump process was given in [MSVE09].

We are concerned with the rare event study from a data-driven point of view in
this paper. In many cases, the manifold \scrN is not explicitly known, and we assume
only the point clouds \{ xi\} i=1:n are available from some physical dynamics on an un-
known d dimensional closed smooth Riemannian submanifold \scrM \subset \BbbR p. We assume
there are well-distributed data points probing the manifold, so one can learn the re-
action coordinates y = \Phi (x) :\scrM \lhook \rightarrow \BbbR \ell by using \{ xi\} i=1:n in \BbbR p. Thus \scrN = \Phi (\scrM )
is a d dimensional closed smooth submanifold of \BbbR \ell and one can represent the high
dimensional data \{ xi\} \subset \scrM \subset \BbbR p as \{ yi\} = \{ \Phi (xi)\} \subset \scrN \subset \BbbR \ell in the low dimen-
sional space. In general, this dimension reduction step is very challenging. Besides
the standard diffusion map nonlinear dimension reduction [CL06], some reinforced
learning methods based on built-in domain knowledge have recently been developed;
cf. [ZWE18]. As for a real example, we simulate a simple, manageable alanine dipep-
tide with 22 atoms to collect a full atomic molecular dynamics result for x \in \BbbR 66. Its
lower energy states are mainly described by two backbone dihedral angles \phi \in [ - \pi , \pi )
and \psi \in [ - \pi , \pi ), so the reaction coordinate y is chosen to be in a torus \scrN \subset \BbbR 3; see
Figure 6 and Example 3 below. With the learned reaction coordinate y, the main
goal is to effectively simulate the conformational transitions on \scrN .

Our main contribution is twofold: (i) We give the stochastic optimal control rein-
terpretations of the committor function in TPT; (ii) adapting an idea similar to the
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TRANSITION PATH THEORY ON MANIFOLDS 3

finite temperature string method, we propose a data-driven solver for finding a mean
transition path on manifold, which is constructed using the level-set defined by the
committor function and taking advantage of an optimally controlled Monte Carlo sim-
ulation. Details are presented below.

Interpretation from optimal control viewpoint. The study of rare events from the
optimal control viewpoint was pioneered in [HS12, HBS+13] and further investigated
in [HSZ16, HRSZ17]. Our goal in the first part is to rigorously reformulate the
effective conditioned process---constructed from committor function q by [LN15]---as
a stochastic optimally controlled process, in which the optimal feedback controls the
original Markov process from one stable absorbing set A to another absorbing set B
of the energy landscape U\scrN with minimum cost. Compared with the infinite optimal
terminal time T = +\infty , the corresponding stochastic optimal control problem at
a fixed noise level \varepsilon > 0 is indeed easier in the sense that the stopping time (the
stochastic terminal time) is almost surely finite \tau < +\infty . Thus the stochastic optimal
control reinterpretation enables feasible computation of transition paths for practical
scientific problems. Precisely, for the system described by a Markov process yt on
manifold \scrN , e.g., (1.1), it will induce a measure on the path space C([0,+\infty );\scrN ),
which can be regarded as a prior measure P . Then we need to construct a controlled
Markov process \~yt (see (3.20)), which induces a new measure \~P on the path space.
The additional control drives the trajectory \~yt from A to B almost surely, while
the transitions for the original process are rare events. From the stochastic optimal
control viewpoint, we need to find a control function v(\~yt) to realize the optimal
change of measure from P to \~P such that the running cost (kinetic energy) and
terminal cost (boundary cost hitting the absorbing set) are minimized. In Theorem
3.3 in section 3.2, we will first prove a regularized stochastic optimal control problem
with a terminal cost N on stable basin \=A which prevents \~yt from hitting on A before
B. Then the regularized forward committor function q\mathrm{N} gives an optimal control
v\ast 

\mathrm{N} = 2\varepsilon \nabla ln q\mathrm{N} that realizes the optimal change of measure on path space and thus
realizes the transitions from A to B almost surely. The monotone dependence on
the cut-off N for qN and the associated value function and the effective equilibrium
are also proved. Thus we justify that the committor function, as the limit of the
regularized q\mathrm{N}, provides the optimal control and the effective equilibrium which drive
\~yt from A to B almost surely. These results also provide the basis for computing the
transition path through the Monte Carlo simulations for the controlled random walk,
constructed from the effective equilibrium \pi e = \pi q2, and the local average mean path
algorithm in the second part.

Data-driven solver for mean transition path on manifolds. Our goal in this part
is to take the advantage of the optimal control reinterpretation above in its discrete
analogies to design a data-driven solver, which efficiently finds a mean transition
path on a manifold suggested by point clouds. Given the point clouds \{ yi\} i=1:n, we
construct a discrete Markov chain on \{ yi\} \subset \scrN based on an approximated Voronoi
tesselation for \scrN , which incorporates both the equilibrium and manifold information.
The assigned transition probability between the nearest neighbor points (adjacent
points identified by Voronoi tesselation) enables us to efficiently compute the discrete
committor function \{ qi\} i=1:n and related quantities. In section 4.2, based on the
constructed discrete Markov chain, we derive an optimally controlled Markov process
on point clouds with the associated controlled generator Qq. More importantly, the
corresponding effective equilibrium under control is simply given by \pi e \propto q2\pi , which
preserves the detailed balance property. First, this enables an efficient controlled
Monte Carlo simulations for the new almost sure event in O(1) time instead of the
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4 Y. GAO, T. LI, X. LI, AND J.-G. LIU

rare event in the original process. Moreover, adapting the idea from the finite tem-
perature string method [ERVE05, RVEME05], we use a Picard iteration to find the
mean transition path based on the controlled Monte Carlo samplers. The numerical
construction of the optimally controlled random walk is given in section 4.2, while
the TPT analysis and the local average mean path algorithms based on the controlled
process sampling are given in section 5. We apply this methodology to simulate the
rare transitions on sphere/torus with Mueller potential and the transition between
different isomers of an alanine dipeptide with MD simulation data. The developed
mean transition path algorithm based on the controlled process performs very well
for both synthetic and real-world examples, which highly coincide with the computed
dominant transition path in TPT.

The rest of this paper is organized as follows. In sections 2 and 3, we will make
the connections between the optimal control theory and the transition state theory
and the transition path theory, respectively. In section 4, we present the constructions
of the discrete original/controlled Markov process on point clouds. In section 5, we
present the detailed algorithms for finding mean transition paths, while in section 6
numerical examples are conducted to show the validity of the proposed algorithms.

2. Preliminaries: Energy landscape and terminologies for stochastic
optimal control. In this section, we will first consider the typical energy landscape
U\scrN which indicates two metastable states and guides the Langevin dynamics on \scrN 
(see section 2.1). Then in section 2.2, we briefly review the basic concepts for a
stochastic optimal control problem in the infinite time horizon.

2.1. Energy landscape in the transition state theory. A chemical reaction
from reactants a \in \scrN through a transition state c \in \scrN to products b \in \scrN can be
described by the reaction coordinate y and a path on the reaction coordinate y(t) \in \scrN 
with a pseudo-time t \in [0, T ] and y(0) = a, y(T ) = b. This chemical reaction can be
characterized by an underlying potential U\scrN (y) in terms of the reaction coordinate
y \in \scrN , which is assumed to be smooth enough and has a few deep wells separated
by high barriers. Assume a and b are two local minima (attractors) with the basins
of attractors A, B \subset \scrN , A \cap B = \emptyset and max(U\scrN (a), U\scrN (b)) < minU(\partial A \cup \partial B). The
associated minimal energy barrier such that y(0) = a, y(T ) = b is given by miny(\cdot )
(maxt\in [0,T ] U\scrN (y(t))). Then pick a path y\ast (\cdot ) \in argminy(\cdot )(maxt\in [0,T ] U\scrN (y(t))), and
define

c = argmaxy\ast (t),t\in [0,T ]U\scrN (y\ast (t)).(2.1)

This state c achieves the minimal energy barrier, and we assume this type of c, called
the transition state, is unique. Moreover, assume U\scrN is a Morse function and the
Morse index at saddle point (transition state c) is 1, i.e., there is only one negative
eigenvalue for the Hessian matrix of U\scrN in the neighborhood of c. The energy barrier
to achieve the chemical reaction from a to b is U\scrN (c) - U\scrN (a). With this assumption,
the minimal energy path can be uniquely found from the following least action problem
[FW12]:

S(A,B) = inf
T>0

inf
y\in C[0,T ];y(0)=a,y(T )=b

\int T

0

1

2
| \.y +\nabla U\scrN (y)| 2 dt.(2.2)

For notational simplicity, from now on we use U as shorthand notation for U\scrN , \nabla as
shorthand notation for \nabla \scrN , and \nabla \cdot as shorthand notation for the surface divergence
defined as \nabla \scrN \cdot \xi =

\sum d
i=1 \tau 

\scrN 
i \cdot \nabla \tau \scrN 

i
\xi . In the case that U is a double-well potential

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

8/
23

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



TRANSITION PATH THEORY ON MANIFOLDS 5

with a, b being two local minima, the minimal energy path (MEP) is given by the
combination of the solutions y(t), t \geq 0, to [FW12]

\.y = \nabla U(y), y( - \infty ) = a, y(+\infty ) = c,

\.y =  - \nabla U(y), y( - \infty ) = c, y(+\infty ) = b.
(2.3)

The MEP is formulated as an exit time problem computed by finding out a quasi-
potential from a Hamilton--Jacobi equation [FW12]. We refer the reader to [ERVE02,
ERVE04, VEH08, HVE08, GVE17, GVE19] for various computational methods for
the MEP and the deterministic optimal control interpretations of the zero-noise limit
path.

At the finite noise level, one can directly use committor function q defined in
(3.3) instead of the quasi-potential, and solving the committor function is a linear
problem. In the next section, we reinterpret the transition path theory from the
stochastic optimal control viewpoint and then use the optimal control to efficiently
compute the transition path at a finite noise level. Before that, we first introduce
general terminology of stochastic optimal control.

2.2. General stochastic optimal control problems with terminal cost.
In general, one can consider a stochastic optimal control problem with some running
cost function L(yt,vt) and terminal cost function g(T,yT ), where we have used the
convention yt := y(t) in stochastic analysis. In particluar, we are interested in the
optimal control for a time homogeneous Markov process and the terminal time being
the stopping time when the SDE solution hits some closed set B, i.e., \tau := inf\{ t \geq 
0;yt \in \=B\} . In this case, the terminal cost function g is also called the boundary cost
function, to be specific, in Theorem 3.3.

Given initial probability measure \mu 0 on \scrN concentrating on the local minimum
a of the potential U , consider the stochastic optimal control problem in the infinite
time horizon with running cost function 1

2 | vt| 
2 and boundary cost function g(y\tau ),

\gamma = infv \BbbE 
\Bigl\{ \int \tau 

0
1
2 | vt| 

2
dt+ \chi \tau <\infty g(y\tau )

\Bigr\} 
s.t. dyt = ( - \nabla U (yt) + vt) dt+

\surd 
2\varepsilon d\scrN Bt, t \in (0, \tau ), yt| t=0 \sim \mu 0.

(2.4)

Here \chi is the indicator function, | v| is the Euclidean length of v in \BbbR \ell , and d\scrN Bt
is shorthand notation for the Brownian motion on manifold \scrN in the sense of (1.1),
which will be used in the following context. In Nelson's theory of stochastic mechanics,
v can be regarded as an average velocity, and the running cost function L = 1

2 | v| 
2

is the classical action integrand including only kinetic energy. The obtained optimal
control vt = v(yt) is a feedback control and is called the stationary Markov control
policy. Since the original Markov process is on a closed manifold \scrN and U is smooth
enough so that the drift vector is bounded continuous on \scrN , we will always have the
positive recurrence property provided the landscape is continuous. From now on, we
focus on the case \tau <\infty , a.s. We remark that practical problems often have dynamics
mainly concentrated on a closed manifold due to equality and inequality constraints
between different components of variables---for instance the alanine dipeptide example
in section 6. So in this paper we only limit ourselves to the case that \scrN is a closed
manifold.

With the small parameter \varepsilon , recall that the original Markov process Yt on manifold
\scrN without control has the corresponding generator Qf = \varepsilon \Delta f - \nabla U \cdot \nabla f. The control
v in the stochastic control problem (2.4) can be regarded as an additional driven force
to the original Markov process. For the deterministic optimal control case \varepsilon \rightarrow 0, (2.4)
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6 Y. GAO, T. LI, X. LI, AND J.-G. LIU

is closely related to the least action problem (2.2) in an infinite time horizon, which
is also known as Peierls barrier (or Ma\~n\'e potential if a is not steady state). We refer
the reader to [GL22b] for discussions on the exchanging limits \varepsilon \rightarrow 0, T \rightarrow +\infty 
and for connections with weak KAM solutions to the corresponding Hamilton--Jacobi
equation.

3. Optimal control viewpoint for the transition path theory for the
continuous Markov process. In this section, the main goal is to give a stochastic
optimal control interpretation for the transition path theory. We will first review the
transition path theory in section 3.1. Then in section 3.2, we prove that the committor
function in the transition path theory leads to a stochastic optimal control with which
the controlled Markov process realizes the transitions from A to B almost surely.

3.1. Review of the transition path theory. Now we review and explain some
concepts in the transition path theory including the committor function, the effective
transition path process, and the density/current of transition paths; see original work
[EVE06].

3.1.1. Committor function. We start from the original Markov process Yt
with generator

Qf = \varepsilon \Delta f  - \nabla U \cdot \nabla f.(3.1)

Let A and B be two disjoint absorbing sets of attractors a, b. To study the conditioned
process with the conditions on paths starting from A then ending in B, one should
find an appropriate excessive function q and calculate the transition probabilities of
the conditioned process by using Doob h-transform via q.

Remark 3.1. As mentioned in section 2.2, we know that the SDE solution Yt
hits A \cup B at a finite time due to the positive recurrence of the process Yt on the
closed manifold \scrN . For an unbounded domain, the recurrence can be ensured by
some specific condition. For instance, we assume that there exists R0 > 0 such that
for any r > R0,

\nabla nU
\bigm| \bigm| \bigm| 
| y| =r

>
c

r
for some constant c > \varepsilon d+ 1.(3.2)

Here d is the dimension of manifold \scrN . Here | y| = r is the geodesic ball on \scrN and

n \in T\scrN is the outer normal vector of the ball. Consequently, | y| 2
2 is a Lyapunov

function such that

Q

\biggl( 
| y| 2

2

\biggr) 
= \varepsilon d - \nabla U \cdot y \leq  - 1 for | y| > R0.

Applying [BKRS15, Corllaries 2.4.2 and 2.4.3] with this Lyapunov function, we know
that condition (3.2) ensures the existence of an invariant measure for process Yt.
This invariant measure is also unique by [BKRS15, Theorem 4.1.6]. Using the same
Lyapunov function as in [Kha12, Theorem 3.9] (see also [Ver97, Theorem 3]), we find
that condition (3.2) also ensures the positive recurrence in \BbbR d.

Define the stopping time \tau B := inf\{ t \geq 0;Yt \in \=B\} (resp., \tau A) of process Yt when
it hits B (resp., A). The probability for the paths hitting B before A is given by the
forward committor function q(y), a.k.a. harmonic potential, which is the solution of

Qq(y) = 0, y \in (A \cup B)c,(3.3)
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TRANSITION PATH THEORY ON MANIFOLDS 7

with the Dirichlet boundary conditions

q(y) = 0, y \in \=A, q(y) = 1, y \in \=B.(3.4)

Lemma 3.2. The solution q(y) to (3.3) with (3.4) satisfies 0 < q(y) < 1, y \in 
(A \cup B)c.

Proof. Since \scrN is a closed manifold, U(y) smooth enough, and \=A \cap \=B = \emptyset , there
exists a solution q(y) \in C2((A \cup B)c) \cap C(Ac \cap Bc) to (3.3) with (3.4). Then by the
strong maximum principle, we conclude that 0 < q(y) < 1, y \in (A \cup B)c.

As an important consequence, the density and the current of transition paths can
be calculated using the committor function; see the detailed revisit in section 3.1.3.

3.1.2. Generator for the conditioned process. To describe the conditioned
process with the conditions that paths start from A and then end in B, [LN15] char-
acterized the selection of the reactive paths coming from A and then hitting B by
using the probability measure on the path space such that \tau A > \tau B .

The associated conditioned process, called the transition path process, is denoted
as Zt. For Z0 = y0 \in (A \cup B)c, the generator of this conditioned process Zt can
be described using the Doob h-transform. Precisely, using committor function q as
the excessive function and by the Doob h-transform, the generator for conditioned
process Zt is

Qqf =
1

q
Q(qf) = Qf +

2\varepsilon \nabla q
q
\cdot \nabla f.(3.5)

Since q = 0 in \=A, a singular drift term prevents Zt from hitting A and also pushes
Zt \in \partial A into (A \cup B)c. For the delicate case Z0 starting from \partial A with an appropriate
initial law on \partial A, [LN15, Theorem 1.2] proved that the conditioned process Zt with
the augmented filtration is same in law as the kth transition path process exiting
from A and then hitting B defined in [EVE06, MSVE06, EVE10]. Here kth path
means a generic path exiting from A at the kth time for some generic k; see [LN15,
(1.5)]. More precisely, the initial and end distribution for Zt, a.k.a. reactive exit, and
entrance distribution \nu 0, \nu 1, can be calculated by the Dirichlet to Neumann map of
the elliptic equation for committor function (3.3) [LN15, Proposition 1.5].

In section 3.2, we will prove the resulting conditioned process (the transition
path process) Zt can be regarded as the original process with an additional control
v = 2\varepsilon \nabla q

q . This control, indeed optimal control, together with the original landscape

U , leads to an effective potential Ue := U  - 2\varepsilon ln q, which is +\infty for y \in \=A and U for
y \in \=B. This effective potential guides the associated SDE of \~Yt to the absorbing set
B before hitting A.

3.1.3. Density and current of transition paths. Next, using the conditioned
process Zt, which is also the controlled process \~Yt in (3.20), and its generator Qq, we
sketch the derivation of the current of transition paths. Recall that the equilibrium
density of the original Markov process Yt is \pi \propto e - 

U
\varepsilon . From [LN15, Proposition 1.9]

and [EVE06, Proposition 2], the density of transition paths is

\rho R(y) = \pi (y)q(y)(1 - q(y)).(3.6)

Then some elementary calculations show that

(Qq)\ast \rho R(y) = 0, y \in (A \cup B)c.(3.7)
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8 Y. GAO, T. LI, X. LI, AND J.-G. LIU

From (3.5) and (3.1),

0 =(Qq)\ast \rho R = Q\ast \rho R  - \nabla \cdot 
\biggl( 
\rho R

2\varepsilon \nabla q
q

\biggr) 
= \varepsilon \nabla \cdot 

\biggl( 
\pi \nabla \rho 

R

\pi 
 - \rho R 2\nabla q

q

\biggr) 
.(3.8)

This divergence form, together with (3.6), gives the current of transition paths from
A to B (up to a factor \varepsilon )

JR :=  - \pi \nabla \rho 
R

\pi 
+ \rho R

2\nabla q
q

=  - \pi \nabla [q(1 - q)] + 2\pi (1 - q)\nabla q = \pi \nabla q.(3.9)

One can directly verify that there is an equilibrium such that

(Qq)\ast \pi e = 0, \pi e := e - 
Ue

\varepsilon = \pi q2,(3.10)

which vanishes at A. However, we point out \rho R is not an equilibrium for the controlled
process, although (Qq)\ast \rho R = 0 inside (A \cup B)c. Notice that \rho R = 0 vanishes at both
\=A and \=B, while \pi e only vanishes at \=B. That is to say, only \pi e is the equilibrium for
the controlled process, which prevents the particle from hitting on A but drives it to
B. With different boundary conditions, \rho R and \pi e are completely different. We will
discuss details of \rho R and \pi e for the discrete case in section 4.2.2.

3.2. Stochastic optimal control interpretation of the committor func-
tion. In this subsection, we will prove that the committor function q gives a stochastic
optimal control such that the controlled Markov process realizes the transition from
A to B with minimum running and terminal cost. We will first illustrate the idea
of optimal change of measure in an abstract measurable space and then prove the
stochastic optimal control interpretation in Theorem 3.3.

3.2.1. Duality between the relative entropy and the Helmholtz free
energy. It is well known that the canonical ensemble is closely related to the optimal
change of measure for the Helmholtz free energy. More precisely, let (\Omega ,\scrF ) be a
measurable space, and let \BbbP (\Omega ) be the family of probability measures on \Omega . Denote
Hamiltonian H \in \BbbR as a measurable function on \Omega . For a reference measure (a.k.a.
prior measure) P \in \BbbP (\Omega ) and any \beta > 0, we define the Helmholtz free energy of
Hamiltonian H with respect to P as

F (H) :=  - 1

\beta 
ln

\biggl( \int 
\Omega 

e - \beta H(\omega ) dP (\omega )

\biggr) 
\in [ - \infty ,+\infty ).(3.11)

For any other measure \~P \in \BbbP (\Omega ) which is absolutely continuous with respect to P ,

denote by KL( \~P | | P ) =
\int 
\Omega 
ln( d \~P

dP ) d
\~P the relative entropy with respect to P . Then

we have the following Legendre-type transformations (Donsker and Varadhan's vari-
ational formula) and duality in statistical mechanics; cf. [DS01].

(i) For any measure \~P \ll P

 - 1

\beta 
KL( \~P | | P ) = sup

H

\biggl\{ \int 
\Omega 

H(\omega ) d \~P (\omega ) - F (H)

\biggr\} 
;(3.12)

(ii) for any bounded function H(\omega )

F (H) = inf
\~P\ll P

\biggl\{ \int 
\Omega 

H(\omega ) d \~P (\omega ) +
1

\beta 
KL( \~P | | P )

\biggr\} 
= inf

\~P\ll P

\Biggl\{ \int 
\Omega 

\Biggl( 
H(\omega ) +

1

\beta 
ln

d \~P (\omega )

dP (\omega )

\Biggr) 
d \~P (\omega )

\Biggr\} 
.(3.13)
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TRANSITION PATH THEORY ON MANIFOLDS 9

In Theorem 3.3 later, we will see the second Legendre-type transformation (ii) is still
true for a Hamiltonian g defined in (3.25), and we use it for probability measures
(induced by coordinate processes) on path space \Omega = C([0,+\infty );\scrN ) to prove the
optimality. To show the idea of the proof, if dP = \rho 0 dx and d \~P = \rho dx, the optimal
density \rho \ast in the transformation is achieved when

e - \beta H - 1+\lambda =
\rho \ast 

\rho 0
,

\int 
\rho \ast = 1 = e\lambda  - 1

\int 
e - \beta H\rho 0 dx,(3.14)

where \lambda is the Lagrange multiplier to ensure \rho is a probability density. Then we have\int 
H\rho \ast dx+

1

\beta 

\int 
ln
\rho \ast 

\rho 0
\rho \ast dx =

\lambda  - 1

\beta 
= F (H).(3.15)

3.2.2. Committor function gives the optimal control in infinite time
horizon. In general, given an arbitrary control field in the gradient form, v =
2\varepsilon \nabla lnh for some function h, the generator for the controlled process is not exactly
the Doob h-transform. Indeed, by Ito's formula, the generator under the control v is

Qh = Q+ v \cdot \nabla = Q+ 2\varepsilon \nabla lnh \cdot \nabla .(3.16)

On the other hand, by elementary calculations, the Doob h-transform satisfies the
identity

1

h
Q(hf) = Qf + f

Qh

h
+ 2\varepsilon \nabla lnh \cdot \nabla f = Qhf + f

Qh

h
(3.17)

for any test function f . We can recast the controlled generator Qh as

Qhf =
1

h
Q(hf) - f Qh

h
.(3.18)

Now we give a theorem on the optimality of the control v = 2\varepsilon \nabla q
q = 2\varepsilon \nabla ln q in an

infinite time stochastic optimal control problem, where q is the committor function
solving (3.3) with boundary condition (3.4). As a consequence of the optimal control
v = 2\varepsilon \nabla ln q, we recover 1

qQ(qf) = Qqf.
From the stochastic optimal control viewpoint, a control should drive the process

from A to B with minimum cost. To prevent Yt hitting on A, we choose the terminal
cost as

g(x) :=

\biggl\{ 
+\infty in \=A,
0 in \=B.

However, to avoid the difficulty that an unbounded terminal cost leads to an un-
bounded stopping time \tau A, we use a regularization method as below. We first define
a cut-off terminal cost

g\mathrm{N}(x) :=

\biggl\{ 
N, in \=A,
0, in \=B,

(3.19)

where N \gg 1. Then we prove the following theorem to state that the regularized
committor function satisfying (3.22) and (3.23) gives the optimal control with the
cut-off terminal cost (3.19). In the next section, we prove the monotone dependence
of the committor function and the associated value function on the cut-off number N .
And then taking N \rightarrow +\infty , the limit q(y) = limN\rightarrow +\infty gN (y) recovers the committor
function and 1

qQ(qf) = Qqf.
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10 Y. GAO, T. LI, X. LI, AND J.-G. LIU

Theorem 3.3. Assume the original Markov process Yt has generator Qf =
\varepsilon \Delta f  - \nabla U \cdot \nabla f, \varepsilon > 0. The forward commitor function q\mathrm{N} in (3.22) gives an optimal
control v\ast 

\mathrm{N} = 2\varepsilon \nabla q\mathrm{N}
q\mathrm{N}

in the sense that it drives the controlled process \~Yt starting from

\bfity \in (A \cup B)c to the set B before hitting A with the least action

\gamma \mathrm{N}(\bfity ) := min
v\mathrm{N}\in \scrA \mathrm{N}

\BbbE P
\biggl[ \int \tau 

0

1

2
| v\mathrm{N}( \~Ys)| 2 ds+ g\mathrm{N}( \~Y\tau )

\biggr] 
s.t. d\~Yt = ( - \nabla U( \~Yt) + v\mathrm{N}( \~Yt)) dt+

\surd 
2\varepsilon d\scrN Bt, \~Y0 = \bfity ,

(3.20)

where \tau := inf\{ t \geq 0; \~Yt \in A \cup B\} is the stopping time, and the admissible control
belongs to

\scrA \mathrm{N} := \{ v\mathrm{N} \in T\scrN ; \BbbE P
\Bigl( 
e
\int \tau 
0

1
4\varepsilon | v\mathrm{N}( \~Ys)| 2 ds

\Bigr) 
<\infty \} ,(3.21)

where T\scrN is C1 tangent vector field on \scrN . Moreover, \gamma \mathrm{N}(y) =  - 2\varepsilon ln q\mathrm{N}(y) and the
optimal control v\ast 

\mathrm{N} leads to an effective potential Ue := U  - 2\varepsilon ln q\mathrm{N} for the controlled
Markov process \~Yt with the generator Qq\mathrm{N} defined in (3.5), and the corresponding
effective potential is \pi e\mathrm{N} = \pi q2\mathrm{N}.

Proof. Choose \Omega = C([0,+\infty );\scrN ), with the product \sigma -algebra, as our measurable
space [Var07]. Any element y \in \Omega gives a coordinate process Yt(y) := y(t) \in \scrN , t \geq 0.

First, recall that for a closed manifold, the stopping time \tau := inf\{ t \geq 0;Yt \in 
A \cup B\} <\infty , a.s. Define a regularized committor function q\mathrm{N} satisfying

Qq\mathrm{N}(y) = 0, y \in (A \cup B)c,(3.22)

with the Dirichlet boundary conditions

q\mathrm{N}(y) = e - \beta N , y \in \=A, q\mathrm{N}(y) = 1, y \in \=B.(3.23)

From [Eva13, section 6.2.1], the stochastic characterization of q\mathrm{N} can be expressed as

q\mathrm{N}(\bfity ) = \BbbE P (f\mathrm{N}(Y\tau )), \bfity \in A \cup Bc,(3.24)

with function f\mathrm{N}(z) on A \cup B, f\mathrm{N} = e - \beta N , z \in \=A, while f\mathrm{N} = 1, z \in \=B. Here the
expectation is taken under the probability measure P (called the reference measure)
on the path space \Omega associated with all realizations of the original SDE of Yt starting
from \bfity \in (A \cup B)c. Define \beta := 1

2\varepsilon and function

g\mathrm{N}(x) =  - 
1

\beta 
ln f\mathrm{N} =

\biggl\{ 
N in \=A;
0 in \=B.

(3.25)

Then choose Hamiltonian H(y) := g\mathrm{N}(Y\tau (y)) for y \in \Omega . Since the original SDE
for Yt is translation invariant with respect to time (stationary with respect to time),
the feedback control function v\mathrm{N}(Yt) (stationary Markov control) does not explicitly
depend on t and we can take the starting time as t = 0 without loss of generality. We
consider the optimal control problem (3.20) with the admissible control in \scrA \mathrm{N}. \scrA \mathrm{N}

in (3.21) is the well-known Novikov condition in the Girsanov transformation, which
ensures the almost sure positivity of the Radon--Nikodym derivative in (3.27). It is
easy to see that v\mathrm{N} = 0 belongs to \scrA \mathrm{N} so \scrA \mathrm{N} \not = \emptyset . However, from the definition of g\mathrm{N},
g\mathrm{N}(Y\tau ) = N when Y\tau \in \=A, so for large N , v\mathrm{N} = 0 is not an optimal control.

Second, we find the minimizer \gamma \mathrm{N} (a.k.a. value function) and the correspond-
ing optimal control v\ast 

\mathrm{N}. Let \~P be the probability measure on \Omega associated with all

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TRANSITION PATH THEORY ON MANIFOLDS 11

realizations of the SDE of \~Yt with control v\mathrm{N}. By the Girsanov theorem, Yt is a
Brownian motion under measure P, and \~Yt is a Brownian motion under measure \~P .
As a consequence,

\BbbE P (e - \beta g\mathrm{N}(Y\tau )) = \BbbE \~P (e
 - \beta g\mathrm{N}( \~Y\tau )) = \BbbE P

\Biggl( 
e - \beta g\mathrm{N}( \~Y\tau )

d \~P

dP

\Biggr) 
,(3.26)

where the Radon--Nikodym derivative is given by [Var07, Theorem 6.2]

d \~P

dP
= e - \beta 

\int \tau 
0

\surd 
2\varepsilon v\mathrm{N}( \~Ys)\cdot d\scrN Bs - \beta 

2

\int \tau 
0

| v\mathrm{N}( \~Ys)| 2 ds > 0, P -a.s.(3.27)

and the sign in front of d\scrN B is negative following the convention. In short, we have

\BbbE P (e - \beta H(y)) = \BbbE P (e - \beta g\mathrm{N}(Y\tau )) = \BbbE P
\biggl( 
e - \beta 
\bigl( 
g\mathrm{N}( \~Y\tau )+

\int \tau 
0

\surd 
2\varepsilon v\mathrm{N}( \~Ys)\cdot d\scrN Bs+

1
2

\int \tau 
0

| v\mathrm{N}( \~Ys)| 2 ds
\bigr) \biggr) 

.

(3.28)

Then by Jensen's inequality and (3.26),

e - \beta \BbbE P (g\mathrm{N}( \~Y\tau )+
\int \tau 
0

1
2 | v\mathrm{N}( \~Ys)| 2 ds) \leq \BbbE P

\Biggl( 
e - \beta g\mathrm{N}( \~Y\tau )

d \~P

dP

\Biggr) 
= \BbbE P (e - \beta g\mathrm{N}(Y\tau )).(3.29)

Here the equality is achieved if and only if g\mathrm{N}( \~Y\tau )+
\int \tau 
0

\surd 
2\varepsilon v\mathrm{N}( \~Ys)\cdot d\scrN Bs+

\int \tau 
0

1
2 | v\mathrm{N}( \~Ys)| 2 ds

is deterministic. Using Lemma 3.1 and (3.24), we know that

q\mathrm{N}(\bfity ) = \BbbE P (f\mathrm{N}(Y\tau )) = \BbbE P (e - \beta g\mathrm{N}(Y\tau )) > 0, \bfity \in (A \cup B)c.(3.30)

Thus the RHS of (3.29) is always positive. Taking the logarithm to both sides, we
have

 - \beta \BbbE P
\biggl( 
g\mathrm{N}( \~Y\tau ) +

\int \tau 

0

1

2
| v\mathrm{N}( \~Ys)| 2 ds

\biggr) 
\leq ln

\Biggl( 
\BbbE P

\Biggl( 
e - \beta g\mathrm{N}( \~Y\tau )

d \~P

dP

\Biggr) \Biggr) 
(3.31)

= ln
\Bigl( 
\BbbE P (e - \beta g\mathrm{N}(Y\tau ))

\Bigr) 
.

Therefore, we obtain

\BbbE P
\biggl( 
g\mathrm{N}( \~Y\tau ) +

\int \tau 

0

1

2
| v\mathrm{N}( \~Ys)| 2 ds

\biggr) 
\geq  - 1

\beta 
ln

\Biggl( 
\BbbE P

\Biggl( 
e - \beta g\mathrm{N}( \~Y\tau )

d \~P

dP

\Biggr) \Biggr) 
=  - 1

\beta 
ln
\Bigl( 
\BbbE P (e - \beta g\mathrm{N}(Y\tau ))

\Bigr) 
,(3.32)

which, together with (3.30), gives

\gamma \mathrm{N}(\bfity ) \geq  - 
1

\beta 
ln
\Bigl( 
\BbbE P (e - \beta g\mathrm{N}(Y\tau ))

\Bigr) 
=  - 1

\beta 
ln q\mathrm{N}(\bfity ), \bfity \in (A \cup B)c.(3.33)

Furthermore, the verification theorem [FS06, IV.3, Theorem 5.1] shows that the equal-
ity is indeed achieved by the Hopf--Cole transformation

\gamma \mathrm{N}(\bfity ) =  - 
1

\beta 
ln q\mathrm{N}(\bfity ).(3.34)
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12 Y. GAO, T. LI, X. LI, AND J.-G. LIU

Actually, \gamma \mathrm{N}(\bfity ) satisfies the Hamilton--Jacobi--Bellman (HJB) equation

\varepsilon \Delta \gamma \mathrm{N}  - 
1

2
| \nabla \gamma \mathrm{N}| 2  - \nabla U \cdot \nabla \gamma \mathrm{N} = 0, in (A \cup B)c, \gamma \mathrm{N} = g\mathrm{N} on A \cup B.(3.35)

The associated optimal control (optimal feedback), such that

\~H(y) := g\mathrm{N}( \~Y\tau ) +

\int \tau 

0

\surd 
2\varepsilon v\ast 

\mathrm{N}( \~Ys) \cdot d\scrN Bs +
\int \tau 

0

1

2
| v\ast 

\mathrm{N}( \~Ys)| 2 ds(3.36)

is deterministic, is given by

v\ast 
\mathrm{N} =  - \nabla \gamma \mathrm{N} =

1

\beta 
\nabla ln\BbbE P

\Bigl( 
e - \beta g\mathrm{N}(Y\tau )

\Bigr) 
=

1

\beta 
\nabla ln q\mathrm{N}.(3.37)

Indeed, one can verify this by applying Ito's formula to \gamma \mathrm{N}( \~Y\tau ),

I :=\gamma \mathrm{N}( \~Y\tau ) - \gamma \mathrm{N}( \~Y0)

=

\int \tau 

0

\varepsilon \Delta \gamma \mathrm{N}( \~Ys) + ( - \nabla U + v\ast 
\mathrm{N}) \cdot \nabla \gamma \mathrm{N}( \~Ys) ds+

\surd 
2\varepsilon 

\int \tau 

0

\nabla \gamma \mathrm{N} \cdot d\scrN Bs

=

\int \tau 

0

\bigl( 
\varepsilon \Delta \gamma \mathrm{N}  - \nabla U \cdot \nabla \gamma \mathrm{N}  - | \nabla \gamma \mathrm{N}| 2

\bigr) 
( \~Ys) ds+

\surd 
2\varepsilon 

\int \tau 

0

\nabla \gamma \mathrm{N} \cdot d\scrN Bs

= - 1

2

\int \tau 

0

| \nabla \gamma \mathrm{N}| 2( \~Ys) ds+
\surd 
2\varepsilon 

\int \tau 

0

\nabla \gamma \mathrm{N} \cdot d\scrN Bs,

(3.38)

where we used v\ast 
\mathrm{N} =  - \nabla \gamma \mathrm{N} and (3.35). Using v\ast 

\mathrm{N} =  - \nabla \gamma \mathrm{N} again, the last two terms
above become

I = - 1

2

\int \tau 

0

| v\ast 
\mathrm{N}( \~Ys)| 2 ds - 

\surd 
2\varepsilon 

\int \tau 

0

v\ast 
\mathrm{N}( \~Ys) \cdot d\scrN Bs = g\mathrm{N}( \~Y\tau ) - \~H(y).(3.39)

Using the boundary condition of (3.35), \gamma \mathrm{N}( \~Y\tau ) = g\mathrm{N}( \~Y\tau ), and \~Y0 = y, we have

\~H(y) = \gamma \mathrm{N}( \~Y0) is deterministic.(3.40)

Since the optimality ensures \~H in (3.36) is deterministic, so from (3.34),

\BbbE P
\Bigl( 
e - \beta 

\~H
\Bigr) 
= e - \BbbE P (\beta \~H) = e - \beta \gamma \mathrm{N}(y) = q\mathrm{N} < +\infty ,

and thus v\ast 
\mathrm{N} \in \scrA \mathrm{N}.

Finally, plugging the optimal control v\ast 
\mathrm{N} = 2\varepsilon \nabla ln q\mathrm{N} into (3.20) shows that the

effective potential for the controlled Markov process \~Yt is

Ue\mathrm{N} = U  - 2\varepsilon ln q\mathrm{N}.(3.41)

Then by Ito's formula, the master equation for the controlled Markov process \~Yt is

\partial t\rho = \varepsilon \nabla \cdot 
\biggl( 
e - 

Ue
\mathrm{N}
\varepsilon \nabla (\rho e

Ue
\mathrm{N}
\varepsilon )

\biggr) 
= \varepsilon \nabla 

\biggl( 
\pi e\mathrm{N}\nabla 

\rho 

\pi e\mathrm{N}

\biggr) 
.(3.42)

Here \pi e\mathrm{N} = \pi q2\mathrm{N} is the effective equilibrium.

Remark 3.4. Although we focus on a reversible process defined by SDE (1.1),
we remark that Theorem 3.3 still holds for irreversible process with a general drift \bfitb 1

1Under assumptions for existence of a solution, for instance, \bfitb is smooth enough and \bfitb (\bfity ) \cdot \bfity \leq 
c(1 + | \bfity | 2).
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TRANSITION PATH THEORY ON MANIFOLDS 13

and the generator \~Qf = \varepsilon \Delta f + \bfitb \cdot \nabla f . The optimal control will be given by 2\varepsilon \nabla ln q
with q being the solution to \~Qq = 0 and (3.4). However, the Fokker--Planck equation
for irreversible processes does not have a relative entropy formulation. We refer the
reader to [GL21] for a structure preserving numerical scheme for irreversible processes
with a general drift field, which can be leveraged to construct an optimally controlled
random walk on point clouds for general irreversible processes.

3.2.3. Monotone dependence of committor function on cut-off \bfitN . Let
N1 \leq N2. Let \^q = q\mathrm{N}1  - q\mathrm{N}2 and q\mathrm{N}1, q\mathrm{N}2 be the solution to (3.22) with Dirichlet
boundary conditions q\mathrm{N}1(y) = e - \beta N1 , q\mathrm{N}2(y) = e - \beta N2 on \=A. Then \^q satisfies

Q\^q(y) = 0, y \in (A \cup B)c,(3.43)

\^q(y) = e - \beta N1  - e - \beta N2 \geq 0, y \in \=A, \^q(y) = 0, y \in \=B.(3.44)

Then by the strong maximum principle, \^q \geq 0 and thus q\mathrm{N}1 \geq q\mathrm{N}2. Knowing this,
together with Lemma 3.1, we know that q\mathrm{N} \geq 0 and is decreasing with respec to N .
Taking the limit q(y) := lim\mathrm{N} q\mathrm{N}(y), we see that q(y) satisfies the original committor
function (3.3). By using the Hopf--Cole transformation \gamma (y) =  - 1

\beta ln q(y), we obtain
that \gamma satisfies the limiting Hamilton--Jacobi equation

\varepsilon \Delta \gamma  - 1

2
| \nabla \gamma | 2  - \nabla U \cdot \nabla \gamma = 0 in (A \cup B)c, \gamma =

\biggl\{ 
+\infty in \=A,
0 in \=B.

(3.45)

Notice that \gamma \mathrm{N}(y) =  - 1
\beta ln q\mathrm{N}(y) is an increasing function of N . We have \gamma (y) =

limN\rightarrow +\infty \gamma \mathrm{N}(y). Meanwhile, the limiting effective potential is given by

Ue = lim
N\rightarrow +\infty 

(U  - 2\varepsilon ln q\mathrm{N}) = U  - 2\varepsilon ln q.(3.46)

Thus the limiting effective equilibrium is \pi e = \pi q2.
In summary, the committor function can be regarded as a limit of qN , which gives

the optimal control with cut-off v\ast 
N = 2\varepsilon \nabla ln q\mathrm{N}. The corresponding effective potential

\pi e is given by the limit \pi e = \pi q2. Numerically, because the singular transition layer in
\nabla q, we indeed only use the effective equilibrium \pi e = \pi q2 to construct an optimally
controlled random walk on point clouds.

Remark 3.5. Notice that the value function \gamma (\bfity ) =  - 2\varepsilon ln q(\bfity ) satisfies

0 = \varepsilon \Delta \gamma  - 1

2
| \nabla \gamma | 2  - \nabla U \cdot \nabla \gamma =  - e

\gamma 
2\varepsilon Q(e - 

\gamma 
2\varepsilon ).(3.47)

We comment on the connection with the logarithmic transformation framework devel-
oped by Sheu and Fleming [She85], [FS06, section VI]. Define a Hamiltonian operator
Hf := efQ(e - f ); then by [FS06, Lemma 9.1, p. 257]

Hf = min
h

\biggl\{ 
 - Qhf  - Qh(lnh) + Qh

h

\biggr\} 
.(3.48)

This Hamiltonian operator and the associated HJB equation for the optimal control
for exit problem has been studied in [BH16]. In particular, the authors applied the
optimal control verification theorem in [FS06, section VI] to the exit problem in the
infinite time horizon and constructed an optimally controlled Markov chain based on
the solution to the associated HJB equation.
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14 Y. GAO, T. LI, X. LI, AND J.-G. LIU

Remark 3.6. We remark that Theorem 3.3 uses a terminal cost function g and
the associated committor function q to construct an optimal feedback v\ast and thus
the associated controlled process \~Y . More importantly, the transition from absorbing
set A to another absorbing set B is a rare event for the original Markov process Yt
while this transition becomes an almost sure event for the controlled Markov process
\~Yt. This has a significant statistical advantage because it uses the controlled process
\~Yt, which realizes the conformational transitions almost surely. The computations for
statistic quantities in the original rare event become more efficient; see Algorithm 1
for the controlled random walk on point clouds.

4. Markov chain and transition path theory on point clouds. This section
focuses on constructing an approximated Markov chain on point clouds and comput-
ing the discrete analogies in the transition path theory on point clouds. In section
4.1, we will first introduce a finite volume scheme which approximates the original
Langevin dynamics (1.1) and its master equation on \scrN . In section 4.2, based on the
approximated Markov chain, we design the discrete counterparts for the committor
functions, the discrete Doob h-transform, and the generator for the optimal controlled
Markov chain in the transition path theory on point clouds.

4.1. Finite volume scheme and the approximated Markov chain on
point clouds. In this section, we first propose a finite volume scheme for the original
Fokker--Planck equation based on a data-driven approximated Voronoi tesselation for
\scrN . Then we reformulate it as a Markov process on point clouds.

4.1.1. Voronoi tesselation and finite volume scheme. Suppose (\scrN , d\scrN ) is
a d dimensional smooth closed submanifold of \BbbR \ell and d\scrN is induced by the Euclidean
metric in \BbbR \ell . D := \{ yi\} i=1:n is a point cloud sampled from some density on \scrN 
bounded below and above. It is proved that the data points D are well distributed
on \scrN whenever the points are sampled from a density function with lower and upper
bounds [TS15, LLL19]. Define the Voronoi cell as

Ci := \{ y \in \scrN ; d\scrN (y,yi) \leq d\scrN (y,yj) for all yj \in D\} with volume | Ci| = \scrH d(Ci).
(4.1)

Then \scrN = \cup ni=1Ci is a Voronoi tessellation of \scrN . Denote the Voronoi face for cell Ci
as

\Gamma ij := Ci \cap Cj with its area | \Gamma ij | = \scrH d - 1(\Gamma ij)(4.2)

for any j = 1, . . . , n. If \Gamma ij = \emptyset or i = j, then we set | \Gamma ij | = 0. Define the associated
adjacent sample points as

VF(i) := \{ j; \Gamma ij \not = \emptyset \} .(4.3)

By Ito's formula, SDE (1.1) gives the following Fokker--Planck equation, which is
the master equation for the density \rho (y) in terms of y,

\partial t\rho = \nabla \cdot (\varepsilon \nabla \rho + \rho \nabla U) =: FP\scrN \rho .(4.4)

Denote the equilibrium \pi := e - 
U
\varepsilon . The Fokker--Planck operator has the following

equivalent form:

FP\scrN (\rho ) =\varepsilon \Delta \rho +\nabla \cdot (\rho \nabla U) = \nabla \cdot (\rho (\varepsilon \nabla ln \rho +\nabla U))

=\varepsilon \nabla \cdot 
\Bigl( 
\rho \nabla ln

\rho 

\pi 

\Bigr) 
= \varepsilon \nabla \cdot 

\Bigl( 
\pi \nabla \rho 

\pi 

\Bigr) 
.

(4.5)
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TRANSITION PATH THEORY ON MANIFOLDS 15

Using (4.5), we have the following finite volume scheme:

d

dt
\rho i| Ci| =

\sum 
j\in VF(i)

\pi i + \pi j
2| yi  - yj | 

| \Gamma ij | 
\biggl( 
\rho j
\pi j
 - \rho i
\pi i

\biggr) 
, i = 1, . . . , n,(4.6)

where \pi i is the approximated equilibrium density at yi with the volume element | Ci| .
One can also recast (4.6) as a backward equation formulation:

d

dt

\rho i
\pi i

=
\sum 

j\in VF(i)

\pi i + \pi j
2\pi i| Ci| | yi  - yj | 

| \Gamma ij | 
\biggl( 
\rho j
\pi j
 - \rho i
\pi i

\biggr) 
, i = 1, . . . , n.(4.7)

Define a Q-matrix

Qij =
\pi i + \pi j

2\pi i| Ci| | yi  - yj | 
| \Gamma ij | \geq 0, j \not = i, Qii =  - 

\sum 
j \not =i

Qij .(4.8)

Notice that row sums zero,
\sum 
j Qij = 0. Then Q is the generator of the associated

Markov process. We rewrite (4.7) in the matrix form

d

dt

\rho 

\pi 
= Q

\rho 

\pi 
with

\rho 

\pi 
=

\biggl( 
\rho i
\pi i

\biggr) 
i=1:n

.(4.9)

With an adjoint Q-matrix, (4.6) can also be recast in matrix form:

d

dt
\rho | C| = Q\ast (\rho | C| ) with \rho | C| = \{ \rho i| Ci| \} i=1:n.(4.10)

In practice, since we don't have the exact manifold information, the volume of the
Voronoi cells Ck and the area of the Voronoi faces \Gamma kl need to be approximated. We
refer the reader to [GLW20, Algorithm 1] for the algorithm for approximating | Ck| and
| \Gamma ij | and the convergence analysis of this solver (4.6) for the Fokker--Planck equation
(4.4). We denote the approximated volumes as | \~Ck| and the approximated areas as
| \~\Gamma kl| . After replacing | Ck| by the approximated volumes | \~Ck| and replacing | \Gamma kl| by
the approximated areas | \~\Gamma kl| , (4.6)/(4.12) becomes an approximated Markov process
on point clouds, which is an implementable solver for the Fokker--Planck equation on
\scrN . We drop tildes when there is no confusion in the following contexts.

The [GLW20, Lemma 3.10] shows that under the assumption that each Voronoi
cell is contained in a small ball centered at a certain data point, the algorithm can
make a correct approximation of | Ck| and | \Gamma ij | . This assumption means the data
cloud is dense enough on the manifold \scrN . When the data is not enough, we can use
some data-enrichment techniques to sample more data on the manifold to assist the
estimation. We will show an example for this procedure in numerical Example 3.

4.1.2. Markov process on point clouds. With the approximated volumes | Ci| 
and the approximated areas | \Gamma ij | , one can interpret the finite volume scheme (4.6) as
the forward equation for a Markov process with transition probability matrix (Pji)
(from j to i) and diagonal rate matrix R = diag(\lambda j). Here P and R are determined
by Q-matrix as follows:

\lambda i :=
\sum 
j \not =i

Qij =
1

2| Ci| \pi i

\sum 
j\in VF(i)

\pi i + \pi j
| yi  - yj | 

| \Gamma ij | , i = 1, 2, . . . , n;

Pij :=

\left\{       
Qij
\lambda i

=
1

\lambda i

\pi i + \pi j
2\pi i| Ci| 

| \Gamma ij | 
| yi  - yj | 

, j \in VF(i);

0, j /\in VF(i).

(4.11)
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16 Y. GAO, T. LI, X. LI, AND J.-G. LIU

Assume that \pi i > 0 for all i; then we have \lambda i > 0 for all i. One can see P has
nonnegative entries and satisfies row sum one

\sum 
i Pji = 1. In the matrix form, we

have Q = R(P  - I). Then the finite volume scheme (4.6) can be recast as

d

dt
\rho i| Ci| =

\sum 
j\in VF(i)

\lambda jPji\rho j | Cj |  - \lambda i\rho i| Ci| , i = 1, 2, . . . , n,(4.12)

and the detailed balance property

Qji\pi j | Cj | = Pji\lambda j\pi j | Cj | = Pij\lambda i\pi i| Ci| = Qij\pi i| Ci| .(4.13)

4.2. Committor function, currents, and controlled Markov chain on
point clouds. In this section, we first review the corresponding concepts for the
transition path theory on point clouds. Then from the optimal control viewpoint, we
construct a finite volume scheme for the controlled Fokker--Planck equation and the
associated controlled Markov process (random walk on point clouds).

4.2.1. Committor function, currents, and transition rate. Suppose the
local minima a and b of U are two cell centers with indices ia and ib. Below, we
clarify the discrete counterparts of section 3.1 for committor functions q, the density
of transition paths \rho R, the current of transition paths JR, and the transition rates
kAB .

First, from the backward equation formulation (4.7), the forward committor func-
tion qi, i = 1, . . . , n, from a to b satisfies\sum 

j\in V F (i)

Qij (qj  - qi) = 0, i \not = ia, ib,

qia = 0, qib = 1.

(4.14)

Note that we only solve the committor function for a discrete Markov process by
solving a linear system. The Q-matrix is directly obtained from the approximated
transition probability and jumping rate computed from data point probing the mani-
fold; see (4.8). With the Q-matrix, the cost of solving this linear system only depends
on the number of sample points. Whether there are enough data point probing the
manifold is a static geometric problem, rather than a dynamic sampling issue. As long
as there are well-distributed data points probing the manifold, the diffusion tensor on
the manifold is automatically embedded in the Markov chain constructed from those
data points.

Second, the discrete density of the reactive paths [MSVE09, Remark 2.10] is
defined as

\rho Ri := \pi iqi(1 - qi).(4.15)

Third, with the constructed Q-matrix in (4.8), the current from site i to site j of
the reactive path from state a to state b is given by [MSVE09, Remark 2.17]

JRij := Qij\pi i(qj  - qi) =
(\pi i + \pi j)| \Gamma ij | 

2

qj  - qi
| yi  - yj | 

,(4.16)

which is the counterpart of the current in (3.9). Due to (4.14), it is easy to check the
current is divergence free, i.e., satisfying the Kirchhoff current law,\sum 

j\in VF(i)

JRij = 0, i \not = ia, ib.(4.17)
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TRANSITION PATH THEORY ON MANIFOLDS 17

Finally, the transition rate from absorbing set A to B can be calculated from the
current. It is shown in [MSVE09, Theorem 2.15] that the transition rate from A to
B is given by

kAB =
\sum 
i\in A

\sum 
j\in VF(i)

JRij .(4.18)

Particularly, if there is only one point yia \in A, then

kAB = \langle Qq, \delta ia\rangle \pi =
\sum 

j\in VF(ia)

JRia,j ,(4.19)

where \delta ia is the Kronecker delta with value 1 if i = ia while 0 otherwise.

4.2.2. Finite volume scheme and \bfitQ q-matrix for controlled Markov
chain. Similar to the controlled Markov process in (3.42), we give the controlled
Markov chain on point clouds below. Suppose the local minima a and b of U are two
cell centers with indices ia and ib. For simplicity, we assume there is only one point
yia \in \=A. We construct a controlled random walk on point clouds \{ yi\} i=1:n,i\not =ia . The
controlled random walk for the general case that more than one point belongs to A
is similar. Below, we derive the master equation for this controlled random walk and
still denote the density at states \{ yi\} i=1:n,i\not =ia as \rho i.

The local minima a and b of U are our interest and usually the sampled data has
high resolution near a \in A and b \in B. Since our discrete Markov process Qq is defined
on the data cloud without points in A, we assume after taking out one of a few points
in A, the remaining graph is assumed to be still connected. This assumption will be
used in the spectral gap analysis for Qq later.

First, with the effective potential Ue in (3.41), the effective equilibrium is \pi e =

e - 
Ue

\varepsilon = q2\pi . We now construct a Markov process with a Qq-matrix on states
\{ yi\} i=1:n,i \not =ia such that

(i) \pi e = q2\pi is an equilibrium;
(ii) it satisfies the detailed balance | Ci| \pi eiQ

q
ij = | Cj | \pi ejQ

q
ji;

(iii) it satisfies mass conservation d
dt

\sum 
i \rho i| Ci| = 0.

Plug \pi ei := q2i \pi i into the scheme (4.6). We propose a finite volume scheme for the
controlled Fokker--Planck equation (3.42):

d

dt
\rho i| Ci| =

\sum 
j\in VF(i),j \not =ia

qiqj(\pi i + \pi j)

2| yi  - yj | 
| \Gamma ij | 

\Biggl( 
\rho j
q2j\pi j

 - \rho i
q2i \pi i

\Biggr) 
,

i = 1, . . . , n, i \not = ia.

(4.20)

With Q in (4.8), we define for i = 1, . . . , n, i \not = ia,

Qqij :=
qj
qi
Qij \geq 0 (i \not = j), and Qqii =  - 

\sum 
j \not =i,ia

Qqij .(4.21)

Qq is an n - 1 by n - 1 Q-matrix which has zero row sum, i.e.,
\sum 
j \not =ia Q

q
ij = 0, i \not = ia.

One can recast (4.20) as a backward equation

d

dt

\rho i
\pi ei

=
\sum 

j\in VF(i),j \not =ia

qj
qi

(\pi i + \pi j)

2\pi i| Ci| | yi  - yj | 
| \Gamma ij | 

\Biggl( 
\rho j
\pi ej
 - \rho i
\pi ei

\Biggr) 

=
\sum 

j\in VF(i),j \not =ia

Qqij

\Biggl( 
\rho j
\pi ej
 - \rho i
\pi ei

\Biggr) 
, i = 1, . . . , n, i \not = ia,

(4.22)
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18 Y. GAO, T. LI, X. LI, AND J.-G. LIU

and Qq is the effective generator for the controlled Markov process on point clouds
\{ yi\} i=1:n,i\not =ia .

For (i), by plugging \pi e = q2\pi into (4.20), one obtains that \pi e is an equilibrium
solution.

For (ii), we can verify for i, j \not = ia and i \not = j

| Ci| \pi eiQ
q
ij = qiqj\pi iQij | Ci| = qiqj\pi jQji| Cj | = | Cj | \pi ejQ

q
ji,(4.23)

where we used the detailed balance property of Q.
For (iii), recast (4.20) as matrix form

d

dt
\rho i| Ci| =

\sum 
j\in VF(i),j \not =ia

Qqij\pi 
e
i | Ci| 

\Biggl( 
\rho j
\pi ej
 - \rho i
\pi ei

\Biggr) 
=

\sum 
j\in VF(i),j \not =ia

\bigl( 
Qqji| Cj | \rho j  - Q

q
ij | Ci| \rho i

\bigr) 
.

(4.24)

The summation with respect to i for both sides concludes mass conservation
d
dt

\sum 
i \not =ia \rho i| Ci| = 0.

Second, we plug \rho Ri defined in (4.15) into (4.20), and by using (4.14), we have

\sum 
j\in VF(i),j \not =ia

qiqj(\pi i+\pi j)

2| yi  - yj | 
| \Gamma ij | 

\biggl( 
1

qj
 - 1

qi

\biggr) 
=  - 

\sum 
j\in VF(i),j \not =ia

\pi i+\pi j
2| yi  - yj | 

| \Gamma ij | (qi  - qj) = 0,

i = 1, . . . , n, i \not = ia, ib.

(4.25)

However, we emphasize that \rho R is not an equilibrium for the proposed Markov process
(4.20) because Qqibib \not = Qibib .

Third, let us discuss the spectral gap of Qq-matrix:

(1) From zero row sum property, we know 0 is an eigenvalue of Qq.
(2) From the detailed balance property (4.23), we know the dissipation estimate

\langle Qqu, u\rangle \pi e| C| =  - 
1

2

\sum 
i,j;i\not =j

Qqij(uj  - ui)
2\pi ei | Ci| \leq 0.(4.26)

Thus the eigenvalues of Qq satisfy 0 = \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot .
(3) Since the manifold \scrN is assumed to be connected, the associated graph for

Q given by Delaunay triangulation is connected. Based on the assumption
that there are many sampled data nearby local minima a and b, we assume
that after taking out ia, the graph is still connected. Otherwise, with the
help of the data-enrichment techniques mentioned in section 4.1.1, we can
still assume that the Voronoi cell estimation is valid, and after taking out
ia, the graph associated with Qq is still connected. Hence \langle Qqu, u\rangle \pi e| C| = 0
if and only if u \equiv constant. Therefore there is a spectral gap for Qq, i.e.,
0 = \lambda 1 > \lambda 2 \geq \cdot \cdot \cdot .

Finally, one can recast (4.22) as the controlled Markov process with the controlled
transition probability matrix (P qji) (from site j to i) and the controlled jump rate
Rq = diag(\lambda qj),

d

dt
\rho i| Ci| =

\sum 
j\in VF(i),j \not =ia

\lambda qjP
q
ji\rho j | Cj |  - \lambda 

q
i \rho i| Ci| , i = 1, 2, . . . , n, i \not = ia,(4.27)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

8/
23

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



TRANSITION PATH THEORY ON MANIFOLDS 19

where

\lambda qi :=
\sum 
j \not =i

Qqij =
1

2| Ci| \pi i

\sum 
j\in VF(i),j \not =ia

qj
qi

\pi i + \pi j
| yi  - yj | 

| \Gamma ij | , i = 1, 2, . . . , n, i \not = ia;

P qij :=

\left\{       
Qqij
\lambda qi

=
1

\lambda qi

qj
qi

\pi i + \pi j
2\pi i| Ci| 

| \Gamma ij | 
| yi  - yj | 

, j \in VF(i), j \not = ia;

0, j /\in VF(i).

(4.28)

We remark that the controlled generator Qq (4.21) constructed using the Doob h-
transform is also used in [Tod09, BH16] for the exit problem for controlled Markov
chains; see also [GL20, GJL21] for the application in the image transformation and
Bayesian inference. For more general chemical reaction processes represented as a
time-changed jump process on countable states, we refer the reader to [GL22a, GL22c]
for the optimal control formulation and the large deviation principle in the thermody-
namic limit. However, designing the optimally controlled Markov chain for chemical
reaction processes, particularly at finite noise level, is still open.

Under the constructed controlled transition probability matrix (P qij) for the con-
trolled random walk, the transition from the metastable state a \in A to b \in B is
almost sure in O(1) time rather than a rare event. Taking advantage of this nature,
we will provide an algorithm for finding the mean transition path from A to B. This
algorithm can be efficiently implemented by Monte Carlo simulation of the controlled
random walk on point cloud. See Algorithm 2.

Remark 4.1. Similar to the continuous version, we formally calculate the discrete
optimal control fields below. From (4.20),

d

dt
\rho i| Ci| = (Qq)\ast (\rho | C| )(4.29)

:=
\sum 

j\in VF(i)

(\pi i + \pi j)

2| yi  - yj | 
| \Gamma ij | 

\biggl( 
qi
qj

\rho j
\pi j
 - qj
qi

\rho i
\pi i

\biggr) 

=
\sum 

j\in VF(i)

(\pi i + \pi j)

2| yi  - yj | 
| \Gamma ij | 

\biggl( 
\rho j
\pi j
 - \rho i
\pi i

+

\biggl( 
qi
qj
 - 1

\biggr) 
\rho j
\pi j
 - 
\biggl( 
qj
qi
 - 1

\biggr) 
\rho i
\pi i

\biggr) 

=
\sum 

j\in VF(i)

(\pi i + \pi j)

2| yi  - yj | 
| \Gamma ij | 

\biggl( 
\rho j
\pi j
 - \rho i
\pi i

\biggr) 

+
\sum 

j\in VF(i)

(\pi i + \pi j)

2| yi  - yj | 
| \Gamma ij | 

\biggl( 
\rho j
qj\pi j

+
\rho i
qi\pi i

\biggr) 
(qi  - qj)

= Q\ast (\rho | C| ) - 
\sum 

j\in VF(i)

| \Gamma ij | 
qj  - qi
| yi  - yj | 

(\pi i + \pi j)

2

\biggl( 
\rho j
qj\pi j

+
\rho i
qi\pi i

\biggr) 
= Q\ast (\rho | C| ) - 

\sum 
j\in VF(i)

| \Gamma ij | vij\rho ij ,

where vij = 2
(qj - qi)
| yj - yi| 

2
qi+qj

and \rho ij = 1
8 (qi + qj)(\pi i + \pi j)(

\rho j
qj\pi j

+ \rho i
qi\pi i

). Thus, as
a counterpart of Theorem 3.3, from the optimal control viewpoint for the Markov
process (random walk) on point clouds, we can regard vij = 2

(qj - qi)
| yj - yi| 

2
qi+qj

as the

discrete optimal feedback control field from i to j (along edge eij of the associated
Delaunay triangulation).
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20 Y. GAO, T. LI, X. LI, AND J.-G. LIU

5. Data-driven solver and computations. In this section, we introduce the
algorithms for finding the transition path on point clouds. As we will see, the transi-
tion from one metastable state to another for the optimally controlled Markov process
is no longer rare. We can efficiently simulate these transition events and compute the
mean transition path based on a level set determined by the committor function q and
a mean path iteration algorithm on point clouds adapted from a finite temperature
string method in [ERVE05]. Algorithms for the construction of the approximated
Markov chain and the dominant transition path are given in section 5.1. Algorithms
for the Monte Carlo simulation and the mean transition path based on the controlled
Markov process are given in section 5.2.

5.1. Computation of dominant transition path. We first need to construct
the approximated Markov chain based on the point clouds \{ yi\} i=1:n, i.e., to compute
the coefficients in the discrete generator (4.8). In particular, the approximated cell
volumes | Ck| and the approximated edge areas | \Gamma kl| can be obtained by the approx-
imated Voronoi tessellation in [GLW20, Algorithm 1]. Another related local meshed
method for computing the committor function via point clouds was given in [LL18].

Then based on the associated Markov process (4.8) with the approximated coeffi-
cients, we can compute the dominant transition path and the transition rate between
metastable states on manifold \scrN . Below we will simply mention the basic concepts
and algorithms of the transition path theory of the Markov jump process for com-
pleteness. Further details can be found in [MSVE09].

We seek the dominant transition path from the starting state A to the ending
state B. All algorithms presented are also valid for any starting state in absorbing
set A and ending state in set B. This dominant path defined in [MSVE09] is the
reactive path connecting A and B that carries the most probability current. We
construct a weighted directed graph G(V,E) using dataset V = \{ yi\} i=1:n as nodes,
E = \{ eij , JRij > 0\} as a directed edge with weight JRij . Here JRij > 0 is computed via
(4.16). From (4.16), there is no loop in the directed graph G(V,E).

Given the starting and ending states A,B \subset \{ yi\} i=1:n, a reactive trajectory from
A to B is an ordered sequence P = [y0,y1, . . .yk], yi \in V, (yi,yi+1) \in E such that
y0 \in A, yk \in B, and yi \in (A \cup B)c, 0 < i < k, for some k \leq n. We denote the
set of all such reactive trajectories by P. From (4.16), along any reactive trajectory
P \in P, the values of the committor function

0 = q0 < q1 < \cdot \cdot \cdot < qk = 1(5.1)

are strictly increasing from 0 to 1. Given a reactive trajectory P , the maximum
current carried by this reactive trajectory P , called the capacity of P , is

c(P ) := min
(i,j)\in P

JRij .

Among all possible trajectories from A to B, one can further find the one with the
largest capacity

cmax := max
P\in P

c(P ), Pmax \in argmaxP\in Pc(P ).(5.2)

We call the associated edge

(b1, b2) = argmin(i,j)\in P\mathrm{m}\mathrm{a}\mathrm{x}
JRij(5.3)

the dynamical bottleneck with the weight cmax = JRb1b2 . For simplicity, we assume JRij
are distinct, so b1, b2 are uniquely determined.
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TRANSITION PATH THEORY ON MANIFOLDS 21

Finding the bottleneck provides a divide-and-conquer algorithm for finding the
most probable path recursively. The dominant transition path is the reactive path
with the largest effective probability current [MSVE09, EVE10]. Computing the dom-
inant transition path is a recursion of finding the maximum capacity on subgraphs.

Now we use the bottleneck (b1, b2) and level-set of committor function q to divide
the original graph G(V,E) into two disconnected subgraphs GL and GR as below.

Note that every path in Pmax passes through the bottleneck (b1, b2). Thus the
weight of each edge in Pmax is larger than the weight of bottleneck JRb1b2 . So we first
remove all the edges of the original graph G(V,E) with weight smaller than JRb1b2 .
Denote

VL := \{ yi; qi \leq qb1\} , VR := \{ yi; qi \geq qb2\} .(5.4)

Construct the new graph

GL := (VL, EL), with EL := \{ eij \in E; yi,yj \in VL, JRij > JRb1b2\} ;
GR := (VR, ER), with ER := \{ eij \in E; yi,yj \in VR, JRij > JRb1b2\} .

(5.5)

Then we find the dominant transition path in GL from A to b1 and in GR from b2 to B.
So the computation of the dominant transition path is simply finding the bottleneck
recursively.

In summary, we will first compute the committor function q by solving the linear
system (4.14). Then we construct the graph G(V,E) and compute the dominant tran-
sition path based on recursively finding the bottlenecks and the dominant transition
paths; see [MSVE09] for further implementation details of the algorithmic construc-
tions.

5.2. Mean transition path and the computation on point clouds. The
dominant transition path from metastable state A to B obtained by TPT is a tran-
sition path that carries the most probability current. Below we will introduce the
concept mean transition path by taking expectation with respect to the transition
path density (3.6), which forms the rationale of our algorithm.

For any codimension one surface S on \scrN \subset \BbbR \ell , we define its projected mean

\bfitp S := \scrP 
\biggl( 
Z - 1
S

\int 
S

x\pi (x)q(x)(1 - q(x)) d\sigma 
\biggr) 
,(5.6)

where ZS =
\int 
S
\pi (x)q(x)(1 - q(x)) d\sigma is the normalization constant, and \scrP : \BbbR \ell \rightarrow \scrN 

is a projection, e.g., the closest point projection, which is assumed to be unique in
our paper. We denote the mean transition path by \bfitp (\alpha ) \in \scrN \subset \BbbR \ell , where \alpha \in [0, 1]
is the normalized arc length parameter that | \bfitp \prime (\alpha )| \equiv Const.

First, notice from (5.1) that the committor function q strictly increases from 0
to 1 along the transition path \bfitp from A to B. We assume the manifold \scrN can
be parameterized by (q, \sigma ). Second, choose S in (5.6) as the iso-committor surface
intersecting \bfitp (\alpha ):

S\alpha = \{ x \in \scrN | q(x) = q(\bfitp (\alpha ))\} .(5.7)

We define \bfitp (\alpha ) as the projected mean on the iso-committor surface S\alpha . By the coarea
formula on manifold, for any \alpha \in [0, 1], we can rewrite (5.6) as

\bfitp (\alpha ) = \scrP 
\biggl( 
Z - 1
\alpha 

\int 
\scrN 
x\pi (x)| \nabla q(x)| \delta (q(x) - q(\bfitp (\alpha ))) dx

\biggr) 
,(5.8)
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22 Y. GAO, T. LI, X. LI, AND J.-G. LIU

where we used that q(x) is constant on S\alpha and is included in the normalization
constant Z - 1

\alpha := Z - 1
S\alpha 
q(\bfitp (\alpha ))(1  - q(\bfitp (\alpha ))). We denote (5.8) as a projected average

\bfitp (\alpha ) = \scrP < x >\pi q(\bfitp (\alpha ))
, where the average is taken with respect to the density

\pi q(\bfitp (\alpha ))(x) \propto \pi (x)| \nabla q(x)| \delta (q(x) - q(\bfitp (\alpha ))) on \scrN .
Note that in (5.8), the definition of \bfitp (\alpha ) depends on \bfitp (\alpha ) itself; we can compute

\bfitp by a Picard iteration, i.e.,

\bfitp l+1(\alpha ) = \scrP 
\biggl( 
Z - 1
\alpha 

\int 
x\pi (x)| \nabla q| \delta (q(x) - q(\bfitp l(\alpha ))) dx

\biggr) 
:= \scrP \langle x\rangle \pi 

q(\bfitp l(\alpha ))
.(5.9)

This resembles the finite temperature string method [ERVE05, RVEME05], which
is developed to compute the average of the right-hand side by sampling techniques.
However, since the transition between metastable states rarely happens, the sampling
is difficult.

With the help of the controlled dynamics dictated by effective potential Ue, one
can compute the mean transition path \bfitp (\alpha ) efficiently. Note that the optimally con-
trolled equilibrium is only a modification of \pi with a prefactor, i.e., \pi e = Cq2\pi ,
where constant C ensures

\int 
\scrN \pi e dx = 1. Therefore, since q(x) is constant on S\alpha ,

mean transition path \bfitp (\alpha ) can be identically recast as

\bfitp (\alpha ) = \scrP 
\biggl( 
(Z\alpha Cq

2(\bfitp (\alpha ))) - 1

\int 
\scrN 
x\pi e(x)| \nabla q| \delta (q(x) - q(\bfitp (\alpha ))) dx

\biggr) 
=: \scrP \langle x\rangle \pi e

q(\bfitp (\alpha ))
.

(5.10)

The density is \pi eq(\bfitp (\alpha )) \propto \pi e(x)| \nabla q| \delta (q(x) - q(\bfitp (\alpha ))). The mean transition path can
be computed by Picard iteration:

\bfitp l+1(\alpha ) = \scrP \langle x\rangle \pi e

q(\bfitp l(\alpha ))

.(5.11)

Under the dynamics governed by Ue, the exit from the attraction basin of metastable
state A is almost sure in O(1) time; thus the sampling of the transition is much easier.

On the numerical aspect, we can also compute \bfitp on point clouds. Given a point
cloud D = \{ yi\} i=1:n, we simulate a random walk \{ yqt \} on D based on the controlled
generator Qq in (4.21). In detail, we first extend the Markov process with (Qq)ij in
(4.21) to include the site ia. Then we have \lambda qia = +\infty , so the waiting time at ia is
zero. Thus at t = 0, we start the simulation at yq0 \in V F (ia) with probability

P qiaj =
qj(\pi ia + \pi j)

\scrZ 
| \Gamma jia | 
| yia  - yj | 

, j \in VF(ia), \scrZ =
\sum 

j\in VF(ia)

qj
\pi ia + \pi j
| yia  - yj | 

| \Gamma iaj | .(5.12)

In other words, P qiaj \propto J
R
iaj

. We refer the reader to [LN15, Lemma 1.3] for the reactive
exit distribution on \partial A for the continuous Markov process. Suppose yqtk = yi; the next
step is to update \Delta tk and yqtk+1

as follows. (i) The waiting time \Delta tk = tk+1  - tk \sim 
\scrE (\lambda qi ) is an exponentially distributed random variable with rate \lambda qi ; (ii) yqtk jumps
to yj \in V F (yi) with probability P qij \equiv Qqij/\lambda 

q
i , where \lambda 

q
i is defined as in (4.11). We

repeat this simulation K times to obtain the data \{ yqk,\Delta tk\} k=0:K , in which we restart
the simulation from A each time when we hit B. Denote a sampled trajectory part
Pr of length r, from \partial A to B, as Pr := \{ (yq0,\Delta t0), (y

q
1,\Delta t1), . . . , (y

q
r ,\Delta tr)\} such that

yq0 \in V F (ia) and yqr \in B. We summarize this simulation in Algorithm 1.

To implement the Picard iteration (5.11) using data set \{ yqk,\Delta tk\} k=0:K , we
need to approximate the density \pi eq(\bfitp (\alpha )) at first. We make an assumption that
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TRANSITION PATH THEORY ON MANIFOLDS 23

Algorithm 1: Algorithm for controlled random walk on point clouds
Algorithm Inputs: Maximum iteration Kmax.

1. Set k = 0, r = 0. Generate yq0 \in V F (ia) with probability P qiaj .

2. yqk+1 := yqtk+1
= ys, where s = min\{ s| 

\sum s
j=1,j \not =i P

q
ij \geq \eta \} , where \eta \sim U [0, 1] is a

uniformly distributed random variable.
3. tk+1 = tk +\Delta tk, \Delta tk being an exponentially distributed random variable with

rate \lambda qi .
4. k \leftarrow k + 1, r \leftarrow r + 1. Repeat until yqr \in B. Record the trajectory
Pr = \{ (yq0,\Delta t0), \cdot \cdot \cdot , (yqr ,\Delta tr)\} .

5. Reset r = 0, yqr \in V F (ia) according to Step 1. Repeat the above iterations until
k exceeds the maximum iteration number Kmax.

\pi eq(\bfitp (\alpha )) on S\alpha is localized in \scrB \BbbR \ell 

r0 (\bfitp (\alpha )), the neighborhood of \bfitp (\alpha ) with radius r0

in Euclidean space \BbbR \ell , and | \nabla q| is approximately constant in \scrB \BbbR \ell 

r0 (\bfitp (\alpha )). Indeed,
a similar assumption was also made in the construction of the finite temperature
string method. With this assumption, \langle x\rangle \pi e

q(\bfitp (\alpha ))
\approx \langle x\rangle \~\pi e

q(\bfitp (\alpha ))
, where the density

\~\pi eq(\bfitp (\alpha ))(x) \propto \pi (x)\chi \scrB \BbbR \ell 
r0

(\bfitp (\alpha ))
(x). Taking advantage of ergodicity, we get

\langle x\rangle \pi e
q(\bfitp (\alpha ))

\approx 1

T\alpha 

K\sum 
k=0

yqk\chi \scrB \BbbR \ell 
r0

(\bfitp (\alpha ))(y
q
k)\Delta tk,

where T\alpha =
\sum K
k=0 \Delta tk\chi \scrB \BbbR \ell 

r0
(\bfitp (\alpha ))

(yqk).

Numerically, we discretize \bfitp (\alpha ), \alpha \in [0, 1], into P = \{ pm\} m=1:M for some M \in \BbbN .
For the lth iteration step and for any plm, we select segments of reactive trajectories

inside the ball \scrB \BbbR \ell 

r0 (p
l
m), where the radius r0 > 0 is chosen such that \{ yqk\} \cap \scrB \BbbR 

\ell 

r0 (p
l
m)

has enough samples. Denote the resulting samples as

\{ yqk\} k=0:K \cap \scrB \BbbR 
\ell 

r0 (p
l
m) = \{ yqr1 , . . .y

q
rs\} , r1, r2, . . . , rs \in \{ 0, 1, . . . ,K\} ,(5.13)

and the Picard iteration before projection takes the form

\~pl+1
m :=

1

\Delta Tl

s\sum 
j=1

yqrj\Delta trj , \Delta Tl =

s\sum 
j=1

\Delta trj .(5.14)

Furthermore, in order to avoid the issue that allM discrete points overlap and concen-
trate on a few points, an arc-length reparameterizing procedure similar to [ERVE02]
is needed.

To do the reparameterization, we first compute

S1 = 0, Sm =

m\sum 
j=2

| \~pl+1
m  - \~pl+1

m - 1| , m = 2, . . . ,M.(5.15)

Then the total length of \~P l+1 is approximately SM . We do the arc-length repa-
rameterizations by linear interpolation as follows. (i) Denote Lm := m - 1

M - 1SM , m =
1, 2, . . . ,M ; (ii) find the index m\prime such that S

m
\prime \leq Lm < S

m
\prime 
+1

; (iii) calculate the
linear interpolation

\^pl+1
m \approx 

Lm  - Sm\prime 

S
m

\prime 
+1
 - S

m
\prime 
\~pl+1

m
\prime +

S
m

\prime 
+1
 - Lm

S
m

\prime 
+1
 - S

m
\prime 
\~pl+1

m
\prime 
+1
.(5.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

8/
23

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Algorithm 2: Finding mean transition path on point clouds generated by
controlled random walk.
Algorithm Inputs: Simulation data \{ yqk\} k=0:K , waiting time \{ \Delta tk\} k=0:K , radius
r0 > 0.

1. Set l = 0 and for some M , initialize a discrete path P l = \{ plm\} m=1:M on manifold
\scrN connecting A and B, where plm \in \scrN .

2. For every 1 \leq m \leq M , collect all sample points in \scrB \BbbR \ell 

r0 (p
l
m) based on (5.13).

3. Update path \~P l+1 with the projected average for m = 1, . . . ,M via (5.14).
4. Compute S1, . . . , SM via (5.15).
5. Compute \^pl+1

m = pl+1
m by arc-length reparameterization (5.16).

6. Updating P l+1 = \{ pl+1
m \} by finding the nearest point of each \^pl+1

m in \{ yqk\} k=0:K

7. l\leftarrow l + 1. Repeat until P l converges or l exceeds a prescribed number Lmax.

Since we don't explicitly know the manifold, the projection step is done by updating
pl+1
m as the nearest point of \^pl+1

m in data set \{ yqk\} k=0:K . Then we can obtain the
new path P l+1 = \{ pl+1

m \} m=1:M . This updating process can be iteratively repeated
until convergence, i.e., P l+1 = P l up to some tolerance. We summarize the above
algorithm for finding the mean transition path in Algorithm 2.

Note that the Algorithm 2 only uses the local neighbors of each plm in the data
set \{ yqk\} . In contrast, the algorithm for finding dominant transition path, which is
revisited in section 5.1, must consider the entire graph G(V,E) with all of the nodes
\{ yk\} . So the proposed algorithm may be more efficient when the data set \{ yqk\} is
very large and most of the points are far away from the optimal transition path.

The Picard iteration method takes advantage of the controlled process that the
transition from A to B happens easily. Our derivation of (5.11) shows that on the level
set of q(x), the sampling of the original dynamics can be replaced by the sampling
of the controlled dynamics. Thus, compared with computing the average \bfitp (\alpha ) =
\scrP \langle x\rangle \pi q(\bfitp (\alpha ))

, the sampling cost is greatly reduced since the sample mean on the level
set of q(x) can be obtained easily (see (5.14)). Meanwhile, it also takes the benefit
of the information of committor function q(x). With the help of q(x), the iteration
is only applied to a fixed number of sample points and uses only the neighborhood
of the discrete path. For instance, in the numerical examples in the next section, we
only sample the controlled dynamics for 105 steps, which gives about 100 transitions.
All the iterations are done based on these 105 sample points.

Similar to many other methods---for instance, the string method [ERVE02] and
the finite temperature string method [ERVE05]---this Picard iteration method is a
local method. When there are multiple reaction channels with similar probability,
the method only converges to one of them. Which one the method will converge to
depends on the initial path P 0. To deal with multiple reaction channels, one can
generate multiple initial paths and apply the algorithm to get different convergent
paths.

6. Numerical results. In this section, based on the mean transition path algo-
rithms in section 5.2, we conduct three examples, including two examples of Muller
potential and a real-world example for an alanine dipeptide with a full atomic molec-
ular dynamics data.
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Fig. 1. Contour plot of 2D Mueller potential U(X,Y ) in (6.1) and transition path from \bfitX 1

to \bfitX 3. The blue dots are local minima \bfitX 1,2,3. The blue diamonds are saddle points \bfitX 4,5. The red
line is the transition path obtained by string method.

6.1. Synthetic examples of Mueller potential. We choose the Mueller po-
tential on \BbbR 2 as the illustrative example and map it to different manifolds. The
Mueller potential on \BbbR 2 is

U(X,Y ) :=

4\sum 
i=1

Ai exp
\bigl( 
ai(X  - \alpha i)2 + bi(X  - \alpha i)(Y  - \beta i) + ci(Y  - \beta i)2

\bigr) 
.(6.1)

The parameters are set to be A1 - 4 =  - 2, - 1, - 1.7, 0.15, a1 - 4 =  - 1, - 1, - 6.5, 0.7,
b1 - 4 = 0, 0, 11, 0.6, c1 - 4 =  - 10, - 10, - 6.5, 0.7, \alpha 1 - 4 = 1, 0, - 0.5, - 1, \beta 1 - 4 = 0, 0.5,
1.5, 1. Denote \bfitX = (X,Y ). This potential has three local minima \bfitX 1,\bfitX 2,\bfitX 3

and two saddle points \bfitX 4,\bfitX 5. The contour plot of the Mueller potential and the
stationary points are shown in Figure 1.

We are interested in the transitions from the metastable state \bfitX 1 to \bfitX 3. Finding
the transition path from \bfitX 1 to \bfitX 3 is a well-studied problem. One can compute the
transition path by some existing methods like string method [ERVE02], etc., which is
shown in Fig. 1.

Example 1: Mueller potential on sphere. We map the Mueller potential to \scrN =
\BbbS 2 by the stereographic projection X = x/(1  - z), Y = y/(1  - z). For any point
(x, y, z) \in \BbbS 2 except the north pole, we define U\scrN (x, y, z) on \BbbS 2 as

U\scrN (x, y, z) = U\BbbS 2(x, y, z) = U

\biggl( 
x

1 - z
,

y

1 - z

\biggr) 
, (x, y, z) \in \BbbS 2,

and consider the transitions between two metastable states under the dynamics (1.1).
It is easy to obtain that the invariant distribution of yt is \pi (y) \propto exp( - \varepsilon  - 1U\BbbS 2(y)),
y = (x, y, z). We then generate the data set D = \{ yi\} i=1:4000 uniformly on \BbbS 2 and set
\pi i = exp( - \varepsilon  - 1U\BbbS 2(yi)), respectively. We choose the starting state A = D\cap \scrB \BbbR 3

0.05(\bfitX 1)
and the ending state B = D \cap \scrB \BbbR 3

0.05(\bfitX 3), where \scrB \BbbR 
3

r (\bfitx ) = \{ y \in \BbbR 3| | y  - \bfitx | < r\} is
the ball centered at \bfitx with radius r in \BbbR 3. With this data set, we can compute the
committor function q(y) by solving the approximated Voronoi tesselation and the
linear system (4.14). Since it is a diagonally dominant system, the solution is unique,
and we utilize a diagonal preconditioning trick to make the computation more effective
and stable.

The effective potential Ue with \varepsilon = 0.1 is shown in Figure 2. Under the controlled
random walk (4.27), the transition from A to B happens much more easily. One can

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

8/
23

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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(a) (b) (c)

Fig. 2. Projections of the Mueller potential and the effective potential on \BbbS 2 to \BbbR 2. (a) The
projection of U\BbbS 2 (x, y, z) to \BbbR 2. (b) The projection of effective potential Ue = U\BbbS 2  - 2\varepsilon log q to \BbbR 2.
The contour lines of Ue are shown in colored lines. The hole at A is due to Ue(A) = +\infty . (c)
The Monte Carlo simulation result of transition from A to B based on effective backward operator
Qq and the mean transition path. The background is a heat plot of Ue. The green dots are Monte
Carlo samples. The black line is the mean transition path computed by Algorithm 2 while the dashed
line is the initial discrete path. In all subfigures, the dominant transition paths are shown with red
circles.

see from the Monte Carlo simulation in Figure 2(c) that the exit from the attraction
basin of metastable state \bfitX 1 is almost sure rather than a rare event. Compared with
the original U\BbbS 2(y), in the effective potential, the local minimum at A disappears,
and Ue tends to infinity when approaching A; see Figure 2(b). We can also find that
the dominant transition path almost goes along the gradient direction of Ue from A
to B. Taking the maximum iteration Kmax = 105 in the Monte Carlo simulation
Algorithm 1, we find 48 transition trajectories from A to B; see Figure 2(c). In the
simulation with the uncontrolled generator Q, there is no transition from A to B at
all in 105 steps. The mean transition path based on Algorithm 2 is also shown using
the solid black line in Figure 2(c). We set M = 100 and Lmax = 20 in the algorithm.
The mean transition path derived by Monte Carlo simulation data (the solid black
line in Figure 2(c)) highly coincides with the dominant transition path in TPT (red
circles in Figure 2(c)). Providing rigorous justification for this remarkable coincidence
is an important problem for future study. Indeed, both dominant transition path
algorithm and mean transition path algorithm are designed to find ``ensembles of
transition paths"" for fixed noise level \varepsilon > 0. Moreover, they both rely on the level-set
of committor function q to order point clouds; see (5.4) and (5.7).

With committor function q(y), we can obtain the dominant transition path by
applying the TPT algorithms. We show the results for different \varepsilon in Figure 3(a)--(c).
As a comparison, we also compute the minimum energy path in the limit \varepsilon \rightarrow 0. This
can be done by minimizing the Freidlin--Wentzell action functional [FW12]. Namely,
it is the solution of the following variational problem (i.e., (2.2)):

S(B;A) = inf
T>0

inf
\bfitx \in A,\bfity \in B

inf
\psi (t)\subset \scrN :\psi (0)=\bfitx ,\psi (T )=\bfity 

\int T

0

\bigm\| \bigm\| \bigm\| \.\psi +\nabla \scrN U(\psi )
\bigm\| \bigm\| \bigm\| 2 dt.(6.2)

This problem can be efficiently solved by minimum action method (MAM) on the
manifold [ERVE04, LLZ16]. Note that U\BbbS 2(x, y, z) can be naturally extended to
\BbbR 3\setminus \{ z = 1\} , one can directly apply MAM on \scrN by a properly designed MAM on
\BbbR 3. This zero-noise path is used as a reference; see solid red line in Figure 3. We also
map the transition path on \scrN to \BbbR 2 by the stereographic projection. The result is
shown in Figure 3(d)--(f).
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The dominant transition paths from \bfitX 1 to \bfitX 3 on \BbbS 2 for different \varepsilon . (a), (d) \varepsilon = 1.
(b), (e) \varepsilon = 0.2. (c), (f) \varepsilon = 0.05. In all subfigures, the blue dots are metastable states \bfitX 1,2,3, while
the blue diamonds are saddle points. (a)--(c) The background of each subfigure shows the heat plot of
U\BbbS 2 (x, y, z). The small green dots are 4000 random samples. The paths of red circles are dominant
transition paths obtained by TPT. The zero-noise minimum energy paths computed by MAM are
shown with solid red lines. (d)--(f) The background is the contour plot of potential U(X,Y ). The
solid blue lines and red circles are the projections of transition paths in (a)--(c), respectively.

Table 1
Comparison of the transition rates obtained by TPT and the quasi-potential.

\varepsilon = 1 \varepsilon = 0.2 \varepsilon = 0.05 \varepsilon = 0.02 S(B;A)

 - \varepsilon log kAB --0.4282 0.2540 0.3979 0.3999 0.3816

In Figure 3, we find that as \varepsilon tends to zero, the dominant transition path converges
to the zero-noise path obtained by MAM both on manifold \BbbS 2 and the 2D projection.
This is consistent with the Freidlin--Wentzell theory. The results are stable when
different random samples are utilized.

We can find some critical transition states along the dominant transition path with
the help of probability current JR. Note that finding the dominant transition path
is a divide-and-conquer algorithm by finding a sequence of dynamical bottlenecks.
The key transition states must have the least current JR. In Figure 4, we plot the
current JR along the dominant transition path. The states with the least five JR

are marked and projected to \BbbR 2, and \varepsilon is chosen to be 0.1. One can see that all of
these five states are in neighborhoods of saddle points or local minima. As stated
by the Freidlin--Wentzell theory, the transition path in the zero noise limit must pass
through stationary points, which is confirmed in our computations.

The transition rate calculated by (4.18) is also consistent with the Freidlin--
Wentzell theory. When A, B are metastable states, it is well known that as \varepsilon \rightarrow 0,
\varepsilon log kAB \rightarrow S(B;A), where S(B;A) in (6.2) is the so-called quasi-potential. The
value of S(B;A) is a side product when computing the minimum energy path on
manifold \scrN by MAM. The rescaled logarithm of the rates kAB for different \varepsilon and
S(B;A) are listed in Table 1. We can find that as \varepsilon becomes smaller, these two
quantities get closer, as suggested by the theoretical result.
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28 Y. GAO, T. LI, X. LI, AND J.-G. LIU

Fig. 4. The key transition states along the dominant transition path, \varepsilon = 0.1. Left panel: The
log JR along the dominant transition path. The states with the least five JR are marked by a--e in
ascending order. Right panel: The projection of the dominant transition path on \BbbR 2. This subfigure
is similar to (d)--(f) of Figure 3 except that the dominant transition path is marked with red dots.
The five states in the left panel are also marked in this subfigure.

Example 2: Mueller potential on torus. We can also map the Mueller potential
to the torus \scrN = \BbbT 2, which is defined as

x = (R+r cos \theta ) cos\phi , y = (R+r cos \theta ) sin\phi , z = r sin \theta , \theta \in [ - \pi , \pi ), \phi \in [0, 2\pi ).

Set R = 2.0, r = 1.0. We define the potential U\scrN on the torus as

U\scrN (x, y, z) = U\BbbT 2(x, y, z) := U(r\theta ,R\phi ).

It is interesting to study the transition behavior of the dynamics (1.1) with finite but
small noise, and the driving potential is also perturbed by noise with similar scales.
In this case, minimizing the Freidlin--Wentzell action functional is not proper because
the effect of finite noise is ignored. The finite temperature string method [ERVE05]
is a good candidate for this problem. However, it is not straightforward to apply this
method on a manifold.

Instead, we can still study this problem by TPT on point clouds. We perturb the
Mueller potential by small oscillations as

\~U(X,Y ) = U(X,Y ) + 0.15 sin(10\pi X) sin(10\pi Y )

and define the perturbed potential U\scrN on the torus by

U\scrN (x, y, z) = \~U\BbbT 2(x, y, z) := \~U(r\theta ,R\phi ).

We choose \varepsilon = 0.1, which is in the same scale of our perturbations, and consider the
transitions from A = D \cap \scrB \BbbR 3

0.05(\bfitX 1) to B = D \cap \scrB \BbbR 3

0.05(\bfitX 3). By using 4000 uniform
random samples on \BbbT 2, we obtain the dominant transition paths as shown with red
circles in Figure 5. For a reference, we still plot the minimum energy path under zero
noise and zero perturbation in (b).

We can find that the noise effect on the potential is eliminated, and we still capture
the main transition behavior from \bfitX 1 to \bfitX 3. Although the landscape is rough, the
density of transition path \rho R is relatively smooth. The dominant transition path lies
in the domain with the largest value of \rho R.
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(a) (b) (c)

Fig. 5. The dominant transition path from \bfitX 1 to \bfitX 3 on the torus under perturbed Mueller
potential (\varepsilon = 0.1). In the three subfigures, the metastable states and saddle points are shown with
blue dots and diamonds, respectively. (a) The background shows the heat plot of \~U\BbbT 2 (x, y, z). (c)
The background shows the density of transition paths \rho R in log scale. The yellow lines correspond to
the contour of \~U\BbbT 2 (x, y, z). In subfigures (a) and (c), the small green dots are 4000 random samples,
and the path of red/cyan circles is the dominant transition path. (b) The background is the contour
plot of the perturbed Mueller potential \~U(X,Y ). The red circles and blue solid line correspond to
the projection of the dominant transition path and the reference zero-noise minimum energy path,
respectively.

Fig. 6. Schematic representation of the alanine dipeptide and two backbone dihedral angles \phi 
and \psi .

6.2. Application on an alanine dipeptide. We now apply our method to a
computational chemistry problem, a manageable alanine dipeptide example with 22
atoms, with collected data from molecular dynamics (MD) simulation.

Example 3: Application on alanine dipeptide in vacuum. The alanine dipeptide
in vacuum is a simple and well-studied molecule with 22 atoms, which implies p = 66.
It has been shown that the lower energy states of alanine dipeptide can be mainly
described by two backbone dihedral angles \phi \in [ - \pi , \pi ) and \psi \in [ - \pi , \pi ) (as shown
in Figure 6); see [AFC99]. Thus, its configuration essentially lies on a torus \scrN , and
the dynamics can be approximately governed by a stochastic equation like (1.1) with
\ell = 3. The transition between different isomers of alanine dipeptide is a good example
for the study of rare events.

We apply the full atomic MD simulation of the alanine dipeptide molecule in
vacuum with the AMBER99SB-ILDN force field for 100ns with room temperature
T = 298K. Then we collect the data (\phi , \psi ) directly from the MD result. The free
energy U\scrN (\phi , \psi ) is obtained from the MD simulation by the reinforced dynamics
(Figure 7), which approximates U\scrN through a deep neural network and utilizes the
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（a） （b）

（c） （d）

Fig. 7. The sample points and transition paths from Cax to C7eq (subplot (a)--(b)) and Cax

to C\prime 
7eq (subplot (c)--(d)). The green and black dots are MD and generated auxiliary sample points,

respectively. The transition paths are marked by red circles. The background shows the effective
potential U\scrN obtained by MD simulation. (a), (c): Visualization in the (\phi , \psi ) plane. (b), (d):
Visualization on the torus.

adaptive biasing force and reinforcement learning idea to encourage the space explo-
ration [ZWE18]. There are three local minima, Cax, C7eq, and C

\prime 
7eq, corresponding

to different isomers of alanine dipeptide. We will study the dominant transition paths
from Cax to C7eq, and Cax to C \prime 

7eq in the following with the developed algorithms.
We collect n = 50, 000 equidistant MD time series data D = \{ (\phi ti , \psi ti)\} i=1:n with

0 = t0 < t1 < \cdot \cdot \cdot < tn (ti+1  - ti = Const.) and map them to the torus \scrN = \BbbT 2 \subset \BbbR 3

by \sigma : (\phi , \psi )\rightarrow (x, y, z) defined as

xti = (R+ r cos\phi ti) cos\psi ti , yti = (R+ r cos\phi ti) sin\psi ti , zti = r sin\phi ti ,

where R = 2, r = 1. These data are shown in Figure 7 (green dots). One can find that
they concentrate around the metastable states and seldom appear in the transition
region (z \approx 0 in Figure 7(b), (d)). To study the transition path, we need to do data
enrichment by generating some auxiliary data.

We do this by interpolation in the following way. First, we find the indices
I = \{ 1 \leq j \leq n| ztj > 0, ztj+1

< 0\} and collect two data sets D+ = \{ (\phi ti , \psi ti)| i =
j  - 10, . . . , j, j \in I\} and D - = \{ (\phi ti , \psi ti)| i = j, . . . , j +10, j \in I\} . Then we randomly
select a pair of samples (\phi +i , \psi 

+
i ) \in D+ and (\phi  - i , \psi 

 - 
i ) \in D - . An auxiliary sample

(\~\phi i, \~\psi i) is generated by \~\phi i = \beta 1\phi 
+
i + (1  - \beta 1)\phi  - i ; \~\psi i = \beta 2\psi 

+
i + (1  - \beta 2)\psi  - 

i , where
\beta 1,2 \sim \scrU [0, 1].

We sparsify the MD data points by randomly choosing 4,000 samples in D and
generating 500 auxiliary samples \{ (\~\phi i, \~\psi i)\} i=1:500. Namely, the dataset we use to
compute the dominant transition path is \~D = \{ \sigma (\phi ti , \psi ti)\} i\in B \cup \{ \sigma (\~\phi i, \~\psi i)\} i=1:500 \subset 
\scrN , where B \subset \{ 1, 2, . . . , n\} is a random batch with size 4000. The auxiliary samples
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（a） （b） （c）

Fig. 8. Numerical results for the transition from Cax to C7eq under the controlled process. (a)
Comparison of U\scrN and effective potential Ue along the dominant transition path. (b)--(c) Simulation
data of the controlled random walk (4.27) and the mean transition path obtained by Algorithm 2
with different visualizations (in the (\phi , \psi ) plane or on the torus). The green dots are Monte Carlo
samples. The dominant transition path is shown in red circles. The black solid and dashed lines
correspond to the mean transition path computed by Algorithm 2 and the initial path, respectively.

are shown in Figure 7 with black dots. Applying TPT theory, we get the dominant
transition path from Cax to C7eq, shown in Figure 7(a)--(b) with red circles. A similar
approach can also be applied to obtain the dominant transition path from Cax to
C \prime 

7eq (Figure 7(c)--(d)). Both results are consistent with previous studies on this
problem using other methods [AFC99, RVEME05].

With the help of controlled random walk (4.27), we can simulate the transitions
between the isomers more efficiently. We use the same dataset \~D as in the previous
computation and perform the simulation for studying the transition from Cax to C7eq

by Monte Carlo Algorithm 1. The transition happens 21 times in K = 105 simulation
steps. The potential U\scrN and effective potential Ue along the dominant transition path
in Figure 7(a)--(b) are shown in Figure 8(a). Similarly to the case in Figure 2, the
effective potential Ue achieves the local maximum at the Cax state and approximately
decreases to the C7eq state. In contrast, the original potential U\scrN has a sharp local
minimum at the Cax state, which results in the rare transition from Cax to C7eq. This
difference makes the transition under the potential Ue easy and frequent.

We then apply Algorithm 2 to get the mean transition path via the Monte Carlo
samples of the controlled random walk. We setM = 100 and Lmax = 200 in Algorithm
2. The numerical results are shown in Figure 8(b)--(c). One can find that the mean
transition path is perfectly consistent with the dominant transition path obtained by
TPT.

7. Conclusion. In this paper, we first reinterpreted the transition state theory
and the transition path theory as optimal control problems in an infinite time horizon.
At a finite noise level \varepsilon > 0, based on the associated optimal control v\ast = 2\varepsilon \nabla ln q and
the controlled effective equilibrium \pi e = q2\pi , we design an optimally controlled ran-
dom walk on point clouds, which realizes the original rare events almost surely in O(1)
time scale. This enables an efficient sampling for the transitions between two confor-
mational states in a biochemical reaction system. Taking advantage of the level set
of the committor function q and the effective equilibrium \pi e = q2\pi , a local averaging
algorithm is proposed to compute the mean transition path on a manifold efficiently
via the controlled Monte Carlo simulation data. Both synthetic and real-world ex-
amples are conducted to show the efficiency of the proposed algorithms, which gives
results that are consistent with the dominant transition path algorithm. Rigorously
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showing this consistency from the mathematical viewpoint is an interesting problem
for future work.
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