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• A coupled system of non-conservative PDEs for a tear film model is analyzed.
• Heterogeneous evaporation drives dynamics in film thickness and osmolarity.
• The regularity of global solutions to the model for a certain parameter range is obtained.
• Locally elevated evaporation rates can yield interesting finite-time rupture–shock phenomenon.
• Convergence to equilibrium solutions and infinite-time thinning are investigated numerically.
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a b s t r a c t

Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we
study the dynamics of a generalized thin film model. The governing equations form a fourth-order
coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-
conservative effects representing evaporation. We analytically prove the global existence of solutions to
this model with mobility exponents in several different ranges and present numerical simulations that
are in agreement with the analytic results. We also numerically capture other interesting dynamics of
the model, including finite-time rupture–shock phenomenon due to the instabilities caused by locally
elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

In this article, we study the regularity of solutions to a one-
dimensional nonlinear partial differential equation system for a
fluid film height h(x, t) and salt concentration (also called the
osmolarity) s(x, t) on a finite domain, 0 ≤ x ≤ L,

ht = −(hnhxxx)x − hm(S̄ − s), (1.1a)

st = sxx +


hx

h
− hn−1hxxx


sx + s(S̄ − s)hm−1. (1.1b)

This family of PDEs is motivated by a non-conservative lubrication
model for evaporating tear films on human eyes. Based on the
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model proposed by Peng et al. [1], a spatial variation in a thin lipid
layer on the tear film leads to locally elevated evaporation rates of
the tear film, which in turn affects the local salt concentration in
the liquid film. In our model (1.1) the influences of the lipid layer
thickness on osmolarity are included in the effective salt capacity
function, S̄(x) ∈ L∞([0, L]). Thiswill be taken to be a given positive
function with increased values over some portion of the domain,
corresponding to elevated evaporation rates (and decreased lipid
concentrations). Starting from initial data (h0(x), s0(x)) at time
t = 0 which satisfy h0 > 0 and 0 < s0 ≤ ∥S̄∥∞, the
dynamics will be subject to no-flux and normal-contact boundary
conditions

hx(0) = hx(L) = 0, hxxx(0) = hxxx(L) = 0,
sx(0) = sx(L) = 0.

(1.1c)
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The mobility exponents n and m in (1.1) are introduced to
analyze and separate the influences of the conservative and
non-conservative fluxes in the model respectively. The term
(hnhxxx)x in the model is due to capillary forces, the terms
hm(S̄ − s) and s(S̄ − s)hm−1 are related to evaporative effects,
sxx corresponds to the diffusion of the salt concentration, and the
term


h−1hx − hn−1hxxx


sx is related to the convective transport

of the salt. Details of the formulation from the physical model
will be discussed further in Section 2. The original model in [1]
corresponds to (1.1) with the exponent valuesm = 0 and n = 3.

The total mass of salt, S, in the liquid film is of fundamental
interest, and one can obtain the conservation of this quantity by
multiplying (1.1a) by s, multiplying (1.1b) by h and then integrating
the sum of the two equations,

S(t) =

 L

0
hs dx, S(t) = S(0) =

 L

0
h0s0 dx. (1.2)

We will use the conservation of S in the proof of the boundedness
of h and the study of equilibrium solutions of the system. The total
mass of the liquid film in the system is not conserved and its rate
of change can be obtained from integrating (1.1a) and applying the
boundary conditions,

M(t) =

 L

0
h dx,

dM

dt
= −

 L

0
hm(S̄ − s) dx. (1.3)

We note that with initial data 0 < s0 < ∥S̄∥∞ and h0 > 0,
the osmolarity is always bounded by ∥S̄∥∞. This result will be
shown formally in the proof of Theorem 1 in Section 3 by the
weak maximum principle in [2, Lemma 7.6]. Namely, s(x, t) is not
guaranteed to be bounded by S̄(x) pointwise; consequently it is not
clear if M(t) is necessarily decreasing in time.

The imposed osmolar capacity S̄(x) is essential in determining
the dynamics of the model (1.1). Although in previous models [1],
it was assumed that S̄ is smooth and takes the form of a Gaussian
distribution, the regularity of solutions to (1.1) is not sensitive
to the smoothness of S̄. For instance, with S̄ given by a positive
indicator function,

S̄(x) =


100 for 0.5 < x < 1.5,
2 otherwise, (1.4)

a typical evolution of h and s over the domain 0 ≤ x ≤ 2 with
(m, n) = (3.5, 4.5) is presented in Fig. 1, with figures (a) and (b)
showing the dynamics of height and salt concentration profiles in
(1.1) and figures (c) and (d) illustrating the evolution of some key
properties for those profiles. Spatially uniform initial conditions for
both film thickness and salt concentration are used, corresponding
to states produced by opened eyes after a blink [3]. Starting from
normalized initial conditions h0 = s0 = 1, the film thickness h
decreases with an increasing spatial variation driven by the locally
elevated S̄, while the osmolarity rises due to the evaporation and
is elevated more quickly near the center of the domain. Later, the
symmetry of the film is broken and h reaches its minimum at x ≈

0.8 and x ≈ 1.2. This is difficult to see in plot (a), but is depicted
in the plot (c) where hmin(t) = minx h(x, t) is no longer attained at
the center of the domain. The localized elevation in osmolarity s is
a transient effect with hmin(t) approaching zero algebraically and s
evolving slowly as t → ∞.

The mobility exponents, m and n, are crucial in determining
the qualitative behavior of the PDE model. In Section 2 we will
review the motivating tear film model which corresponds to (1.1)
with exponents (m, n) = (0, 3). The modified tear film Eqs. (1.1)
are then proposed. In Section 3, the global and local existence
of solutions to (1.1) in several different ranges of (m, n) are
proved analytically. These regularity results, together with other
interesting dynamics of the model, are then further investigated
with numerical simulations in Section 4.
2. A physical model for tear film break-up driven by evapora-
tion

Human eyes are coated with a thin precorneal tear film which
is a bio-fluidwith a complex composition but can be approximated
in terms of a viscous fluid with dissolved salt and a lipid layer.
Tear film thinning and break-up during interblink periods are
observable clinically and play a key role in dry eye disorders.While
many mechanisms have been proposed in the literature [4–6],
it is now generally agreed that evaporation is one of the most
important factors for the tear film break-up phenomenon [7].
In addition to evaporation effects, capillarity and osmolarity
also contribute to the dynamics of the tear film. In particular,
experiments have shown that the local increase of osmolarity is
evident along with the reduced tear film thickness as the break-up
occurs. For a thorough discussion on the dynamics of tear film, we
refer readers to [3].

Since the average aqueous tear film thickness (approximately
10−6 m) [8] is much thinner than the average radius of curvature
of the eye (about 10−2 m), we follow the literature [3,9] to assume
that the substrate underneath the tear film is flat. In addition, it is
appropriate to use the lubrication approximation tomodel the evo-
lution of the tear film, since the exposed surface of the eye (called
the palpebral fissure) is about 103 times larger than the average
tear film thickness, and the tear film can be modeled as a viscous
flow at a low Reynolds number. The dynamics of thin viscous film
flows have been studied extensively for the past decade due to
their fundamental importance in coating flows, painting, biolog-
ical applications like tear films [3], and other applications in sci-
ence and engineering. There is a large literature on the numerical
and modeling studies of evaporating thin films [10], and some of
the results can be applied to the study of tear films. For the charac-
terization of thin film flows with surfactant [11,12], a suspension
of heavy particles [13], or drying paint layers [14,15], an additional
PDE for surfactant concentration or particle concentration is usu-
ally incorporated into the PDE system.

The conservation of water leads to the dimensionless governing
equation for the film thickness h,

∂h
∂t

= −
∂

∂x
(uh) − Je + Jw, (2.1)

with the flow velocity u given by [1]

u = −h2 ∂p
∂x

, (2.2)

where the dynamical pressure p is given by the combination of the
generalized conjoining pressureΠ(h) and the linearized curvature
hxx,

p = Π(h) − hxx, (2.3)

and t and x are temporal and spatial variables. Here we take
the conjoining pressure to be Π(h) = −ϵ/h3 with the rescaled
Hamaker constant ϵ > 0which represents the wetting property of
the corneal surface. The two non-conservative contributions Je and
Jw correspond to the evaporative flux and osmotic weeping flux
and will be described below in detail.

The dynamics of the salt concentration is governed by a
seconddimensionless evolution equationwhich describes the local
conservation of salt in terms of diffusion and convective transport
of the aqueous film,

∂

∂t
(hs) =

∂

∂x


h
∂s
∂x

− ush


. (2.4)

This form guarantees that the total salt mass is conserved
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Fig. 1. Numerical solution of (1.1) with (m, n) = (3.5, 4.5) starting from constant initial data h0 = s0 = 1 for 0 ≤ x ≤ 2 driven by non-conservative flux with S̄(x) given
by (1.4): (a) and (b) are solution profiles for h and s, where the capacity S̄ is plotted in dashed line; (c) and (d) present the evolution of the h, s solutions at the edge (x = 0)
and center (x = 1) of the domain, respectively. The minimum film thickness hmin(t) monotonically decreases and approaches 0 as t → ∞, while the osmolarity s is locally
elevated in the early stage and the spatial variations decay in the later stage. Starting from a critical time t∗ ≈ 0.9, the minimum of h is attained at two points away from
the center (x = 1) of the domain.

hs dx =


h0s0 dx. (2.5)

The osmotic weeping flux, Jw , is assumed to be proportional to
the difference between the salt concentration in the tear film and
a reference osmolarity constant, S0,

Jw = s − S0. (2.6)

Several different mathematical models have been studied [16–19]
for the mechanisms of the tear film break-up driven by evapo-
ration, and the major differences among these models are in the
physical interpretation of the evaporation effects involved in the
tear film. For instance, Braun [3] derived the form of evaporative
mass flux

Je =
E(1 + δp)
K̄ + h

, (2.7)

where K̄ > 0 measures the thermal resistances to mass transfer at
the fluid–vapor interface, E > 0 characterizes the ratio of viscous
timescale to the non-conservative timescale, and δ is a nondimen-
sional parameter for evaporation. This type of evaporative fluxwas
first proposed by Burelbach et al. [20] in a one-sided evaporating
thin filmmodel where the dynamics of the fluid is assumed decou-
pled from the evolution of the vapor, and was later investigated
by Ajaev [21,22] for a more detailed evaporation model. Later a re-
vised version of (2.7) was further studied in [16]. More recently the
influence of surfactant was also included in the evaporative mass
flux in [17].

In 2014, Peng et al. [1] derived a tear film break-up model with
instabilities driven by evaporation effects by treating the lipid layer
on the fluid tear film as a barrier to local evaporation from the un-
derlying tear film. Assuming that the evolution of the lipid layer is
static compared to the dynamics of the aqueous film, they imposed
a fixed spatially varying profile to approximate the local variations
in the lipid concentration. Since reduced amounts of the lipid cause
locally elevated liquid evaporation rates relative to that of the film
in surrounding regions [23,18], they included an additional mass-
transfer resistance term to account for the counteraction due to the
lipid concentration. The resulting evaporative mass flux Je is then
obtained by solving a coupled system for Je(x, t) and the temper-
ature of the liquid–vapor interface. In order to simplify the evap-
orative flux term, we consider the same influence of lipid layer as
an obstruction to evaporation but ignore the latent heat of water
vaporization, and write the evaporative flux as

Je =
Pseδp

− P∞

RL(x) + RG
∼

E
RL(x) + RG

for δ → 0 with E = Ps − P∞, (2.8)

where RL(x) measures the mass-transfer resistance through the
tear film lipid layer which depends on the lipid concentration, RG
represents the mass-transfer resistance in ambient air, Ps and P∞

are nondimensional saturation vapor pressure at cornea and in the
environment, respectively. This form of evaporative flux is compa-
rable to (2.7) when the contribution from the dynamical pressure
p to the evaporation is negligible, h ≪ K̄ , and water evaporation
from the tear film is obstructed by both resistances through the
spatially dependent lipid layer and through the air phase. Conse-
quently, using (2.6) and (2.8), the total non-conservative flux from
evaporative and osmolarity weeping flows can be written conve-
niently in terms of an S̄(x) function as
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− Je + Jw = s −


E

RL(x) + RG
+ S0


= s − S̄(x). (2.9)

To summarize, from (2.1) and (2.4) the nondimensional
governing equations for the evolution of tear film thickness h and
the osmolarity s in human eyes can be represented by

ht = −


h3

hxx +

ϵ

h3


x


x
− (S̄ − s), (2.10a)

st = sxx +


hx

h
− h2


hxx +

ϵ

h3


x


sx +

s
h
(S̄ − s), (2.10b)

with the associated boundary conditions (1.1c), where (2.10b) is
obtained from applying the product rule to the time derivative
term and substituting Eq. (2.10a) into Eq. (2.4).

It is interesting to note that both the fourth-order term due
to surface tension and the second-order term due to conjoining
pressure in (2.10a) are stabilizing. Since our major interest is to
examine the mechanism of possible breakdowns of the tear film
model (2.10), in this work we neglect the conjoining pressure by
setting ϵ = 0 in (2.10) and focus on the competition between
the fourth-order regularizing term and the non-conservative
contributions. To get a better understanding of the PDEs, we
consider the generalized model (1.1) to explore the key features
of tear-film break-up with power-law mobility functions for both
conservative and non-conservative contributions. In particular,
in order to regularize the non-conservative effects in the PDEs,
modified versions of the non-conservative terms are considered
with the original terms (S̄ − s) in Eqs. (2.10) multiplied by a
regularizing factor hm. It is worth noting that the physical model
(2.10) for tear films with ϵ = 0 corresponds to the case (m, n) =

(0, 3) of the generalized PDE system (1.1).
In the present work, the PDE system (1.1) is investigated

from the perspective of both analytical and numerical studies.
Specifically, it will be shown numerically in Section 4 that the
tear film model (2.10) exhibits a novel finite-time rupture–shock
phenomenon, that is, at a critical point x = xc , the film thickness
h(xc, t) → 0, along with |sx(xc)| → ∞ as a critical time tc is
approached. The finite-time singularity phenomenon admitted in
this model inspires us to investigate themodified PDE system (1.1)
in other parameter ranges.

3. Regularity of solutions to the generalized model (1.1)

In this section, we study the regularity of solutions to (1.1)
with appropriate initial data and show that the existence of strong
solutions depends on different ranges of the exponents m and n.
Specifically, by proving the existence of upper and lower bounds
for the film thickness and the salt concentration, we show that
under certain circumstances both the film thickness and the salt
concentration are prevented from reaching zero or blowing-up.
The main result for global strong solutions to Eqs. (1.1) with the
exponents (m, n) that satisfy n = m + 1, 3 ≤ m < 4, and the
local existence of strong solutions to (1.1) withm, n ≥ 0 are stated
in the following two theorems. The proof of the global existence
is then presented, and a sketch of the proof of the local existence
result is included in Remark 2.

Theorem 1 (Global Existence). Suppose that n = m+1, 3 ≤ m < 4,
S̄(x) ∈ L∞([0, L]), and for any integer k ≥ 2, the initial data h0(x) ∈

Hk([0, L]), s0(x) ∈ Hk−2([0, L]) satisfy 0 < η ≤ h0(x), 0 < λ ≤

s0(x) ≤ ∥S̄(x)∥∞ for some positive constants η, λ > 0. Then for any
T > 0, there exist unique solutions h(x, t) ∈ L∞([0, T ];Hk([0, L]))∩
L2([0, T ];Hk+2([0, L])) and s(x, t) ∈ L∞([0, T ];Hk−2([0, L])) ∩

L2([0, T ];Hk−1([0, L])) that satisfy (1.1ab)with the initial data h0, s0
and the boundary conditions (1.1c). Moreover, s(x, t) satisfies

0 < λ ≤ s(x, t) ≤ ∥S̄∥∞ for all t ∈ [0, T ], (3.1)
and there exist positive bounds hm(T ), Hm(T ) such that

0 < hm(T ) ≤ h(x, t) ≤ Hm(T ) for all t ∈ [0, T ], (3.2)

where hm(T ), Hm(T ) depend on η, λ, ∥h0s0∥1, ∥h0∥1, ∥S̄∥∞

and T . �

We define η = minx h0(x) and λ = minx s0(x). The uniform
lower and upper bound estimates in (3.2) are crucial for the higher
order estimates, which guarantee the existence of the global solu-
tions. We will use some basic estimates and two apriori assump-
tions to obtain the uniform lower and upper bound estimates in
(3.2) and then verify those apriori assumptions. Specifically, we
will show that the condition m < 4 comes from the upper bound
Hm(T ) and that the condition 3 ≤ m comes from the lower bound
hm(T ). Then standard compactness arguments can be used to ob-
tain the existence result for global strong solutions. For an example
of the compactness techniques, we refer the reader to [24].

Notice that the condition 3 ≤ m < 4 is needed for the
uniform lower and upper bound estimates in (3.2). If only local
time existence of the strong solutions is considered, then the upper
and lower bounds in (3.2) can be easily obtained with an extended
range for the exponents m and n. Therefore we state the existence
result for local strong solutions to the model (1.1) with exponents
m ≥ 0, n ≥ 0 as a byproduct in Theorem 2.

Theorem 2 (Local Existence). Under the same conditions of Theo-
rem 1, except that the range of the exponents (m, n) is assumed to be
m ≥ 0, n ≥ 0, there exists Tm > 0 which depends on η, λ, ∥h0∥1,
∥h0s0∥1 and ∥S̄∥∞, and unique solutions h(x, t) ∈ L∞([0, Tm];

Hk([0, L])) ∩ L2([0, Tm];Hk+2([0, L])) and s(x, t) ∈ L∞([0, Tm];

Hk−2([0, L]))∩ L2([0, Tm];Hk−1([0, L])) that satisfy (1.1ab) with the
initial data h0, s0 and the boundary conditions (1.1c). Moreover,

0 < λ ≤ s(x, t) ≤ ∥S̄∥∞ for all t ∈ [0, Tm]. (3.3)

Furthermore, there exist positive bounds hm(Tm), Hm(Tm) such that

0 < hm(Tm) ≤ h(x, t) ≤ Hm(Tm) for all t ∈ [0, Tm], (3.4)

where hm, Hm depend on η, λ, ∥h0∥1, ∥h0s0∥1, ∥S̄∥∞ and Tm. �

For the proof of the main result in Theorem 1, the key point
is to obtain the positive upper and lower bounds for h, which are
shown in Steps 1 and 2, respectively. For the following analysis,
we denote ∥ · ∥p as the standard norm for Lp([0, L]) where
p ≥ 1.

The strategy of the proof can be sketched as follows. In Step 1
we get some apriori estimates under the assumption that h ≥

0 and obtain the upper bound Hm(T ) which requires m < 4.
Then we verify the apriori assumption by obtaining a positive
lower bound hm(T ) of h in Step 2, where m ≥ 3 is needed. In
Step 3, we use the lower bound hm(T ) to obtain higher order
apriori estimates. After these apriori estimates in the first three
steps, following [24, Chapter 10] we apply a standard compactness
argument to obtain the existence of strong solutions, which will
be described in Remark 1. In Step 4, we prove that the solutions
obtained above are unique.

In this following proof we will omit the technical details of the
standard compactness argument, and focus on the Steps 1, 2 and 3
for the estimates of the solutions.



Y. Gao et al. / Physica D 350 (2017) 13–25 17
Proof of Theorem 1.

Step 1: Basic apriori estimates.
For the case n = m+1, the originalmodel (1.1) can be rewritten

as

ht = −hm(S̄ − s) − (hm+1hxxx)x, (3.5a)

st = sxx +

hx

h
− hmhxxx


sx + s(S̄ − s)hm−1, (3.5b)

with a single system parameterm.
For any T > 0, we assume that

h(x, t) ≥ 0 for all t ∈ [0, T ]. (3.6)

Using this assumption and the initial condition λ ≤ s0(x) ≤

∥S̄(x)∥∞, we conclude that if s = λ or s = ∥S̄(x)∥∞ for the first
time at t = tc at a point x = xc , then sx(xc, tc) = 0 is attained. For
the last term on the right hand side of (3.5b), we have

s(S̄ − s)hm−1

s=λ

= λ(S̄ − λ)hm−1
≥ 0,

s(S̄ − s)hm−1

s=∥S̄(x)∥∞

= ∥S̄(x)∥∞(S̄ − ∥S̄(x)∥∞)hm−1
≤ 0.

Then from (3.5b) and the weak maximum principle, λ ≤ s0(x) ≤

∥S̄(x)∥∞ implies that

λ ≤ s(x, t) ≤ ∥S̄(x)∥∞, (3.7)

which gives the bounds in (3.1). This estimate together with (1.2)
and (1.3) shows that L

0
h dx ≤ C(∥h0s0∥1, λ) for any t ∈ [0, T ], (3.8)

and T

0

 L

0
hm(S̄ − s) dx dt ≤ C(∥h0∥1). (3.9)

Moreover, multiplying (3.5a) by 1−m
hm and integrating by parts

lead to

d
dt

 L

0

1
hm−1

dx = (m − 1)

×

 L

0
(S̄ − s) dx − m(m − 1)

 L

0
h2
xx dx. (3.10)

From (3.7) and (3.10), we know T

0

 L

0
h2
xx dx dt ≤ Cη + CsT , (3.11)

and L

0

1
hm−1

dx ≤ Cη + CsT for any t ∈ [0, T ], (3.12)

where Cη =
1

ηm−1 , and Cs is a constant depending only on ∥S̄∥∞.
Furthermore, in order to estimate∥h∥∞ and∥hx∥L∞([0,T ];L2([0,L])),

we need another apriori assumption

∥h∥∞ ≤ H, (3.13)

where H will be determined later. Multiplying (3.5a) by −hxx and
integrating by parts lead to

d
dt

 L

0

1
2
h2
x dx =

 L

0
hmhxx(S̄ − s) dx −

 L

0
h2
xxxh

m+1 dx.
Thus by Young’s inequality and (3.11), we have L

0

1
2
h2
x dx ≤

 T

0

 L

0
hmhxx(S̄ − s) dx dt,

≤

 T

0

 L

0
h2
xx dx dt +

 T

0

 L

0
h2m(S̄ − s)2 dx dt,

≤ Cη + CsT + I for any t ∈ [0, T ], (3.14)

where I :=
 T
0

 L
0 h2m(S̄− s)2 dx dt will be given further treatment.

We introduce two constants κ, γ whose values will be
determined later and assume thatm, κ, γ ≥ 1 satisfy

1
m

+
1
κ

+
1
γ

= 1. (3.15)

Then by Hölder’s inequality and (3.8), we have L

0
h2m(S̄ − s)2 dx

=

 L

0


hm(S̄ − s)

 1
m h2m−1− 1

κ (S̄ − s)2−
1
m h

1
κ dx

≤ C(∥h0s0∥1, λ)
 L

0
hm(S̄ − s) dx

 1
m

×

 L

0
h

2m−1− 1

κ


γ dx

 1
γ

.

This, together with Hölder’s inequality and (3.9), shows that

I ≤ C(∥h0s0∥1, λ)
 T

0

 L

0
hm(S̄ − s) dx dt

 1
m

×

 T

0

 L

0
h

2m−1− 1

κ


γ dx

m′

γ

dt


1
m′

≤ C(h0, s0)

 T

0

 L

0
h

2m−1− 1

κ


γ dx

m′

γ

dt


1
m′

, (3.16)

where m′
≥ 1 satisfies

1
m

+
1
m′

= 1. (3.17)

Also here and in the following, C(h0, s0) represents a constant
depending on ∥h0s0∥1, ∥h0∥1 and λ.

For any constant 0 ≤ τ < 2, from the apriori assumption (3.13)
and (3.16) we have

I ≤ HτC(∥h0s0∥1, λ)

 T

0

 L

0
h

2m−1− 1

κ −τ

γ dx

m′

γ

dt


1
m′

.

(3.18)

On one hand, from the Gagliardo–Nirenberg interpolation inequal-
ity, we know

∥h∥
2m−1− 1

κ −τ

γ

≤ c∥h∥1−θ
1 ∥hxx∥

θ
2 + c∥h∥1,

≤ C(h0, s0)∥hxx∥
θ
2 + C(h0, s0)

for any t ∈ [0, T ], (3.19)

where the index θ satisfies

θ =
2
5


1 −

1
2m − 1 −

1
κ

− τ

γ


. (3.20)
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On the other hand, from the relations (3.15) and (3.17) we have
0 ≤

m′

γ
≤ 1. Therefore, from (3.18) and (3.19) we obtain

I ≤ HτC(h0, s0)

 T

0
∥hxx∥

θm′

2m−1− 1

κ −τ


2 dt

 1
m′

+ 1

 . (3.21)

Since we have the uniform bound (3.11), it remains to show that
the exponent in (3.21) satisfies

θm′


2m − 1 −

1
κ

− τ


< 2. (3.22)

With the relations (3.15), (3.17) and (3.20), this reduces to

m
m − 1


2m − 1 −

1
κ

− τ


−


1 −

1
m

−
1
κ


< 5, (3.23)

which can be rewritten in the following three possible cases,
Case 1:

6 − m
6 − 2m + τ

< m, 6 − 2m + τ > 0; or

Case 2:m <
6 − m

6 − 2m + τ
, 6 − 2m + τ < 0; or

Case 3: 6 − m < 0, 6 − 2m + τ = 0.

(3.24)

Since m > 1 and 0 ≤ τ < 2, only Case 1 can happen, which
becomes the minimum requirement to guarantee the condition
(3.22),

m < 3 +
τ

2
. (3.25)

Thus we rewrite (3.21) as

I ≤ C(h0, s0)Hτ . (3.26)

This result, together with (3.14), gives L

0
h2
x dx ≤ Cη + CsT + C(h0, s0)Hτ

for any t ∈ [0, T ], (3.27)

from which we also know that h is continuous. Assume that h
attains its minimal value hmin at x = xc . Since (3.8) shows that
hmin ≤ C(h0, s0), from (3.27) we have

∥h∥∞ ≤

 x

xc
hx(s) ds

+ hmin

≤

Cη + CsT + C(h0, s0)Hτ + C(h0, s0)

for any t ∈ [0, T ]. (3.28)

Finally, we verify the apriori assumption (3.13). Let us chooseH
to be the solution of

H =

Cη + CsT + C(h0, s0)Hτ + C(h0, s0) + 1. (3.29)

In fact, since τ < 2, this equation always has a solution, Hm(T ),
which depends on Cη, C(h0, s0), Cs and T . Then from (3.28), we
have

∥h∥∞ ≤

Cη + CsT + C(h0, s0)Hτ + C(h0, s0) < Hm(T )

for any t ∈ [0, T ],

which verifies the apriori assumption (3.13). Besides, for any m <
4 there exists δ > 0 such that m < 4 − δ. Then we can choose
2− 2δ < τ < 2, which implies thatm < 4− δ < 3+

τ
2 . Therefore

we obtain

∥hx∥L∞([0,T ];L2([0,L])) ≤ Ch0,s0,T , (3.30)
and

∥h∥L∞([0,T ]×[0,L]) ≤ Hm(T ). (3.31)

Here and in the following, we use the notation Ch0,s0,T to represent
a constant that depends on η, ∥h0∥1, ∥S̄∥∞ and T .
Step 2: Positive lower bound for h.

First from (3.30), (3.31) and the Sobolev embedding H1([0, L])
↩→ C

1
2 ([0, L]), we know

h(x) ≤ hmin + Ch0,s0,T |x − xc |
1
2 . (3.32)

This, together with (3.12), shows that L

0

1
hmin + Ch0,s0,T |x − xc |

1
2
m−1 dx

≤

 L

0

1
hm−1

dx ≤ Cη + CsT for any t ∈ [0, T ]. (3.33)

In particular, form = 3 we have

ln

h2
min + Ch0,s0,T

h2
min


=

 L
2

0

1
h2
min + Ch0,s0,T x

dx ≤ 2Cη + 2CsT .

Hence we have

1 +
Ch0,s0,T

h2
min

≤ e2Cη+2CsT ,

which leads to

hmin ≥

 Ch0,s0,T

e2Cη+2CsT − 1

 1
2
. (3.34)

For m > 3, we have

ε
hmin + Ch0,s0,T ε

1
2
m−1 ≤

 ε

0

1
hmin + Ch0,s0,T ε

1
2
m−1 dx

≤ 2Cη + 2CsT ,

which gives

hmin ≥

 ε

2Cη + 2CsT

 1
m−1

− Ch0,s0,T ε
1
2 . (3.35)

Since 1
m−1 < 1

2 , we can choose ε small enough such that
ε

2Cη+2CsT

 1
m−1

− Ch0,s0,T ε
1
2 > 0. Combining the above two cases,

we know that for m ≥ 3 there exist a positive hm(T ) > 0
depending on η, ∥h0∥1, ∥S̄∥∞ and T such that

h(x, t) ≥ hm(T ) > 0 for any t ∈ [0, T ],

which gives (3.2) and verifies the apriori assumption (3.6).
Step 3: Higher order apriori estimates.

Now we can use (3.2) to obtain higher order estimates. First,
we provide an estimate for ∥hxx∥L∞([0,T ],L2([0,L])). With the notation

h(k)
:=

∂kh
∂xk

, we multiply (3.5a) by h(4) and integrate by parts. From
Young’s inequality, we have

d
dt

 L

0

1
2
h2
xx dx = −

 L

0
hm(S̄ − s)h(4)

+ hm+1(h(4))2 + (hm+1)xhxxxh(4) dx

≤

 L

0
−hm+1

m (h(4))2 + ε(h(4))2

+ c(ε)H2m
m ∥S̄∥2

∞
dx + I1, (3.36)
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where I1 := −
 L
0 (hm+1)xhxxxh(4) dx. Our goal is to use

−
 L
0 hm+1

m (h(4))2 dx to control I1 based on the inequality

I1 = −
1
2

 L

0
(hm+1)x(h2

xxx)x dx =
1
2

 L

0
(hm+1)xxh2

xxx dx

≤ C(Hm)

 L

0
hxxh2

xxx dx + C(Hm)

 L

0
h2
xh

2
xxx dx =: I2 + I3.

With the uniform bound (3.30), we use the Gagliardo–Nirenberg
interpolation inequality to estimate I2, I3. For I2, we obtain

∥hxx∥∞ ≤ ∥hx∥
1−θ2
2 ∥h(4)

∥
θ2
2 + Ch0,s0,T for θ2 =

1
2
, (3.37)

and

∥hxxx∥2 ≤ ∥hx∥
1−θ1
2 ∥h(4)

∥
θ1
2 + Ch0,s0,T for θ1 =

2
3
. (3.38)

Since θ2 + 2θ1 =
11
6 < 2, the estimates (3.37) and (3.38) together

with Young’s inequality yield that

I2 ≤ C(Hm)∥hxx∥∞∥hxxx∥
2
2 ≤ ε∥h(4)

∥
2
2 + Ch0,s0,T . (3.39)

Similarly, for I3 we obtain

∥hx∥∞ ≤ ∥hx∥
1−θ4
2 ∥h(4)

∥
θ4
2 + Ch0,s0,T for θ4 =

1
6
, (3.40)

and

∥hxxx∥2 ≤ ∥hx∥
1−θ3
2 ∥h(4)

∥
θ3
2 + Ch0,s0,T for θ3 =

2
3
. (3.41)

With 2θ3 + 2θ4 =
5
3 < 2, using (3.40) and (3.41) with Young’s

inequality leads to

I3 ≤ C(Hm)∥hx∥
2
∞

∥hxxx∥
2
2 ≤ ε∥h(4)

∥
2
2 + Ch0,s0,T . (3.42)

Combining (3.39) and (3.42) with (3.36), we have

d
dt

 L

0
h2
xx dx +

 L

0
hm+1
m (h(4))2 dx ≤ Ch0,s0,T , (3.43)

which gives that

∥hxx∥L∞([0,T ],L2([0,L])) ≤ Ch0,s0,T , (3.44)

∥h(4)
∥L2([0,T ],L2([0,L])) ≤ Ch0,s0,T . (3.45)

Second, in order to get higher order estimates for h, we now
need to obtain some estimates for s. Multiplying (3.5b) by s and
applying integration by parts, we have

d
dt

 L

0

1
2
s2 dx = −

 L

0
s2x dx +

 L

0

hx

h
− hmhxxx


ssx

+ s2(S̄ − s)hm−1 dx

≤ −

 L

0
s2x dx + ε

 L

0
s2x dx + C(ε, ∥S̄∥∞)

×

 L

0

hx

h
− hmhxxx

2
dx +

 L

0
s2(S̄ − s)hm−1 dx

≤ −

 L

0
s2x dx + ε

 L

0
s2x dx + C(ε, ∥S̄∥∞)

×

 L

0


2
(hx)

2

h2
m

+ 2H2m
m (hxxx)

2

dx + Ch0,s0,T , (3.46)

where Young’s inequality and (3.2) are used. With the estimates
(3.44) and (3.45), we integrate (3.46) from t = 0 to t = T and
obtain L

0
s2 dx +

 T

0

 L

0
s2x dx ≤ Ch0,s0,T

for any t ∈ [0, T ]. (3.47)

Third, we turn to estimate ∥hxxx∥L∞([0,T ],L2([0,L])). Multiplying
(3.5a) by h(6) and applying integration by parts, we have

d
dt

 L

0

1
2
h2
xxx dx =

 L

0
hm(S̄ − s)h(6)

− (hm+1hxxx)xxh(5) dx

= −

 L

0
(hm(S̄ − s))xh(5) dx −

 L

0
hm+1(h(5))2 dx

−

 L

0
2(hm+1)xh(4)h(5)

+ (hm+1)xxhxxxh(5) dx

≤ ε

 L

0


h(5)2 dx + C(ε)Ch0,s0,T −

 L

0
hm+1
m (h(5))2 dx

+

 L

0
(hm+1)xx


h(4)2 dx −

 L

0
(hm+1)xxhxxxh(5) dx, (3.48)

where Young’s inequality, (3.2), (3.30) and (3.47) are used in the
last inequality.

We then introduce R :=
 L
0 (hm+1)xx


h(4)

2 dx and R3 :=

−
 L
0 (hm+1)xxhxxxh(5) dx, and write

R =

 L

0
(hm+1)xx


h(4)2 dx

≤ C(Hm)

 L

0
hxx

h(4)2 dx + C(Hm)

 L

0
h2
x


h(4)2 dx

=: R1 + R2.

It will be shown that the term −
 L
0 hm+1

m (h(5))2 dx can be used to
control the terms R1, R2 and R3.

For R1, using the Gagliardo–Nirenberg interpolation inequality
and keeping in mind that the uniform bound (3.44), we obtain

∥hxx∥∞ ≤ ∥hxx∥
1−θ2
2 ∥hxxx∥

θ2
2 + Ch0,s0,T for θ2 =

1
2
, (3.49)

and

∥h(5)
∥2 ≤ ∥hxx∥

1−θ1
2 ∥h(5)

∥
θ1
2 + Ch0,s0,T for θ1 =

2
3
. (3.50)

Then (3.49) and (3.50) show that

R1 ≤ C(Hm)∥hxx∥∞∥h(4)
∥
2
2

≤ Ch0,s0,T∥hxxx∥
θ2
2 ∥h(5)

∥
2θ1
2 + Ch0,s0,T∥hxxx∥

θ2
2

+ Ch0,s0,T∥h
(5)

∥
2θ1
2 + Ch0,s0,T . (3.51)

From Young’s inequality, we have

∥hxxx∥
θ2
2 ∥h(5)

∥
2θ1
2 ≤ ε∥h(5)

∥
2pθ1
2 + C(ε)∥hxxx∥

qθ2
2 ,

where q = 3, p =
3
2 . Since qθ2, 2θ1 < 2, applying Young’s

inequality again, we obtain

R1 ≤ ε∥h(5)
∥
2
2 + Ch0,s0,T∥hxxx∥

2
2 + Ch0,s0,T . (3.52)

For R2, using (3.44) and the Sobolev interpolation inequality we
have

R2 = C(Hm)

 L

0
h2
x


h(4)2 dx ≤ C(Hm)∥hx∥

2
∞

∥h(4)
∥
2
2

≤ C(Hm)∥hxx∥
2
2∥h

(4)
∥
2
2 ≤ Ch0,s0,T∥h

(4)
∥
2
2

≤ ε∥h(5)
∥
2
2 + Ch0,s0,T . (3.53)
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Similarly, for the control of R3, from Young’s inequality and the
Sobolev interpolation inequality we have

R3 = −

 L

0
(hm+1)xxhxxxh(5) dx (3.54)

≤ ε∥h(5)
∥
2
2 + ∥hxxx∥

2
∞

 L

0
(hm+1)2xx dx

≤ ε∥h(5)
∥
2
2 +


ε∥h(5)

∥
2
2 + Ch0,s0,T


∥hxx∥

2
2 + ∥hx∥

4
4


≤ ε∥h(5)

∥
2
2 + Ch0,s0,T , (3.55)

where (3.44) is used.
Combining (3.52)–(3.54) and (3.48), we obtain

d
dt

 L

0
h2
xxx dx +

 L

0
hm+1
m (h(5))2 dx

≤ Ch0,s0,T∥hxxx∥
2
2 + Ch0,s0,T . (3.56)

This, together with the Grönwall inequality, implies that

∥hxxx∥L∞([0,T ],L2([0,L])) ≤ Ch0,s0,T , (3.57)

∥h(5)
∥L2([0,T ],L2([0,L])) ≤ Ch0,s0,T . (3.58)

Finally, we consider the estimate for ∥sx∥L∞([0,T ],L2([0,L])).
Multiplying (3.5b) by −sxx, integrating by parts, and using Young’s
inequality, (3.7) and (3.2), we have

d
dt

 L

0

1
2
s2x dx = −

 L

0
s2xx +


hx

h
− hmhxxx


sxsxx

+ ssxx(S̄ − s)hm−1 dx

≤ −

 L

0
s2xx dx + ε

 L

0
s2xx dx

+
1
2

 L

0


hx

h
− hmhxxx


x
s2x dx + Ch0,s0,T , (3.59)

where the first term on the right hand side will be used to control
P :=

1
2

 L
0

 hx
h − hmhxxx


xs

2
x dx. From (3.30), (3.44) and (3.2), we

know that

P ≤ Ch0,s0,T

 L

0
hxxs2x + h2

xs
2
x + hxhxxxs2x + h(4)s2x dx


≤ Ch0,s0,T


∥hxx∥∞ + ∥hx∥

2
∞

  L

0
s2x dx

+ ∥hx∥∞

 L

0
hxxxs2x dx +

 L

0
h(4)s2x dx


≤ ε

 L

0
s2xx dx + Ch0,s0,T

 L

0
hxxxs2x dx +

 L

0
h(4)s2x dx


+ Ch0,s0,T . (3.60)

Nowwe provide an estimate for
 L
0 h(4)s2x dx, and the other term L

0 hxxxs2x dx can be treated similarly. With p =
5
3 , and q =

5
2 , we

have L

0
h(4)s2x dx ≤ C(ε)

 L

0
(h(4))q dx + ε

 L

0
s2px . (3.61)

Using the Gagliardo–Nirenberg interpolation inequality and (3.47),
we obtain

∥sx∥2p ≤ ∥sxx∥
θ1
2 ∥s∥1−θ1

2 + Ch0,s0,T for θ1 =
3
5
, (3.62)

and

∥h(4)
∥q ≤ ∥h(5)

∥
θ2
2 ∥hxxx∥

1−θ2
2 + Ch0,s0,T for θ2 =

11
20

. (3.63)
Thus we have L

0
s2px dx ≤ Ch0,s0,T

 L

0
s2xx dx + Ch0,s0,T , (3.64)

and since qθ2 =
55
40 < 2, we know L

0
(h(4))q dx ≤ Ch0,s0,T

 L

0
(h(5))2 dx + Ch0,s0,T . (3.65)

Therefore, combining (3.62), (3.64) and (3.65) with (3.60), we have

P ≤ ε

 L

0
s2xx dx + Ch0,s0,T

 L

0
(h(5))2 dx + Ch0,s0,T .

This, together with (3.59), gives

d
dt

 L

0
s2x dx +

 L

0
s2xx dx

≤ Ch0,s0,T

 L

0
(h(5))2 dx + Ch0,s0,T . (3.66)

Using (3.58) and integrating (3.66) in time from t = 0 to t = T , we
obtain

∥sx∥L∞([0,T ],L2([0,L])) ≤ Ch0,s0,T , (3.67)

∥sxx∥L2([0,T ],L2([0,L])) ≤ Ch0,s0,T . (3.68)

We can use the same techniques to obtain any kth order
estimates, for which we omit the details. Then by standard
compactness arguments, we can obtain the existence result for
global solutions to (3.5).
Step 4: Uniqueness of the solutions obtained above.

Assume that (h1, s1), (h2, s2) are two strong solutions that
satisfy the Eqs. (3.5). Let us first estimate d

dt ∥h1 − h2∥
2
2. Taking the

difference between (3.5a) for h1 and h2, we write

(h1 − h2)t = −hm
1 (S̄ − s1) + hm

2 (S̄ − s2)

−

hm+1
1 h1xxx − hm+1

2 h2xxx

x. (3.69)

Notice that the strong solutions have the regularities h(x, t) ∈

L∞([0, T ];Hk([0, L])) ∩ L2([0, T ];Hk+2([0, L])) and s(x, t) ∈ L∞

([0, T ];Hk−2([0, L])) ∩ L2([0, T ];Hk−1([0, L])). From now on, we
denoteCh,s as a constant that depends on∥(h1, h2)∥L∞([0,T ];Hk([0,L])),
∥(h1, h2)∥L2 ([0, T ];Hk+2 ([0, L])), ∥(s1, s2)∥L∞ ([0, T ];Hk−2 ([0, L])) and
∥(s1, s2)∥L2([0,T ];Hk−1([0,L])). Multiplying (3.69) by h1 − h2 and ap-
plying integration by parts, we have

d
dt

 L

0

1
2
(h1 − h2)

2 dx =

 L

0
(hm

2 − hm
1 )(S̄ − s1)(h1 − h2)

+ hm
2 (s1 − s2)(h1 − h2) + (hm+1

1 − hm+1
2 )h1xxx(h1 − h2)x

+ hm+1
2 (h1xxx − h2xxx)(h1 − h2)x dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2


+

 L

0
(hm+1

1 − hm+1
2 )h1xxx(h1 − h2)x

+ hm+1
2 (h1xxx − h2xxx)(h1 − h2)x dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2


+ Ch,s∥h1xxx∥2

 L

0
(h1x − h2x)

2 dx

−

 L

0
hm+1
2 (h1xx − h2xx)

2
− (hm+1

2 )x

× (h1xx − h2xx)(h1 − h2)x dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2 + ∥h1xxx∥2∥h1x − h2x∥
2
2


. (3.70)



Y. Gao et al. / Physica D 350 (2017) 13–25 21
Here we used Young’s inequality and (3.2) in the last inequality.
Second, we turn to estimate d

dt ∥h1x − h2x∥
2
2. Multiplying (3.69)

by −(h1 − h2)xx and applying integration by parts, we obtain

d
dt

 L

0

1
2
(h1x − h2x)

2 dx = −

 L

0
(hm

2 − hm
1 )(S̄ − s1)(h1xx − h2xx)

+ hm
2 (s1 − s2)(h1xx − h2xx) + hm+1

1 (h1xxx − h2xxx)
2

+ (hm+1
1 − hm+1

2 )h2xxx(h1xxx − h2xxx) dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2


−

 L

0

1
2
hm+1
1 (h1xxx − h2xxx)

2

+ (hm+1
1 − hm+1

2 )h2xxx(h1xxx − h2xxx) dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2


−

1
4

 L

0
hm+1
1 (h1xxx − h2xxx)

2

+ Ch,s∥h2xxx∥2∥h1 − h2∥
2
∞

dx

≤ Ch,s


∥h1 − h2∥

2
2 + ∥s1 − s2∥2

2 + ∥h2xxx∥2∥h1x − h2x∥
2
2


. (3.71)

Young’s inequality and (3.2) are also used in the first and second
inequalities.

Next, we need to estimate d
dt ∥h1xx −h2xx∥

2
2 and

d
dt ∥s1 − s2∥2

2. As
the involved techniques are identical to those used in the estimates
for (3.36) and (3.46) in Step 3, we omit the details here and state
that we have the estimate
d
dt


∥h1 − h2∥

2
H2([0,L]) + ∥s1 − s2∥2

2


≤ Ch,s


1 + ∥h(4)

1 ∥
2
2 + ∥h(4)

2 ∥
2
2


×


∥h1 − h2∥

2
H2([0,L]) + ∥s1 − s2∥2

2


. (3.72)

Hence by the Grönwall inequality and the fact that h1(0) =

h2(0), s1(0) = s2(0), we have h1 ≡ h2 and s1 ≡ s2. This completes
the proof of Theorem 1. �

Remark 1. The compactness argument that we use in the proof
above can be stated as follows. We first modify (3.5) properly us-
ing the standard mollifier Jδ such that the right-hand-sides of the
modified system are locally Lipschitz continuous in Banach space
L∞([0, L]), so that the Picard Theorem for the abstract Banach
space can be applied. Hence by [24, Theorem 3.1], the modified
system has a unique local solution (hδ, sδ). Then by the apriori esti-
mates in Steps 1, 2 and 3, we get the regularity estimates uniformly
in δ and extend the maximal existence time for (hδ, sδ). Finally, by
the Lions–Aubin compactness lemma and taking the limit δ → 0,
we obtain a solution (h, s) to the original problem (3.5).

Remark 2. A sketch of the proof of Theorem 2 is presented here.
Recall that in Theorem 1 the condition m < 4 comes from the
upper bound Hm(T ) and that the condition 3 ≤ m is used to obtain
the lower bound hm(T ). However, for local solutions we can obtain
the apriori boundedness estimate (3.2) easily for any m ≥ 0. Thus
the techniques for apriori estimates and compactness argument
are the same as the proof of Theorem 1 and we omit the details
here.

4. Dynamics of model (1.1): numerical study

It was analytically shown in the previous section that for
parameters n = m + 1 and 3 ≤ m < 4 global solutions
to (1.1) exist. In this section, we conduct a series of numerical
simulations for the generalized Eqs. (1.1) with different values of
mobility exponents (m, n) to further investigate various long-time
behaviors of the solutions. Moreover, simulations reveal that the
model has rich dynamics resulting from its strong nonlinearity.
For example, interesting finite-time singularities are observedwith
(m, n) = (0, 3) which corresponds to the original tear film
break up model (2.10). We will also discuss the significance of the
effective salt capacity S̄(x) to the existence of equilibrium solutions
and the dynamics of the model.

4.1. Finite-time singularities

While the motivating tear film break-up model (2.10) success-
fully captures the key components in evaporating tear films, the in-
stabilities driven by the locally elevated evaporation rates can lead
to a novel finite-time rupture–shock phenomenon. Fig. 2 shows a
typical numerical simulation for the evolution of film height and
osmolarity from initial condition h0 = s0 = 1 with S̄ given by
S̄(x) = 50 − 48.8 tanh (20(|x − 1| − 0.1)).

In the early stage of the dynamics, it is shown in Fig. 2(a,
b) that the film thickness h decreases with the osmolarity s
increasing since the locally elevated evaporation effects are large
enough to overcome the curvature-driven and osmotic healing
flows. In the later stage, Fig. 2(d) shows that s locally exceeds the
prescribed S̄, and the local minimum of h splits into a pair of local
minimums that lead to secondary rupture (see Fig. 2(c)); at the
same time the rupture in h is smoothed by both weak diffusive
and capillary forces. As thinning proceeds, the film thickness in
the neighborhood of the critical position xc approaches zero which
leads to degenerate diffusion for the local salt concentration from
(2.4). This causes the osmolarity to form a singular shock in finite-
time with |sx(xc, t)| → ∞ for t → tc (see Fig. 2(f)) with the
development of tear film rupture as h(xc, t) → 0 (see Fig. 2(e)).
It is clear from Fig. 2(d) that the osmolarity s is bounded by ∥S̄∥∞

throughout the simulation as is predicted by (3.1).
This type of rupture–shock dynamics is comparable to the

double shock solutions studied in [25,26] in a model for a thin
viscous film with insoluble surfactant. That PDE system for film
thickness h and surfactant concentration Γ allows shock solutions
for which both h and Γx have a jump while Γ is continuous.
In particular, Jensen and Grotberg [25] showed that severe film
thinning behind the shock due to van der Waals can lead to
film rupture. Different double shock and singular shock solutions
for film thickness and particle volume fraction have also been
investigated by Cook and Bertozzi for particle-laden thin films [13].

The nonlinear PDE system (1.1) is solved numerically using
a fully implicit second-order finite difference method with an
adaptive non-uniform grid. Specifically, we used the midpoint
Keller-box method [27] to express the PDEs as a system of first-
order equations

ht = −

hnq

x − hm(S̄ − s) (hs)t =


hv − hnqs


x , (4.1a)

with

v = sx, k = hx, p = kx, q = px, (4.1b)

where the second equation in (4.1a) maintains the conservation of
local salt mass from Eq. (2.4). To capture the finite-time rupture in
h and shock in s that occur simultaneously with high resolutions,
we used a classicalmovingmesh algorithmwith a tailoredmonitor
function togetherwith adaptive time-stepping to adaptively assign
a high distribution of grid points near the singularity points. For
more discussion and applications of moving mesh methods, we
refer readers to [28].

The presence of finite-time singularities indicates that the tear
filmmodel (2.10) is problematic since the solution (h, s) cannot be
continued past the time of the first singularity. Our regularization
of the non-conservative contributions by introducing the mobility
parameter m to the generalized model (1.1) is inspired by this
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Fig. 2. Evolution of h and s in Eqs. (2.10ab) with ϵ = 0, or equivalently, Eqs. (1.1ab) with (m, n) = (0, 3), starting from constant initial data h0 = s0 = 1 for 0 ≤ x ≤ 2
driven by the non-conservative flux with S̄(x) = 50 − 48.8 tanh(20(|x − 1| − 0.1)) (plotted in dashed lines in (b, d)). Solution profiles for h and s are shown in (a) and (b),
with zoom-in plots in (c) and (d). In (e) and (f) solutions h and |sx| are plotted on log scale, showing a finite time rupture–shock singularity occurring at xc with h(xc) → 0
and |sx(xc)| → ∞ as t → tc .
Fig. 3. Numerical simulation of (1.1)with (m, n) = (1/2, 3/2) and identical initial data and S̄ (in dashed lines), (4.2)withw = 0.5, as in Fig. 1. Evolution of h and s are plotted
in (a) and (b), with zoom-in plots in (c) and (d) showing that rupture–shock singularity occurs at a pair of points xc away from x = 1 with h(xc) → 0 and |sx(xc)| → ∞ as
t → tc , where tc ≈ 0.063.
observation. For the following simulations we keep n = m + 1 so
that the parameters are consistent with those used in Theorem 1.
We also apply the initial conditions h0 = s0 = 1 with domain size
L = 2, and define the effective salt capacity S̄(x) as an indicator
function identifying the elevated-evaporation-rate region,

S̄(x) =


100 for L/2 − w < x < L/2 + w,
2 otherwise, (4.2)

wherew > 0 gives the halfwidth of the region. This choice of S̄ and
initial data satisfy the requirement of the global existence theorem
s0 ≤ ∥S̄∥∞ and provide a typical characterization of the dynamics
in the model (2.10).

The PDE simulations shown in Fig. 3 with (m, n) = (1/2, 3/2)
and w = 0.5 suggest that weak regularization is not sufficient
to prevent the finite-time singularities from happening. Similar
to the dynamics presented in Fig. 2, rupture–shock phenomenon
occurs in the later stage with h(xc) → 0 and |sx(xc)| → ∞ as
t → tc ≈ 0.063. Since the width of the high capacity region in S̄
increases from approximately 0.2 in Fig. 2 towidth one in Fig. 3, the
domain with reduced film thickness and the hyperosmotic region
in s are larger, while the secondary rupture–shock phenomenon
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Fig. 4. Plot of decreasingminimum film thickness hmin (plotted in dotted lines) and
h(1, t) (plotted in dashed lines) starting from identical initial condition h0 = s0 = 1
with n = m+1, S̄ from (4.2) withw = 0.5 and over a range ofm values, 0 ≤ m ≤ 6.
Regime (a) m = 0, 0.5, 1; Regime (b) m = 1.5, . . . , 6. In regime (a) finite-time
rupture in h occurs, while infinite-time thinning occurs in regime (b). The deviation
of hmin(t) from h(1, t) in the later stage indicates that the minimum of the film
thickness h(x, t) is attained away from the center of the domain.

that occurs away from the center of the domain is similar to
Fig. 2. Again the comparison between the profiles for S̄ and the
salt concentration s in Fig. 3(d) emphasizes that s does not exceed
∥S̄∥∞ = 100 during the dynamical evolution.

Note that the distinct numerical simulations presented in Figs. 1
and 3 differ only in their choices of mobility exponents (m, n),
with all the other system parameters including the S̄ profile being
identical. Inspired by this observation, we explore the dynamics
of (1.1) with S̄ given by (4.2) with w = 0.5 and investigate the
influences of various mobility exponents m with n = m + 1.
The time evolution of a set of PDE simulations with identical
initial data is plotted in Fig. 4 with two different regimes. For
0 ≤ m ≤ 1, localized finite-time rupture occurs at a point away
from the origin similar to the dynamics shown in Fig. 3, while for
m > 1 infinite-time non-uniform thinning is observed with the
minimum film thickness hmin → 0 as t → ∞, which is similar
to the dynamics shown in Fig. 1. Specifically, the film thicknesses
at the center of the domain x = 1 are plotted in comparison
to the minimum film thickness. For regime (a), as the finite-time
singularity develops, hmin(t) quickly deviates from h(1, t) and the
difference between the two quantities grows exponentially as
the critical time is approached, indicating the formation of the
secondary singularities similar to the case shown in Fig. 3. These
results are in line with the conclusion drawn in Theorem 1 that
strong solutions to (1.1) exist globally for 3 ≤ m < 4 and
n = m + 1, and therefore the numerical treatment is consistent.
Moreover, the numerical result in Fig. 3 suggests that solutions to
themodel (1.1) exist until the first singularity occurs, which agrees
with the local solution result in Theorem 2.

4.2. Convergence to equilibrium and infinite time thinning

It is shown in Fig. 4 that with S̄(x) from (4.2) and w = 0.5
one can separate the finite-time singularity regime of the solution
behaviors from infinite-time thinning regime with various (m, n)
values. We will then further investigate the long time behavior
of the solutions of (1.1). In addition to the infinite time thinning,
typical long-time behaviors of solutions (h, s) of PDE system (1.1)
may also include convergence to equilibrium solutions.

There is a possible equilibriumbalance between the regularized
non-conservative effects and the surface tension contributions in
the PDE system. By setting the time-derivative terms in (1.1) equal
to zero, we note that an equilibrium of the PDE system (1.1), heq(x)
and seq(x), satisfies the differential equation system

d
dx


hn
eq

d3heq

dx3


+ hm

eq(S̄ − seq) = 0, (4.3a)

d2seq
dx2

+


1
heq

dheq

dx
− hn−1

eq
d3heq

dx3


dseq
dx

+ seq(S̄ − seq)hm−1
eq = 0,

(4.3b)

subject to the no-flux and normal-contact boundary conditions

dheq

dx
= 0,

d3heq

dx3
= 0,

dseq
dx

= 0 at x = 0, L. (4.3c)

Due to the conservation of total mass of salt (2.5), another
constraint is imposed for the PDE system starting from the initial
data (h0, s0), L

0
heqseq dx =

 L

0
h0s0 dx = S0. (4.3d)

The existence of such equilibrium solutions depends on the
effective salt capacity profile S̄(x) and other parameters. For
instance, with initial condition constraint S0 = 2 and the form
of S̄ given by (4.2) with varying width w, the equilibrium solutions
to (1.1) with (m, n) = (3.5, 4.5) are calculated via a continuation
method and are plotted in Fig. 5. Note that for smallerw in (4.2) the
steady state heq has a positive lower bound, while the minimum of
heq approaches zero at x = 1 with w ∼ 0.314. This result suggests
that steady states for (1.1) with S0 = 2 and (m, n) = (3.5, 4.5)
do not exist for w > 0.314 for S̄ given by (4.2). It is interesting
that while min heq is monotonically decreasing in terms of w, the
profile of the equilibrium osmolarity seq changes dramatically and
max seq is not monotone in w, as is shown in Fig. 5 (right).

Fig. 6 depicts a typical simulation of the model (1.1) with
the total mass of salt S0 = 2, w = 0.2 and (m, n) =

(3.5, 4.5), showing convergence of PDE solutions (dashed lines)
to equilibrium solutions (heq, seq) (solid lines) in the long time.
Moreover, numerical observations for m > 1 indicate that PDE
solutions of (1.1) converge to the corresponding equilibriumwhich
satisfies (4.3). If the equilibrium does not exist, we expect infinite-
time non-uniform thinning with h → 0 at a critical point xc as
t → ∞. With the width w = 0.3, a set of PDE simulations
starting from identical initial data are plotted in Fig. 7 with hmin
decreasing in time. Three distinct regimes are developed in this
case: for region (a) with 0 ≤ m ≤ 1 finite-time singularity
develops similar to the case shown in Fig. 3; For region (c) with
m ≥ 3.5 the PDE solution converges to an equilibrium solution
(heq, seq) similar to the dynamics in Fig. 6; While for region (b)
with 1 < m ≤ 3 the minimum film thickness approaches zero
as t → ∞. Specifically, in the neighborhood of xc where h →

0, the film thickness profile forms a nearly flat plateau with the
corresponding s ≪ S̄. Therefore from (1.1a) the minimum film
thickness is asymptotically determined by
d
dt

hmin ∼ −ηhm
min, where η = S̄(xc),

which leads to an estimate of the rate of change of hmin in time,

hmin(t) ∼ (c + η(m − 1)t)−
1

m−1 , (4.4)

where c is a constant that depends on other systemparameters and
initial conditions. The comparison of the direct PDE simulations
against the prediction hmin(t) = O(t−

1
m−1 ) as t → ∞ for regime

(b) in Fig. 7 shows good agreement with this estimate in the final
stage as hmin → 0. The estimate in (4.4) also suggests that infinite-
time thinning cannot happen form < 1.

The dynamics in Fig. 7 can be understood by looking at Fig. 8
where theminimum film thickness of the equilibrium heq is plotted
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Fig. 5. Equilibrium solutions (heq, seq) of (1.1) satisfying (4.3) with (m, n) = (3.5, 4.5), S̄ given by (4.2) with w = 0.1, . . . , 0.314 and
 L
0 heqseqdx = 2. (Left) heq profiles;

(middle) seq profiles; (right) plots of min heq and max seq vs. the width w.
Fig. 6. Convergence of PDE solutions h and s (in dashed lines) to the equilibrium plotted in solid lines which satisfy the ODEs (4.3) with (m, n) = (3.5, 4.5) and S̄ from (4.2)
with w = 0.2.
Fig. 7. Plots ofminimum film thickness hmin with identical systemparameters used
in Fig. 4 and S̄ from (4.2) with w = 0.3. Region (a) m = 0, 0.5, 1; Region (b) m =

1.5, 2, 2.5, 3; Region (c) m = 3.5, 4, . . . , 6. Numerical results are represented by
dotted lines, showing finite time singularity for region (a), infinite time thinning for
region (b) following predictions from (4.4) plotted in dashed lines, and convergence
of PDE solutions to steady states for region (c).

in terms of the width w in (4.2) and mobility coefficient m. It is
shown in Fig. 8 that for 0 < w < 0.1, the Eqs. (1.1) have an
equilibrium (heq, seq) for all positive m, while for w ≥ 0.1 there
exists a critical mc such that for m > mc the equilibrium solution
(heq, seq) to the system (4.3) exists. Specifically, for w = 0.3 in
(4.2), results in Fig. 8 indicate that equilibriumsolutions that satisfy
the ODE system (4.3) only exist for m > mc ≈ 3.26. Therefore
the threshold m = mc divides the long-time behaviors of the PDE
solutions into the two cases: infinite-time thinning with m < mc
and convergence to equilibrium withm > mc .

5. Conclusions

In this work, the proof of global and local existence of solutions
to the generalized tear film rupture model (1.1) with different
Fig. 8. Plots of the minimum film thickness of the steady states heq against system
parameters m and n = m + 1 with a set of w values, showing that for w > 0.1
steady state solutions to (4.3) cease to exist when m is smaller than a critical value
mc . In particular, for w = 0.3 the critical value of m ismc = 3.26.

system parameters regimes has been carried out. More precisely,
we have shown that with mobility exponents n = m + 1 and
3 ≤ m ≤ 4 solutions to (1.1) exist globally, and local solutions
to the model exist for the regimem ≥ 0, n ≥ 0.

The numerical results in Section 4 support the conclusion of
the regularity and existence of solutions in Section 3. Specifically,
the long time behavior of the PDE solutions to (1.1) with a family
of S̄ profiles (4.2) is investigated. For the case n = m + 1 and
3 ≤ m ≤ 4, if an equilibrium solution (heq, seq) can be established
in the PDE system associated with a specified total mass of salt S,
the PDE solutions approach to the equilibrium solution in the long
time. Otherwise,without the attraction of the equilibrium, infinite-
time non-uniform thinning in h is expected to happen. While with
mobility exponents (m, n) outside the above region, for instance,
with (m, n) = (0, 3) in the physical model (2.10), we numerically
capture the formation of finite time singularity in both h and s
driven by the non-conservative terms in the model.
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Several interesting questions regarding the PDE (1.1) remain to
be solved. First, in this paper we have restricted our attention to
the scenario where n = m + 1 and 3 ≤ m ≤ 4 for the proof of
global existence of solutions. However, as is suggested by the set
of simulations shown in Figs. 4 and 7, the parameter range for the
existence of solutions can possibly be extended to larger regions.
Inspired by the convergence of PDE solutions to equilibrium solu-
tions in some of the numerical simulations, we are also interested
to study whether the equilibrium solutions to (1.1) are all global
attractors. More specifically, we may ask: does any solution con-
verge to the equilibrium solutions, or how the existence of those
equilibrium solutions depend on S̄, and system parameters (m, n).
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