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Abstract In this work we consider

wt = [
(whh + c0)

−3]
hh , w(0) = w0, (1)

which is derived from a thin film equation for epitaxial growth on vicinal surface. We
formulate the problem as the gradient flow of a suitably-defined convex functional in a
non-reflexive space. Then by restricting it to a Hilbert space and proving the uniqueness
of its sub-differential, we can apply the classical maximal monotone operator theory. The
mathematical difficulty is due to the fact that whh can appear as a positive Radon measure.
We prove the existence of a global strong solution with hidden singularity. In particular, (1)
holds almost everywhere when whh is replaced by its absolutely continuous part.
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1 Introduction

1.1 Background and motivation

Below the roughening transition temperature, the crystal surface is not smooth and forms
steps, terraces and adatoms on the substrate, which form solid films. Adatoms detach from
steps, diffuse on the terraces until they meet other steps and reattach again, which lead to a
step flow on the crystal surface. The evolution of individual steps is described mathematically
by the Burton-Cabrera-Frank (BCF) type discrete models [1]. Although discrete models do
have the advantage of reflecting physical principle directly, when we study the evolution of
crystal growth from macroscopic view, continuum approximation for the discrete models
involves fewer variables than discrete models and can briefly show the evolution of step flow.
Many interesting continuum models can be found in the literature on surface morphological
evolution; see [2–10] for one dimensional models and [11,12] for two dimensional models.
Kohn [13] clarified the evolution of surface height from the thermodynamic viewpoint in the
book. He considered the classical surface energy, which dates back to the pioneering work
of Mullins [14] and Najafabadi and Srolovitz [15], given by

F(h) :=
∫

Ω

(
β1|∇h| + β3|∇h|3) dx, (2)

where Ω is the “step locations area” we are concerned with. Then, by conservation of mass,
we have the equation for surface height h

ht = ∇
(
M(∇h)∇ δF

δh

)

= −∇
(
M(∇h)∇

(
∇ ·

(
β1

∇h

|∇h| + β3|∇h|∇h

)))
,

(3)

where M(∇h) is a suitable “mobility” term depending on the dominating process of surface
motion. Often two limit cases are considered. For diffusion-limited (DL) case, the dominated
dynamics is diffusion across the terraces, we have M(∇h) = 1; while for attachment-
detachment-limited (ADL) case, the dominating processes are the attachment and detachment
of atoms at steps edges, and M(∇h) = 1

|∇h| . In the DL regime, [16] obtained a fully under-
standing of the evolution and proved the finite-time flattening. However, in the ADL regime,
due to the difficulty brought by mobility term M(∇h) = 1

|∇h| , the dynamics of the solution
to surface height Eq. (3), with either β1 = 0 or β1 �= 0, is still an open question (see for
instance [13]).

Although a general surface may have peaks and valleys, the analysis of step motion on the
level of continuous PDE is complicated and we focus on a simpler situation first: a monotone
one-dimensional step train. In this simpler case, β1 = 0, and by taking β3 = 1

2 , (3) becomes

ht = −
[

1

hx
(3hxhxx )x

]

x
. (4)

Ozdemir and Zangwill [2] and Shehadeh et al. [17] realized that using the step slope as a
new variable is a convenient way to study the continuum PDE model, i.e.,

ut = −u2(u3)hhhh, u(0) = u0, (5)

where u, considered as a [0, 1)-periodic function of the step height h, is the step slope of
the surface. Gao et al. [10] provided a method to rigorously obtain the convergence rate of
discrete model to its corresponding continuum limit.
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Two questions then arise. One is how to formulate a proper solution to (5) and prove
the well-posedness of its solution. The other one is the positivity of the solution. More
explicitly, we want to know whether the sign of the solution u to (5) is persistent. Our
goal in this work is to validate the continuum slope PDE (5) by answering the above two
questions. The Eq. (5) is a degenerate equation and we cannot prevent u from touching
zero, where singularity arise. We observe that we are able to rewrite (5) as an abstract
evolution equation with maximal monotone operator using 1

u . However, the main difficulty
is that we have to work in a non-reflexive Banach space L1, which does not possess weak
compactness, so the classical theorem for maximal monotone operators in reflexive Banach
space cannot be applied directly. In fact, due to the loss of weak compactness it is natural
to allow a Radon measure being our solution 1

u and we do observe the singularity when
u approaches zero in numerical simulations [18]. Also see [19] for an example where a
measure appears in the case of an exponential nonlinearity. Therefore, we devote ourselves
to the establishment of a general abstract framework for problems associated with nonlinear
monotone operators in non-reflexive Banach spaces and to solve our problem (5) by the
abstract framework. Furthermore, the established abstract framework can be applied to a
wide class of degenerate parabolic equations which can be recast as an abstract evolution
equation with maximal monotone operator in some non-reflexive Banach space, for instance,
to the degenerate exponential model studied in [19]. The abstract framework is discussed
precisely below.

1.2 Formal observations and abstract setup

Denote by ϕ(h, t) as the step location when considered as a function of surface height h.
Formally, we have

u(h, t) = hx (ϕ(h, t), t) = 1

ϕh(h, t)
,

and the u-equation (5) can be rewritten as ϕ-equation

ϕt =
(

1

ϕ3
h

)

hhh

; (6)

for further details we refer to the appendix of [20].
Motivated by the ϕ-equation, we want to recast (5) as an abstract evolution equation. If u

has a positive lower-bound u ≥ α > 0, then (5) can be rewritten as
(

1

u

)

t
= (u3)hhhh, u(0) = u0. (7)

Formally, if we take whh = 1
u , then we have

wt =
(
w−3
hh

)

hh
. (8)

Since our problem (7) is in 1-periodic setting, i.e., one period [0, 1), we also want w to be
periodic. Denote byT the [0, 1)-torus. For measure space, we can define periodic distributions
as distributions on T, i.e., bounded linear functionals on C∞(T). Let the T-periodic function
w be the solution of the Laplace equation

whh = 1

u
− c0,

∫

T

wdh = 0,
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with compatibility condition
∫

T

whhdh =
∫

T

1

u
− c0dh = 0.

If (7) holds a.e. then we have
∫

T

1

u
dh ≡

∫

T

1

u0
dh =: c0 > 0

due to the periodicity of u. However, we cannot show that (7) holds almost everywhere.
Actually, the possible existence of singular part for whh or 1

u is intrinsic, since the Eq. (5)
becomes degenerated when u approaches zero. We cannot prevent u from touching zero, and
can only show whh = 1

u − c0 ∈ M(T), where M is the set of finitely additive, finite, signed
Radon measures. Hence the compatibility condition becomes

∫

T

d

(
1

u
− c0

)
= 0,

where c0 is a positive constant. Moreover, we can illustrate the singularity in the following
stationary solution. Define a T-periodic function w(h) such that

w(h) =
{

− (
h + 1

2

)2 + 1
12 for h ∈ [− 1

2 , 0);
− (

h − 1
2

)2 + 1
12 for h ∈ [0, 1

2 ).

Then whh = −2 + 2δ0 where δ0 is the Dirac function at zero and w is the stationary solution
to (8). It partially explains why we can not exclude the singular part for whh or 1

u .
Therefore, in this paper we consider the parabolic evolution equation

wt = [(whh + c0)
−3]hh, w(0) = w0, (9)

under the assumption w is periodic with period T and has mean value zero in one period,
i.e.,

∫
T

wdh = 0.
For 1 ≤ p < ∞, k ∈ Z, set

Wk,p
T0

(T) :=
{
u∈Wk,p(T); u(h)=u(h + 1), a.e. and u has mean value zero in one period

}
,

L p
T0

(T) := {
u ∈ L p(T); u(h) = u(h + 1), a.e. and u has mean value zero in one period

}
.

Standard notations for Sobolev spaces are assumed above. If k < 0 and 1 ≤ p < +∞, 1 <

q ≤ +∞, (1/p) + (1/q) = 1, then it can be shown that Wk,q
T0

(T) is the dual of W−k,p
T0

(T).

Our main functional spaces will be

V :=
{
v ∈ W 2,1

T0
(T)

}
, (10)

and
Ṽ :=

{
u ∈ W 1,2

T0
(T); uhh ∈ M(T)

}
. (11)

Define also
U := {

v ∈ L2
T0

(T)
}
. (12)

Endow U and V with the norms ‖u‖U := ‖u‖L2(T) and ‖v‖V := ‖vhh‖L1(T) respectively.
Note that the zero-mean conditions for functions of V give the equivalence between ‖ · ‖V
and ‖ · ‖W 2,1(T). Note also that the embeddings V ↪→ U ↪→ V ′ are all dense and continuous.
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The space Ṽ
Note also that any T-periodic function w who has mean value zero such that whh is a

finite Radon measure will belong to W 1,2
T0

(T), since the first derivative wh is a BV function

(the total variation of wh is exactly the total mass of whh). Thus we can endow the space Ṽ
with the norm

‖w‖W 1,2(T) + ‖whh‖M(T).

Since w is 1-periodic and has mean value zero, we have

‖wh‖L2(T) ≤ ‖whh‖M(T), ‖w‖L2(T) ≤ ‖wh‖L2(T).

So we can use the equivalent norm

‖w‖Ṽ := ‖whh‖M(T) = sup
f ∈C(T), | f |≤1

∫

T

f dwhh .

The weak -* convergence on Ṽ is then characterized as: a sequence wn converges weakly-
* to w in Ṽ if wn converges weakly to w in W 1,2(T), and wn

hh converges weakly -* to whh

in M(T), i.e., ∫

T

f dwn
hh →

∫

T

f dwhh for any f ∈ C(T).

Relations between V and Ṽ
Since V is not reflexive, we first present a characterization of the bidual space V ′′. For

any v ∈ V , we have vhh ∈ L1
T0

(T). Since also C(T) ⊆ L∞(T), we have:

(i) the dual space V ′ = {u ∈ (W 2,1
T0

(T))′} = W−2,∞
T0

(T) ;

(ii) for any ξ ∈ V ′, η ∈ V , from the Riesz representation, there exists ξ̄ ∈ L∞(T) such
that

〈ξ, η〉V ′,V :=
∫

T

ξ̄ηhhdh,

and we denote ξ̄hh as ξ without risk of confusion;
(iii) the bidual space V ′′ is a subspace of Ṽ . Indeed, since C(T) ⊆ L∞(T), for any u ∈ V ′′

and any g ∈ C(T), we have

|〈uhh, g〉| = |〈u, ghh〉(V ′′,V ′)| ≤ |u|V ′′ |ghh |V ′ ≤ |u|V ′′ |g|C(T) < +∞,

where we have used the identity

〈ghh, η〉(V ′,V ) =
∫

T

gηhhdh, ∀η ∈ V

to conclude |ghh |V ′ ≤ |g|C(T). Thus we know uhh define a bounded linear functional
on C(T) so u ∈ Ṽ .

Thus
V ⊆ V ′′ ⊆ Ṽ ⊆ W 1,2

T0
(T) ⊆ U.

Therefore, we conclude that the canonical embedding V ↪→ V ′′ ↪→ Ṽ ↪→ W 1,2
T0

(T) ↪→ U
is continuous and each one is a dense subset of the next, since V is dense in U .

Observation 1 From (9), one formal observation is that if we set

φ(w) := 1

2

∫

T

(whh + c0)
−2 dh, (13)
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then

wt = − δφ

δw
= [

(whh + c0)
−3]

hh

forms a gradient flow of φ with the first variation δφ
δw

; see exact definition in (19) and calcu-
lations in Theorem 15. Hence we have

dφ

dt
=

∫

T

δφ

δw
wtdh =

∫

T

−w2
t dh = −

∫

T

[
(whh + c0)

−3]2
hh dh ≤ 0. (14)

Besides, we also notice that φ(w) = 1
2

∫
T
(whh + c0)

−2dh is a convex functional. Recall
that the sub-differential of a proper, convex, lower-semicontinuous function is a maximal
monotone operator (see for instance [21]), which gives us the idea of using maximal monotone
operator to formally rewrite our problem (9), i.e.,

wt = −∂φ(w). (15)

Observation 2 Set also

E(w) := 1

2

∫

T

[
(whh + c0)

−3]2
hh dh = 1

2

∫

T

w2
t dh; (16)

see exact definition in Definition 3. Taking the derivative ∂hh on the both side of (9), we have

[whh + c0]t = [
(whh + c0)

−3]
hhhh . (17)

Then another formal observation is that

dE(w)

dt
=

∫

T

[
(whh + c0)

−3]
hh

[
(whh + c0)

−3]
hht dh

=
∫

T

[
(whh+c0)

−3]
hhhh

[
(whh+c0)

−3]
t dh =

∫

T

[whh + c0]t
[
(whh + c0)

−3]
t dh

=
∫

T

−3

[
(whh + c0)t

]2

(whh + c0)
4 dh ≤ 0.

We point out the dissipation of E(w) is important for the proof of existence result.

Observation 3 Moreover, to ensure the surjectivity of the maximal monotone operator ∂φ,
we need to find a proper invariant ball. Another formal observation from (17) is that

d

dt

∫

T

(whh + c0) dh =
∫

T

[
(whh + c0)

−3]
hhhh dh = 0.

So for a constantC depending only on the initial value w0, {‖w‖V ≤ C} could be an invariant
ball provided whh + c0 > 0 almost everywhere. But note that V is not a reflexive space and
that bounded sets in L1(T) do not have any compactness property. Actually we only obtain

whh + c0 > 0, a.e. (t, h) ∈ [0, T ] × T,∫

T

d(whh + c0) ≤ C, for any t ≥ 0,

and choose {‖w‖Ṽ ≤ C} to be the invariant ball. That is consistent with the prediction that
whh = 1

u − c0 is possible to be a Randon measure.

After those formal observations, in order to rewrite our problem as an abstract problem
precisely, we introduce the following definition.
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Definition 1 For any w ∈ Ṽ , from [22, p.42], we have the decomposition

whh = η + ν (18)

with respect to the Lebesgue measure, where η ∈ L1(T) is the absolutely continuous part
of whh and ν is the singular part, i.e., the support of ν has Lebesgue measure zero. Recall
c0 is a constant in (9). Denote g := η + c0. Then whh + c0 = g + ν and g ∈ L1(T) is the
absolutely continuous part of whh + c0.

Define the proper, convex functional

φ : Ṽ −→ R ∪ {+∞}, φ(w) :=
{∫ 1

0 Φ(g)dh if whh + c0 ∈ M+(T),

+∞ otherwise,

Φ(x) :=
{

+∞ if x ≤ 0,

x−2/2 if x > 0,
(19)

where g ∈ L1(T) is the absolutely continuous part of whh + c0. For some constant C > 0
large enough, define the proper, convex functional

ψ : Ṽ −→ {0,+∞}, ψ(w) :=
{

0 if ‖w‖Ṽ ≤ C,

+∞ if ‖w‖Ṽ > C.
(20)

The domain of φ + ψ is

D(φ + ψ) := {
w ∈ Ṽ ; (φ + ψ)(w) < +∞} ⊆ Ṽ ∩ {‖w‖Ṽ ≤ C

}
.

Note that K := {w ∈ Ṽ : ‖w‖Ṽ ≤ C} is closed and convex, hence its indicator (i.e., ψ) is
convex, lower-semicontinuous and proper. Later, we will determine the constant C by initial
data w0 and show ψ is just an auxiliary functional.

Now we can state two definitions of solutions we study in this work.

Definition 2 Given φ, ψ defined in Definition 1, for any T > 0, we call the function

w ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];U ), wt ∈ L∞([0, T ];U )

a variational inequality solution to (9) if it satisfies

〈wt , v − w〉U ′,U + (φ + ψ)(v) − (φ + ψ)(w) ≥ 0 (21)

for a.e. t ∈ [0, T ] and all v ∈ Ṽ .

Definition 3 For any T > 0, let η ∈ L1(T) be the absolutely continuous part of whh in (18).
Define

E(w) := 1

2

∫

T

[(
(η + c0)

−3)
hh

]2
dh. (22)

We call the function

w ∈ L∞ ([0, T ]; Ṽ ) ∩ C0([0, T ];U ), wt ∈ L∞([0, T ];U )

a strong solution to (9) if

(i) it satisfies
wt = [(η + c0)

−3]hh (23)

for a.e. (t, h) ∈ [0, T ] × T;
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(ii) we have ((η + c0)
−3)hh ∈ L∞([0, T ];U ) and the dissipation inequality

E(w(t)) = 1

2

∫

T

[
((η(t) + c0)

−3)hh
]2

dh ≤ E(w(0)). (24)

The main result in this work is to prove existence of the variational inequality solution and
strong solution to (9), which is stated in Theorems 14 and 15 separately.

1.3 Overview of our method and related method

The key of our method is to rewrite the original problem as an abstract evolution equation
wt = −B̃w, where B̃ is the sub-differential of a proper, convex, lower semi-continuous
function, i.e., B̃ = ∂(φ + ψ). B̃ is a maximal monotone operator by classical results (see
for instance [21]). ψ is the indicator of the invariant ball K in (20). By constructing the
proper invariant ball K, we also obtain the restriction of B̃ to L2(T) is also a maximal
monotone operator; see Lemma 11. Notice the definition of the functional φ involves only
the absolutely continuous part of whh , so we need to prove that it is still lower semi-continuous
on Ṽ ; see details in Proposition 7. Then by standard theorem for m-accretive operator (see
Definition 6) in [21], we can prove the variational inequality solution to (9) in Theorem 14.
Another key point is to prove the multi-valued operator ∂(φ + ψ) is actually single valued,
which concludes that the variational inequality solution is also the strong solution defined
in Definition 3. However, it is not easy to directly prove ∂(φ + ψ) is single valued, so we
use Minty’s trick to test the variational inequality (21) with v = w ± εϕ. After taking limit
ε → 0, we can see wt + ∂φ(w) is a zero function for a.e. (t, x) ∈ [0, T ] × T; see details in
Theorem 15.

Actually, our definitions for variational inequality solution and strong solution in Def-
initions 2 and 3 hide a Radon measure in it. As we said before, this kind of fourth order
degenerate equation has the intrinsic property of singular measure. We want to mention that
[23] also used maximal monotone operator method for diffusion limited (DL) case. How-
ever, since the mobility for DL model is M = 1 instead of 1

hx
, DL model can be recast as an

abstract evolution equation with maximal monotone operator using the anti-derivative of h.
The coercivity of the this maximal monotone operator in DL case is natural and hence the
operated space is a reflexive Banach space. It is much easier than our case and singular part
will not appear.

Recently, [20,24] also analyzed the positivity and the weak solution to the same Eq. (5)
separately. They all considered this nonlinear fourth order parabolic equation, which comes
from the same step flow model on vicinal surface. The aim is to answer the two questions
in Sect. 1.1, which also are stated as open questions in [13]. The nonlinear structure of this
equation, the key for both previous and current works, is important for the positivity of
solution because it is known that the sign changing is a general property for solutions to
linear fourth order parabolic equations. For one dimensional case, following the regularized
method in [25], [20] defined the weak solution on a subset, which has full measure, of [0, 1]
and proved positivity and existence. Using the method of approximating solutions, based on
the implicit time-discretization scheme and carefully chosen regularization, [24] expanded
the result in [20] to higher dimensional case. Our results are consistent with theirs, but we
use a totally different approach. The method adopted in [24] is delicate and subtle while our
method seems to be more general. Furthermore, we obtain the variational inequality solution
to (9). We also refer to [26] for deep study of gradient flow in metric space, in which the
results can be stated in any Banach space including non-reflexive space since the purely
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metric formulation does not require any vector differentiability property. However they have
almost no regularity result beyond Lipschitz regularity in space.

We point out that our method establishes a general framework for this kind of equation
whose invariant ball exists in a non-reflexive Banach space. We believe this method can be
applied to many similar degenerated problems as long as they can be reduced to an abstract
evolution equation with maximal monotone operator which is unfortunately in a non-reflexive
Banach space.

The rest of this work is devoted to first recall some useful definitions in Sect. 1.4. Then in
Sect. 2, we rigorously study the sub-differential ∂(φ + ψ) and prove it is m-accretive on U ,
which leads to the existence result for variational inequality solution. In Sect. 3, we calculate
the exact value of ∂(φ + ψ) and prove the variational inequality solution is actually a strong
solution.

1.4 Preliminaries

In this section, we first recall the following classical definitions (see for instance [21]).

Definition 4 Given a Banach space X with the duality pairing 〈, 〉X ′,X , an element x ∈ X , a
functional f : X −→ R ∪ {+∞}, the sub-differential of f at x is the set defined as

∂ f (x) := {
x ′ ∈ X ′ : f (y) − f (x) ≥ 〈x ′, y − x〉X ′,X ∀y ∈ X

}
.

We denote the domain of ∂ f as usual by D(∂ f ), i.e., the set of all x ∈ X such that ∂ f (x) �= ∅.

Definition 5 Given a Banach space X with the duality pairing 〈, 〉X ′,X , denote the elements
of X × X ′ as [x, y] where x ∈ X, y ∈ X ′. A multivalued operator A : X −→ X ′ identified
with its graph ΓA := {[x, y] ∈ X × X ′; y ∈ Ax} ⊆ X × X ′ is:

1. monotone if for any pair [u, u′], [v, v′] ∈ ΓA, it holds

〈u′ − v′, u − v〉X ′,X ≥ 0;
2. maximal monotone if the graph ΓA is not a proper subset of any monotone set.

Definition 6 Given a Hilbert space X , a multivalued operator B : X −→ X with graph
ΓB := {[x, y] ∈ X × X; y ∈ Bx} ⊆ X × X , denote JX : X → X ′ as the canonical
isomorphism of X to X ′. B is

1. accretive if for any pair [u, u′], [v, v′] ∈ ΓB , there exists an element z ∈ JX (u− v) such
that 〈z, u′ − v′〉X ′,X ≥ 0;

2. m-accretive if it is accretive and R(I + B) = X , where R(I + B) denotes the range of
(I + B);

Remark For general Banach space, JX is the duality mapping of X ; see details in [21, Section
1.1]. In our case, X = U , so JX is the identity operator I in U .

2 Existence result for variational inequality solution

This section is devoted to obtain a variational inequality solution to (9). By restricting the
operator in the non-reflexive Banach space Ṽ to U , we want to apply the classical result for
m-accretive operator in U . However, since we do not have weak compactness for sequences
in V , and a Radon measure may appear when taking the limit, we need to first prove weak-*
lower semi-continuity for functional φ in Ṽ .
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2.1 Weak-∗ lower semi-continuity for functional φ in ˜V

Since for any w ∈ Ṽ , φ defined only on its absolutely continuous part, we need the fol-
lowing proposition to guarantee φ is lower-semi-continuous with respect to the weakly-*
convergence in Ṽ .

Proposition 7 The function φ defined in Definition 1 is lower semi-continuous with respect

to the weakly-∗ convergence in Ṽ , i.e., if wn
∗
⇀w in Ṽ , we have

lim inf
n→+∞ φ(wn) ≥ φ(w).

For any μ ∈ M(T), we denote μ � L1 if μ is absolutely continuous with respect to Lebesgue

measure and denote μ̄ := dμ

dL1 as the density of μ. For notational simplification, denote μ‖
(resp. μ⊥) as the absolutely continuous part (resp. singular part) of μ with respect to Lebesgue
measure. Before proving Proposition 7, we first state some lemmas. The following Lemma
comes from the weak-* compactness of L∞ directly so we omit the proof here.

Lemma 8 For any N ≥ 0, given a sequence of measures μn in M(T) such that μn � L1

for any n, and the densities μ̄n := dμn

dL1 satisfy

sup
n

‖μ̄n‖L∞(T) ≤ N ,

then there exist a measure μ � L1, ‖μ̄‖L∞(T) ≤ N and a subsequence μnk such that

μnk
∗
⇀ μ in M(T).

From now on, we identify μn with its density μ̄n := dμn

dL1 and do not distinguish them for

brevity. Given a sequence of measures μn such that μn � L1, μ̄n ≥ 0 and N > 0, observe
that

μn = min {μn, N } + max {μn, N } − N . (25)

From Lemma 8 we know, upon subsequence, min{μn, N } ∗
⇀ μ− for some measure μ−

satisfying μ− � L1 and N ≥ μ− ≥ 0. We also need the following useful Lemma to clarify
the relation between μ− and the weak-∗ limit of μn .

Lemma 9 Given a sequence of measures μn such that μn � L1 in M(T), μn ≥ 0, we

assume moreover that μn
∗
⇀ μ, for some measure μ ≥ 0. Then for any N > 0, there exist

μ−, μ+ ∈ M(T), such that

min {μn, N } ∗
⇀ μ− in M(T), μ− � L1, μ− ≤ μ‖, (26)

max {μn, N } ∗
⇀ μ+ in M(T), μ+‖ ≥ N , (27)

where μ‖ (resp. μ⊥) is the absolutely continuous part (resp. singular part) of μ. Moreover,
for the function Φ defined in (19), we have

Φ(μ‖) ≤ Φ(μ−). (28)

Proof From Lemma 8 we know, upon subsequence, min{μn, N } ∗
⇀ μ− for some measure

μ− satisfying μ− � L1 and N ≥ μ− ≥ 0. By Lebesgue decomposition theorem, there exist
unique measures μ‖ � L1 and μ⊥⊥L1 such that μ = μ‖ + μ⊥. The decomposition (25)
then gives

0 ≤ μn − min{μn, N } = max{μn, N } − N
∗
⇀ μ − μ−.
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Taking μ+ := μ − μ− + N , since the sequence max{μn, N } − N ≥ 0, we know

max{μn, N } ∗
⇀ μ+ and (μ − μ−)‖ = μ+‖ − N ≥ 0. Besides, since Φ(μ‖) is decreas-

ing with respect to μ‖, we obtain (28). ��
Now we can start to prove Proposition 7.

Proof of Proposition 7 Without loss of generality we may assume supn→+∞ φ(wn) < +∞.

This immediately implies that all (wn)hh + c0 are positive measures. Assume wn
∗
⇀w in

Ṽ , thus we have (wn)hh
∗
⇀whh in M(T). Denote fn := (wn)hh + c0 and f := whh + c0.

Since Φ( f‖) is decreasing with respect to f‖, we only concern the case fn‖ may weakly-*
converge to a singular measure. Thus without loss of generality, we may assume fn � L1,
i.e., fn⊥ = 0. For any M > 0 large enough, denote φM (wn) := ∫

T
Φ(min{ fn, M}). From

the definition of Φ in (19), the truncated measures min{ fn, M} satisfy

φM (wn) =
∫

T

Φ(min{ fn, M})dh

=
∫

{ fn≤M}
Φ(min{ fn, M})dh + 1

2M2 L
1({ fn > M})

≥
∫

{ fn≤M}
Φ( fn)dh +

∫

{ fn>M}
Φ( fn)dh = φ(wn).

The second equality also shows

φM (wn) − 1

2M2 L
1({ fn > M}) =

∫

{ fn≤M}
Φ(min{ fn, M})dh

=
∫

{ fn≤M}
Φ( fn)dh

≤
∫

T

Φ( fn)dh = φ(wn).

Hence we obtain

|φ(wn) − φM (wn)| ≤ 1

2M2 L
1({ fn > M}) ≤ 1

2M2 . (29)

From Lemmas 8 and 9, we know the truncated sequence min{ fn, M} satisfies

min{ fn, M} ∗
⇀ f− in M(T), f− � L1, Φ( f‖) ≤ Φ( f−). (30)

Hence by the convexity and lower semi-continuity of φ on V , we infer

lim inf
n→+∞

∫

T

Φ(min{ fn, M})dh ≥
∫

T

Φ( f−)dh ≥
∫

T

Φ( f‖)dh = φ(w). (31)

Combining this with (29), we obtain

lim inf
n→+∞ φ(wn) ≥ lim inf

n→+∞ φM (wn) − 1

2M2

= lim inf
n→+∞

∫

T

Φ(min{ fn, M})dh − 1

2M2

≥ φ(w) − 1

2M2 ,

(32)

and thus we complete the proof of Proposition 7 by the arbitrariness of M . ��
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2.2 Maximal monotone and m-accretive operator in U

In this section, we first define the sub-differential of φ + ψ and then obtain a useful lemma
to ensure ∂(φ + ψ) is also a maximal monotone operator when restricted to U .

Let B̃ := ∂(φ + ψ) : Ṽ → Ṽ ′ be the sub-differential of φ + ψ. Let us consider the
operator B as the restriction of B̃ from U to U ′.

Definition 10 Define the operator B : D(B) ⊆ U → U ′ such that

Bw = B̃w, for any w ∈ D(B) = {w ∈ Ṽ ; B̃w ⊆ U }.
We first prove B is maximal monotone inU×U ′, which is important to prove the existence

result.

Lemma 11 The operator B : D(B) ⊆ U → U ′ in Definition 10 is maximal monotone in
U ×U ′.

Proof It suffices to prove that φ + ψ is (i) proper, i.e., D(φ + ψ) �= ∅, (ii) convex and (iii)
lower semi-continuous when considered as a functional from (U, ‖ · ‖U ) to R ∪ {+∞}. (i)
First it is clear that φ + ψ is proper.

(ii) Convexity. Let u1, u2 ∈ U be arbitrarily given, and we need to show

(1 − t)(φ + ψ)(u1) + t (φ + ψ)(u2) ≥ (φ + ψ)((1 − t)u1 + tu2).

If either u1 or u2 does not belong to D(φ + ψ), then the left-hand side term is +∞. If both
u1 and u2 belong to D(φ +ψ), then (1 − t)u1 + tu2 also belongs to Ṽ ∩{‖ · ‖Ṽ ≤ C}, hence

ψ(u1) = ψ(u2) = ψ((1 − t)u1 + tu2) = 0.

Notice the convexity of φ, and the fact that the absolutely continuous part of ((1−t)u1+tu2)hh
is (1 − t)((u1)hh)‖ + t ((u2)hh)‖, where ((ui )hh)‖ are notations representing the absolutely
continuous parts of (ui )hh separately. Then we obtain

(1 − t)φ(u1) + tφ(u2) ≥ φ((1 − t)u1 + tu2).

Thus φ + ψ is convex.
(iii) Lower-semicontinuity. Note that the lower-semicontinuity is here intended as with

respect to the strong convergence in U (less restrictive than the convergence in Ṽ ). Consider
an arbitrary sequence un ⊆ U converging to u ∈ U . We need to prove

(φ + ψ)(u) ≤ lim inf
n→+∞(φ + ψ)(un).

If lim infn→+∞(φ+ψ)(un) = +∞ then the thesis is trivial. Thus assume (upon subsequence)

lim inf
n→+∞(φ + ψ)(un) = lim

n→+∞(φ + ψ)(un) ≤ D < +∞.

Without loss of generality we can further assume (un)n ⊆ Ṽ ∩ {‖ · ‖Ṽ ≤ C}. This implies
‖unhh‖M(T) ≤ C , so

ψ(un) = 0, ∀n
and there exists ξ ∈ M(T) such that unhh

∗
⇀ξ := vhh in M(T). Since from Proposition 7,

φ + ψ is convex and weak-* lower-semicontinuous in Ṽ , we infer

φ(v) ≤ lim inf
n→+∞ φ(un). (33)
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The uniform boundedness of ‖unhh‖M(T) also implies (un)n is bounded in W 1,∞(T) (and
hence in W 1,p(T) for any p < +∞). Thus (un)n is (upon subsequence) weakly convergent
in W 1,p(T), and strongly convergent in L2(T) to u. Thus uhh = ξ = vhh , and (33) now
becomes

φ(u) = φ(v) ≤ lim inf
n→+∞ φ(un).

Therefore φ + ψ : U −→ R∪ {+∞} is proper, convex and lower-semicontinuous. Then
by [21, Theorem 2.8] we have that ∂(φ + ψ) : U −→ U ′ is maximal monotone in U ×U ′.
��

Notice U ′ = U . From Lemma 11 and the Definition 6 we deduce

Proposition 12 The operator B : D(B) ⊆ U → U ′ in Definition 10 is m-accretive from
D(B) ⊆ U to U.

2.3 Existence of variational inequality solution

After those preliminary results, we can apply [21, Theorem 4.5] to obtain the existence of
variational inequality solution to (9).

First let us recall [21, Theorem 4.5].

Theorem 13 ([21, Theorem 4.5]) For any T > 0, let U be a Hilbert space and let B be a
m-accretive operator from D(B) ⊆ U to U. Then for each y0 ∈ D(B), the cauchy problem

{
dy
dt (t) + By(t) � 0, t ∈ [0, T ],
y(0) = y0,

has a unique strong solution y ∈ W 1,∞([0, T ];U ) in the sense that

−dy

dt
(t) ∈ By(t), a.e. t ∈ [0, T ], y(0) = y0.

Moreover, y satisfies the estimate

‖yt‖U ≤ | − By0|�, (34)

where | − By0|� = inf{‖u‖U ; u ∈ −By0}.
Proposition 12 shows that B defined in Definition 10 is m-accretive from D(B) ⊆ U to

U . Hence we can apply Theorem 13 to obtain

Theorem 14 Let B : D(B) ⊆ U → U be the operator defined in Definition 10. Given
T > 0, initial datum w0 ∈ D(B), then

(i) there exists a unique function w ∈ W 1,∞([0, T ];U ) such that

− wt (t) ∈ Bw(t), w(0) = w0, for a.e. t ∈ [0, T ]. (35)

(ii) w is also a variational inequality solution to (9). Moreover,

whh + c0 ∈ M+(T), for a.e. (t, h) ∈ [0, T ] × T,

η + c0 > 0, for a.e. (t, h) ∈ [0, T ] × T,
(36)

where a.e. means with respect to the Lebesgue measure, η is the absolutely continuous
part of whh in (18), and M+(T) denotes the set of positive Radon measures.
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Proof Proof of (i). From Proposition 12, we know B is a m-accretive operator in U ×U . So
(35) follows from Theorem 13 and we have w ∈ W 1,∞([0, T ];U ). From (34), we also have

‖wt‖U ≤ | − Bw0|�, (37)

where | − Bw0|� = inf{‖u‖U ; u ∈ −Bw0}.
Proof of (ii). Since −wt (t) ∈ Bw(t) = ∂(φ + ψ)(w) for a.e. t ∈ [0, T ] and w ∈

W 1,∞([0, T ];U ), we see from Definition 4 that

〈wt , v − w〉U ′,U + (φ + ψ)(v) − (φ + ψ)(w) ≥ 0, a.e. t ∈ [0, T ] (38)

for all v ∈ U , and

w ∈ C0([0, T ];U ), wt ∈ L∞([0, T ];U ).

Choose a function v ∈ U such that (φ + ψ)(v) ≤ 1. Then from (38), we also have

(φ + ψ)(w) ≤ ‖wt‖U‖w − v‖U + 1 for a.e. t ∈ [0, T ]. (39)

This implies

w ∈ L∞([0, T ]; Ṽ )

and with respect to the Lebesgue measure,

η + c0 > 0 for a.e. (t, h) ∈ [0, T ] × T,

whh + c0 ∈ M+(T) for a.e. (t, h) ∈ [0, T ] × T,

where η is the absolutely continuous part of whh in (18). Therefore we obtain the variational
inequality solution to (9) and w satisfies the positivity property (36). ��

3 Existence of strong solution

Although we obtained a unique variational inequality solution in Theorem 14, we do not know
whether B is single-valued and which element belongs to B. We will prove the variational
inequality solution is actually a strong solution in this section.

Now we assume

w ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];U ), wt ∈ L∞([0, T ];U )

is the variational inequality solution to (9), i.e., w satisfies

〈wt (t), v − w(t)〉U ′,U + (φ + ψ)(v) − (φ + ψ)(w(t)) ≥ 0 (40)

for a.e. t ∈ [0, T ] and all v ∈ Ṽ .
Let ϕ ∈ C∞(T) be given. The idea is to test (40) with v := w ± εϕ. However, in general

this is not possible, since it is not guaranteed that v = w ± εϕ ∈ D(φ + ψ). To handle this
difficulty, we will use the truncation method in [23] to truncate whh‖ from below such that
v = w ± εϕ ∈ D(φ + ψ) for small ε. Let us state existence result for strong solution as
follows.

Theorem 15 Given T > 0, initial datum w0 ∈ D(B), then the variational inequality
solution w obtained in Theorem 14 is also a strong solution to (9), i.e.,

wt = ((η + c0)
−3)hh (41)
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for a.e. (t, h) ∈ [0, T ] × T. Besides, we have ((η + c0)
−3)hh ∈ L∞([0, T ];U ) and the

dissipation inequality

E(t) := 1

2

∫

T

[
((η + c0)

−3)hh
]2
dh ≤ E(0), (42)

where η is the absolutely continuous part of whh in (18).

Proof Step 1. Truncate whh‖ from below.
Assume w is the variational inequality solution to (9). Choose an arbitrary t for which

the variational inequality (40) holds. Let ϕ ∈ C∞(T) be given. Denote by whh‖(t) (resp.
whh⊥(t)) the absolutely continuous part (resp. singular part) of whh(t). In the following, we
truncate whh(t) below. Let

wδ
hh(t) := whh(t) + δ1Eδ , Eδ := {whh‖(t) ≤ δ − c0}. (43)

We remark here a constant −δ|Eδ| should be added to ensure the periodic setting, however
we omit it for simplicity since the proof is same. Since whh‖(t) + c0 > 0 a.e. we can see

|Eδ| → 0 as δ → 0. (44)

Let

v := wδ(t) + εϕ, ε := δ

2‖ϕ‖W 2,∞(T) + 1
. (45)

Now we prove v = wδ(t) + εϕ ∈ D(φ + ψ). Note that

|εϕhh | ≤ ε‖ϕ‖W 2,∞(T) ≤ δ

2
, (46)

due to (45). First from

vhh‖ + c0 = wδ
hh‖(t) + εϕhh + c0 ≥ δ − ε‖ϕhh‖L∞(T) ≥ δ/2

we know v ∈ D(φ). Second from whh + c0 ∈ M+, we know
∫

T

|whh |dh ≤
∫

T

|whh + c0| + |c0|dh

≤
∫

T

whh + c0dh +
∫

T

|c0|dh
= c0 + |c0| = 2c0

due to c0 is positive. Hence we can choose C := 2c0 + 1 in Definition (20) to ensure
‖w‖L∞(0,T ;Ṽ )

≤ C − 1. Then by construction, v satisfies

‖vhh‖M(T) = ‖whh(t) + δ1Eδ + εϕhh‖M(T)

≤ ‖whh(t)‖M(T) + δ|Eδ| + ε‖ϕhh‖M(T) ≤ C − 1 + δ|Eδ| + δ/2,

which implies
‖v‖Ṽ = ‖vhh‖M(T) ≤ C

and v ∈ D(ψ) for all sufficiently small δ.
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Step 2. Integrability results.
We claim

(whh‖(t) + c0)
−3 ∈ L1(T) (47)

(wδ
hh‖(t) + εϕhh + c0)

−3 ∈ L1(T), (48)

for all sufficiently small δ.

Proof of (47) First, for all 0 < ε � 1 we have

‖(1 − ε)w(t)‖Ṽ = (1 − ε)‖w(t)‖Ṽ
which implies (1 − ε)w(t) ∈ D(ψ). Moreover, on {whh‖(t) ≥ 0} we have (1 − ε)whh‖(t) +
c0 ≥ c0 > 0, while on {whh‖(t) ≤ 0} we have (1 − ε)whh‖(t) ≥ whh‖(t). Hence (1 −
ε)whh‖(t) + c0 ≥ whh‖(t) + c0 > 0 a.e. and

∫

T

((1 − ε)whh‖(t) + c0)
−2dh =

∫

{whh‖(t)≥0}
((1 − ε)whh‖(t) + c0)

−2dh

+
∫

{whh‖(t)<0}
((1 − ε)whh‖(t) + c0)

−2dh

≤
∫

{whh‖(t)≥0}
c−2

0 dh

+
∫

{whh‖(t)<0}
(whh‖(t) + c0)

−2dh < +∞.

Thus we have (1 − ε)w(t) ∈ D(φ).
Next, setting v = (1 − ε)w(t) ∈ D(φ + ψ) in (40), we get

〈wt (t),−εw(t)〉 + φ((1 − ε)w(t)) − φ(w(t)) ≥ 0. (49)

Direct computation gives

φ((1 − ε)w(t)) − φ(w(t)) =1

2

∫

T

[((1 − ε)whh‖(t) + c0)
−2 − (whh‖(t) + c0)

−2]dh

=1

2

∫

T

(whh‖(t) + c0)
2 − ((1 − ε)whh‖(t) + c0)

2

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)2 dh

=ε

∫

T

whh‖(t)
((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)

dh

− ε2

2

∫

T

|whh‖(t)|2
((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)2 dh.

Hence (49) gives

0 ≤〈wt (t),−εw(t)〉 + ε

∫

T

whh‖(t)
((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)

dh

=〈wt (t),−εw(t)〉 + ε

∫

T

1

((1 − ε)whh‖(t) + c0)2 dh

− ε

∫

T

c0

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)
dh.
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This, together with |〈wt (t), w(t)〉| ≤ ‖wt (t)‖U‖w(t)‖U , shows that

− ∞ < 〈wt (t), w(t)〉 ≤
∫

T

1

((1 − ε)whh‖(t) + c0)2 dh

−
∫

T

c0

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)
dh (50)

for all 0 < ε � 1. For the first term on the right hand side of (50), note

1

((1 − ε)whh‖(t) + c0)2 → 1

(whh‖(t) + c0)2 for a.e. h,

1

((1 − ε)whh‖(t) + c0)2 ≤ c−2
0 on {whh‖(t) ≥ 0},

1

((1 − ε)whh‖(t) + c0)2 ≤ 1

(whh‖(t) + c0)2 on {whh‖(t) < 0},

where (whh‖(t) + c0)
−2 ∈ L1(T) due to w ∈ D(φ). Thus by Lebesgue’s dominated conver-

gence theorem we have
∫

T

1

((1 − ε)whh‖(t) + c0)2 dh →
∫

T

1

(whh‖(t) + c0)2 dh = 2φ(w(t)). (51)

For the second term on the right hand side of (50), notice that on {whh‖(t) ≥ 0} we have

1

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)
≤ c−3

0 ,

which implies
∫

{whh‖(t)≥0}
1

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)
dh →

∫

{whh‖(t)≥0}
1

(whh‖(t) + c0)3 dh

(52)
due to Lebesgue’s dominated convergence theorem. On the other hand, on {whh‖(t) < 0}

1

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)

is increasing with respect to ε. Hence by the monotone convergence theorem we have
∫

{whh‖(t)<0}
1

((1 − ε)whh‖(t) + c0)2(whh‖(t) + c0)
dh →

∫

{whh‖(t)<0}
1

(whh‖(t) + c0)3 dh.

(53)
Combining (51), (52) and (53), we can take ε → 0 in (50) to see that

−∞ < 〈wt (t), w(t)〉 − 2φ(w(t))

≤ −c0

∫

T

1

(whh‖(t) + c0)2(whh‖(t) + c0)
dh,

which completes the proof of (47). ��
Proof of (48) Note that

∫

T

(wδ
hh‖(t) + εϕhh + c0)

−3dh =
∫

T\Eδ

(wδ
hh‖(t) + εϕhh + c0)

−3dh

+
∫

Eδ

(wδ
hh‖(t) + εϕhh + c0)

−3dh.
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First, on T\Eδ = {whh‖(t) + c0 ≥ δ} we have wδ
hh‖(t) = whh‖(t). Thus from (46) we have

wδ
hh‖(t) + εϕhh + c0 = whh‖(t) + εϕhh + c0 ≥ whh‖(t) + c0 − δ/2 ≥ (whh‖(t) + c0)/2

(54)

on T\Eδ and
∫

T\Eδ

(wδ
hh‖(t) + εϕhh + c0)

−3dh ≤ 8
∫

T\Eδ

(whh‖(t) + c0)
−3dh. (55)

Second, on Eδ = {whh‖(t) + c0 < δ} we have wδ
hh‖(t) = δ + whh‖(t), so by (46) we know

wδ
hh‖(t)+εϕhh +c0 = whh‖(t)+δ+εϕhh +c0 ≥ whh‖(t)+c0 +δ/2 ≥ (3/2)(whh‖(t)+c0)

(56)
on Eδ and

∫

Eδ

(wδ
hh‖(t) + εϕhh + c0)

−3dh ≤
∫

Eδ

[(3/2)(whh‖(t) + c0)]−3dh. (57)

Combining (55), (57) and (whh‖(t) + c0)
−3 ∈ L1(T) gives (48). ��

Step 3. Test with v = wδ(t) ± εϕ.
Plugging v = wδ(t) + εϕ in (40) gives

〈wt (t), w
δ(t) − w(t) + εϕ〉 + φ(wδ(t) + εϕ) − φ(w(t)) ≥ 0. (58)

Direct computation shows that

φ(wδ(t) + εϕ) − φ(w(t)) =1

2

∫

T

[
1

(wδ
hh‖(t) + εϕhh + c0)2

− 1

(whh‖(t) + c0)2

]

dh

=1

2

∫

T

(whh‖(t) + c0)
2 − (wδ

hh‖(t) + εϕhh + c0)
2

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)2

dh

=1

2

∫

T

(whh‖(t) − wδ
hh‖(t) − εϕhh)(whh‖(t) + 2c0 + wδ

hh‖(t) + εϕhh)

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)2

dh

=
∫

T

whh‖(t) − wδ
hh‖(t) − εϕhh

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh

−
∫

T

(whh‖(t) − wδ
hh‖(t) − εϕhh)

2

2(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)2

dh.

This, together with (58), gives

〈wt (t), w
δ(t) − w(t) + εϕ〉 +

∫

T

whh‖(t) − wδ
hh‖(t) − εϕhh

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh ≥ 0. (59)

To take limit in (59), we claim

lim
ε→0

〈wt (t), w
δ(t) − w(t) + εϕ〉/ε = 〈wt (t), ϕ〉, (60)

lim
ε→0

∫

T

whh‖(t) − wδ
hh‖(t)

ε(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh = 0, (61)

lim
ε→0

∫

T

ϕhh

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh =
∫

T

ϕhh

(whh‖(t) + c0)3 dh. (62)
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Proof of (60) Since limε→0〈wt (t), εϕ〉/ε = 〈wt (t), ϕ〉, thus it suffices to prove

lim
ε→0

〈wt (t), w
δ(t) − w(t)〉/ε = 0.

From the construction (43) we know wδ
hh‖(t) = whh‖(t)+ δ1Eδ , so direct computation gives

lim
ε→0

|〈wt (t), w
δ(t) − w(t)〉/ε| ≤ lim

ε→0
‖wt (t)‖U‖wδ(t) − w(t)‖U/ε

≤ lim
ε→0

‖wt (t)‖U‖wδ
hh(t) − whh(t)‖U/ε

≤ lim
ε→0

‖wt (t)‖U δ|Eδ|1/2/ε = 0,

where we used (44) and the relation (45) in the last equality. Therefore (60) is proven. ��
Proof of (61) In view of (45), recall that wδ

hh‖(t) = whh‖(t) + δ1Eδ , and the relation δ/ε =
2‖ϕ‖W 2,∞(T) + 1. Hence

∫

T

whh‖(t) − wδ
hh‖(t)

ε(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh

=
∫

T

−(2‖ϕ‖W 2,∞(T) + 1)1Eδ

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh.

By (56) we also have
∫

T

(2‖ϕ‖W 2,∞(T) + 1)1Eδ

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh ≤
∫

Eδ

2‖ϕ‖W 2,∞(T) + 1

(3/2)2(whh‖(t) + c0)3 dh
ε→0→ 0,

where we have used (whh‖(t) + c0)
−3 ∈ L1(T) by (47). Thus (61) is proven. ��

Proof of (62) From (54) and (56), we know

ϕhh

(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

→ ϕhh

(whh‖(t) + c0)3 a.e. on T,

|ϕhh |
(wδ

hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

(56)≤ |ϕhh |
(3/2)2(whh‖(t) + c0)3 ∈ L1(T) on Eδ,

|ϕhh |
(wδ

hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

(54)≤ |ϕhh |
(1/2)2(whh‖(t) + c0)3 ∈ L1(T) on T\Eδ,

thus by Lebesgue’s dominated convergence theorem we infer (62). ��
Combining (60), (61) and (62), we can divide by ε > 0 in (59) and take the limit ε → 0+

to obtain

lim
ε→0+〈wt (t), w

δ(t) − w(t) + εϕ〉/ε +
∫

T

whh‖(t) − wδ
hh‖(t) − εϕhh

ε(wδ
hh‖(t) + εϕhh + c0)2(whh‖(t) + c0)

dh

= 〈wt (t), ϕ〉 −
∫

T

ϕhh

(whh‖(t) + c0)3 dh ≥ 0.

Repeating the above arguments with v = wδ(t) − εϕ gives

〈wt (t), ϕ〉 −
∫

T

ϕhh

(whh‖(t) + c0)3 dh ≤ 0.

123



 55 Page 20 of 21 Y. Gao et al.

Thus we finally have
∫

T

[
wt (t) − (

(whh‖(t) + c0)
−3)

hh

]
ϕdh = 0 ∀ϕ ∈ C2(T), (63)

which gives wt (t)−[(whh‖(t)+c0)
−3]hh = 0 inC2(T)′. From the Radon-Nikodym theorem,

we also know wt (t) − [(whh‖(t) + c0)
−3]hh = 0 for a.e. (t, x) ∈ [0, T ] × T.

Finally, we turn to verify (42). Combining (41) and (37), we have the dissipation law

E(w(t)) = 1

2
‖wt‖2

U = 1

2
‖((η + c0)

−3)hh‖2
U ≤ 1

2
‖Bw0‖2

U = E(0) (64)

for E(w) = 1
2

∫
T

[
((η + c0)

−3)hh
]2

dh. Hence the dissipation inequality (42) holds and we
complete the proof of Theorem 15. ��
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