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Abstract. We propose an equilibrium-driven deformation algorithm (EDDA)

to simulate the inbetweening transformations starting from an initial image to
an equilibrium image, which covers images varying from a greyscale type to a

colorful type on planes or manifolds. The algorithm is based on the Fokker-

Planck dynamics on manifold, which automatically incorporates the manifold
structure suggested by dataset and satisfies positivity, unconditional stabil-

ity, mass conservation law and exponentially convergence. The thresholding
scheme is adapted for the sharp interface dynamics and is used to achieve

the finite time convergence. Using EDDA, three challenging examples, (I)

facial aging process, (II) coronavirus disease 2019 (COVID-19) pneumonia in-
vading/fading process, and (III) continental evolution process are computed

efficiently.

1. Introduction. Inbetweening auto-animation is to automatically generate ani-
mations (motions) given starting and end images. The classical method for auto-
animation uses detailed kinematic equations for each object in the starting images,
which is precise but time consuming due to case by case c.f. [1, 9].

Instead of analyzing the detailed kinematic equation for each object, we aim
to propose an efficient and universal algorithm for inbetweening auto-animation
based on the Fokker-Planck dynamics on manifold and thresholding. We call this
algorithm equilibrium-driven deformation algorithm (EDDA).

EDDA regards the end image as an equilibrium state of a Fokker-Planck equation
and the inbetweening motion is driven by an underlying potential force determined
by the equilibrium. This viewpoint is especially useful when the detailed physical
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process is not clear or hard to describe. For instance, the inbetweening motion
of aging process, tumor growth, pneumonia invading for coronavirus disease 2019
(COVID-19) or the formation of current continents/oceans starting from Pangaea.

We first consider a Fokker-Planck equation in a flat domain Ω ⊂ R` with a unique
equilibrium π and no-flux boundary condition in Section 2 and then we propose an
efficient solver for this Fokker-Planck equation in Section 3. The numerical solver
for this part is based on structured grids and finite volume method [3]. An uncondi-
tionally stable explicit time discretization is introduced, which automatically enjoys
positivity, mass conservation law, exponentially convergence and also efficiency. For
a Fokker-Planck equation on a closed manifold, we propose a similar efficient solver
based on point clouds and the associated Voronoi tessellation in Section 4. The
Voronoi tessellation automatically gives the manifold information and can be used
to approximate surface gradient/divergence in the Fokker-Planck equation. Based
on this, an analogue unconditionally stable explicit time discretization is introduced.

To realize the end image (the equilibrium) at a finite time and the shape dy-
namics of the inbetweening motion, we combine the explicit-time-discretization of
the Fokker-Planck equation with the thresholding dynamics. When the equilibrium
image has a sharp interface, the scheme adapting thresholding step converges faster
than the pure Fokker-Planck iteration and the relative error reaches machine accu-
racy at a finite time. In Section 3.2, we prove the finite-time convergence to the
equilibrium for the Fokker-Planck solver with the thresholding adjustment by using
a `1 characterization for the thresholding adjustment.

In Section 5, we apply EDDA proposed for either structured grids on Ω ⊂ R`, or
for point-clouds which suggests an underlining manifold to conduct three challeng-
ing and important examples: (I) facial aging process, (II) COVID-19 pneumonia
invading/fading, and (III) continental evolution process. In Example (I), inbetween-
ing facial aging process at each time is simulated and potentially reveals the detailed
changes of different part of human face over time. In Example (II), the inbetween-
ing evolution of COVID-19 pneumonia invading before treatment and the fading
away after treatment are simulated, which shows a good agreement with computer-
ized tomography (CT) scans and also reveals promising application in the studying
of pathology for COVID-19. In Example (III), the Fokker-Planck dynamics and
thresholding adjustments are combined together to simulate the continental drift-
ing process, which may suggest a new explanation for the formation of the current
five continents of the world. From those examples from quite different research
fields, EDDA are shown to be a very efficient and universal method with enormous
potential applications in other fields of science and industry.

2. Fokker-Planck equation and equilibrium. Suppose Ω ⊂ R` is a bounded
domain. Assume the end image on Ω is described by an equilibrium density π(x) :
Ω→ R. The value of ρ indicates the gray level of the image for a grayscale image. In
the case of Red-Green-Blue (RGB) image, we use three separate densities to indicate
the RGB levels of the image separately. Then with π ∝ e−φ, the Fokker-Planck
equation is given by

(2.1) ∂tρ = ∆ρ+∇ · (ρ∇φ) = ∇ ·
(
π∇

( ρ
π

))
with initial data ρ0 satisfying

(2.2)

∫
Ω

ρ0 dx =

∫
Ω

π dx.
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We consider the following natural no-flux boundary condition

(2.3) n · ∇
( ρ
π

)
= 0 on ∂Ω.

See Section 4 for a Fokker-Planck equation on a d dimensional smooth closed sub-
manifold of R`.

Now we state the ergodicity of the Fokker-Planck equation (2.1). Assume

(2.4) π > 0, π ∈ C1(Ω̄).

Let L2(Ω; 1
π dx) be the weighted L2 space. Define the Fokker-Planck operator

for (2.1) as L∗ : D(L∗) ⊂ L2(Ω; 1
π dx) → L2(Ω; 1

π dx) with D(L∗) := {u ∈
H2(Ω; 1

π dx); ∂n
u
π = 0 on ∂Ω}

(2.5) L∗u := −∇ · (π∇u
π

).

This can be regarded as the adjoint operator of the generator L = − 1
π∇ · (π∇)

of the Fokker-Planck equation (2.1). One can see L∗ is a self-adjoint operator
in L2(Ω; 1

π dx) with compact resolvent (λI + L∗)−1 for λ large enough. Thus L∗

has only discrete spectrum without finite accumulation points. Furthermore, since
π > 0, for ρ ∈ D(L∗),

(2.6) L∗ρ = 0, =⇒
∫
π|∇ ρ

π
|2 dx = 0, =⇒ ρ = cπ.

Therefore, we conclude 0 is the simple principal eigenvalue of L∗ with the corre-
sponding eigenfunction π, which leads to the spectral gap of L∗ in L2(Ω; 1

π dx),
i.e.

(2.7) 〈L∗u, u〉 1
π
≥ c〈u, u〉 1

π
, for u s.t. 〈u, π〉 1

π
= 0.

Thus due to
∫

(ρ− π) dx = 0, we have the following Poincare’s inequality

(2.8)

∫
|∇
( ρ
π
− 1
)
|2π dx ≥ c

∫ ( ρ
π
− 1
)2

π dx.

Therefore, multiplying (2.1) by ρ
π − 1, by (2.3) we have

(2.9)
1

2

d

dt

∫
(ρ− π)2

π
dx = −

∫
π|∇ ρ

π
|2 dx ≤ −c

∫
(ρ− π)2

π
dx,

which gives the ergodicity that

(2.10) ‖ρ(·, t)− π‖L2(Ω; 1
π dx) ≤ e−ct‖ρ(·, 0)− π‖L2(Ω; 1

π dx).

3. EDDA based on structured grids. We present the numerical method based
on structured grids for a Fokker-Planck equation on 2D domain Ω := [a, b]× [c, d].
Let the grid size be ∆x = b−a

N , ∆y = d−c
M . Define the cells as

(3.1) Cij = ((i− 1)∆x, i∆x)× ((j − 1)∆y, j∆y), i = 1, · · · , N, j = 1, · · · ,M.

Then the cell centers (xi, yi) are

(3.2) xi = a+ (i− 1

2
)∆x, yj = c+ (j − 1

2
)∆y, i = 1, · · · , N, j = 1, · · · ,M.
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We use ρi,j to approximate the value of ρ(xi, yj) and take πi,j = π(xi, yj) > 0. Then
the continuous-time finite volume scheme is
(3.3)

ρ̇i,j =
1

∆x2

(
πi,j + πi+1,j

2

(
ρi+1,j

πi+1,j
− ρi,j
πi,j

)
− πi−1,j + πi,j

2

(
ρi,j
πi,j
− ρi−1,j

πi−1,j

))
+

1

∆y2

(
πi,j + πi,j+1

2

(
ρi,j+1

πi,j+1
− ρi,j
πi,j

)
− πi,j−1 + πi,j

2

(
ρi,j
πi,j
− ρi,j−1

πi,j−1

))
for i = 1, · · · , N, j = 1, · · · ,M with the no-flux boundary condition (2.3). Here ρ̇i,j
refers to time derivative of ρi,j . We assume the equilibrium π satisfies

(3.4)
π0,j = π1,j , πN+1,j = πN,j j = 1, · · · ,M,

πi,0 = πi,1, πi,M+1 = πi,M i = 1, · · · , N,

then the no-flux boundary condition (2.3) is reduced to

(3.5)
ρ0,j = ρ1,j , ρN+1,j = ρN,j j = 1, · · · ,M,

ρi,0 = ρi,1, ρi,M+1 = ρi,M i = 1, · · · , N.

Denote ρki,j as the value of ρ at tk = k∆t with time step ∆t. When applying to
high resolution images, the convergence to the equilibrium is very slow for the clas-
sical explicit time discretization for (3.3) because the spectral gap is very small and
the Courant-Friedrichs-Lewy (CFL) constraint. Hence we introduce the following
unconditionally stable explicit time discretization for (3.3)
(3.6)

ρk+1
i,j − ρki,j

∆t

=
1

∆x2

(
πi,j + πi+1,j

2

(
ρki+1,j

πi+1,j
−
ρk+1
i,j

πi,j

)
− πi−1,j + πi,j

2

(
ρk+1
i,j

πi,j
−
ρki−1,j

πi−1,j

))

+
1

∆y2

(
πi,j + πi,j+1

2

(
ρki,j+1

πi,j+1
−
ρk+1
i,j

πi,j

)
− πi,j−1 + πi,j

2

(
ρk+1
i,j

πi,j
−
ρki,j−1

πi,j−1

))
for i = 1, · · · , N, j = 1, · · · ,M with the no-flux boundary condition (3.5).

We now further simplify (3.6) as

(3.7)

(
1 +

∆t

∆x2

(
πi,j + πi+1,j

2πi,j
+
πi−1,j + πi,j

2πi,j

)
+

∆t

∆y2

(
πi,j + πi,j+1

2πi,j
+
πi,j−1 + πi,j

2πi,j

))
ρk+1
i,j

πi,j

=
ρki,j
πi,j

+
∆t

∆x2

(
πi,j + πi+1,j

2πi,j

ρki+1,j

πi+1,j
+
πi−1,j + πi,j

2πi,j

ρki−1,j

πi−1,j

)

+
∆t

∆y2

(
πi,j + πi,j+1

2πi,j

ρki,j+1

πi,j+1
+
πi,j−1 + πi,j

2πi,j

ρki,j−1

πi,j−1

)
.

Define

λi,j :=
1

∆x2

(
πi,j + πi+1,j

2πi,j
+
πi−1,j + πi,j

2πi,j

)
+

1

∆y2

(
πi,j + πi,j+1

2πi,j
+
πi,j−1 + πi,j

2πi,j

)
> 0,

(3.8)
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which is always positive due to the positivity of πi,j . Then (3.7) can be rewritten
as

(3.9)

(1 + ∆tλi,j)ρ
k+1
i,j =ρki,j +

∆t

∆x2

(
πi,j + πi+1,j

2

ρki+1,j

πi+1,j
+
πi−1,j + πi,j

2

ρki−1,j

πi−1,j

)

+
∆t

∆y2

(
πi,j + πi,j+1

2

ρki,j+1

πi,j+1
+
πi,j−1 + πi,j

2

ρki,j−1

πi,j−1

)
.

Denote h := max{∆x,∆y}. From (3.9), we recast the scheme using a rescaled
generator operator
(3.10)

ρk+1
i,j

πi,j
−
ρki,j
πi,j

=
1

1 + ∆tλi,j

∆t

∆x2

(
πi,j + πi+1,j

2πi,j

ρki+1,j

πi+1,j
+
πi−1,j + πi,j

2πi,j

ρki−1,j

πi−1,j

)

+
1

1 + ∆tλi,j

∆t

∆y2

(
πi,j + πi,j+1

2πi,j

ρki,j+1

πi,j+1
+
πi,j−1 + πi,j

2πi,j

ρki,j−1

πi,j−1

)

− ∆tλi,j
1 + ∆tλi,j

ρki,j
πi,j

=
∆t

1 + ∆tλi,j

[πi,j + πi+1,j

2∆x2πi,j

(
ρki+1,j

πi+1,j
−
ρki,j
πi,j

)
− πi,j + πi−1,j

2∆x2πi,j

(
ρki,j
πi,j
−
ρki−1,j

πi−1,j

)

+
πi,j+1 + πi,j

2∆y2πi,j

(
ρki,j+1

πi,j+1
−
ρki,j
πi,j

)
− πi,j + πi,j−1

2∆y2πi,j

(
ρki,j
πi,j
−
ρki,j−1

πi,j−1

)]
=: −∆t(Lh

ρk

π
)i,j .

Now we state the the positivity, maximal principle, mass conservation law and
ergodicity of the scheme (3.7) as follows.

Proposition 1. Let πi,j = π(xi, yj) > 0. Let ∆t be the time step and consider the
explicit scheme (3.6) for the numerical solution ρki,j with boundary condition (3.5).

Assume the initial data ρ0 > 0 satisfies

(3.11)

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
0
i,j =

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)πi,j .

Then we have

(i) positivity preserving property

ρki,j > 0, i = 1, · · · , N, j = 1, · · · ,M =⇒ ρk+1
i,j > 0,

i = 1, · · · , N, j = 1, · · · ,M ;
(3.12)

(ii) the mass-conversation law

(3.13)

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
k+1
i,j =

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
k
i,j .

(iii) the unconditional maximal principle for
ρi,j
πi,j

(3.14) max
i,j

ρk+1
i,j

πi,j
≤ max

i,j

ρki,j
πi,j

;

Inverse Problems and Imaging Volume 15, No. 5 (2021), 843–864



848 Yuan Gao, Guangzhen Jin and Jian-Guo Liu

(iv) the l∞ contraction

(3.15) max
i,j

∣∣∣∣∣ρ
k+1
i,j

πi,j
− 1

∣∣∣∣∣ ≤ max
i,j

∣∣∣∣∣ρki,jπi,j
− 1

∣∣∣∣∣ ;
(v) the exponential convergence

(3.16)

∥∥∥∥∥
(
ρki,j
πi,j

)
− u∗

∥∥∥∥∥
F

≤ c|µ2|k, |µ2| < 1,

where µ2 is the second eigenvalue of A defined in (3.26), u∗i,j ≡ 1 and ‖ · ‖F
is the Frobenius norm of matrix.

Proof. For (i), from (3.9), since π > 0, we know ρki,j > 0 implies ρk+1
i,j > 0.

To prove (ii), taking summation in (3.9), we have the

(3.17)

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
k+1
i,j

=

N∑
i=1

M∑
j=1

ρki,j +

N∑
i=1

M∑
j=1

∆t

∆x2

(
πi,j + πi+1,j

2

ρki+1,j

πi+1,j
+
πi−1,j + πi,j

2

ρki−1,j

πi−1,j

)

+

N∑
i=1

M∑
j=1

∆t

∆y2

(
πi,j + πi,j+1

2

ρki,j+1

πi,j+1
+
πi,j−1 + πi,j

2

ρki,j−1

πi,j−1

)
.

The second term in the RHS of (3.17) is

(3.18)

N∑
i=1

M∑
j=1

∆t

∆x2

πi,j + πi+1,j

2

ρki+1,j

πi+1,j
=

N+1∑
i=2

M∑
j=1

∆t

∆x2

πi−1,j + πi,j
2

ρki,j
πi,j

=

N∑
i=1

M∑
j=1

∆t

∆x2

πi−1,j + πi,j
2

ρki,j
πi,j

+

M∑
j=1

∆t

∆x2

πN,j + πN+1,j

2

ρkN+1,j

πN+1,j

−
M∑
j=1

∆t

∆x2

π0,j + π1,j

2

ρk1,j
π1,j

=

N∑
i=1

M∑
j=1

∆t

∆x2

πi−1,j + πi,j
2

ρki,j
πi,j

+
∆t

∆x2

(
ρkN+1,j − ρk1,j

)
,

where we used the no-flux boundary condition (3.4). Similarly, the third term in
the RHS of (3.17) is

(3.19)

N∑
i=1

M∑
j=1

∆t

∆x2

πi−1,j + πi,j
2

ρki−1,j

πi−1,j
=

N−1∑
i=0

M∑
j=1

∆t

∆x2

πi+1,j + πi,j
2

ρki,j
πi,j

=

N∑
i=1

M∑
j=1

∆t

∆x2

πi+1,j + πi,j
2

ρki,j
πi,j
−

M∑
j=1

∆t

∆x2

πN,j + πN+1,j

2

ρkN,j
πN,j

+

M∑
j=1

∆t

∆x2

π0,j + π1,j

2

ρk0,j
π0,j

Inverse Problems and Imaging Volume 15, No. 5 (2021), 843–864
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=

N∑
i=1

M∑
j=1

∆t

∆x2

πi+1,j + πi,j
2

ρki,j
πi,j
− ∆t

∆x2

(
ρkN,j − ρk0,j

)
.

One can shift index for the last two terms in the RHS of (3.17) similarly. Therefore,
using the no-flux boundary condition (3.5), we have the mass balance

(3.20)

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
k+1
i,j =

N∑
i=1

M∑
j=1

(1 + ∆tλi,j)ρ
k
i,j .

To prove (iii), directly taking maximum in the RHS of (3.7) implies

(3.21) (1 + ∆tλi,j)
ρk+1
i,j

πi,j
≤ (1 + ∆tλi,j) max

i,j

ρki,j
πi,j

,

which leads to (4.16).
To prove (iv), subtract (1 + ∆tλi,j) from both sides of (3.7) and then multiply

by sgn

(
ρk+1
i,j

πi,j
− 1

)
. Thus using same argument with (iii), we have

(3.22) (1 + ∆tλi,j)

∣∣∣∣∣ρ
k+1
i,j

πi,j
− 1

∣∣∣∣∣ ≤ (1 + ∆tλi,j) max
i,j

∣∣∣∣∣ρki,jπi,j
− 1

∣∣∣∣∣ ,
which implies (4.17).

Now we prove (v). Recall (3.10), i.e.
(3.23)

ρk+1
i,j

πi,j
−
ρki,j
πi,j

= −∆t(Lh
ρk

π
)i,j

=
∆t

1 + ∆tλi,j

[πi,j + πi+1,j

2∆x2πi,j

(
ρki+1,j

πi+1,j
−
ρki,j
πi,j

)
− πi,j + πi−1,j

2∆x2πi,j

(
ρki,j
πi,j
−
ρki−1,j

πi−1,j

)

+
πi,j+1 + πi,j

2∆y2πi,j

(
ρki,j+1

πi,j+1
−
ρki,j
πi,j

)
− πi,j + πi,j−1

2∆y2πi,j

(
ρki,j
πi,j
−
ρki,j−1

πi,j−1

)]
.

By shifting index and no-flux boundary condition (3.5) we have

(3.24)

〈−Lh
ρk

π
, ρk〉1+∆tλ

=−
∑
i,j

[πi,j + πi+1,j

2∆x2

(
ρki+1,j

πi+1,j
−
ρki,j
πi,j

)2

+
πi,j + πi−1,j

2∆x2

(
ρki,j
πi,j
−
ρki−1,j

πi−1,j

)2

+
πi,j+1 + πi,j

2∆y2

(
ρki,j+1

πi,j+1
−
ρki,j
πi,j

)2

+
πi,j + πi,j−1

2∆y2

(
ρki,j
πi,j
−
ρki,j−1

πi,j−1

)2 ]
,

where the shorthand notation 〈·, ·〉1+∆tλ means the weighted inner product with
the weight {1 + ∆tλij}ni,j=1. From this, we know

(3.25) Lh
ρ∞

π
= 0, =⇒ 〈Lh

ρ∞

π
, ρ∞〉1+∆tλ = 0 =⇒ ρ∞ = cπ = π,

where c = 1 due to the mass conservation law.
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Denote uki,j =
ρki,j
πi,j

. Then (3.10) is recast as

(3.26)

uk+1
i,j =

1

1 + ∆tλi,j

[
uki,j + ∆t

(
πi,j + πi+1,j

2∆x2πi,j
uki+1,j +

πi,j + πi−1,j

2∆x2πi,j
uki−1,j

)
+ ∆t

(
πi,j+1 + πi,j

2∆y2πi,j
uki,j+1 +

πi,j + πi,j−1

2∆y2πi,j
uki,j−1

)]
=: (Auk)i,j .

For presentation simplicity, we can regard uk as a vector. By the Perron-Frobenius
theorem, µ1 = 1 is the simple, principal eigenvalue of A with the ground state
u∗i,j ≡ 1 and other eigenvalues µi of A satisfy |µi| < µ1. Notice also the mass

conservation for initial data u0 = ρ0

π satisfying (4.15), i.e.,

(3.27) 〈u0 − u∗, u∗〉(1+∆tλ)π = 0.

Since also A is self-adjoint operator in the weighted space l2((1 + ∆tλ)π), we can
express u0 using

(3.28) u0 − u∗ =

MN∑
`=2

c`u`, u` is the eigenfunction corresponding to µ`.

Therefore, we have

(3.29) uk − u∗ = Ak(u0 − u∗) =

MN∑
`=2

c`µ
k
`u`,

which concludes

(3.30)
∥∥uk − u∗∥∥

F
≤ c|µ2|k with |µ2| < 1,

where ‖ · ‖F is the Frobenius norm.

Remark 1. In order to adjust the initial distribution ρ0 such that the mass conser-

vation law (3.11) is satisfied. We multiply ρ0 by a constant cadj :=
∑
i,j(1+∆tλi,j)πi,j∑
i,j(1+∆tλi,j)ρ0i,j

,

which does not affect the Fokker-Planck dynamics for ρk. The image structure, as
well as the inbetweening transformation, will remain the same after adjustment.
To recover the original color scalar, one can use different interpolation models
as a post-process, for instance the simple linear interpolation or using a Wasser-
stein–Fisher–Rao metric as for the unbalanced optimal transport.

Lemma 3.1 (Weighted `1-contraction). Let ρk+1
i,j be the solution obtained in (3.7).

Then we have the weighted `1-contraction

(3.31)
∑
i,j

(1 + ∆tλi,j)|ρk+1
i,j − πi,j | ≤

∑
i,j

(1 + ∆tλi,j)|ρki,j − πi,j |.

Proof. From (3.9), we know
(3.32)

(1 + ∆tλi,j)(ρ
k+1
i,j − πi,j)

=(ρki,j − πi,j) +
∆t

∆x2

(
πi,j + πi+1,j

2

ρki+1,j − πi+1,j

πi+1,j
+
πi−1,j + πi,j

2

ρki−1,j − πi−1,j

πi−1,j

)

+
∆t

∆y2

(
πi,j + πi,j+1

2

ρki,j+1 − πi,j+1

πi,j+1
+
πi,j−1 + πi,j

2

ρki,j−1 − πi,j−1

πi,j−1

)
.
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Then taking the absolute value for both sides, we have
(3.33)∑

i,j

(1 + ∆tλi,j)|ρk+1
i,j − πi,j |

≤
∑
i,j

|ρki,j − πi,j |

+
∑
i,j

∆t

∆x2

(
πi,j + πi+1,j

2

|ρki+1,j − πi+1,j |
πi+1,j

+
πi−1,j + πi,j

2

|ρki−1,j − πi−1,j |
πi−1,j

)

+
∑
i,j

∆t

∆y2

(
πi,j + πi,j+1

2

|ρki,j+1 − πi,j+1|
πi,j+1

+
πi,j−1 + πi,j

2

|ρki,j−1 − πi,j−1|
πi,j−1

)
=
∑
i,j

(1 + ∆tλi,j)|ρki,j − πi,j |,

where the last equality comes from the same argument as the conservation law of
total mass (3.20).

3.1. Thresholding adjustment for shape dynamics. In this section, we com-
bine the thresholding scheme with the Fokker-Planck dynamics to generate the
inbetweening motions with sharp interface, i.e., the density is described by linear
combinations of two characteristic functions. In the computations for the continen-
tal evolution, one will see that the thresholding scheme also helps to achieve the
finite time convergence to the sharp equilibrium density. The analytic result for the
finite time convergence property will be proved in Section 3.2.

Notice the dynamics of the Fokker-Planck equation is invariant when replacing ρ
by cρ. Therefore, the initial density shall be adjusted based on the mass conservation
law (3.11); see Remark 1. After this initial adjustment, assume initial data ρ0

i,j ∈
{ρ0
s, ρ

0
b}, which takes alternatively the value ρ0

s, ρ
0
b . Assume the equilibrium is πi,j ∈

{πs, πb} which takes alternatively the value πs, πb.
To combine the thresholding scheme with the Fokker-Planck dynamics, we need

to choose the threshold constant ξk at each step to conserve (3.13) as follows:

Step 1. Given ρki,j ∈ {πs, πb}, compute the explicit Fokker-Planck scheme (3.7) to

update ρ̃k+1
i,j for any i = 1, 2, · · · , N and j = 1, 2, · · · ,M .

Step 2. Choose thresholding constant ξk+1 and define

(3.34) ρk+1
i,j := πsχ{i,j;ρ̃k+1

i,j ≤ξk+1} + πbχ{i,j;ρ̃k+1
i,j >ξk+1}

such that ρk+1 satisfies (3.13).
In Step 2, the constant ξk+1 can be found using bisection such that

f(ξk+1) :=
∑
i

(1 + λi,j∆t)ρ
k+1
i,j −

∑
i

(1 + λi,j∆t)πi,j = 0.

3.2. Finite time convergence to equilibrium for the thresholding adjust-
ment. In this section, we prove the finite time convergence to equilibrium for
the thresholding adjustment combined with the classical explicit scheme. We first
present the explicit scheme by changing the RHS of (3.6) to ρk, i.e.,

ρk+1
i,j − ρki,j

∆t
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(3.35)

=
1

∆x2

(
πi,j + πi+1,j

2

(
ρki+1,j

πi+1,j
−
ρki,j
πi,j

)
− πi−1,j + πi,j

2

(
ρki,j
πi,j

−
ρki−1,j

πi−1,j

))

+
1

∆y2

(
πi,j + πi,j+1

2

(
ρki,j+1

πi,j+1
−
ρki,j
πi,j

)
− πi,j−1 + πi,j

2

(
ρk+1
i,j

πi,j
−
ρki,j−1

πi,j−1

))
for i = 1, · · · , N, j = 1, · · · ,M with the no-flux boundary condition (3.5). The

CFL condition for this explicit scheme is maxi,j λi,j∆t < 1. We have the mass
conservation law

(3.36)
∑
i,j

ρki,j =
∑
i,j

ρ0
i,j

and the `1-contraction under CFL condition

(3.37)
∑
i,j

|ρk+1
i,j − πi,j | ≤

∑
i,j

|ρki,j − πi,j |.

For this explicit scheme (3.35), the associated thresholding adjustment for the
sharp interface dynamics in Section 3.1 becomes

(3.38) ρk+1
i,j := πsχ{i,j;ρ̃k+1

i,j ≤ξk+1} + πbχ{i,j;ρ̃k+1
i,j >ξk+1},

where the constant ξk+1 is chosen such that ρk+1
i,j ∈ A := {vi,j ∈ {πs, πb};

∑
i,j vi,j =∑

i,j πi,j}.
Next, we claim the thresholding adjustment (3.38) is a minimizer in the subset

A. To prove it, we first give an elementary rearrangement inequality.

Lemma 3.2. Let a ≤ b, for any two numbers u and v, we have the following
elementary rearrangement inequality

(3.39) |a−min(u, v)|+ |b−max(u, v)| ≤ |a− u|+ |b− v|.

As a consequence, we have the following characterization for the thresholding
adjustment

Lemma 3.3. For each k, let ρ̃ki,j be the solution obtained from Fokker-Planck solver

(3.35). Then the thresholding adjustment ρki,j satisfies

(3.40)
∑
i,j

|ρki,j − ρ̃ki,j | = min
v∈A

∑
i,j

|vi,j − ρ̃ki,j |.

Proof. Without loss of generality, we assume ρ̃ki,j are distinct for any i, j. Otherwise,

we can always adjust ρ̃ki,j with a ε-perturbation such that the new ρ̃kε,i,j district and
then take ε→ 0.

Thus there exists a constant ξk such that ρki,j ∈ A satisfies (3.38). Denote the

points such that ρ̃ki,j > ξk as P+ := χ{i, j; ρ̃ki,j > ξk} whose cardinality is denoted

as n0. Then the cardinality of points such that ρ̃ki,j ≤ ξk, denoted as P−, is n−n0.

Then we claim ρki,j satisfies (3.40). Indeed, for any v 6= ρk, v ∈ A, it can be

obtained from ρ̃ki,j using (3.38) by switching `-pairs of points in P+ and in P− for
some integer ` ≥ 1. Then for such `-pairs of points, we apply Lemma 3.2 to conclude
that switch of pairs in P+ and P− leads to a larger `1 norm∑

i,j

|ρki,j − ρ̃ki,j | ≤
∑
i,j

|vi,j − ρ̃ki,j |.
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Now we give the finite time convergence to equilibrium after applying the thresh-
olding adjustment to the explicit Fokker-Planck scheme (3.35) provided the `1 rel-
ative error is smaller than πb − πs. This proposition also explains the finite time
convergence property in the continental evolution example in Section 5.3.

Proposition 2. Assume equilibrium πi,j ∈ {πs, πb}. Let ρ̃ki,j be the solution ob-

tained from Fokker-Planck solver (3.35) and the thresholding adjustment ρki,j be

defined in (3.38). If the `1 relative error reaches

(3.41)
∑
i,j

|ρ̃ki,j − πi,j | < πb − πs

for some k large enough, then the thresholding adjustment ρki,j = πi,j.

Proof. Assume there exists k such that (3.41). We prove ρki,j = πi,j by contradiction
argument. If not, then

(3.42)

2(πb − πs) ≤
∑
i,j

|ρki,j − πi,j | ≤
∑
i,j

|ρki,j − ρ̃ki,j |+
∑
i,j

|ρ̃ki,j − πi,j |

≤2
∑
i,j

|ρ̃ki,j − πi,j | < 2(πb − πs),

where we used (3.40) in the third inequality. This is a contradiction and we conclude
ρki,j = πi,j .

Based on the exponential convergence of ρ̃ to the equilibrium in Proposition (1),
we know the condition (3.41) is satisfied after finite iteration steps. We also note
that π is the equilibrium for both the Fokker-Planck solver and the thresholding
adjustment. Hence once ρ reaches π, it will stay invariant. This proposition for the
thresholding adjustment on structured grids provides analytic explanations for the
finite time convergence of the continental evolution example in Section 5.3.

4. EDDA based on point-clouds: Fokker-Plank equation on N . Suppose
(N , dN ) is a d dimensional smooth closed submanifold of R`. Assume the end
image on N is described by a equilibrium density π := ρN∞(x) : N → R. Then the
Fokker-Planck equation is given by

(4.1) ∂tρ = divN ·
(
π∇N

( ρ
π

))
,

where ∇N :=
∑d
i=1 τ

N
i ∇τN

i
is surface gradient, ∇τN

i
= τNi · ∇ is the tangential

derivative in the direction of τNi and divN is the surface divergence defined as

divN ξ =
∑d
i=1 τ

N
i · ∇τN

i
ξ.

4.1. Construction of Voronoi tessellation and the upwind scheme on man-
ifold N . In this section, we construct an upwind scheme based on Voronoi tessella-
tion for manifold N , which automatically gives a positive-preserving upwind scheme
for the Fokker-Planck equation (4.1).

Suppose (N , dN ) is a d dimensional smooth closed submanifold of R` and dN is
induced by the Euclidean metric in R`. Let Q := {yi}ni=1 be a set of cloud points
well-distributed on N . Define the Voronoi cell as

(4.2) Ci := {y ∈ N ; dN (y,yi) ≤ dN (y,yj) for all yj ∈ Q},
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with the volume |Ci| = Hd(Ci). Then N = ∪ni=1Ci is a Voronoi tessellation of
manifold N . One can see each Ci is star shaped. Denote the Voronoi face for cell
Ci as

(4.3) Γij := Ci ∩ Cj , and its area as |Γij | = Hd−1(Γij)

for any j = 1, · · · , n. If Γij = ∅ or i 6= j then we set |Γij | = 0.
Let χCi be the characteristic function such that χCi = 1 for y ∈ Ci and 0

otherwise. Then

ρapprox(y) :=

n∑
i=1

ρiχCi(y)

is the piecewise constant probability distribution on N provided
∑n
i=1 ρi|Ci| =

1 and ρi ≥ 0. Let πi be the approximated equilibrium density at yi satisfying∑n
i=1 πi|Ci| = 1. If ρapprox(y) =

∑
i ρiχCi(y) is an approximation of density ρN (y),

then ρi is an approximation of the density ρN (yi).
Define the associated adjacent grids as

(4.4) V F (i) := {j; Γij 6= ∅}.

Then using the finite volume method and the divergence theorem on manifold, we
have
(4.5)

d

dt
ρi|Ci| =

d

dt

∫
Ci

ρapproxHd(Ci) =
∑

j∈V F (i)

∫
Γij

πn · ∇N
(
ρapprox

π

)
Hd−1(Γij),

where n is the unit outward normal vector field on ∂Ci. Based on this, we introduce
the following upwind scheme. For i = 1, · · · , n,

(4.6)
d

dt
ρi|Ci| =

1

2

∑
j∈V F (i)

πi + πj
|yi − yj |

|Γij |
(
ρj
πj
− ρi
πi

)
.

We now interpret the upwind scheme as the forward equation for a Markov
process with transition probability Pji (from j to i) and jump rate λj

(4.7)
d

dt
ρi|Ci| =

∑
j∈V F (i)

λjPjiρj |Cj | − λiρi|Ci|, i = 1, 2, · · · , n;

where

(4.8)

λi :=
1

2|Ci|πi

∑
j∈V F (i)

πi + πj
|yi − yj |

|Γij |, i = 1, 2, · · · , n;

Pji :=
1

λj

πi + πj
2πj |Cj |

|Γij |
|yi − yj |

, j ∈ V F (i); Pji = 0, j /∈ V F (i).

Assume πi > 0 for all i, then we have λi > 0 for all i. One can see it satisfies∑
i Pji = 1 and the detailed balance property

(4.9) Pjiλjπj |Cj | = Pijλiπi|Ci|.

We refer to [5] for the ergodicity of this Markov process.
In practice, instead of the |Ci|,Γij in (4.7), one shall use the approximated co-

efficients C̃i and Γ̃ij because we do not know the exact metric information of the
manifold based only on point clouds. We omit the algorithm of finding the approx-
imated C̃i and Γ̃ij and refer to [5, 4].
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4.2. Unconditional stable explicit time stepping and exponential conver-
gence. Now we propose an unconditionally stable explicit time discretization for
the upwind scheme (4.6), which enjoys several good properties as the scheme (3.6),
such as maximal principle, mass conservation law and exponential convergence.

Let ρki be the discrete density at discrete time k∆t. To achieve both stability and
efficiency, we introduce the following unconditional stable explicit time discretiza-
tion for (4.7)

(4.10)
ρk+1
i

πi
=
ρki
πi
− λi∆t

ρk+1
i

πi
+ ∆t

∑
j∈V F (i)

λiPij
ρkj
πj
, i = 1, 2, · · · , n

which is

(4.11)
ρk+1
i

πi
=
ρki
πi

+
λi∆t

1 + λi∆t

 ∑
j∈V F (i)

Pij
ρkj
πj
− ρki
πi

 .

For uk+1
i :=

ρk+1
i

πi
, the matrix formulation of (4.11) is

(4.12) uk+1 = (I + ∆tB̂)uk,

where

(4.13) B̂ := {b̂ij} =

{
− λi

1+λi∆t
, j = i;

λi
1+λi∆t

Pij , j 6= i
with

∑
j

b̂ij = 0.

We give the following proposition for several properties of scheme (4.10). The
proof of this proposition is similar to Proposition 1 so we omit it.

Proposition 3. Let ∆t be the time step and consider the explicit scheme (4.10).
Assume the initial data satisfies

(4.14)
∑
i

(1 + λi∆t)ρ
0
i |Ci| =

∑
i

(1 + λi∆t)πi|Ci|.

Then we have

(i) the conversational law for gk+1
i := (1 + ∆tλi)ρ

k+1
i |Ci|, i.e.

(4.15)
∑
i

(1 + λi∆t)ρ
k+1
i |Ci| =

∑
i

(1 + λi∆t)ρ
k
i |Ci|;

(ii) the unconditional maximal principle for ρi
πi

(4.16) max
j

ρk+1
j

πj
≤ max

j

ρkj
πj

;

(iii) the `∞ contraction

(4.17) max
i

∣∣∣∣∣ρk+1
i

πi
− 1

∣∣∣∣∣ ≤ max
i

∣∣∣∣ρkiπi − 1

∣∣∣∣ ;
(iv) the exponential convergence

(4.18)

∥∥∥∥ρkiπi − 1

∥∥∥∥
`∞
≤ c|µ2|k, |µ2| < 1,

where µ2 is the second eigenvalue of I + ∆tB̂ (in terms of magnitude), i.e.

µ2 = 1− gapB̂∆t and gapB̂ is the spectral gap of B̂.
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4.3. Thresholding for shape dynamics. Assume the initial density is adjusted
based on the mass conservation law (4.14). We now give the shape dynamics by
combining the Fokker-Planck equation on manifold with the thresholding scheme.

Assume initial data ρ0
i ∈ {ρ0

s, ρ
0
b}, which takes alternatively the value ρ0

s, ρ
0
b .

Assume the equilibrium is πi ∈ {πs, πb} which takes alternatively the value πs, πb.
Similar to Section 3.1, we choose the threshold constant ξk at each step to con-

serve (4.14) as follows.

Step 1. Given ρki ∈ {πs, πb}, compute the explicit scheme (4.10) to update ρ̃k+1
i

for any i = 1, 2, · · · , n.

Step 2. Choose threshold constant ξk+1 and define

(4.19) ρk+1
i := πsχ{i;ρk+1

i ≤ξk+1} + πbχ{i;ρk+1
i >ξk+1}, i = 1, 2, · · · , n

such that ρk+1 satisfies (4.14). Here ξk+1 can be found using bisection such that

(4.20) f(ξk+1) :=
∑
i

(1 + λi∆t)ρ
k+1
i |Ci| −

∑
i

(1 + λi∆t)πi|Ci| = 0.

5. Computations. In this section, three numerical examples are carried out to ex-
amine the capability and efficiency of the equilibrium-driven deformation algorithm
(EDDA), which are the RGB colored facial aging transformation, the pneumonia
of COVID-19 invading and fading away on CT scan images and the continental
evolution process.

5.1. Example I: RGB colored facial aging transformation. In this example,
we have two images with the same size in the RGB color model showing a lady’s face
at two different ages, and employ the model to simulate the transformation from
one image (initial) to another image (equilibrium), which will illustrate the facial
aging process with time. The strategy is to define each image as three matrices, each
matrix containing values of a color mode (R or G or B). Then the transformation
between the two images is computed by applying the inbetweening auto-animation
three times based on the Fokker-Planck dynamics (2.1).

The two images are extracted from [7] and are both 355 pixels in width and 575
pixels in height, which means a total of 204125 pixel points in each image. The
initial image data is first adjusted to meet the mass conservation law (3.11). Time
step ∆t is set to 0.01 and the total number of iterations is set to 10000 thus the
final iteration time T = 100. The horizontal resolution ∆x and ∆y are both 10−4.
We use the unconditional stable explicit time stepping scheme (3.6) and the no-flux
boundary condition (3.5) to the Fokker-Planck equation (2.1) in domain Ω.

The relative root mean square errors (3.16) for the three color-modes are illus-
trated in Fig. 1 separately in semiology plot. Except for the different descend rates
for the three colors, all simulated errors have the exponential convergence rates,
which is consistent with the analysis in Proposition 1.

In order to see the transformation process between the two images, the images
after iteration step 40, 100, 200, 400, 1000, 2000, 4000 and 10000 are shown and
compared with the initial and the equilibrium images in Fig. 2. The transformation
process between two images are fast in the beginning (e.g. before step 200) and
relatively slow after then. The transformation process in Fig. 2 clearly reveals
the potential changes in different parts of the lady’s face and hair with time. After
10000 steps of iterations, the updated image is nearly the same with the equilibrium
except for the hair color.
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Figure 1. The semilog plot of temporal evolution of relative root
mean square errors for the RGB facial aging transformation with
parameters ∆t = 0.01, T = 100 and ∆x = ∆y = 10−4. The red,
green and blue lines represent the relative errors of the correspond-
ing color modes.

Figure 2. Facial aging transformation from initial to equilibrium
with parameters ∆t = 0.01, T = 100 and ∆x = ∆y = 10−4. The
updated results after time step 40, 100, 200, 400, 1000, 2000, 4000,
10000 are shown and compared to the initial and equilibrium im-
ages.

5.2. Example II: COVID-19 pneumonia invading and fading away on CT
scan images. In this section we will focus on an example based on the COVID-19
pneumonia invading and fading away process in a patient’s lung reflected on CT
scan images and try to show the possible COVID-19 pneumonia growth dynamics
with time before and after the treatment. In order to fulfill the task, two parts
of simulations are presented. In the first part, two CT scan images taken on a
patient’s lungs at the beginning (January 23th) and severe state (February 2nd) of
the disease [6] are selected to be the initial and equilibrium state, respectively; see
Fig. 3 (left). In the second part, two scan images at the severe state (February
2nd) and after a few-days’ treatment (February 15th) are selected to be the initial
and equilibrium state, respectively; see Fig. 3 (right). Each CT scan image can be
represented by a gray scale image matrix thus the same method in Example I can
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Figure 3. Chest CT images of the critically severe COVID-19
patient [6]. The left column of figures illustrates the evading of
pneumonia from January 23th to February 2nd and the right col-
umn illustrates the fading away of pneumonia from February 2nd
to February 15th after treatment. Red circles indicate the signifi-
cant COVID-19 pneumonia invading areas and blue circles indicate
the significant pneumonia fading away areas.

be applied. The CT scan images are all cropped to 461 pixels in width and 370
pixels in height, which means a total of 170570 pixel points in each image. The time
step ∆t is 0.01 and the total number of iterations is 6000 thus the final iteration
time T = 60. The resolutions are ∆x = ∆y = 10−4.

After 6000 iterations, the relative root mean square errors from two parts of
simulations both decrease with an exponential rate, as is shown in Fig. 4. Moreover,
the image evolution after step 20, 50, 100, 200, 500, 1000, 5000, 10000 (see Fig.
5) clearly demonstrate the pneumonia invading process into the patient’s lungs
caused by COVID-19 in a few days (upper group of figures in Fig. 5) and the
pneumonia fading away from the lungs after a stem cell treatment [6] is applied to
the patient (lower group of figures in Fig. 5), indicating a potential success of this
treatment [6]. We further compare the simulated pneumonia invading and fading
process with the real CT scan images taken on January 30th and February 9th,
respectively (see Fig. 3). The red circles in Fig. 3 clearly show the four significant
COVID-19 pneumonia invading areas in the patient’s lungs, where the ground-glass
opacity appears, showing damages to the lungs in the middle of the pneumonia
invading process. As a comparison, the simulation results after Step 50 also show
four areas where biggest density changes happen (red circles in Fig. 5) and they
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Figure 4. The semilog plot of temporal evolution of the rel-
ative root mean square errors for COVID-19 pneumonia invad-
ing and fading away on CT scan images with the parameters
∆t = 0.01, T = 100 and ∆x = ∆y = 10−4. (up) The error evolu-
tion for the pneumonia invading process simulation. (down) The
error evolution for the pneumonia fading away process simulation.

are consistent with the real invading areas. Similar comparisons can be carried out
in the pneumonia fading process, in which the significant areas are indicated with
blue circles in Fig. 3 and Fig. 5. The simulated results after Step 200 in (lower)
Fig. 5 also show the two significant pneumonia fading areas in the patient’s lungs
after treatment. The satisfactory agreements in this example indicate promising
applications in this field.

5.3. Example III: Continental evolution process with thresholding for
shape dynamics. In this section, we try to reveal the evolution process of con-
tinentals in the world from Pangaea supercontinent (250 million years ago) to the
current globe. In order to clearly distinguish the shape dynamics evolving the con-
tinentals and the oceans, the thresholding scheme (4.19) and the Fokker-Planck
dynamics (4.10) are combined to generate the inbetweening motions with the above
sharp interfaces. The numerical experiment is carried out as follows.

Step (i). A group of points is selected on a unit sphere to be the dataset points.
With the Centroidal Voronoi Tessellation (CVT) method on the unit sphere [8, 2],
the Voronoi cells on the unit sphere are generated and the locations of dataset
points are adjusted accordingly to ensure the uniformity of these cells. Thus, the
distributions of continentals and oceans derived from Pangaea period and current
globe’s topography are described by two values (i.e. πs and πb) on the Voronoi cells
and are set to be the initial and equilibrium states, respectively. The Voronoi cell
area Ci, i = 1, · · · , n, with the total number of dataset points n, is computed and
the Voronoi face Γij is determined by the geodesic length of the neighboring arc
between cell i and j.

Step (ii). Update the density at each point using the explicit scheme (4.10) for
the linear Fokker-Planck equation.
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Figure 5. The simulated COVID-19 pneumonia invading and fad-
ing away process on CT scan images with the parameters ∆t =
0.01, T = 100 and ∆x = ∆y = 10−4. Results after the step 20,
50, 100, 200, 500, 1000, 2000, 5000 are illustrated and compared to
the initial and equilibrium scan images. The white part inside the
lungs shown on images indicates the evidence of pneumonia. (up)
The pneumonia invades into the patient’s lungs caused by COVID-
19. (down) The pneumonia fades away from the lungs after a stem
cell treatment is applied to the patient. Red circles indicate the
significant COVID-19 pneumonia invading areas and blue circles
indicate the significant pneumonia fading away areas.

Step (iii). After several linear iteration steps, the threshold is selected following
the steps in Section 4.3 and the thresholding scheme is applied to update the data.

The computations for Step (ii) and Step (iii) will be looped until reaches the total
iteration steps. Besides, a simulation case which only evolves the linear Fokker-
Planck equation is carried out as a comparison.

For example III, we select a total of 3000 dataset points and generate the Voronoi
cells on the unit sphere via the CVT approximation algorithm; see Fig. 6. The
standard deviation for all the cell areas is 3.2×10−4, which means the nearly uniform
distributions of data points on the sphere. The values at continental cells and the
ocean cells are set to 0.9 and 0.1, respectively. The time step ∆t is set to 0.05 and
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Figure 6. The unit sphere and the Voronoi cells on it. There are
totally 3000 cells on the sphere. The black dots indicate locations
of the point clouds on the sphere. The polygons with black edges
are the Voronoi polygons generated with CVT algorithm.
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Figure 7. The semilog plot of temporal evolution of relative
root mean square errors for the continental evolution process with
thresholding for shape dynamics with ∆t = 0.05 and the total
number of the thresholding adjustments is Nt = 50. The linear it-
erations before the (k+1)th thresholding adjustment is 2k. The red
line indicates the error of simulations with only the linear Fokker-
Planck algorithm while the blue line is the error of the linear algo-
rithm combined with the thresholding scheme. The black dotted
lines indicate the time steps when the thresholding adjustments are
applied.

Tolerance 10−3 10−4 10−5 10−6

Steps (Linear) 1737 4026 6304 8581
Steps (Threshold) 960 960 960 960

Table 1. Comparison of the time steps needed to reach the toren-
lence between linear method and threshold method.

the total number of linear iterations before the (k+1)-th thresholding adjustment is
set to 2k, k = 1, · · · , Nt, where Nt = 50 is the times of the thresholding adjustments.
The threshold ξk is determined by a bisection method such that (4.20) is satisfied.
Here, the bisection domain limitation criterion is set to 10−6. The total number of
iterations for the comparison simulation is set to be 10000. We remark thresholding
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Figure 8. The evolutions of continental movements on the unit
sphere with the parameter ∆t = 0.05 and the total number of the
thresholding adjustments is Nt = 50. The continental evolution on
the sphere after the 2th, 5th, 10th, 30th thresholding adjustment
are illustrated and compared with the initial and equilibrium states.
The black dots and polygons in each subplot illustrate the point
clouds and the Voronoi cells, respectively. The orange and blue
patch indicate the land and ocean, respectively. ‘TH’ is short for
‘thresholding step’. The formation of the Antarctic is revealed at
the bottom (southern part) of the globe (black arrow in TH 5).
Note that the globes are shown in the same view angle so the
Antarctic continental is out of view in the last two subplots.

adjustment after each 2k, k = 1, 2, · · · , Nt Fokker-Planck iterations is different from
the one with fixed-time step thresholding adjustment whose continuum limit may
lead to a motion by mean curvature correction. In our scheme, as k increases,
the leading contribution still comes from the linear Fokker-Planck dynamics. So
analogue to reinitialization in the level-set method, our thresholding adjustment
can be regarded as a reinitialization at each (k+ 1)-th adustment step, which is an
efficient numerical method for the shape dynamics simulation and has finite time
convergence property to its equilibrium; see Proposition 2.

Fig. 7 shows the temporal variations of the relative root mean square errors for
the numerical example in the first 1200 time steps. The error from the thresholding
method generally have a descend trend although with some abrupt increase due
to the thresholding adjustments. The error decreases to nearly zero (less than
the machine accuracy) after the 30th thresholding adjustment (a total of 960 time
steps), which indicates the data is updated to the equilibrium. As a comparison,
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the error of the simulation via the linear method (red line in Fig. 7), which leads an
exponential convergence rate, is smaller than that from thresholding method before
the 960th time step (black circle in Fig. 7) and is larger after then. In order to
further compare the efficiency of the two methods, we calculated the total time steps
needed for the error to reach difference tolerances and listed them in Table 1. Based
on the finite time convergence property in Proposition 2, as long as the tolerance
between the Fokker-Planck solution and the equilibrium is smaller than a specific
quantity, then after the thresholding adjustment, the resulting binary density will
stay at equilibrium. Thus the fixed number of time steps in Table 1 independent
of the tolerance of error is consistent with Proposition 2. The comparisons clearly
reveal the efficiency of the thresholding adjustment in the application of the shape
dynamics, especially when the tolerance is small.

The continental evolution on the sphere after the 2th, 5th, 10th, 30th threshold-
ing adjustment is illustrated and compared with the initial and equilibrium states in
Fig. 8. After several steps of thresholding adjustment, the sharp shapes of continen-
tals quickly move from the initial Pangaea supercontinent towards the equilibrium
state of current continentals. The distributions of continentals and oceans reaches
the equilibrium state after the 28th thresholding adjustment, exactly the same as
the current distributions. Although the evolution of the continental movements
is simulated with the data-driven model, some potential dynamics of continental
drifting such as the Antarctic formation can be noticed in the evolutions in Fig. 8,
which may contribute to the detailed explanation of the continental drifting theory.

6. Discussion. We propose an efficient and universal equilibrium-driven defor-
mation algorithm (EDDA) to simulate the inbetweening transformations given an
initial and equilibrium. The algorithm automatically cooperates positivity, uncon-
ditional stability, mass conservation law, exponentially convergence and also the
manifold structure suggested by dataset. Using EDDA, three challenging examples,
(I) facial aging process, (II) COVID-19 pneumonia invading/fading process, and
(III) continental evolution process are conducted efficiently. EDDA is shown to be
a very efficient and universal method with enormous potential applications in other
fields of science and industry.
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