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Abstract

We study a 4th order degenerate parabolic PDE model in one-dimension with

a 2nd order correction modeling the evolution of a crystal surface under the

in�uence of both thermal �uctuations and evaporation/deposition effects. First,

we provide a non-rigorous derivation of the PDE from an atomistic model using

variations on kinetic Monte Carlo rates proposed by the last author with Weare

[Marzuola J L and Weare J 2013 Phys. Rev. E 88 032403]. Then, we prove the

existence of a global in time weak solution for the PDE by regularizing the

equation in a way that allows us to apply the tools of Bernis–Friedman [Bernis

F and Friedman A 1990 J. Differ. Equ. 83 179–206]. The methods developed

here can be applied to a large number of 4th order degenerate PDE models.

In an appendix, we also discuss the global smooth solution with small data in

theWeiner algebra framework following recent developments using tools of the

second author with Robert Strain [Liu J G and Strain RM 2019 Interfaces Free

Boundaries 21 51–86].
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1. Introduction

We explore here the limiting macroscopic evolution of a family of microscopic models of

dynamics on a one-dimensional crystal surface experiencing �uctuations from both thermody-

namic hopping as well as evaporation/deposition effects. The family of atomistic models from

which we start includes the well known (and well studied) solid-on-solid (SOS) model [3] and

is remarkable, given its simplicity, for its widespread use in large scale simulations of crystal

evolution [20]. Our investigation complements and extends the work by Krug et al in [11] and

the last author with Weare [16] on the SOS model. It is possible to extend the modeling and

some of the PDE arguments to dimension 2, but we work in the one-dimensional setting to

make many of the calculations in the microscopic modeling section especially easier to follow

notationally and also to allow clarity in the regularization arguments for the PDE analysis.

We will study both the derivation of and the global solutions of the model with periodic

boundary conditions given by

∂th = c1∆ e−∆h
+ c2(1− e−∆h), in T× (0,∞) (1)

with initial data h(x, 0) = h0 of suf�cient regularity to be discussed more carefully below. Here

c1 > 0 and c2 > 0 are physical constants which will be set to 1 for simplicity (after some

suitable choice of units).

The derivation we present will follow very similarly the ideas of Marzuola and Weare [16]

and Smereka [21], while attempting to clarify some of the choices of non-equilibriumdynamics

and putting all concepts in the notation characteristic of the statistical physics community. The

fourth order equation (c1 > 0, c2 = 0) is conservative and arises from atoms hopping from one

lattice site to the next with rates that depend upon the local curvature. The second order term

stems from interaction of the crystal with a gas of atoms and is a balance of the effects of a

constant rate of deposition and an evaporation rate that is once again comparable to the local

curvature. The scalings of the rates that make these two phenomena both comparable for large

system sizes will be discussed.

As noted above, the 4th order component of the model arises where only thermodynamic

�uctuations are considered. Using a generalization of rates determined by bond breaking ener-

gies to describe a family of microscopic processes, a class of 4th order PDEs with exponential

mobility including (1) with c2 = 0 were derived and studied in [16]. The notion of mobil-

ity will be discussed in more detail in the analysis of (1), but essentially the mobility refers

to the metric structure that arises an appropriately interpreted gradient descent approach to

the dynamics. In addition to being directly derived in [16], (1) can be seen as a leading order

approximation to the PDEmodel proposed in the last section of [11] where the rates were build

directly on a bond counting model. Compared with the diffusion effect expressed by the 4th

order component of the model, the evaporation effect is a 2nd order component �rst introduced

in [22].

Upon discussing the derivation of PDEmodel (1), we will attempt to establish some proper-

ties of its solutions. Much work has recently gone into understanding PDEs of this type though
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mostly without the 2nd order correction. Indeed, there has been recent analytic progress in

terms of global existence, characterization of dynamics, construction of local solutions and

classi�cation of the breakdown of regularity has beenmade on the relatedH−1 steepest descent

�ows predicted by the adatom rates with stemming from quadratic interaction potentials,

∂th = ∆ e−∆h. (2)

See for instance [1, 9, 10, 13–15, 23], each establishes existence in various ways and in the

case of strong solutions uniqueness. See also [7, 12] for the case PDEmodels arising from rates

that simply involve bond counting. The methods applied involve a combination of approaches

to regularizing the model, Weiner algebra tools (for small data highly regular solutions),

modifying the tools from gradient �ows, etc. We note that linearizing the exponential results

in the bi-Laplacian heat �ow as the leading order �ow, which could be a means to prove local

well-posedness using standard tools from quasilinear parabolic equations. However, there is a

clear breakdown of convex/concave symmetry for the model with exponential mobiility that is

not observed in the linear model for (2) (see [12, 16]).

The paper will proceed as follows. In section 2, we describe the family of atomistic models

that we consider and discuss the �ndings in [11] in more detail. Then, we proceed to follow

the ideas laid out in [16] to provide a framework for deriving (1). In section 3, we prove global

existence of weak solutions using a formulation of the modi�ed biharmonic porous medium

equation. In appendix A, we prove global existence of solutions with small initial data in the

Weiner algebra.

2. Generalized broken bond models

2.1. Overview of microscopic system and its statistical mechanics

We will assume that the crystal surface consists of height columns described by

h := (hi)i=1,...,N (3)

with screw-periodic boundary conditions in the form

hi+N = hi + ζN ∀i,

where ζ is the average slope and each hi ∈ aZ lives on a lattice with discrete height jumps given

by some value a ∈ R. Below, on the whole crystal starting in section 2.2 we generically take

ζ = 0, a = 1, however we will continue in the general setting here since we locally approx-

imate the non-equilibrium dynamics below as equilibrium dynamics around a mean of �xed

slope. Locally, this can be seen to be an equilibrium for the dynamics we propose. A schematic

of the microscopic dynamics is given in �gure 1.

The surface free energy of the general system for �xed temperature T equals

E(T, h) = Eb + Es,

where Eb is the bulk contribution, namely,
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Figure 1. A cartoon of atoms in a crystal lattice in an initial con�guration on the left
and moving to a likely new con�guration on the right stemming from an atom jumping
from one site to another (green), depositing on the sample (red) and evaporating from
the sample (blue).

Eb = −2γ
N

a
+

γζ

2a
N, (4)

and Es is the relative energy (or the surface contribution), viz.,

Es =
γ

2a

N∑

i=1

|hi − hi−1|

by simply bond counting [11, 13] with γ is a proportionality constant. Instead of the simplistic

model above, taking V(s) = |s|p as the interaction potential, we assume a generalized relative

energy is given by

Es =
γ

2a

N∑

i=1

V(hi − hi−1).

Examples include the quadratic behavior p = 2 due to elastic interactions [22] and the SOS

bond counting model p = 1. For simplicity, we will focus here on the p = 2 case, as the p = 1

model has similar structure but will require further technical calculations. From above, it is easy

to see that in fact taking zi = hi − hi−1, we have that the surface energy is actually a function

of local slope, not of local height, i.e. E(T, h) = E(T, z) where z := (zi)i=1,...,N .

In terms of the larger statistical mechanics picture, the partition function over all possible

states h is then given by

Z(T, h,N) :=
∑

s

e−βEs

where β = 1
kBT

with the Boltzmann constant kB and temperature T. Hence, we can write the

Helmholtz free energy as

F := − kBT ln Z.

The Gibbs free energy

G(T, q,N) :=min
h

{F(T, h,N)+ qh}

can be seen as the Legendre transform of F with respect to h. The thermodynamic potential is

also the Legendre transformation of F with respect to N,
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Ω(T, h,µ) := min
N

{F(T, h,N)− µN}.

We will see that the out of equilibrium dynamics for the system will in particular follow by

take expectation values with respect to Gibbs measure conditioned around a local mean (or the

most probable local state).

(a) On the physical scale, we have NM columns of atoms, and each column consists of O(1)

atoms. For this physical model, we have a microscopic dynamics de�ned (say through the

master equation); the state is then described by a distribution function as

Ψ(h1, h2, . . . , hMN; t).

(b) We will partition the domain into N boxes, each consists of M columns, and we de�ne

mesoscopic variables of

h̄k, z̄k, k = 1, . . . , N,

they are the average height and average slope of each box, so that for example,

z̄k =
1

(M − 1)
(h(k+1)M − hkM+1), k = 1, . . . , N.

For the continuum limit, we will regard these functions as evaluations of a continuous

analog at grid points, thus

z̄k = z̄(k/N)

for z̄ a function de�ned on [0, 1] (the notation here is overloaded). Note that ifM is large,

we can view these averaged quantities taking continuous values.

Connecting to the microscopic variables, we will assume that

(c) Ψ is given by a tensor product as given by the molecular chaos assumption as standard in

kinetic theory [17]

Ψ = f1(h1, h2, . . . , hM) f2(hM+1, . . . , h2M) · · · fN(h(N−1)M+1 · · · hNM).

(d) Each fk is given as a Gibbs state, thus

fk(h) ∝ exp(βµkh̄k − βV (̄zk)), (5)

where µk is the chemical potential and determined by shifting the mean of zk to �t a most

probable state. To derive the evolution equations for the averaged quantity h̄ (and hence

z̄, we analyze the non-equilibrium dynamics of the generator of the microscopic process,

following closely the work [16].

Remark 1. Let us remark that the thermodynamic setup we use for the hydrodynamic limit

is very close in spirit with the one used by Smereka [21]. The slight differences of the setup

of [21] compared with the above framework are as follows. (1) Instead of explicitly enforcing

that the chemical potential µk being constant over each box containing M columns. A (local)

chemical potential is assigned to each column in [21] with the implicit assumption that it is

slowly varying (so that one can ‘lump’ together several columns under a piecewise constant

approximation to the chemical potential). (2) Correspondingly, the basic variable used in [21]

is the difference of height between neighboring columns: zk = hk+1 − hk, while we have used
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z̄k which is an averaged height difference over neighboring boxes of columns. Our framework

makes explicit the intermediate scale by grouping M columns together; while it is implicitly

assumed in [21].

2.2. Kinetic Monte Carlo atomistic model

Our procedure of deriving the continuum theory mimics that of deriving (generalized) hydro-

dynamics; the only assumption is the molecular chaos (so that F is a product measure) and

local equilibrium (so that fk is given as a generalized Gibbs state).

Let us rescale so that the system is de�ned on the unit interval [0, 1] with N columns of

atoms, and thus the lattice constant becomes 1
N
. We now denote the heights of these N as a

vector h as in (3) with each hi ∈ Z, i = 1, . . . ,N. Thus, before rescaling, we consider a crystal
surface with width N.

We consider the continuum limit that N→∞ and average over windows of size M≪ N,

but such that M→∞. In particular, in this scaling, the height function will converge to a

O(1) function on [0, 1]. This can be manifested by viewing each column in our model as a

coarse-grained version of grouping M columns together in an original physical model with

1 ≪ M≪ N, such that M
N
→ 0 as N→∞.

Our dynamics will be speci�ed by a continuous time Markov jump process. The surface

hopping part of the process evolves by jumps from one state h = (hi)i=1,...,N in (3) to another

state Jγαh is de�ned by transition

h 7→ Jγαh,

where

Jγα = JαJ
γ for α, γ ∈ {1, 2, . . . , N}

such that at τ ∈ {1, 2, . . . ,N}

Jαh(τ ) :=

{
h(α)− 1, τ = α

h(τ ), τ 6= α

and

Jαh(τ ) :=

{
h(α)+ 1, τ = α

h(τ ), τ 6= α.

Note that the transition h 7→ Jγαh preserves the mass of the crystal, m =
∑

α∈TNh(α).

For any g : TN → R de�ne the symbols∇+g(α) and∇−g(α) by

∇+g(α) := g(α+ 1)− g(α) and ∇−g(α) := g(α)− g(α− 1).

Now that we have de�ned the transitions by which the crystal evolves we need to specify the

rate at which those transitions occur. To that end we �rst recall the coordination number of

[16], denoted by n(t,α) for α ∈ TN where

n(t,α) :=
1

2

[
V(∇+Jαh(t,α))− V(∇+h(t,α))+ V(∇−Jαh(t,α))− V(∇−h(t,α))

]
.

(6)
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One can think of n(α) as the (symmetrized) energy cost associated with removing a single atom

from site α on the crystal surface.

As seen in [16], we have that if V(z) = |z|, which is the example considered in [11]. Then,

n(α)+ 1 =
∑

γ∈TN
|α−γ|=1

1(h(α)6h(γ))

where

1(h(α)6h(γ)) :=

{
1 if h(α) 6 h(γ)

0 otherwise
.

In words, up to an additive constant (which amounts to a time rescaling), the coordination

number is the number of neighbor bonds that need to be broken to free the atom at lattice site

α. If we suppose V(z) = z2. Then

n(α)− 2 = ∇+h(α)−∇−h(α),

i.e., up to an additive constant, the coordination number is the discrete Laplacian of the surface

at lattice site α.
The equilibrium probability for the surface gradients∇+

i h(·) is then the normalized Gibbs

distribution

ρN
(
∇+h(·)

)
∝ exp


−β

∑

α∈TN

V(∇+h(α))


 . (7)

Note that our assumption that V is symmetric obviates inclusion of terms in the sum involving

∇−
i h(·).
We will assume that the atom at site α breaks the bonds with its nearest neighbors at a rate

that is exponential in the coordination number. Once those bonds are broken the atom chooses a

neighboring site of α, for example with |γ − α| = 1, uniformly and jumps there, i.e. h 7→ Jγαh.

Since there are 2 sites γ with |γ − α| = 1, the rate of a transition h 7→ Jγαh, r, is a standard

adatom mobility with a given Arrhenius rates (as in [11, 16])

r(t,α) =
1

2
e−2βn(t,α).

As with h we will occasionally omit the t argument in n and r.

We de�ne the crystal slopes

zi =
hi+1 − hi

N−1
. (8)

For a given inverse temperature parameter β = 1
kBT

, we will assume that evaporation are con-

�gured by the local geometry and hence occur with rates given by revap = revap(z), while for

deposition rate, rdep, we will assume a constant rate. More precisely, the evaporation rate

function revap depends on slopes at two consecutive sites and is given by

revap(β, zi, zi−1) = ρevap e
− 1

2
βN−p[V(zi)−V(zi−1)]. (9)

Note that the energy barrier given by V(z) = |z|p is the interaction potential (if p = 1 this is

the bond counting functional giving the adatom rates), but that here it is rescaled proportional
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to N (in physical terms, the energy barrier depends on the lattice parameter).6 For the rate of

deposition, we simply take

rdep(β, zi, zi−1) = τ−1
dep e

− 1
2
βµ, (10)

where µ represents a chemical potential difference between the reservoir and surface. The

constants ρevap and τ
−1
dep will need to be scaled with N below.

The above description of the evolution of the process h is summarized by its generatorAN .

Knowledge of the generator allows us as in [16] to propose the evolution of any test function

φ of the crystal surface is described by

φ(h(t,α))− φ(h(0,α)) =

∫ t

0

[ANφ] (s,α)+Mφ(t,α)

where Mφ(t,α) is a Martingale with Mφ(0,α) = 0 and whose expectation at time t (over real-

izations of h) given the history of h up to time s 6 t is simply its value at time s. In particular,

we assume that E
[
Mφ(t,α)

]
= 0 for all t and α where E is used to denote the expectation

overmany realizations of the surface evolution from a particular initial pro�le. For our process,

the generator is

ANφ(h) =
∑

α,γ∈TN
|α−γ|=1

rN(α)
(
φ(Jγαh)− φ(h)

)
+

∑

α∈TN

[
rdep(α) (φ(J

αh)− φ(h))

− revap(α) (φ(Jαh)− φ(h))
]
. (11)

One can check that

〈g (ANφ)〉N =
∑

h

g (ANφ) pN(h) =
∑

h

φ (ANg) pN(h) = 〈φ (ANg)〉N ,

i.e. that AN is self adjoint with respect to the pN weighted inner product. The jump process

de�ned by the rates above is reversible and ergodic with respect to pN.

As we are interested in exponential mobility factors, following [16] only one possible

scaling regime arises. In particular, we set

q =
p

p− 1

and, for any function f : [0,∞)× TN → R, de�ne the projections f̄N : [0,∞)× [0, 1)→ R by

f̄N(t, x) = N−q f (Nq+2t,α) for Nx ∈
[
α− 1

2
,α+

1

2

)
. (12)

We have scaled the crystal extent by N. Note that the scaling of time and crystal height is

different than a standard 4th order diffusion scaling. The crystal’s height is now scaled at a

rate faster than N, and determined by the properties of the underlying potential. The unusual

scaling of time is again determined by the requirement that the limiting equation bemeaningful.

This clearlymotivates the choice p = 2, as in this casewe see easily that q = p = 2. However, if

p = 1, we see that this scaling degenerates to q = ∞. Indeed, to properly prove the exponential

mobility in the case of the bond counting model from [11], one needs either to use the analysis

6We may also scale the temperature so that a factor N would arise in the exponent.
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in [12] or to reduce the temperature and hence increase β with the system size N in a manner

that does not require such degeneration of the time scaling.

Remark 2. Much of this section is motivated by similar calculations in [16], however we

have included the details here to in particular clearly state where the 2nd order terms arise in

the generator and how to introduce the appropriate rates to the KMC process de�ned in [16]

without considering such terms.

Remark 3. Another way to see dynamics for this process is to study it in a formal hydrody-

namic limit. For a con�guration h = (hi)i=1,...,N , let us de�ne ĥ
i = (h j) j=1,...,N, j6=i and ĥi,i+1 =

(h j) j=1,...,N, j6=i,i+1. Then, the resulting Fokker–Planck equation in the setting of adatom rates

for the crystal �uctuations as well as deposition (τ−1) and evaporation (ρ) rates is then

∂tΨ(h, β; t) =
D

2

∑

i

{
Ψ(hi + 1, hi+1 − 1, ĥi,i+1, β; t)r(β, zi − 2N, zi−1 + N)

+Ψ(hi − 1, hi+1 + 1, ĥi,i+1, β; t)r(β, zi + 2N, zi−1 − N)

− 2Ψ(hi, hi+1, ĥ
i,i+1, β; t)r(β, zi, zi−1)

}

+ ρevap
∑

i

{
Ψ(hi − 1, ĥi, β; t)r(β, zi + N, zi−1 + N)

−Ψ(hi, ĥ
i, β; t)r(β, zi, zi−1)

}
+ τ−1

dep

∑

i

{
Ψ(hi + 1, ĥi, β; t)rdep

× (β, zi − N, zi−1 + N)−Ψ(h, β; t)rdep(β, zi, zi−1)
}
. (13)

For studies of related hydrodynamic limits of systems of stochastic differential equations

allowing continuous height �uctuations, please see the foundational works [6, 18].

2.3. Macroscopic dynamics

To derive the PDE limits from the generator of the microscopic process, we follow the cal-

culations in sections 4 and 5 of [16]. For �nite β, we wish to �nd η to shift the mean of the

distribution on each window. In particular, we wish to �nd η such that

∑
z∈Ze

−βV(z)+ηz

Zη
(14)

to z̄where we will condition z̄ on each window of sizeM. Here note the slight abuse of notation

to use z as its scalar component averaged on a window.

For �xed �nite β, we observe that our process has only conservation law z we have

arrived at precisely the optimal twist distribution used in [16]. For u ∈ R, the surface tension

σD(u) ([5], section 5]) is de�ned using the Legendre transformation

σD(u) = sup
η∈R

{ηu− log Zη} (15)

with

Zη =
∑

z∈Z
e−βV(z)+ηz.
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Note, for p = 2, this just becomes

Zη ∼
∑

z∈Z
e
−β

(

z− η
2β

)2

.

As a result, we can construct the surface tension through similar arguments. In particular, we

let

u =
[
∇η log Zη

]
(σ′

D(u)) =

∑
z∈Z

z e−βV(z)+∇σDz

∑
z∈Z

e−βV(z)+∇σDz

i.e., take η = σ′(u) in the pair ηz then the mean value of z under the distribution

e−βV(z)+ηz

Zη

is u [[5], section 5]. In other words, the chemical potential µk as in (5) should be seen to

converge to−∂xσ
′(u) = −σ′′(u)∂xu = −σ′′

D(hx)hxx in (17) below. However, due to the scaling

in N, the PDE limit will require that we characterize the behavior of N−1∇σD(N
q−1u). More

precisely we need to consider the limit κ1−p∇σD(κu) as κ grows very large. For p = 2, it is

clear that the limit of κ−1∇σD(κu) exists and that

lim
κ→∞

κ−1∇σD(κu) = 2βu. (16)

Continuing along, by partitioning T into small but macroscopic sets, let δ = M/N with

N−1 ≪ δ ≪ 1 and de�ne the sets

Sk = T ∩ δ [k, k + 1) .

Note, the volume of each (non-empty) set Sk is the same (and equal to δ). Hence, following
the analysis of [[16], section 6.2], we observe that taking the expectation of the generator with

respect to the local Gibbs measure limits to the

ϕδ
N,k(t)− ϕδ

N,k(0) ≈ δ−1 1

2

∫ t

0

∫

Sk

∆
[
e−β div[∇V(∇h(s,x))]] dx ds

+ N2CN (ρevap, τ
−1
dep)δ

−1 1

2

∫ t

0

∫

Sk

1−
[
e−β div[∇V(∇h(s,x))]] dx ds

where here the operators∆, div are the properly rescaled discrete differential operators acting

on a lattice of uniform spacing 1/N.
As the KMC models are inherently discrete, the model that arises once ρevap and τ−1

dep have

been scaled appropriately to balance the time re-scaling is of the discrete form

dhk

dt
=

α

2

[
eβµk−1 − 2 eβµk + eβµk+1

]
+ C(1− eβµk ), (17)

provided the evaporation and deposition rates, ρevap, τ
−1
dep, scale appropriatelywith N. Note, this

scaling makes sense physically, namely that the evaporation and deposition must be slowed as

the system size scales up in order for surface �uctuations and epitaxial properties to balance.
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For V(z) = |z|2, we have that µk = −2(∆Nh)k. The discrete system is identical to the form

derived by Smereka [21]. The N→∞ limit can then be seen to be of the form (1). Namely, for

large N and small δ, ϕδ
N,k(t) ≈ h(t, kδ) we obtain

h(t, x)− h(0, x) = δ−1(2)−1

∫ t

0

∫

Sk

∆
[
e−β div[∇V(∇h(s,x))]]

+ C
[
1− e−β div[∇V(∇h(s,x))]] dx ds.

Physically, the above approach is motivated by the work of Krug et al [11] and Smereka

[21] both of whom derived PDE limits using closure equations and moments of the Gibbs

measure. We can take a maximal entropy approach to simplify some of the presentation in a

manner that works with the derivation via the generator by clearly predicting what measure

to take expectations with respect to in order to capture non-equilibrium dynamics locally. We

will take p[h, z,E] the probability of con�guration in terms of slope z, and take the entropy

p[h, z] log p[h, z]. Given a distribution p, take the functions:

Fz[p]→ z̄, Fh[p]→ h̄,

the maps from the distribution p to the average height h̄, average slope z̄ respectively. Via

a consistency condition, must we have that ζ = −∇η and hence we wish to condition the

non-equilibrium dynamics on selecting the most likely z con�guration on each window.

So, the grand canonical ensemble will be of the form

p∼ eβµh·h̄−βEs ,

where we now need to substitute p as in the master equation. The local Gibbs measure in

particular is of the form

p∼ e−β(Es−µh),

where µ = δF
δh

is the chemical potential such that µ shifts the mean of the distribution to the

most probable state. Above, we have observed that in the scaling limit resulting in exponential

mobility we have

µ = −∂∂zV(z) ∼ −div (V ′(∇h)),

as the Helmholtz free energy is of the form

F(z) ∼ V(z)

and we observed that the surface tension term∇σD(∇h) = V′(∇h) is the shift of the mean in z.

Hence, the chemical potential must arise from using summation by parts to move a derivative

over onto h.

Remark 4. The methodology of window averaging we present here is essentially identical

to that of [16], though we have attempted to more clearly connect the methods to previous

works as well as to more standard statistical physics conventions for the reader’s convenience.

The goal of the remaining sections will be to establish some analytical results for a con-

tinuum version of the model (1), and in particular to compare and contrast dynamics with the

purely 4th order model.
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3. Global weak solutions positive almost everywhere

In this section we prove the global weak solution to (1) by considering another degenerate

parabolic equation. De�ne

u := e−∆h.

Then (1) can be formally recast as

∂tu = −u∆[∆u+ (1− u)]. (18)

If u > 0 for all time then (18) and (1) are equivalent to each other rigorously.We investigate the

global weak solution for (18) in one dimension with periodic boundary condition in T = R/Z.
The periodic boundary condition is a natural one for the screw-periodic h as discussed in

the previous section. As many of the tools we present here connect well to literature on 1D

thin �lm models, we restrict our attention here to one dimensional models to avoid the

dimensional restriction for embedding theorem.

We are going to prove there exists a global weak solution to (18), which is positive almost

everywhere. In the other words, the set {(t, x); u = 0}, which corresponds to the singular

points for {(t, x);∆h = +∞}, has Lebesgue measure zero; see theorem 1 and the proof in

section 3.3. The asymptotic behavior of u(t, x) as time goes to in�nity will also be proved in

theorem 2.

Notations. In the following, using standard notations for Sobolev spaces, we denote

Hk(T) := {u(x) ∈ Hk
loc(R); u(x+ 1) = u(x) a.e.x ∈ R}, (19)

with standard inner product in Hk and when k = 0, we denote it as L2(T).

3.1. Formal observations and existence result

Denote the �rst functional F as

F(u) :=

∫

T

u dx. (20)

Denote the second functional E as

E(u) :=

∫

T

(∂xxu)
2
+ (∂xu)

2 dx. (21)

We �rst give key observations which inspire us to prove the regularities and positivity of

solutions later.

Observation 1.We have the following lower order energy dissipation law

dF(u)

dt
=

∫

T

∂tu dx =

∫

T

− u(∂4
xu− ∂xxu) dx

= −
∫

T

(∂xxu)
2
+ (∂xu)

2 dx = −E(u) 6 0. (22)

This also shows the relation between F and E, which is the key point to study the asymptotic

behavior of solutions.

Observation 2.We have the following higher order energy dissipation law
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dE(u)

dt
= 2

∫

T

∂xxu∂xx∂tu+ ∂xu∂xtu dx

=

∫

T

2(∂4
xu− ∂2

xu)∂tu dx = −2

∫

T

u(∂4
xu− ∂2

xu)
2 dx 6 0 (23)

if u > 0.

Observation 3. We have the following heuristic estimate to obtain the lower bound of

solution u.

d

dt

∫

T

ln u dx = 0, (24)

if u > 0.

Taking into account observation 3, althoughwe can prove themeasure of {(t, x); u(t, x) = 0}
is zero, we still have no regularity information for this degenerate set. To avoid the dif�culty

when u = 0, following the idea of Bernis and Friedman [2], we use a regularized method to

�rst prove the existence and strict positivity for regularized solution uε to a properly mod-

i�ed equation below, then take limit ε→ 0. For 0 < α < 1, the regularization of (18) we

consider is



∂tuε = − u1+α

ε

uαε + εα
(∂4

xuε − ∂2
x uε), for t ∈ [0, T], x ∈ T;

uε(0, x) = u0(x)+ ε, for x ∈ T.

(25)

We will show in (52) that uε has a lower bound ε for all t ∈ [0, T]; see section 3.2.2. Therefore

the regularized problem (25) is nondegenerate for �xed ε. The existence of the regularized

problem is also stated in [2]. We also refer to [8] for the uniqueness of the solution to a similar

regularized problem.We point out that the non-degenerate regularized term is important to the

positivity of the global weak solution.

Since the lower bound for uε depends on ε, we can only prove the limit solution u is positive

almost everywhere. Therefore, we need to de�ne a set

PT := (0, T)× T\{(t, x); u(t, x) = 0}, (26)

which is an open set and we can de�ne a distribution on PT. From now on, c will be a generic

constant whose value may change from line to line.

First we give the de�nition of weak solution to PDE (18).

Definition 1. For any T > 0, we call a non-negative function u(t, x) with regularities

u ∈ L∞([0, T];H2(T)), u(∂4
xu− ∂2

x u) ∈ L2(PT), (27)

∂tu ∈ L2([0, T]; L2(T)), u ∈ C([0, T];H1(T)), (28)

a weak solution to PDE (18) with initial data u(0, x) = u0(x) if

(a) For any function φ ∈ C∞([0, T]× T), u satis�es

∫ T

0

∫

T

φ∂tu dx dt +

∫∫

PT

φu(∂4
xu− ∂2

xu) dx dt = 0; (29)

3828



Nonlinearity 33 (2020) 3816 Y Gao et al

(b) The following �rst energy-dissipation inequality holds

E(u(T, ·))+
∫∫

PT

2u(∂4
xu− ∂2

x u)
2 dx dt 6 E(u(0, ·)). (30)

(c) The following second energy-dissipation inequality holds

F(u(T, ·))+
∫ T

0

E(u(t, ·)) dt 6 F(u(0, ·)). (31)

We now state the main result the global existence of weak solution to (18) as follows.

Theorem 1. For any T > 0, assume initial data u0 ∈ H2(T), with

∫

T

ln(u0) dx =:m0 < +∞, u0 > 0.

Then there exists a global non-negative weak solution to PDE (18) with initial data u(0, x) =

u0(x). Besides, we have

u(t, x) > 0 for a.e. (t, x) ∈ [0, T]× T. (32)

We will use an approximation method to obtain the global existence in theorem 1. This

method is proposed by [2] to study a nonlinear degenerate parabolic equation.

Remark 5. The regularized method for studying the 4th order degenerate problem is �rst

introduced in Bernis and Friedman [2]. There are however some technical dif�culties to over-

come in applying this general method to our problem (18). In particular, when taking limit

for the regularization constant ε→ 0, we need to carefully deal with the set {(t, x); u > 0}
by dividing it into several subsets (see lemma 2) and prove the Lebesgue measure of {(t, x);
u = 0} is zero (see section 3.3.2).

3.2. Global positive solution to a regularized problem

In this section, we will study key a priori estimates for the regularized solution uε and obtain

the lower bound of regularized solution uε, which depends on ε.
First we give the de�nition of weak solution with energy identities to regularized problem

(25).

Definition 2. For any �xed ε > 0, T > 0, we call a non-negative function uε(t, x) with

regularities

uε ∈ L∞([0, T];H2(T)),
u1+α
ε

uαε + εα
(∂4

xuε − ∂2
x uε) ∈ L2(0, T; L2(T)), (33)

∂tuε ∈ L2([0, T]; L2(T)), uε ∈ C([0, T];H1(T)), (34)

weak solution to regularized problem (25) if

(a) For any function φ ∈ C∞([0, T]× T), uε satis�es

∫ T

0

∫

T

φ∂tuε dx dt +

∫ T

0

∫

T

φ
u1+α
ε

uαε + εα
(∂4

xuε − ∂2
xuε) dx dt = 0. (35)
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(b) The following �rst energy-dissipation equality holds

E(uε(T, ·))+ 2

∫ T

0

∫

T

u1+α
ε

uαε + ε
(∂4

xuε − ∂2
xuε)

2 dx dt = E(uε(0, ·)). (36)

(c) The following second energy-dissipation equality holds

Fε(uε(T, ·))+
∫ T

0

E(uε(t, ·)) dt = Fε(uε(0, ·)). (37)

where Fε(uε) :=
∫
T

(
εα

1−α
1

uα−1
ε

+ uε

)
dx is a perturbed version of F.

Proposition 1. Assume u0 ∈ H2(T), u0 > 0 and
∫
T
ln(u0) dx = m0 < +∞. Then for any

0 < α < 1, T > 0 and ε > 0 small enough, there exists uε being the unique positive weak

solution to the regularized system (25) de�ned in de�nition 2. Moreover, we have the lower

bound estimate for uε

(uε)min(t) > c(u0)ε for all t ∈ [0, T].

The existence of the regularized problem (25) with different degeneracy factor is stated in

[2]. The key point is to prove the positive lower bound of uε using some a priori estimates,

which shows the regularized problem (25) is indeed nondegenerate for �xed ε. Therefore,
we follow exactly [2]’s method and give the key a priori estimates in section 3.2.1 under

the a priori assumption uε > 0 and then show the validation of this a priori assumption in

section 3.2.2.

First we state a key lemma connecting norm of second derivative to minimum of u.

Lemma 1. For any function u such that u ∈ H2([0, 1]), assume that u achieves its minimal

value umin at x
⋆, i.e. umin = u(x⋆). Then, we have

u(x)− umin 6
2

3
‖uxx‖L2([0,1])|x− x⋆| 32 , for any x ∈ [0, 1]. (38)

Proof. Since uxx ∈ L2([0, 1]), ux is continuous. Hence by umin = u(x⋆), we have ux(x
⋆) = 0

and

|ux(x)| = |
∫ x

x⋆
uxx(s) ds| 6 |x− x⋆| 12 ‖uxx‖L2([0,1]), for any x ∈ [0, 1]. (39)

Hence we have

|u(x)− umin| 6
∣∣∣∣
∫ x

x⋆
|s− x⋆| 12 ‖uxx‖L2([0,1]) ds

∣∣∣∣

6
2

3
|x− x⋆| 32 ‖uxx‖L2([0,1]).

�

Next, we give the proof of proposition 1 by showing the key a priori estimates in

section 3.2.1 under the a priori assumption uε > 0 and then the validation of this a priori

assumption in section 3.2.2.

3.2.1. A priori estimates and energy identities under a-priori assumption uε > 0. In this

section we will prove the lower order and higher order a priori estimates under a priori

assumption uε > 0. The a-priori assumption will be veri�ed in section 3.2.2.

Step 1. Higher order estimate. Multiplying (25) by ∂4
xuε − ∂2

x uε gives
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1

2

d

dt

∫

T

(∂2
xuε)

2
+ (∂xuε)

2 dx =

∫

T

(∂4
xuε − ∂2

xuε)∂tuε dx

= −
∫

T

u1+α
ε

uαε + εα
(∂4

xuε − ∂2
xuε)

2 dx 6 0. (40)

This gives

E/2(uε)+

∫ T

0

∫

T

u1+α
ε

uαε + εα
(∂4

xuε − ∂2
x uε)

2 dx 6 E/2(uε(0)). (41)

Thus we obtain, for any T > 0,

‖(uε)xx‖L∞([0,T];L2(T)) 6
√
E/2

1
2

0 , (42)

where E0 :=E(u0).

Step 2. Lower order estimate. We require the a priori assumption uε > 0. Multiplying (25)

by uαε+εα

uαε
, we have

d

dt

∫

T

εα

1− α

1

uα−1
ε

+ uε dx =

∫

T

− uε(∂
4
xuε − ∂2

x uε) dx

=

∫

T

− (∂2
xuε)

2 − (∂xuε)
2 dx = −E(uε) 6 0, (43)

which implies for α < 1

∫

T

uε dx 6

∫

T

uε(0) dx+ c
εα

εα−1
6 c(u0), for any t ∈ [0, T],

where we used u(0) > 0 and thus uε(0) > ε. Here and in the remaining of this section, c(u0)

will be a positive constant depending only on u0.

Hence from

(uε)min(t) 6

∫

T

uε dx 6 c(u0) for any t ∈ [0, T]

and lemma 1 we have

‖uε‖L∞(0,T;L∞(T)) 6 cE
1
2
0 + c(u0). (44)

Combining step 1 and step 2, we have

‖uε‖L∞([0,T];H2(T)) 6 C(u0). (45)

Moreover, from (40), we also have

1

2

d

dt

∫

T

(∂2
xuε + ∂xuε)

2 dx = −
∫

T

uαε + εα

u1+α
ε

∂tu
2
ε dx. (46)

This, together with ‖uε‖L∞(0,T;L∞(0,1)) 6 cE0 + c(u0), also gives uniform bound of ∂ tuε

1

cE0 + c(u0)

∫ T

0

∫

T

∂tu
2
ε dx dt 6

1

2
E0. (47)
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Thus we have

∂tuε ∈ L2(0, T; L2(T)). (48)

By [4], theorem 4, p 288] whose proof �ts also for periodic function, we also know

uε ∈ C([0, T];H1(T)) →֒ C([0, T]× T).

The two energy dissipation identities in de�nition 2 follow from (40) and (43) directly.

3.2.2. Verify the a priori assumption. In this section, we verify the a priori assumption uε > 0

by proving the lower bound of uε.

Multiplying− uαε+εα

u1+α
ε

to (25), we obtain the conservation law

d

dt

∫

T

(
εα

α

1

uαε
− ln uε

)
dx = 0. (49)

Therefore due to (44),

εα

α

∫

T

1

uαε
dx 6

εα

α

∫

T

1

uαε (0)
dx− m0 +

∫

T

ln uε dx 6 c(u0), (50)

where we used
∫
T
ln u0 dx = m0 and uε(0) > ε

1
α . Assume for any t ∈ [0, T], uε(t, ·) achieves

its minimum (uε)min(t) at some point. Notice from lemma 1,

2

3
‖∂2

xuε(t)‖L2 |x− x∗|3/2 + (uε)min(t) > uε(t) for all t ∈ [0, T]. (51)

Hence from (50) we have

c(u0) >
εα

α

∫

T

1[
2
3
‖∂2

xuε(t)‖L2 |x− x∗|3/2 + (uε)min(t)
]α dx

( from (42))

>

εαc

α

∫ 1/2

0

1[√
E0|x|3/2 + (uε)min(t)

]α dx

>
1

(uε)
α− 2

3
min

εαc

α

∫ 1

2(uε)
2
3
min

0

1[√
E0|y|3/2 + 1

]α dy

>
cεα

α

1

(uε)
α
min

.

Now since 0 < α < 1, standard calculus shows that

(uε)min(t) > c(u0)ε for all t ∈ [0, T]. (52)

This completes the proof of proposition 1.

3.3. Global solution to original equation

This section is devoted to obtaining the global solution to original equation by taking the limit

in the regularized problem (25). The proof of theorem 1 will be the collections of the following

subsections.
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3.3.1. Convergence of uε when taking limit ε→ 0. Assume uε is the weak solution to (25)

whose existence is stated by [2] after collecting the key a priori estimates in section 3.2.1 and

validation of the a priori assumption in section 3.2.2. From (45) and (47), as ε→ 0, we can use

Lions–Aubin’s compactness lemma for uε to show that there exist a subsequence of uε (still

denoted by uε) and u such that

uε → u, in L∞ ([0, T];H1(T)), (53)

which gives

uε → u, in L∞ ([0, T]; L∞(T)) (54)

and thus

uε → u, a.e. (t, x) ∈ [0, T]× T. (55)

Again from (45) and (47), we have

uε
⋆
⇀u in L∞([0, T];H2(T)), (56)

and

∂tuε ⇀ ∂tu in L2 ([0, T]; L2(T)), (57)

which imply that

u ∈ L∞([0, T];H2(T)), ∂tu ∈ L2([0, T]; L2(T)). (58)

In fact, by [[4], theorem 4, p 288] whose proof �ts also for periodic function, we know

u ∈ C([0, T];H1(T)) →֒ C([0, T]× T).

Next, we also provide the strong convergence of u1+α
ε

uαε+εα
in L2(0, T; L2(T)) below, which will

be used in the proof of lemma 2. On one hand, we have

∣∣∣∣
u1+α
ε

uαε + εα
− u1+α

uα + εα

∣∣∣∣ 6
(
1+

α

4

)
|u− uε|, (59)

where we used for function g(x) := x1+α

xα+εα , x > 0, we have |g′(x)| 6 1+ α
4
. On the other hand,

we have

∣∣∣∣
u1+α

uα + εα
− u

∣∣∣∣ =
∣∣∣∣

εαu

uα + εα

∣∣∣∣ 6 εαu1−α.

Notice 0 < α < 1. Combining these two estimates and (54), we have

∥∥∥∥
u1+α
ε

uαε + εα
u

∥∥∥∥
L2(0,T;L2(T))

6

∥∥∥∥∥
u1+α
ε

uαεk + εα
− u1+α

uα + εαk

∥∥∥∥∥
L2(0,T;L2(T))

+

∥∥∥∥
u1+α

uα + εα
− u

∥∥∥∥
L2(0,T;L2(T))

6
(
1+

α

4

)
‖u− uε‖L2(0,T;L2(T)) + cεα‖u‖L2(0,T;L2(T)) → 0. (60)
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3.3.2. Estimate for the measure of {(t, x);u = 0}. Now we use the conservation law for uε to

estimate the measure meas{(t, x); u = 0}.
From (49) we have for any δ > 0,

meas{(t, x); uε 6 δ}(− ln δ) 6

∫ T

0

∫

T

− ln uε dx dt 6 c(u0)T, (61)

which implies

meas{(t, x); uε 6 δ} 6
c(u0)T

− ln δ
. (62)

Therefore by (54), we have

meas{(t, x); u = 0} = lim
n→∞

meas

{
(t, x); u 6

1

n

}

= lim
n→∞

lim
ε→0

meas

{
(t, x); uε 6

1

n

}
6 lim

n→∞
c(u0)T

ln n
= 0.

(63)

3.3.3. Proof of theorem 1 by taking limit ε→ 0 in (57). Recall uε is a weak solution of (25)

satisfying (35). We want to pass to the limit for uε in (35) as ε→ 0. From (57), the �rst term

in (35) becomes

∫ T

0

∫

T

φ∂tuε dx dt→
∫ T

0

∫

T

φ∂tu dx dt. (64)

The limit of the second term in (35) is given by the following lemma. With the lemma below,

one can take limit in (35) and obtain (29). The regularity (27) follows from (58) and (76) in

the proof of lemma 2.

Lemma 2. For PT de�ned in (26) and any function φ ∈ C∞([0, T]× T), we have

∫ T

0

∫

T

φ
u1+α
ε

uαε + εα
(∂4

xuε − ∂2
xuε) dx dt→

∫∫

PT

φu(∂4
xu− ∂2

x u) dx dt, (65)

as ε→ 0.

Proof. First, for any �xed 0 6 δ < 1 small enough, from (53), we know there exist a constant

K1(δ) > 0 large enough and a subsequence uεk such that

‖uεk − u‖L∞([0,T]×T) 6
δ

2
, for k > K1(δ). (66)

Denote

D1δ(t) := {x ∈ [0, 1]; 0 6 u(t, x) 6 δ}, (67)

D2δ(t) := {x ∈ [0, 1]; u(t, x) > δ}. (68)

The left-hand side of (65) becomes
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I :=

∫ T

0

∫

T

φ
u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
xuεk ) dx dt

=

∫ T

0

∫

D1δ (t)

φ
u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
xuεk ) dx dt +

∫ T

0

∫

D2δ (t)

φ
u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
x uεk) dx dt

=: I1(δ)+ I2(δ). (69)

Then we estimate I1 and I2 separately.

Step 1. We prove there exists C(‖u0‖H2 , ‖φ‖L∞ , T) depending only on the initial data, T and

test function such that I1(δ) 6 C(‖u0‖H2 , ‖φ‖L∞ , T)δ
1
2.

For I1, from (66) and (67), we have

|uεk (t, x)| 6
3δ

2
, for t ∈ [0, T], x ∈ D1δ(t). (70)

Hence by Hölder’s inequality, we know

I1(δ) 6

[∫ T

0

∫

D1δ (t)

φ2
u1+α
εk

uαεk + εαk
dx dt

] 1
2
[∫ T

0

∫

T

u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
x uεk)

2 dx dt

] 1
2

6C(‖u0‖H2 , ‖φ‖L∞ , T)δ
1
2 . (71)

Here we used (36) and (70) in the last inequality.

Step 2. Now we turn to show that there exists K2(δ) > K1(δ) large enough such that for

k > K2(δ),

∣∣∣∣I2(δ)−
∫∫

Bδ

φu(∂4
xu− ∂2

xu) dx dt

∣∣∣∣ 6 δ
1
2 , (72)

where

Bδ :=
⋃

t∈[0,T]
{t} × D2δ(t). (73)

From (66) and (68), we know

uεk (t, x) >
δ

2
, for (t, x) ∈ Bδ. (74)

This, together with (41), shows that

(
δ
2

)1+α

εαk +
(
δ
2

)α
∫∫

Bδ

(∂4
xuεk − ∂2

xuεk )
2 dx dt 6

∫ T

0

∫

T

u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
x uεk)

2 dx dt

6 C(‖u0‖H2(T)). (75)

From (75), there exists a subsequence of uεk (still denote as uεk) and w ∈ L2(Bδ) such that

∂4
x uεk − ∂2

xuεk ⇀ w, in L2(Bδ). (76)
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Due to (55), we know w = ∂4
x u− ∂2

x u. This, together with the strong convergence in (60),

shows that as εk → 0,

I2 =

∫∫

Bδ

φ
u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
x uεk) dx dt→

∫∫

Bδ

φu(∂4
x u− ∂2

xu) dx dt. (77)

This shows there exists K2(δ) > K1(δ) large enough such that for k > K2(δ), (72) holds.
Step 3. Recall Bδ de�ned in (73) and I1(δ), I2(δ) de�ned in (69). Combining (71) and (72),

we know for k > K2(δ),
∣∣∣∣∣

∫ T

0

∫

T

φ
u1+α
εk

uαεk + εαk
(∂4

x uεk − ∂2
xuεk ) dx dt −

∫∫

Bδ

φu(∂4
xu− ∂2

x u) dx dt

∣∣∣∣∣

=

∣∣∣∣I1(δ)+ I2(δ)−
∫∫

Bδ

φu(∂4
xu− ∂2

xu) dx dt

∣∣∣∣

6
[
C(‖u0‖H2 , ‖φ‖L∞ , T)+ 1

]
δ

1
2 ,

which implies that

lim
δ→0+

lim
k→∞

[∫ T

0

∫

T

φ
u1+α
εk

uαεk + εαk
(∂4

xuεk − ∂2
x uεk) dx dt −

∫∫

Bδ

φu(∂4
xu− ∂2

xu) dx dt

]
= 0.

For any ℓ > 1, assume the sequence δℓ → 0. Thus we can choose a sequence εℓk → 0. Then by

the diagonal argument, we have

δℓ → 0, εℓℓ → 0,

as ℓ tends to +∞. Notice

PT =
⋃

δ>0

Bδ.

We have

lim
ℓ→∞

∫ T

0

∫

T

φ
u1+α
εℓℓ

uαεℓℓ + εαℓℓ
(∂4

xuεℓℓ − ∂2
x uεℓℓ) dx dt = lim

ℓ→∞

∫∫

Bδℓ

φu(∂4
x u− ∂2

xu) dx dt

=

∫∫

PT

φu(∂4
x u− ∂2

xu) dx dt,

which completes the proof. �

3.3.4. Proof of energy dissipation laws in theorem 1 by taking the limit in the energy identities

(36) and in (37). To take the limit in (36), we need a similar lemma whose proof is exactly

same as lemma 2.

Lemma 3. For PT de�ned in (26), for any function φ ∈ C∞([0, T]× T), we have

∫ T

0

∫

T

φ
u

1
2
+α

ε

uαε + εα
(∂4

xuε − ∂2
xuε) dx dt→

∫∫

PT

φu
1
2 (∂4

xu− ∂2
x u) dx dt, (78)

as ε→ 0.
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First recall the regularized solution uε satis�es the energy-dissipation equality (36), i.e.,

E(uε(·, T))+ 2

∫ T

0

∫

T

u1+α
ε

uα+ε
ε

(∂4
xuε − ∂2

xuε)
2 dx dt = E(uε(·, 0)).

From lemma 3, we have

u
1
2+α
ε

uαε + εα
(∂4

xuε − ∂2
xuε) ⇀ u

1
2 (∂4

xu− ∂2
xu), in L2(PT).

Then by the lower semi-continuity of norm, we know

∫∫

PT

u(∂4
xu− ∂2

xu)
2 dx dt 6 lim inf

ε→0

∫∫

PT

u1+2α
ε

(uαε + εα)2
(∂4

xuε − ∂2
xuε)

2 dx dt

6 lim inf
ε→0

∫∫

PT

u1+α
ε

uαε + εα
(∂4

xuε − ∂2
xuε)

2 dx dt. (79)

Also from (45) and lower semi-continuity of norm, we have

E(u(t, ·)) 6 lim inf
ε→0

E(uε(t, ·)), for t ∈ [0, T]. (80)

Combining (36), (79) and (80), we obtain

E(u(T, ·))+ 2

∫∫

PT

u(∂4
xu− ∂2

xu)
2 dx dt 6 E(u(0, ·)).

Second, recall the regularized solution uε satis�es the energy-dissipation equality (37), i.e.,

Fε(uε(T, ·))+
∫ T

0

E(uε(t, ·)) dt = Fε(uε(0, ·)).

From (45) and the lower semi-continuity of norm, we know

∫ T

0

E(u(t, ·)) dt 6 lim inf
ε→0

∫ T

0

E(uε(t, ·)) dt,

F(u(t, ·)) 6 lim inf
ε→0

F(uε(t, ·)), for any t ∈ [0, T]. (81)

Recall Fε(uε) =
∫
T

εα

1−α
1

uα−1 + uε dx and 0 < α < 1. Then from the strong convergence (53)

we know

lim
ε→0

Fε(uε) = F(u).

This, together with (81), implies

F(u(T, ·))+
∫ T

0

E(u(t, ·)) dt 6 F(u(0, ·)).

Hence we complete the proof of theorem 1.
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3.4. Long time behavior

We �nally prove all the weak solution obtained in theorem 1 will converge to a constant as time

goes to in�nite. However, as explained in remark 6, we can not characterize the limit constant

uniquely.

Theorem 2. Under the same assumptions of theorem 1, for every weak solution u obtained

in theorem 1, there exists a constant u⋆ such that, as time t→+∞, u converges to u⋆ in the

sense

‖u(t, ·)− u⋆‖H2(T) → 0, as t→+∞. (82)

Proof. First, from the energy dissipation (31), we have for any T > 0

TE(u(T)) 6 F(u0)− F(u(T)), (83)

which implies

E(u(t, ·)) 6 1

t
F(u0) =

c

t
→ 0, as t→+∞. (84)

Second, since (42) and (44) are uniform in time, we actually have

‖u‖L∞(0,+∞;H2(T)) 6 c(u0). (85)

NoticeH2(T) →֒ H1(T) compactly. Then there exists a subsequence tn →+∞ and u⋆ inH1(T)

such that

u(tn, ·)→ u⋆(·), inH1(T) as tn →+∞. (86)

On the other hand, since E(u) is strictly convex in Ḣ
2
we know E has a unique critical point w

in Ḣ
2
and

E(u(t, ·))→
∫

T

(∂2
xw)

2
+ (∂xw)

2 dx = 0 as t→+∞. (87)

Therefore w = u∗ = const and

u(t, ·)→ u⋆(·), inH2(T) as t→+∞. (88)

�

Remark 6. We mention that one cannot characterize the limit constant by the dissipation

law (30) since the dissipation term
∫∫

PT
2u(∂4

xu− ∂2
x u)

2 dx dt holds only on PT. Neither can

we characterize the limit constant by conservation law in observation 3 since it holds only for

strict positive u and we do not know how much we lose when u touches zero.
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Appendix A. Small data existence in the Wiener algebra

This sectionwill follow theWeiner algebra framework established in [1, 10] in periodic settings

and [13] on R
d , d > 1, for the fully 4th order model. Since the general framework is very

similar, we just state the main results in section A.2 and give the key estimates. Since these

results are easy to state and prove in general dimension, we will present them as such.

A.1. Notation

We introduce the following useful norms:

‖ f ‖pḞs,p
(t)

def
=

∫

Rd

|ξ|sp| f̂ (ξ, t)|pdξ, s > −d/p, 1 6 p6 2. (89)

We note that the Wiener algebra A(Rd) is Ḟ0,1, and the condition ∆h0 ∈ A(Rd) is given by

h0 ∈ Ḟ2,1. Here f̂ is the standard Fourier transform of f:

f̂ (ξ)
def
= F [ f ](ξ) =

1

(2π)d/2

∫

Rd

f (x)e−ix·ξ dx. (90)

When p = 1 we denote the norm by

‖ f ‖s def
=

∫

Rd

|ξ|s| f̂ (ξ)| dξ. (91)

We will use this norm generally for s > −d and we refer to it as the s-norm. Notice that for

any n ∈ N we have

|Dn f (x)| 6
∫

Rd

|ξ|n| f̂ (ξ)|dξ = ‖ f ‖n. (92)

To further study the case s = −d, then for s > −d we de�ne the Besov-type s-norm:

‖ f ‖s,∞def
=

∥∥∥∥
∫

Ck

|ξ|s| f̂ (ξ)| dξ
∥∥∥∥
ℓ∞
k

= sup
k∈Z

∫

Ck

|ξ|s| f̂ (ξ)| dξ, (93)

where for k ∈ Z we have

Ck = {ξ ∈ R
d : 2k−1 6 |ξ| < 2k}. (94)

Note that we have the inequality

‖ f ‖s,∞ 6

∫

Rd

|ξ|s| f̂ (ξ)| dξ = ‖ f ‖s. (95)

We note that

‖ f ‖−d/p,∞ . ‖ f ‖Lp(Rd)
for p ∈ [1, 2] as is shown in [[19], lemma 5].

Further, when p = 2 we denote the norm (for s > −d/2) by

‖ f ‖2Ḟs,2

def
=

∫

Rd

|ξ|2s| f̂ (ξ)|2dξ = ‖ f ‖2
Ḣs

= ‖(−∆)s/2 f ‖2
L2(Rd )

. (96)
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We also introduce the following notation for an iterated convolution

f ∗2(x) = ( f ∗ f )(x) =

∫

Rd

f (x− y) f (y) dy,

where ∗ denotes the standard convolution in Rd. Furthermore in general

f ∗ j(x) = ( f ∗ · · · ∗ f )(x),

where the above contains j− 1 convolutions of j copies of f. Then by convention when j = 1

we have f∗1 = f, and further we use the convention f∗0 = 1.

We additionally use the notation A . B to mean that there exists a positive inessential con-

stantC > 0 such thatA 6 CB. The notation≈ used asA ≈ Bmeans that bothA . B andB . A

hold.

A.2. Main results

We have the following results for small, highly regular data.

Theorem 3. Consider initial data h0 ∈ Ḟ0,2 ∩ Ḟ2,1 further satisfying

‖h0‖2 < y∗

where y∗ > 0 is given explicitly in remark 7. Then there exists a global in time unique solution

to (1) given by h(t) ∈ C0
t (Ḟ0,2 ∩ Ḟ2,1) and we have that

‖h‖2(t)+ σ2,1

∫ t

0

‖h‖6(τ )dτ 6 ‖h0‖2 (97)

with σ2,1 > 0 de�ned by (110).

In the next remark we explain the size of the constant.

Remark 7. We can compute precisely the size of the constant y∗ from theorem3. In particular

the condition that it should satisfy is that

f2(y∗) = (y3∗ + 6y2∗ + 7y∗ + 1)ey∗ − 1 =

∞∑

j=1

( j+ 1)3

j!
y j∗ < 1.

This is identical to the threshold found in [13], the reason for which will be born out below.

Note, this constant can likely be sharpened as in the work of [1].

Now in the next theorem we prove the large time decay rates, and the propagation of

additional regularity, for the solutions above.

Theorem 4. Given the solution to (1) from theorem 3. Suppose additionally that ‖h0‖s1 < ∞
and ‖h0‖s2 < ∞ for some −1 < s1 < s2. Then we have the following uniform decay estimate

for t > 0:

‖h‖s2 . (1+ t)−
s2−s1

2 . (98)

The implicit constant in the inequality above depends on ‖h0‖2, ‖h0‖s.
We will only prove theorems 3 and 4 in the following sections. The proof will follow very

closely the framework from [1, 13] so we just show the key estimates.
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A.3. Proof of theorem 3

In this section we prove the apriori estimates for the exponential PDE in (1) and (99) in the

spaces Ḟ s,1. The key point to the global in time classical solution is that we can prove a global

in time Lyapunov inequality (109) below under an O(1) medium size smallness condition on

the initial data.

A.3.1. A priori estimate in Ḟ2,1. We �rst establish the case of Ḟ2,1 in order to explain the main

idea in the simplest way. The equation (1) can be recast by Taylor expanion as

ht +∆
2h−∆h = ∆

∞∑

j=2

(−∆h) j

j!
−

∞∑

j=2

(−∆h) j

j!
. (99)

We look at this equation (99) using the Fourier transform (90) so that equation (1) is expressed

as

∂tĥ(ξ, t)+ |ξ|4ĥ(ξ, t)+ |ξ|2ĥ(ξ, t) = −|ξ|2
∞∑

j=2

1

j!
(| · |2ĥ)∗ j(ξ, t)−

∞∑

j=2

1

j!
(| · |2ĥ)∗ j(ξ, t).

(100)

We multiply the above by |ξ|2 to obtain

∂t|ξ|2ĥ(ξ, t)+ |ξ|6ĥ(ξ, t)+ |ξ|4ĥ(ξ, t) = −|ξ|4
∞∑

j=2

1

j!
(| · |2ĥ)∗ j(ξ, t)− |ξ|2

∞∑

j=2

1

j!
(| · |2ĥ)∗ j(ξ, t).

(101)

We will estimate this equation on the Fourier side in the following.

Our �rst step will be to estimate the in�nite sum in (101). To this end notice that for any

real number s > 0 the following triangle inequality holds:

|ξ|s 6 j(s−1)+ (|ξ − ξ1|s + · · ·+ |ξ j−2 − ξ j−1|s + |ξ j−1|s), (102)

where (s− 1)+ = s− 1 if s > 1 and (s− 1)+ = 0 if 0 6 s 6 1. We have further using the

inequality (102) when s > 1 that

∫

Rd

|ξ|s|(| · |2ĥ)∗ j(ξ)| dξ 6 js
∫

Rd

|(| · |s+2ĥ) ∗ (| · |2ĥ)∗( j−1)| dξ

6 js‖h‖s+2‖h‖ j−1
2 . (103)

Above we used Young’s inequality repeatedly with 1+ 1 = 1+ 1.

Observe that generally ∂t|ĥ| = 1
2

(
∂tĥĥ+ ĥ∂tĥ

)
|ĥ|−1. Now we multiply (101) by

ĥ|ĥ|−1(ξ, t), add the complex conjugate of the result, then integrate, and use (103) for s = 4

and s = 2 to obtain the following differential inequality

d

dt
‖h‖2 + ‖h‖6 + ‖h‖4 6 ‖h‖6

∞∑

j=2

j4

j!
‖h‖ j−1

2 + ‖h‖4
∞∑

j=2

j2

j!
‖h‖ j−1

2 . (104)
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Now we denote the function

f2(y) :=

∞∑

j=2

j4

j!
y j−1

=

∞∑

j=1

( j+ 1)3

j!
y j (105)

and

f0(y) :=

∞∑

j=2

j2

j!
y j−1

=

∞∑

j=1

( j+ 1)

j!
y j 6 f2(y). (106)

Then (105) de�nes an entire function which is strictly increasing for y > 0 with f2(0) = 0. In

particular we choose the value y∗ such that f2(y∗) = 1.

Then (104) can be recast as

d

dt
‖h‖2 + (‖h‖6 + ‖h‖4) 6 (‖h‖6 + ‖h‖4) f2

(
‖h‖2

)
. (107)

If the initial data satis�es

‖h0‖2 < y∗, (108)

then we can show that ‖h‖2(t) is a decreasing function of t. Note that y∗ = y2∗ in the notation

from (117) below. In particular

f2
(
‖h‖2(t)

)
6 f2

(
‖h0‖2

)
< 1.

Using this calculation then (107) becomes

d

dt
‖h‖2 + σ2,1‖h‖6 6 0, (109)

where

σ2,1
def
=1− f2(‖h0‖2) > 0. (110)

In particular if (108) holds, then ‖h‖2(t) < y∗ will continue to hold for a short time, which

allows us to establish (109). The inequality (109) then de�nes a free energy and shows the

dissipation production.

At the end of this section we look closer at the function f2(y):

f2(y) =

∞∑

j=1

( j+ 1)3y j

j!
=

∞∑

j=1

( j( j− 1)( j− 2)+ 6 j( j− 1)+ 7 j+ 1)y j

j!
,

which gives

f2(y) = (y3 + 6y2 + 7y+ 1)ey − 1. (111)

We know that f2(0) = 0 and f2(y) is strictly increasing. Let y∗ satisfy

(y3∗ + 6y2∗ + 7y∗ + 1)ey∗ − 1 = 1. (112)

Then f2(y∗) = 1 as above.
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A.3.2. A priori estimate in the high order s-norm. In this sectionwe prove a high order estimate

for any real number s > −1.

To extend this analysis to the case where s 6= 2 we consider in�nite series:

fs(y) =

∞∑

j=2

js+2

j!
y j−1

=

∞∑

j=1

( j+ 1)s+1

j!
y j. (113)

Again fs(0) = 0 and fs(y) is a strictly increasing entire function for any real s. We further remark

that for r > s we have the inequality

fs(y) 6 fr(y), s 6 r, ∀y > 0. (114)

We further have a simple recursive relation

fs(y) =
d

dy
(y fs−1(y)) , f−1(y) = ey − 1.

This allows us to compute fs(y) for any s a non-negative integer as in (111).

Similar to the previous section, we have

∂t|ξ|sĥ(ξ, t)+ |ξ|s+4ĥ(ξ, t)+ |ξ|s+2ĥ(ξ, t) = −|ξ|s+2

∞∑

j=2

1

j!
(|ξ|2ĥ)∗ j(ξ, t)

− |ξ|s
∞∑

j=2

1

j!
(|ξ|2ĥ)∗ j(ξ, t). (115)

Using (103) and (115), one has

d

dt
‖h‖s + ‖h‖s+4 + ‖h‖s+2 6 ‖h‖s+4

∞∑

j=2

js+2

j!
‖h‖ j−1

2 + ‖h‖s+2

∞∑

j=2

js

j!
‖h‖ j−1

2 .

(116)

Since fs−1(y) 6 fs for any y > 0, from de�nition of fs in (113), we recast (116) as

d

dt
‖h‖s + ‖h‖s+4 + ‖h‖s+2 6 (‖h‖s+4 + ‖h‖s+2) fs

(
‖h‖2

)
.

Let ys∗ satisfy fs(ys∗) = 1. If

‖h0‖2 < min(ys∗, y∗). (117)

Note that by (114) we have that ys∗ 6 yr∗ for s 6 r. In particular we are using y2∗ = y∗ in (108)
and therefore ys∗ 6 y∗ whenver s 6 2.

Then by (109) we have

fs
(
‖h(·, t)‖2

)
6 fs

(
‖h0‖2

)
< 1.

Hence we conclude the energy-dissipation relation

d

dt
‖h(·, t)‖s + σs,1(‖h(·, t)‖s+4 + ‖h(·, t)‖s+2) 6 0, (118)

when (117) holds. Here we de�ne σs,1
def
=
(
1− fs ( ‖h0‖2

)
> 0.
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A.4. Proof of the theorem 4

In this section we prove the theorem 4 by the following decay lemma from Patel–Strain [19]:

Lemma 4. Suppose g = g(t, x) is a smooth function with g(0, x) = g0(x) and assume that for

some µ ∈ R, ‖g0‖µ < ∞ and

‖g(t)‖R,∞ 6 C0

for some R > −d satisfying R < µ. Let the following differential inequality hold for γ > 0

and for some C > 0:

d

dt
‖g‖µ 6 −C‖g‖µ+γ.

Then we have the uniform in time estimate

‖g‖µ(t) .
(
‖g0‖µ + C0

)
(1+ t)−(µ−R)/γ.

Proof of theorem 4. For any s > −1 from (118) we have

d

dt
‖h(·, t)‖s 6 −σs,1(‖h(·, t)‖s+4 + ‖h(·, t)‖s+2) . (119)

From the assumption, ‖h0‖s2 < ∞ and ‖h0‖s1 < ∞ for some s2 > s1 > −1. Therefore by we

know

‖h‖s1,∞ 6 ‖h‖s1 6 ‖h0‖s1 < ∞. (120)

Then we can apply lemma 4 with µ = s2, γ = 2, ρ = s1 to see that (119) implies

‖h‖s2 6 (‖h0‖s2 + C0)(1+ t)−
s2−s1

2 . (121)

�

ORCID iDs

Yuan Gao https://orcid.org/0000-0002-7231-5672

Jian-Guo Liu https://orcid.org/0000-0002-9911-4045

Jianfeng Lu https://orcid.org/0000-0001-6255-5165

References

[1] Ambrose D M 2019 The radius of analyticity for solutions to a problem in epitaxial growth on the
torus Bull. Lond. Math. Soc. 51 877–86

[2] Bernis F and Friedman A 1990 Higher order nonlinear degenerate parabolic equations J. Differ. Equ.
83 179–206

[3] Binh V T 1983 Surface Mobilities on Solid Materials (New York: Plenum Press)
[4] Evans LC 1998 Partial Differential Equations, Graduate Studies inMathematics, 1869 (Providence,

RI: American Mathematical Society)
[5] Funaki T 2005 Stochastic Interface Models, Lectures on Probability Theory and Statistics Lecture

Notes in Math., vol 1869 (Berlin: Springer) pp 103–274
[6] Funaki T and SpohnH 1997Motion bymean curvature for the Ginzburg-Landau∇φ interface model

Commun. Math. Phys. 185 1–36

3844

https://orcid.org/0000-0002-7231-5672
https://orcid.org/0000-0002-7231-5672
https://orcid.org/0000-0002-7231-5672
https://orcid.org/0000-0002-9911-4045
https://orcid.org/0000-0002-9911-4045
https://orcid.org/0000-0002-9911-4045
https://orcid.org/0000-0001-6255-5165
https://orcid.org/0000-0001-6255-5165
https://orcid.org/0000-0001-6255-5165
https://doi.org/10.1112/blms.12283
https://doi.org/10.1112/blms.12283
https://doi.org/10.1016/0022-0396(90)90074-y
https://doi.org/10.1016/0022-0396(90)90074-y
https://doi.org/10.1007/s002200050080
https://doi.org/10.1007/s002200050080


Nonlinearity 33 (2020) 3816 Y Gao et al

[7] Gao Y 2019 Global strong solution with BV derivatives to singular solid-on-solid model with
exponential nonlinearity J. Differ. Equ. 267 4429–47

[8] Gao Y, Liu J-G and Lu J 2017 Weak solution of a continuum model for vicinal surface in the
attachment-detachment-limit SIAM J. Math. Anal. 49 1705–31

[9] Gao Y, Liu J-G and LuXY 2019 Gradient �ow approach to an exponential thin �lm equation: global
existence and latent singularity ESAIM Control, Optim. Calc. Var. 25 49

[10] Granero-Belinchon R and Magliocca M 2019 Global existence and decay to equilibrium for some
crystal surface models Discrete Continuous Dyn. Syst. - Ser. A 39 2101–31

[11] Krug J, Dobbs H T and Majaniemi S 1994 Adatom mobility for the solid-on-solid model Z. Phys. B
97 281–91

[12] Liu J G, Lu J, Margetis D and Marzuola J L 2019 Asymmetry in crystal facet dynamics of
homoepitaxy by a continuum model Physica D 393 54–67

[13] Liu J G and Strain R M 2019 Global stability for solutions to the exponential PDE describing
epitaxial growth Interfaces Free Boundaries 21 51–86

[14] Liu J G and Xu X 2016 Existence theorems for a multidimensional crystal surface model SIAM J.
Math. Anal. 48 3667–87

[15] Liu J G and Xu X 2017 Analytical validation of a continuum model for the evolution of a crystal
surface in multiple space dimensions SIAM J. Math. Anal. 49 2220–45

[16] Marzuola J L and Weare J 2013 The relaxation of a family of broken bond crystal surface models
Phys. Rev. E 88 032403

[17] Maxwell J C 1864 On the dynamical theory of gases Phil. Trans. R. Soc. 157 49
[18] Nishikawa T 2002 Hydrodynamic limit for the Ginzburg-Landau ∇φ interface model with a

conservation law J. Math. Sci. Univ. Tokyo 9 481–519
[19] Patel N and Strain R M 2017 Large time decay estimates for the Muskat equation Commun. PDE

42 977–99
[20] Pimpinelli A andVillain J 1999Physics of Crystal Growth (Cambridge: Cambridge University Press)
[21] Smereka P Near equilibrium behavior of a solid-on-solid kinetic Monte Carlo model (unpublished

notes)
[22] Spohn H 1993 Surface dynamics below the roughening transition J. Physique I 3 69–81
[23] Xu X 2018 Existence theorems for a crystal surface model involving the p-Laplacian operator SIAM

J. Math. Anal. 50 4261–81

3845

https://doi.org/10.1016/j.jde.2019.05.011
https://doi.org/10.1016/j.jde.2019.05.011
https://doi.org/10.1137/16m1094543
https://doi.org/10.1137/16m1094543
https://doi.org/10.1051/cocv/2018037
https://doi.org/10.1051/cocv/2018037
https://doi.org/10.3934/dcds.2019088
https://doi.org/10.3934/dcds.2019088
https://doi.org/10.1007/bf01307478
https://doi.org/10.1007/bf01307478
https://doi.org/10.1016/j.physd.2019.01.004
https://doi.org/10.1016/j.physd.2019.01.004
https://doi.org/10.4171/ifb/417
https://doi.org/10.4171/ifb/417
https://doi.org/10.1137/16m1059400
https://doi.org/10.1137/16m1059400
https://doi.org/10.1137/16m1098474
https://doi.org/10.1137/16m1098474
https://doi.org/10.1103/physreve.88.032403
https://doi.org/10.1103/physreve.88.032403
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1080/03605302.2017.1321661
https://doi.org/10.1080/03605302.2017.1321661
https://doi.org/10.1051/jp1:1993117
https://doi.org/10.1051/jp1:1993117
https://doi.org/10.1137/17m1157908
https://doi.org/10.1137/17m1157908

	Analysis of a continuum theory for broken bond crystal surface models with evaporation and deposition effectstnqx2a;
	1.  Introduction
	2.  Generalized broken bond models
	2.1.  Overview of microscopic system and its statistical mechanics
	2.2.  Kinetic Monte Carlo atomistic model
	2.3.  Macroscopic dynamics

	3.  Global weak solutions positive almost everywhere
	3.1.  Formal observations and existence result
	3.2.  Global positive solution to a regularized problem
	3.2.1.  A priori estimates and energy identities under a-priori assumption 
	3.2.2.  Verify the a priori assumption

	3.3.  Global solution to original equation
	3.3.1.  Convergence of when taking limit 
	3.3.2.  Estimate for the measure of 
	3.3.3.  Proof of theorem 1 by taking limit in (57)
	3.3.4.  Proof of energy dissipation laws in theorem 1 by taking the limit in the energy identities (36) and in (37)

	3.4.  Long time behavior

	Acknowledgments
	Appendix A.  Small data existence in the Wiener algebra
	A.1.  Notation
	A.2.  Main results
	A.3.  Proof of theorem 3
	A.3.1.  A priori estimate in 
	A.3.2.  A priori estimate in the high order s-norm

	A.4.  Proof of the theorem 4

	ORCID iDs
	References


