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PEIERLS-NABARRO DISLOCATION MODEL*

YUAN GAOT AND JIAN-GUO LIU*

Abstract. In this paper we study the relaxation process of the Peierls-Nabarro dislocation
model, which is a gradient flow with a singular nonlocal energy and a double well potential describing
how the materials relax to its equilibrium with the presence of a dislocation. We prove the dynamic
solution to the Peierls-Nabarro model will converge exponentially to a shifted steady profile which is
uniquely determined.
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1. Introduction.

Motivation and Problem. Materials defects such as dislocations are important
line defects in crystalline materials and they play essential roles in understanding
materials properties like plastic deformation [28, 24].

As a line defect with line direction, a dislocation has a small region (called the
dislocation core region) of heavily distorted atomistic structures with shear jump
discontinuity across a slip plane {x € R,y = 0}; as illustrated in Fig 1. In this paper,
we focus on a straight edge dislocation case, and suppose u : R?> — R is the shear
displacement of materials along the direction of the Burgers vector b = (b,0).

Unlike the classical dislocation model [28, 24, 41], which assumes a uniform shear
jump discontinuity across the slip plane, the true increment of the shear jump u at
each position z is not simply a step function but depends on the atomistic misfit
interaction across the slip plane of the dislocation [36, 39]. The Peierls-Nabarro (PN)
model is used to describe the detailed structures in the dislocation core by introducing
a nonlinear misfit potential F'(u) depending on the shear jump discontinuity « on the
slip plane.

The simplest solvable nonlinear potential is introduced by Frenkel in 1926 to
describe the misfit energy of the halite [18]. Setting some physical constants to be 1,
under some symmetric assumption, a typical multi-well potential is

F(u) ::%(1 + cos(mu)),
) g (1.1)
flu) = F'(u) = - sin(ru), f'(u) = F"(u) = — cos(mu),

which phenomenologically reflects the lattice periodicity. To include the magnitude of

Burgers vector, F with local minimums at £% is F'(u) = -%(1+cos(43%)). We remark

there are also other kinds of double well potentials with two local minimums at +1;
see (1.16). Due to the presence of an edge dislocation on the slip plane {z € R,y = 0},
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Fic. 1. Illustration of a straight edge dislocation at origin with the Burgers vector b = (b,0)
and the slip plane {x € R, y = 0}.

the total increment of the shear jump discontinuity from —oo to +oo is b, i.e., the
magnitude of the Burgers vector; see Remark 1.

REMARK 1. In general, a Burgers vector, which indicates the magnitude and the
direction of the lattice distortion resulting from a dislocation, is defined by a loop
integration b := §L du. Here L is a loop in z-y plane enclosing the dislocation line
with a counterclockwise orientation; see Figure 1. Notice in the simplified case, v is
the shear displacement, b = (b,0) and b = fL du. In two dimensions, we assume anti-
symmetry with respect to the slip plane {z € R,y = 0}, i.e. u™(z,0") = —u~ (z,07).
Due to Cauchy’s integral formula, the loop integrations, for the upper and lower half-
spaces respectively, are both zero. Then the loop integration is reduced to z-axis
and is given by 2 faﬂ uw'(z,07) dz, where o and 3 are intersection points of the loop
with z-axis. Therefore in the PN model, the distributional Burgers vector depends on
the endpoints «, S we choose. However, since the total increment from —oo to +oo
equals b, we have 2[u(+00,0") —u(—o00,07)] = b. If the bi-states at far fields are in a
symmetric form, i.e. u(+o00,0") = —u(—oc,0m), the magnitude of the Burgers vector
naturally gives the boundary condition of u at far fields, u(+oc) = :I:%.

To find out the shear displacement u at each position x, the equilibrium of the
PN model for a single edge dislocation is obtained by minimizing the total energy,
including the elastic bulk energy E;s and the misfit interface energy [, F'(u)dz. By
the Dirichlet to Neumann map and the elastic extension [20], the elastic bulk energy in
the upper/lower plane E.;; can be reduced equivalently to slip plane, which therefore
becomes a nonlocal elastic energy on slip plane {z € R,y = 0}, [, %|(78m)%u\2 dx;
see (1.3) below. With this equivalence, from now on, we drop the second variable y
in u(z,y) and focus on the shear displacement on slip plane u(z) := u(z,07).

Denote H*(R) as the fractional Sobolev space with norm denoted as || - ||s. Denote
| - || as the standard L?(R) norm. We first give a singular integral definition, which
is equivalent to the one using Fourier transformations [25]. For 0 < s < 1, define the
fractional Laplace operator Ls from D(Lg) = H?*(R) C L*(R) to L*(R)

s v(z) —v(y
Lyv = (—0y)°v := Cs,P. V. /R |1(;_)y|1+(23 dy, (1.2)
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where C is a normalizing constant to guarantee the symbol of the resulting operator

is |¢]%. Especially when s = %, C, = % Although there are different equivalent

definitions, we clarify we use the singular integral definition above in the whole paper.
Let us first express formally the problem we are interested in. Define the nonlocal

energy for the Peierls-Nabarro model

E(u) :/4( D) T da:Jr/RF(u)da:. (1.3)

Alternatively, we can rewrite the nonlocal energy using a singular kernel

:;A/H{dedy—k/RF(u)dx
—E/R/RJ(x—y)(u(x)—u(y))zdmder/RF(U) daz,

where J(z) = -L; and we used the identity

1 ; )
i/Ru(_a” // Ia:—yl2 oy

Then the dynamic Peierls-Nabarro model is the following Allen-Cahn gradient flow

(1.4)

SE(u) _
ou

Ou = — —(=8)?u — flu) = —Au, (1.5)

where the nonlocal nonlinear operator A formally defined as

Au = (—8p0) 2 u+ flu) = Liu+ f(u). (1.6)

Due to the presence of a dislocation, with a magnitude of the Burgers vector b = 4 in
Remark 1, we are interested in solutions with far field boundary conditions

u(£oo,t) = £1. (1.7)

The readers may see three main issues here. First, the displacement function u is
bounded but not vanish at far field. How does this boundary condition (1.7) at far
field remain as time evolving? Second, can the nonlocal operator (fﬁm)% defined
above on H'(R) be extended to a L°°(R) function with boundary condition (1.7)?
Third, the non-vanishing boundary conditions at far field lead to an infinite nonlocal
elastic energy [, 2[(—0s.)"*u|?>dz on the slip plane (see footnote! below), as well
as an infinite elastic bulk energy in the upper and lower space, which is equivalently
connected to the nonlocal elastic energy; see a precise statement in the perturbed sense
established [20] by introducing a concept of the elastic extension. This singularity in
energy is analogous to the vortex singularity in fluid mechanics or a single electron
in electromagnetism, which inspires us to define a perturbed energy with respect to
a reference state, steady profile described below.

IThere exists A > 0 such that u > l for z > A while u < f% for z < —A. Therefore

1 1
//(u:r: u(2y) dody > / / — Ll drdy=oo
lz — vl e a>A Jy<—a 2(z? +y?)
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We observe the typical bistable steady solution to (1.12), which will be used as a
reference profile later. Assume ¢ is a steady solution to (1.12) satisfying

Ap =0, ¢(£oo) = £1. (1.8)

Since ¢ is smooth enough, we remark the operator (—8m)% acting on ¢ is equivalent
t0 (—0ps)2¢ = H(¢') (see footnote? below), where H is the Hilbert transform

(Hu)(z) fP V. /m

Indeed, ¢(z) = 2 arctan(z) is one special solution with fixed center at zero, i.e.
¢(0) = 0. Notice f(2 arctan( )) = —Lsin(2arctanz) = 7271+m2 and (—0,,)2 ¢(z) =
H(¢'(z)) = H(2 1+1ac2) =z 1+I2 We can check

A¢ = (~0ks) 2 b+ f(8) = 0, (1.9)
and the decay rate at far fields

_y

2
¢(xr) ~+1 — —, asz — too. (1.10)
e

In this paper, we consider the long time behavior of the solution to the dynamic
equation (1.5) with initial data ug such that ug(+oo) = +1. Our goal is to prove
there is xg such that as ¢t — oo

u(z,t) = ¢z — xo)

uniformly with exponential decay rate.
To make the infinity integrals meaningful, we define the perturbed energy as

/ [~ AV — ) — (u — 6)F() + F(u) da. (1.11)

The motivations of choosing the steady profile ¢ as the reference profile are (i) it gives
a finite energy integral; (ii) it is natural to see the steady state ¢ is a stable minimizer
of £, i.e. the second variation of £ near ¢ is nonnegative; (iii) the decay properties
(1.10) will be used to obtain L? compactness later in Section 2.3. Precisely, we will
study the existence and long time behaviors of solutions to

0& (u)
S = — 1.12
Oru 5 Au (1.12)
with initial data u(x,0) = ug(x) satisfying
(1) E(ug) < 4o0; (1.13)
(ii) there exist constants a < b such that
d(x —b) <wug(z) < oz — a). (1.14)

Thanks to the theory of analytic semigroup, we first validate this dynamic equation
for u by proving the existence of the global classical solution to the perturbation with
respect to the reference profile, v := u — ¢; see more details in Section 2.1.

2Since ¢ is uniformly bounded, only y = x is the singular point in the singular integral defi-

nition (1.2). Therefore (— 811)%¢ = %P.V. I]R %dy = limeyo £ fly o|>e % dy =

limg 0 f\y—m\>s i(yy) dy = H(¢') due to integration by parts.
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Main Results and Related References. Below, we state the main result for
uniform exponential convergence of the dynamic solution to the PN model to its
equilibrium profile.

THEOREM 1.1. Assume initial data uo(x) — ¢(z) € Hz(R) then (1.12) has a
unique global smooth solution u(x,t) with specific regularities in (2.7). Furthermore,
if uo satisfies (1.13) and (1.14), then there exist constants xo, ¢ and p such that

|u(z,t) — p(x — z0)| < cmin{ e MY foranyt >0, v €R. (1.15)

1
1+ |z|’

REMARK 2. We remark that given an initial data, the equilibrium profile is
uniquely determined. Although the steady solutions to the static equation are unique
upto translations, the dynamic solution to the dynamic problem is unique. Therefore
Theorem 1.1 actually proves that as ¢ — +oo the limiting steady profile ¢p(x — xq) is
uniquely determined.

REMARK 3. We remark that the proof for the uniform convergence result above
does not depend on the specific formulas of potential F'(u) and steady profile ¢(x).
Indeed, for a general potential F' € C*%(R) satisfying

F(v) > F(-1)=F(1) forve(-1,1), F’(xl)>0 (1.16)

[7, 8] obtained the existence of steady profile ¢ to (1.9) with the properties ¢'(z) > 0
and decay estimate (1.10). Any other assumptions for the behavior of F' outside [—1, 1]
are not necessary because we will prove the Assumption (1.15), i.e. the initial data is
sandwiched between two steady profiles, is persistent along time; see Proposition 2.5.

Below, we state the long time behavior result for the general potential F(u) and
delay the proof to the end of this paper.

THEOREM 1.2. Assume F € C*(R) satisfies (1.16) and ¢(x) is the correspond-
ing steady profile to (1.9) with the properties ¢'(x) > 0 and (1.10). Then for initial
data ug satisfying the same assumptions in Theorem 1.1, the unique global smooth so-
lution u(x,t) to (1.12) has the same uniform exponential convergence to its equilibrium
profile, i.e. there exist constants x1, ¢1 and py > 0 such that

lu(x,t) — ¢(x — 21)| < ¢y min{ e M foranyt>0,zeR.  (1.17)

1
L+ |=|°

For the stationary solutions to the equilibrium PN model (1.8), [7] established the
existence and uniqueness (upto a shift in z) of monotonic solutions by considering the
corresponding local scalar problem by a harmonic extension; see also [8] for results
of general nonlocal operators (—0,,)% 0 < s < 1. Recently, using a rearrangement
method, [29] also obtained the existence and uniqueness of monotonic solutions and
proved the monotonic solution is the global minimizer of the nonlocal Allen-Cahn
energy (1.4) after a renormalization. To connect the nonlocal Allen-Cahn equation
(1.5) to the true vector field solution rigorously, rather than the analogous scalar
model, [20] prove the equivalence between the nonlocal problem and the corresponding
extended problem by defining a perturbed elastic bulk energy and establishing the
elastic extension analogue to the harmonic extension.
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However, as far as we know the natural question proposed in the motivation
subsection above has not been studied, i.e. whether the dynamic solution to (1.12)
will converge exponentially to a uniquely determined steady profile as ¢ — +oo. The
difficulties are essentially the singularity in energy, the lack of uniform in time H'(R)
bounds, as well as L?(R) estimates, and spectral gap analysis, which will be explained
in details later.

Let us first compare with some results for dislocation models in lager scale, de-
scribed by a dislocation density function. Analytic results such as well-posedness
for the dislocation particle system, slow motion and concentration of transition lay-
ers are established in [13, 21, 14, 30, 31, 32]. More precisely, instead of (1.5), [21]
chooses v¢(xz,t) = u (%, 8%) and considers the corresponding equation for v¢(z,t)
(with/without external stress)

1 1 1
vt + - [(—8193)2116 + €F’(vs)] =0 (1.18)

with a well-prepared initial data

3

v & oo
vé(z)H(Ql)+Z¢< h’), (1.19)

where h? is the initial location of the i-th dislocation and there are totally N transition
N

layers. They proved as € — 0, v® will converge to v%(¢,z) = # + Zfil[QH(ac -

hi(t)) —1] (in the sense of viscosity solution) where h; is driven by the particle system

d 1 .
Ehi —C; th, hz(O) _h’i? (120)

where ¢ is a constant not depending on N. If we recast our convergence result into
their scale but still assume there is only one transition layer N = 1, then we have

.T—]’Lo

ve(x,t)—qb( )’ <ce ® foranyt >0,z €R. (1.21)
Physically speaking, we focus on the detailed relaxation of a single dislocation to its
steady profile ¢ with exponential convergence rate. However, instead of caring about
the detailed behavior for each dislocation, [21] focused on a larger scale behavior for
several dislocations by zooming out in spatial variable x and waiting for a longer time
t. We will discuss in Section 5 that the time scale for observing slow motion depends
only on the tail decay rate, either algebraically or exponentially. In solid state physics,
the algebraic decay and exponential decay are two typical tail estimates indicating
the physical interactions between particles. For instant, for the K(r) = % + %3,
which shows elastic long range interaction between two steps in the epitaxial growth,
[19] study the mean field limit of a similar particle system in a larger scale (taking
particle number N goes to co). They prove if the tail estimate is faster than a
quadratic decay rate, in the mean field limit, the corresponding continuum PDE from
the particle system with only nearest-neighbor interactions is same as the one with
global interactions.

Let us review some other related works among the vast literature of analysis
for asymptotic behaviors. For the classical Allen-Cahn equation with double well
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potential, [15] proved the global exponential stability of a traveling wave solution,
which established the first framework to tackle the long time asymptotic behavior
using spectral gap analysis for diffusion operator linearized along traveling waves; see
also [11] for invariant manifold method. Under the small perturbation assumption,
[42, 27] proved the multidimensional stability of traveling wave solutions. Further-
more, for a nonlocal Allen-Cahn equation with nonsingular kernel, [3] studied the
properties of travelling wave solutions as well as the uniform asymptotic stability. For
a class of integro-differential equations which contain a nonlocal term expressed by the
convolution of u with some nonsingular kernel, [12] established an abstract theorem
for uniqueness, existence and exponential stability of traveling wave solutions while
[2] presented spectral analysis for linearized operators along traveling wave solutions
and obtain multidimensional stability for small perturbations. We are unaware of any
asymptotic stability results for nonlocal operators with singular kernels, whose steady
profile has infinite energy. To obtain the exponential decay rate, we need to show 0
is the principal and simple eigenvalue for the linearized nonlocal operator, which is a
nonlocal Schrédinger operator. For the estimates for the smallest eigenvalue of local
or nonlocal Schrodinger operators, we refer to [16, 17, 26, 21, 9, 10] and references
therein.

Strategy. The general idea is to first prove the dynamic solution will uniformly
converge to a shifted steady profile ¢(x — x¢). Then by the spectral analysis for the
nonlocal Schrédinger operator, which is linearized along the steady profile, we obtain
the exponential decay rate.

The essential difficulties for the uniform convergence are the compactness and the
characterization of the w-limit set. As shown in the footnote in the previous page,
we have an infinite nonlocal energy, which is only meaningful with the perturbed
definition (1.11). We introduce a special w-limit set with vanishing dissipation; see
Definition 1, which is shown to be nonempty. For this kind of w-limit set, which takes
advantage of the vanishing dissipation property for a sequence of solution u(z, t,), we
have uniform estimate for ||u(z,t,)| g1 and can characterize the limit uniquely as a
shifted steady profile ¢(x —x); see Proposition 2.4. By imposing the initial condition
(1.14) and thanks to the comparison principle and good decay properties for the
steady profile ¢, we obtain the compactness in Section 2.3. This, together with the
characterization of w-limit set, leads to a convergence from u(x, t,,) to ¢(x—xq). Notice
the vanishing dissipation property is valid only for the subsequence we extracted. By
further proving for any ¢ large enough, the solution will stay around the steady profile
¢(x — xp), we finally obtain the uniform convergence in Theorem 2.9.

As for the spectral gap analysis, to show 0 is the principal and simple eigenvalue
for the linearized nonlocal Schrodinger operator, we give a new contradiction proof
involving some particular global properties of the fractional Laplace operator and the
concave part of the double well potential F'; see Proposition 3.3. The spectral gap
obtained in Theorem 3.4 shows a lower bound for the norm of the linearized nonlocal
operator for any u orthogonal to ¢’. Using this property, we prove the exponential
decay of dynamic solutions to its equilibrium in Section 4 and Theorem 1.1.

Outlines. The rest of this paper is organized as follows. In Section 2, we will first
prove the uniform convergence of the dynamic solution u(z, t) to its equilibrium, which
is uniquely characterized as a shifted steady profile, i.e. ¢(z — ). In Section 3, we
establish the spectral decomposition for the linearized nonlocal Schrédinger operator,
which leads to a spectral gap. All the proofs for the detailed spectral decomposition
are given in Appendix B. In Section 4, we combine the spectral gap with the uniform



168 Y. GAO AND J.-G. LIU

convergence to finally obtain the exponential decay of the dynamic solution to its
equilibrium ¢(z — xg). Section 5 is the discussion on time scales for the slow motion.

2. Uniform convergence from the dynamic solution to the steady profile
¢. This section will focus on the uniform convergence from the dynamic solution
to its equilibrium, which involves essentially two main questions, compactness and
characterization of the w-limit set. Here the w-limit set is a special one defined in
Definition 1, which takes advantage of the property of solutions with a vanishing
dissipation. For this kind of w-limit set, we can characterize it uniquely as a shifted
steady profile ¢(x — () in Section 2.2. Then thanks to the compactness and stability
guaranteed by the comparison principle, we will obtain the uniform convergence to
¢(x — xz9) in Section 2.4. We shall first clarify the existence and uniqueness of the
global classical solution to the dynamic problem (1.12).

2.1. Global classical solution. Recall (1.12) and A¢ = 0. Set a perturbation
function as

v(x,t) == u(z, t) — ¢(x).

Then the dynamic equation for v is

O = —Lyv— f(u) + £(9) (2.1)

with initial data vo(z) = ug(z) — ¢(x), where ug(x) satisfies (1.13) and (1.14). Notice
that if ug(z) satisfies (1.13) and (1.14), then from F(-) > 0 and ||¢(+)|| = < ¢ we know
vo(x) € H=(R). We will use the theory for contraction semigroup to first establish
the existence and uniqueness of a global classical solution to (2.1). Define the free
energy for v as

Fw)i= [ 31-0) 40 = 0f(6) + F(v+ ¢)da. 22)
Denote
Avi=(Ly + I, G(v):= f() — flv+é) +v. (2.3)
Then (2.1) becomes
Bv = Ap — Au= —Av + G(v). (2.4)

From now on, ¢ and C will be genetic constants whose values may change from line
to line. We have the following well-posedness result for (2.1). The proof is standard
but to show the idea clearly, we give a brief proof in Appendix A for vg € H'(R). For
the case vg € H'/?(R), the proof is similar by using analytic semigroup and we refer
to [23].

THEOREM 2.1. Assume initial data vo(z) = uo(z) — ¢(z) € H(R).
(i) There exists a unique global solution

v € C1([0,00); L*(R)) N C([0, 00); H' (R)) (2.5)

to (2.4) such that v(x,0) = vo(z) and O, Av,G(v) € L*(R) and the equation
(2.4) is satisfied in L*(R) for any t > 0.



LONG TIME BEHAVIOR OF PN MODEL 169

(ii) This solution can be expressed by

v(t) = e MMy te_A(t_T) v(7))dT; .
(0 o/ G(v(r)) dr; (2.6)

(iii) For any k,j € N* and 6 > 0 there exist Cs . j, ¢ such that

v e C*((0,00); H' (R));

(2.7)
[0Fv(- )]l < Coge, t=0.

(iv) We have the energy identity

dF(v(t))

G = [0 20 Flo+0) + F@)P do = ~Q(u() < 0. (28)

2.2. Characterization of w-limit set. In this section, we devote efforts to
characterize the w-limit set whenever it is not empty. We will characterize it for
sequence u(x, t,) with vanishing dissipation.

LEMMA 2.2 (Vanishing sequence for dissipation). Assume F(t) is bounded from
below and F'(t) < 0. Let Q(t) = —F'(t) defined in (2.8). Then there exists a
subsequence t, — +oo such that

Q(ty) = —F'(tn) — 0. (2.9)

Proof. Notice that the conclusion in this lemma is equivalent to
For any € > 0, any T > 0, there exists ¢ > T such that —e < F'(t) < 0.
Then we argue by contradiction. If not, there exists ¢g > 0 and T° > 0 such that
for any t > T, F'(t) < —eg. It implies F(t) — —oo, which contradicts with F(¢) is
bounded from below. O

Now we define the special w-limit set below.

DEFINITION 1. Assume v(x,t) is the dynamic solution to (2.1) with initial data
vy € H2(R). Let Q(t) = —F'(t) defined in (2.8). We define the w-limit set with
vanishing dissipation as

w(v) := {v* € L*(R); there exist t,, — 400

- (2.10)
such that v(-,t,) = v*(-) in L*(R) and Q(t¢,) — 0}.

This is a subset of the usual w-limit set in dynamics systems, which does not require
additional dissipation property.

First we state a strict positivity property at global minima and global maxima
for the nonlocal operator (—d,,)?, which will be used later.

LEMMA 2.3 (Strict positivity property at global minima and global maxima).
For any function g(x) € C(R), assume Ty, xp € (—00,+00) are the points where
g(x) attains it global minimum and maximum separately. Then we have

(—00a) 2 g(2) oz, <0, (—020)29(%)]my, > 0 (2.11)

provided g(x) is not a constant.
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Proof. From the definition of (—8,,)?, since g(z,,) < g(x) for all z € R, we have
(_a:r:v)%g(x”z:azm é 0

and the equality holds only when g(z) = g(z,,) for all z € R. The proof for (_amm)%g
at xps is the same. O

PROPOSITION 2.4 (Characterization of w-limit set). Let v be the dynamic solution
0 (2.1) with initial data vy € H2(R). Assume w(v) # 0 and let v* € w(v) defined in
(2.10). Then there exists t, — +o0o such that
(i) v(tn) = v*(-) in L2(R) N L*(R);
(ii) v* € HY(R) is the steady solution to
~(=0)*0" = f(07 + ) ~ (@), (212)
in the sense that equation (2.12) holds in L?(R);
(iii)

F(v*) < +o0, lim v*(z)=0;

z—+oo

(iv) moreover, there exists xo such that
v*(z) = ¢(xr — xo) — d(x), xR (2.13)

(v), we know there exist ¢, — +oo such that

Proof. Step 1. Since v* € w(v
(tn)| < cand [Jv*]] < c. Recall

v(+,tn) — v*(-) in L2(R). Thus |v

Qtn) = —F'(tn) = — /[_(_A)l/% — fv+¢) + f(¢)]*dz — 0. (2.14)
Therefore, |Q(t,)| is bounded by 1 for n large enough and thus

1(=0ua) () |2 < — 1 (0(tn) + ) — £
+2/| D) F0(t) (F(0(ta) + &) — F(6))] +1

<IF(0lta) + 8) = F@I? + 2 l(~0e) Folta) | + 1
1

2 xrx

+ (=) Fo(ta) [ + 1,

<max |f[llo(tn) [ + 5

which implies

[o( tn)ll g < e (2.15)

From Ladyzhenskaya’s inequality, we have

1/2
loC ta) e < V2l t) 7210, ta) s

o (2.16)
<cllo(, )77,

which, after applying to v(-,t,) — v*(+), concludes (i).
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Step 2. Notice (2.15) and |[v(t,)]| < c¢. We have ||v(t,)||? is bounded and there
exists a subsequence such that v(-,¢,) — v*(-) in H'(R) weakly. Thus from the lower
semi continuity of norm and v(-,¢,) — v*(:) in L*=°(R), we know

[0 @) — £ +0) + f@)P do < lminf O(t,) >0, (2.)
R n—>00
which concludes v* is the solution to (2.12). Since also f(¢) € L*(R), (2.12) holds
in L? sense and we conclude (ii). Recall free energy F(v) in (2.2). We obtain the
bound for F(v*) from lower semi continuity of norm and v(-,t,) — v*(-) in L>(R).
Moreover we know v* € HY(R) < C%*(R), a < % 0 limg 10 v*(z) = 0 and we
conclude (iii).

Step 3. It remains to prove (iv) that all the steady solution v*(x) to (2.12) are of
the form ¢(x — xg) — ¢(z) for some xg. Let u*(x) := v*(x) + ¢(x). Since Ap =0 in
classical sense and v* € H*(R), we know from (2.12) u*(z) is the solution to

(—0s) 2 (2) = — f(u*(2)) (2.18)

in the sense that equation holds in L?(R). In two cases below, we will first prove
vi(x) = ¢(x — x9) — ¢(x) if u* € (—1,1), then claim «* must be in (—1,1) by
contradiction argument.

Case 1. We assume u*(z) = v*(z) + ¢(z) € (—1,1). For any € > 0, since
v*(+£o00) = 0 and u*(+00) = ¢(+o00) = £1, there exist x. and & such that

ve(z) := u*(z) — p(x — ) + & >0 for any z € R (2.19)
and
v:(€e) = u (&) — ¢(§e — ) +e=0. (2.20)
If v, = const, then
u(z) = ¢(z —x.) +¢

for any x € R, which contradicts with u(+o0) = ¢(+o0) = £1. Thus v, is not
constant.

Now we claim z.,&. are both finite. Notice both u*(z) and ¢(z — x.) satisfy
(2.18). Since v, attains its minimum at &, by Lemma 2.3 we have

0> (~Bra)ve(@)lome. = | = Fl0 (@) + F(0( —2e))]| (2:21)
= [0 2 o)+ (6 —2))]| = ')
(2.22)
with
€ [ (&), u" (&) + €] = [9(& — w) — &, 0(& — )]
Therefore 7 must locate in concave part of F, i.e. n € (—1,1). Then
W(E) € (-5 - 3) Cl-3,5] (223)

2
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for e < % Since u*(-) € (—1,1) is a continuous function, so & is bounded uniformly
for e < 7. On the other hand, we also have
11 13
(,25(55 — IE) S (*5, 5 + 5) - [*5, Z], (224)

which implies . — z. € [—2,2]. This concludes z., & are both bounded uniformly for
e< i

Take e — 0 and a convergent subsequence (still denote as z., &) such that z. — x¢
and & — ¢ for some xy and £. Clearly we still know £ — ¢ € [—2,2]. Then we have

() — ¢(x — xg) > 0 for any x € R
(&) — ¢(§ —x0) = 0.

u*
u*

(2.25)

From (2.21), we know

N

(u*(z) — ¢(x — 20))|wme = lim (—Oup) T Ve|aee. = lim f/(n)e =0 (2.26)

e—0 e—0

This, together with £ attains the minimum by (2.25), leads to
u*(z) — ¢(x — xo) = const =0 for all x € R,

which means u*(x) = ¢(x — ) and v*(x) = ¢(x — ) — P(x).

Case 2. We assume u*(z) = v*(z) + ¢(x) ¢ (—1,1) for some z. We use a
contradiction argument to show this case is not possible. We only deal with the left
side, i.e. u*(z) = v*(z) + ¢(z) < —1 for some x. The argument for the other side
u*(x) = v*(z) + ¢(x) > 1 is analogous.

Since u* is continuous function connecting from —1 to —1, then if v* < —1, it
can attain its minimal point at some finite z*. Assume

u(z*) = mi}gu* € (=1—2k,1—2k] for some k € NT. (2.27)
re

First, from (2.18), u*(z*) # 1 — 2k. Otherwise by Lemma 2.3,
0= (—0p2) 2" (2)|gmar + f(1 = 2k) = (—00) 2™ (2)]gmg- < O (2.28)

leads to a contradiction. Then we know v*(2*) = min,eg u*(x) € (-1 — 2k, 1 — 2k).
Therefore, we choose 1 such that u*(z) + 2k > ¢(xz —n) for any © € R and w*(z) + 2k
touches ¢(z — 1) at the point x1, i.e.

(2.29)

{ u*(x) + 2k > ¢(z —n) for v € R;
u*(z1) + 2k = ¢(z1 — 7).

Notice the minimal point z* is finite so z1, 7 are finite. Since f is 2k-periodic function,
we have

0 =[(~0e0) % (u" (@) + 20) + f(u (@) + 24) — (~0rs)

=(~05)* (u" (@) + 2 — b —n))

[NE

(6(z = m) = (oz —m))]

T=x1

<0,

T=x1

where we used Lemma 2.3 again. This also gives a contradiction and we complete the
proof of (iv). O
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2.3. Comparison Principle and Compactness. In the previous section, we
have seen clearly the characterization of w-limit set with vanishing dissipation when-
ever it is not empty. However, in order to extract such a sequence v(t,) with a limit
in w(v) defined in (2.10), we need compactness in L?(R). One possible way to achieve
it is the comparison principle.

2.3.1. Comparison Principle . We have the following comparison principle.

PROPOSITION 2.5. Let initial data satisfy assumption (1.14). Then
d(r —0b) <u(z,t) < Pplx —a), YreR,t>0, (2.30)

where b > a are constants given in (1.14).

Proof. We only prove the left hand side of (2.30). Denote w(z,t) := u(z,t) —
¢(x —b). Then we know

Nl=

Oyw = —(—0yy)
w(-,0) > 0.

w+ f(¢(- = b)) — fw+ (- = b)),

Assume t* is the first time such that w attains zero at some point z*. Therefore

w(z,t) >0 forany 0 <t <t* xelR;
t

where we used w(x*,t*) is the minimum. Moreover, since w(+oo) = 0, w can not
be a nontrivial constant. Therefore by Lemma 2.3 0;w|(;+ +-) > 0 and we conclude
w(z,t) = u(z,t) — ¢(x — b) > 0 all the time. O

LEMMA 2.6 (Basic decay estimate at far fields). There exists a positive constant
C' such that for any dynamic solution u(x,t) to (1.12) with initial data satisfying
(1.13) and (1.14),

1= u(z,t)], [f(u)] < 7/
(2.31)
L+, b)), [f(u)] < 7/

Proof. From (2.30), we obtain the basic estimate for u,

C
1-— <|1-—- — <
1~ )] < 1= bl =) < T o

>0,

where we use the asymptotic estimate (1.10). Similarly we have,

| —1—wu(z,t)| <



174 Y. GAO AND J.-G. LIU

Moreover, we obtain the basic estimate for nonlinear term

7)] = < sinr)

— Zfsin(r(1 - w)] = —[sin(x(1 + u)
szl, for z > 0;
- e for z < 0.

|

2.3.2. Compactness. Now we turn to prove the compactness in L?(R),which
is the key point to guarantee that the w-limit set is not empty.

LEMMA 2.7 (Compactness). Assume u(x,t) is the dynamic solution to (1.12)
with initial data satisfying (1.13) and (1.14). For each 6 > 0 the set of functions

{u(-t) = ¢(-); t = 6}
is relatively compact in L*(R).
Proof. Step 1. For any £ > 0, from Lemma 2.6, we can choose K such that for
lz] > K, t>0
|u — &l L2(je)> k)

<lu = Bllr2@>k) + v — @llL2(<—kK)
u =1 2@sry + 11— dll2@sk) + v+ 12@e—r) + | =1 = @l L2(z<—k)

%
1 €
<c / ——dz| <=.
( o>k (14 [x])? > -

Step 2. Recall free energy for v = u — ¢
1
Fw) = [ 3-8 10 = 0f(0) + Flo-+ ) do (2.32)

and energy identity (2.8). Since F(v + ¢) > 0 and F(v(t)) < F(vg), we know

[ 310w e < e+ ol @) < e (2:33)

where we also used ||v]] < ¢ by Lemma 2.6. Thus the compact embedding
H%(—K, K) << L?(—K, K) shows there exists a subsequence t,, — 400 such that
u(-tn) — ¢() — u*() — ¢(-) in L2(—=K, K). Therefore, lim, o u(x,t,) — ¢(x) =
u*(z) — ¢ in L2(R). O

REMARK 4. It worth to notice the initial condition (1.14) is only used to obtain
the uniform in time estimate for u at far field. As we have seen in the proof of Lemma,
2.7, the compactness result can be achieved as long as we have the uniform in time
L?(R) bound. It is another possible way to relax the initial condition (1.14).
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2.4. Stability and Uniform Convergence. We have obtained the compact-
ness in L?(R) and the characterization of w-limit set in previous preparations. There-
fore, (i) we can first extract a sequence u(x, t,,) —¢(z) with vanishing dissipation Q(t,,)
by Lemma 2.2, (ii) then by compactness Lemma 2.7 u(x,t,) — ¢(z) possesses further
a subsequence such that the limit of u(x,%,,) — ¢(x) is in w(v), in other words, for
any vy € H2(R), w(v) # 0. However those properties are only for some subsequence
t,. In this section, we are finally in the position to obtain the uniform convergence by
proving the dynamic solution will stay close to the standing profile for all large time.
First we list some properties for the double well function F(z).

Since f’(£1) > 0, there exist g > 0, § > 0 such that for 0 < ¢ < %,

f(@)=flo—q) >png forl—0<¢p<lor —1<¢p<—-1+4. (2.34)

Moreover, for ¢ € [-1+ §,1 — ¢], there exist £ > 0, 8 > 0 such that

0
lf(0—q)— f(@)] < kg for any0<q<§, (2.35)
and
¢ (x) > >0 for x such that ¢(x) € [-1+ 4,1 — ). (2.36)

PROPOSITION 2.8 (Stability). Assume u(x,t) is a dynamic solution to (1.12)
and for any 0 < e < g there exists N such that

sup |u(-,tn) — (- — xo)| < €.
TER

Then for any t > ty, there exists C' such that

sup |u(x,t) — ¢p(z — zo)| < Ce.
z€R

Moreover

k
oz —x9 — a +ﬁ £) — ge HE—tN)
K . (2.37)
) +ee M) vr e Rt > ty.

Proof. We will use the comparison principle to prove that for ¢t > ¢ the solution
still stay close to ¢(x — xp). First we prove the lower bound for u. Notice

¢(r —x9) —e <wulx,ty) for any z € R. (2.38)
We construct a subsolution
u(z,t) == max{—1,¢(z — £(t)) — ()} € [-1,1] (2.39)
by choosing £(t) and q(t) such that g(t) := ce #F=tN) £(t) := ¢; + coe *7tN) with
c1 = xg9 — ¢o and ¢co < 0 to be determined.

Define

N(u) = dyu + Au = dyu + (—a) 2u + f(u) (2.40)
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and divide [—1, 1] into several sets

L= A{(z,1); ¢(z —£@)) € [-1, =1+ q()]},
Iy :=A{(z,1); ¢(z —&(t) € [-1+q(t), -1+ 0]},
I3 :={(x,1); ¢(x —&(t) € [-1 46,1 —6]},
Iy:={(x,1); ¢(z —&()) € [1 = 6,1]}

(1) If (x,t) € I, then ¢(x — &) —q(t) < —1 and N(u) =0.
(2) If (z,t) € I, since Ap =0, & > 0 and (2.34), we know

N(u) = —¢/ (& — £(8)€' — ¢ + (=0a) 2 — £(1)) + f(d(z — £(1) — q)
= —¢'(z — W) — g — f(d(z —E)) + f((z — () — q)
< —¢/(z ft))f’*qfuq
<—¢ —pg=0.

The situation for (x,t) € I, is exactly the same.
(3) For (z,t) € Is, i.e. =146 < ¢p(x—&(t)) <1-—46, from (2.36) and (2.35) we
know

< —¢'(x—&(t)E —q +kq
< B¢ —q' + kq.

Set &' = # = %kq>0, we have

u—I—k
B

Then N(u) <0 and u is a subsolution satisfying

u(z,t) > u(x,t) = ¢z —&(t) — q(t) (2.41)

due to the comparison principle. Therefore we have

€L =g — C2, C2=—

’
$(z — 70 — H+B ) —ee M) < y(z.t), VreRt>ty.  (242)
1

Similarly, we can obtain the upper bound for u

u(z,t) < ¢( ks) +ee Pt e e Rt > ty. (2.43)

Hence we know

k
lu(z,t) — p(ax — xp)| < Iilgﬂgd(x) : M:—ﬂ

which concludes for C =1 + fr”#‘;k we have

e+e, VreRt>ty,

sup |u(z,t) — ¢(x — xo)| < Ce
z€R
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for any t > ty. O

After all the preparations above, we can first extract a time sequence t, with
vanishing dissipation Q(¢,) by Lemma 2.2 and then by the compactness Lemma 2.7
we can further extract a subsequence such that the limit of u(zx,t,) — ¢(z) is in w(v).
Moreover, u(x,t) — ¢(z) will stay close to its limit for any ¢ large enough.

THEOREM 2.9 (Uniform Convergence). Assume u(x,t) is the dynamic solution
to (1.12) with initial data satisfying (1.13) and (1.14). Then there exists a value g
such that

lim b(t) =0, b(t):=max|u(x,t) — ¢z — x0)l. (2.44)

t—+o0 z€R

Proof. Recall v(x,t) = u(z,t) — ¢(x) with the free energy

Fw) =5 [ A0 =~ 0f(6) + Flo+ 9)da.

Then by Lemma 2.6 we know ||v|| < ¢ and thus F(v) is bounded from below. There-
fore, combining energy identity (2.8) and Lemma 2.2 leads to a vanishing sequence
for Q, i.e. there exists a time sequence t,, — 400 such that

Q(tn) = —F'(tn) — 0. (2.45)
For such a sequence t,,, from Lemma 2.7 we know

{u('vtn> - ¢()7 tn 2 6}

is relative compact in L?(R). Therefore we know the w-limit set w(v) # @ and the
limit of the subsequence (still denote as t,,) v(x,t,) = u(z,t,) — ¢(x) — v* can be
characterized by Proposition 2.4 (iv), i.e. v*(x) = ¢(z — z9) — ¢(x) and thus

u(x, ty) — ol — x0) = v(x,t,) + ¢(x) — d(x —29) = 0 in L(R).

Next, from the stability Proposition 2.8, we conclude the uniform convergence
(2.44). 0O

3. Spectral decomposition for the linearized nonlocal Schrédinger op-
erator. In this section, we will study detailed structures for spectrum of the linearized
nonlocal Schrédinger operator and prove the spectral gap in Proposition 3.4. Note

f'(¢) = —cos(mg) = % The linearized operator along the steady profile ¢ is
L:D(L) C L? - L*(R) with
2?2 -1
Lu = (=0 2 . 1
u:= (-0 )2u+x2+1u (3.1)

Denote o0, o, and o, as the point spectrum, the residual spectrum and the con-
tinuous spectrum separately. Then

C=p(L)Uo(L) = p(L)Uop(L)Uo.(L)Uo.(L).

We will first prove there is no residual spectrum and all the continuous spectrum
locate in [1,400), see Proposition 3.1 and Proposition 3.2 separately. Although the
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proof is standard but for completeness we put them in Appendix B.1 and Appendix
B.2.

PROPOSITION 3.1. For linear operator L in (3.1), the spectrum o(L) = o,(L) U
o.(L) C [-1,+00).

PROPOSITION 3.2.  For linear operator L in (3.1), the continuous spectrum
o.(L) C [1,+00) .

Next proposition is the key procedure to prove 0 is the principle eigenvalue and
there is no other kinds of spectra near zero. The proof is the standard contradiction
argument but it takes advantage of strict positivity property at global minima and
global maxima for the nonlocal operator (see Lemma 2.3), which allow us to construct
a sequence of eigenfunctions with minimal points locating in the concave part of the
double well potential F'.

PROPOSITION 3.3. For linear operator L in (3.1), the point spectrum o,(L) C
[0, +00) and 0 is simple eigenvalue with eigenfunction ¢'(x).

Proof. Step 1. We prove 0 is a simple eigenvalue with eigenfunction ¢’(x). First,
by differentiating A¢ = 0 once, it is straightforward that ¢'(z) = %1 +1z2 is an eigen-
function corresponding to the eigenvalue 0.

Assume there is another eigenfunction g corresponding to 0 such that g € L?(R).
By the elliptic regularity of the steady solution to ((—8.)% + I)g + w;—flg =0, we
know for any k > 0, g € H*(R) thus g is smooth function. Without loss of generality,
we assume ¢ takes positive values at some ¢ (otherwise we can always construct such
a function with some positive points by linear combination). Below, we will show g
is linearly dependent on ¢'.

Define

¢ =09 +Bg, BER. (3-2)

Define the set

Dy := {8 < 0;¢5(&) < 0 for some &}.
Let
B :=supD;.

Such a 3 is well-defined. Indeed, since g is positive at zg, we know 3 € [8;,0] with

_ _ ¢ (20)
pr= g(wo) <0.
Notice that if ¢g is a constant, since ¢ € L*(R), we know ¢g = 0, which
concludes ¢’ and g are linearly dependent. Therefore, we can simply assume ¢g is not
a constant.

For any /8 € Dy, since ¢g is also an eigenfunction corresponding to eigenvalue 0,

Loy = (~0ua) 265 + ['(#)95 = 0. (33)
Let &3 € [—00,+0o0] be a point such that ¢p attains its minimum. Thus we know
#3(§3) < 0. Consider two cases (i) £z € (—o0,+00); (i) {g = —oo or +oo. For

case (ii), since ¢ € L*(R) and ¢35 € H(R) = C(R), ¢5(+oc) must be zero, which
contradicts with ¢g(£z) < 0.
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For case (i), by Lemma 2.3 we have

pp(z) — ¢
(—002) % Bp]m gﬂzfpv/ gr f()dy <0.
— | a=¢5

From (3.3) we know

(0)68],—¢, > 0, (3.4)
which, together with ¢g(€s) < 0, leads to

fl(¢)|rc:£5 < 0.

Due to the concave part of F' is bounded between —= and 1, we know the set of &g
is bounded. Indeed, f'(¢)(z) = 2+1 < 0 if and only 1f z e (—1,1).

Take a convergent subsequence (still denote as ) with limit 5 — B and &3 — 3
for some £ € [—1,1]. From the definition of 3, we know

$5(6) =0 < ¢(¢)  for any £ €R. (3.5)
Therefore from L¢z = 0 we have

However by Lemma 2.3

s ?5( ()
(—022)2 gl = = P V. / $61%) — 98Y) |x — le dy - <0. (3.6)
Therefore
¢ = const =0,

which means ¢’ and ¢ are linearly dependent.
Step 2. We prove 0 is the principle eigenvalue. Assume A < 0 is the eigenvalue
such that

Lu=M\u

for some v € L*(R) and u # 0. By the elliptic regularity of the steady solution,
we know for any k& > 0, u € H¥(R) thus u is smooth function and |u| is continuous
function. Indeed, for A := (—0,,)% + I, we know g satisfies Ag + m;—flg = 0. Then
by the general Leibniz rule and bootstrap, one can obtain the regularities u € H*(R)
for any k. Then

(—0a) 2 [ul + fF()|ul < sgnu - [(—0aw)2u+ f($)u] = Alu| < 0. (3.7)
Similarly, define
¢p:=¢ +Blul, BER (3-8)
and the set

Dy :={B < 0;¢5(§) < 0 for some ¢}.
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Let
B = sup D;.

which is well-defined since |u| is positive at z¢ and we know 3 € [81,0] with 3; =
ey <0
Notice if ¢ is a constant, since ¢35 € L?(R), we know ¢3 = 0, which concludes
¢ and |u| are linearly dependent, i.e. L|u| = 0. However from (3.7), L|u| < AJu] <0
and thus A = 0. It contradicts with A < 0. Therefore we can simply assume ¢z is not
a constant.

For 8 € Dy, from (3.7)

Lég = BL|u| = Bl(—8us) 2 |ul + £(&)[ul] > BAlu| > 0, for all z € R. (3.9)
Let {5 € [—00,+00] be a point such that ¢g attains its minimum. Thus ¢g(€s) < 0.
Consider two cases (i) &g € (—o0,+00); (ii) £ = —oo or 4+o00. For case (ii), since
¢s € L*(R) and ¢ € H'(R) < C(R), ¢5(d00) must be zero, which contradicts with
¢s(Ep) < 0.
For case (i), by Lemma 2.3 we have
1 1 $s(x) = ¢5(y)
) | :—P.V./—d <0.
( )2¢,8| &s = lz — y[? yx:fg
This, together with (3.9), we know
f'(@)¢s| > 0. (3.10)

=3

Notice also ¢5(&g) < 0, thus

f/(¢)|w:§g <0.

Due to the concave part of F' is bounded between f% and %, we know the set of &g

is bounded, especially, f'(¢)(x) = ii;} < 0 if and only if z € (—1,1).

Take a convergent subsequence (still denote as 3) with limit 5 — B and &g — &7
for some &* € [—1,1]. From the definition of 3,

$5(€") =0, ¢z(r) >0 for any x € R.
Then the limit of (3.9) shows that
0 < Loy = (~0ua) 05 + f(0)05.
However at x = £*, the RHS is
(=020) % 3lomer + F(O)Bplomer = (~0u0)? d5lemer < 0.
Therefore (*azz)%d)ﬁ*h:g* =0 and thus
¢5 = 05(8") =0,

which means A could only be zero and contradicts with A < 0.0



LONG TIME BEHAVIOR OF PN MODEL 181

From the Proposition 3.2 and 3.3 above, we know 0 is the principle, simple eigen-
value of L and the continuous spectrum o.(L) C [1,400). Thus we obtain spectral
gap for the nonlocal Schréinger operator below.

THEOREM 3.4 (Spectral gap). For linear operator L in (3.1), there exists a
constant Ay > 0 such that for any ul Null(L), i.e. [ u(z)¢'(z)dz =0, we have

(Lu,u) > \olul|?. (3.11)

REMARK 5 (A Hardy type functional inequality and the best constant). Recall
Hardy’s inequality for the homogeneous Sobolev space in one dimension. For 0 < s <
1

2
JulFy. = € [ Jol *Jua) P d, (3.12)
R

with sharp constant

(D(1 + 25)/4)?

_02s
O = T —2s) AR

As a consequence of Proposition 3.3, we have the following Hardy’s type functional
inequality at critical index s = %

COROLLARY 3.5. For any u € H'?(R), we have

1-e 2 2 do < 2 3.13
1 su(z)dr < ||uHH% (3.13)
Moreover, the equality holds if and only if u(x) = 5= sz.

REMARK 6. Notice by the harmonic extension of the steady profile in the upper

half plane is ¢(x,y) = %arctan T which has the harmonic conjugate g(z,y) =

Ln(z? 4+ (14 y)?). So z(x,t) := ¢(z,y) + ig(z,y) is the holomorphic extension in
the upper half-space C of ¢(z) = % arctan z. For the linearized problem, a related
holomorphic eigenvalue problem in C, is

21

—30,w — ~
1+ z

w = A\w, (3.14)

whose restriction on the real line becomes a nonlocal eigenvalue problem

22 —1 n 2x
u
2 +1 22 4+1

(—Os)2u+ H(u) = (A + 1)u. (3.15)

4. Exponential decay to steady profile. Next we will use the spectral gap
Theorem 3.4 to prove the exponential decay rate for u(x,t). To take advantage the
lower bound of the linearized nonlocal operator L for functions orthogonal to its
null space Null(L), we need to first shift the standing profile in terms of a dynamic
coordinate. We construct a shift function «(¢) such that

Doz, t) := d(x — 29 — t)), valz,t):=u(z,t) — du(x,t) (4.1)
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satisfy
vol Null(£a), Lo = (—0:)? + f'(¢a)

i.e.

/00 (u(z,t) — p(x — z0 — (t))) ¢ (x — xo — a(t)) da

o (4.2)
:/ Va2, )¢ (1 — 20 — (t)) do = 0.
Notice that [*_¢(2)¢/(x) dz = 0. Define a functional of o as
W(t,a) = /OO w(x, t)¢' (v — zo — ) dz. (4.3)

The following proposition is to clarify the existence, uniqueness and properties of
a(t) and it also provides an elementary proof for the implicit function theorem in the
unbounded domain.

PROPOSITION 4.1. For W(t,«) in (4.2), there exist T > 0 large enough and a
unique a(t) such that
(i) W(t,a(t)) =0 fort>T;
(i) a(t) >0 as t — 4o0;
(iii) a(t) € CH(T, +o0).

Proof. Step 1. We prove the existence and bound of «(t). Using the intermediate
value theorem and (2.37), we will first prove there exists 7' > 0 such that for any
t > T there exist at least one «(t) such that W(t,a(t)) = 0 for ¢ > T. Moreover,
for all the solutions to W (t, a(t)) = 0, there exist ar, by such that a(t) € [ar, br] for
t>1T.

By (2.37), for t > T large enough and e small enough, we know that there exists
To such that

/OO (p(z — zo — 'u/jﬁks) —ce ") (x — zg — ) dz < W (t, ),

W(t,a) < /_OO (¢p(x — o + M}jﬂks) +ee )¢ (z — zo — @) da,
or equivalently
/OO (p(z+a— a g) —ee )¢ (x) dz < W(t, ), (4.4)
W(t,a) < /_Z (p(z + a+ u:ﬂks) + e )¢/ (z) da. (4.5)

We choose T' such that ee #T < 1. Therefore

APy i
1</_OO (1 —ee )¢/ () d;vgah_{I;oW(ua)
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; = _ AP _
QEIPOOW“’O‘)S/ (—14ee )¢ () do < —1,

— 00

for any ¢ > T. Hence by the intermediate value theorem there is at least one a(t).
Next, define by as the solution of

/ o +bT— ﬁ )¢($)d$:2€€7#T<1
and a7 as the solution of

/oo oz +ar + M:ﬁke)qﬁ’(x) de = —2ee T > —1.

From (4.4),

0=W(t a(t)) = ( oft) - “+k> ¢ (z) dx — 2ee

2/00¢<x+a 5)¢’ yda — 2ee=HT
—c0 uﬂ

2/_OO</><;U+ Mﬂzkg>¢/ d:v— OO(b(ai—&—bT—M:—ﬂk)(b(x)dx.

This implies o(t) < by since [~ ¢(z + a — %S)W(%) dz is increasing with respect
to . Similarly, we can use (4.5) to obtain «(t) > ar so ar < a(t) < by.
Step 2. Uniqueness of «(t). Differentiating G with respect « yields

O W = / " (x — 0 — a)da

= /_ ¢ (x+ )¢’ (x) do — /00 (u(z,t) — ¢p(x — 20)) 9" (x — 20 — @) da

—00

> /jo #/(x + )/ () dar — maxc|u(, 1) — 6z — o) /fo 6"(2)] dz >0

for large ¢t > T5. Here we used b(t) = maxgzep [u(z,t) — ¢p(z — z0)| = 0 as t — 400
from Theorem 2.9.

Step 3. We prove a(t) — 0 as t — +o0.

If a(t) 4 0 as t — +oo, then there are constant a > 0 and a sequence t;, — oo as
k — oo such that by > a(tx) > a (or ar < a(ty) < —a). Then we have a subsequence
(still denote as t) and a* > 0 such that a(t;) — a*. Recall (4.2), which shows

/00 (p(z — mo) — ¢z — w0 — altr))d (x — 2o — aty)) dx

— 00

— /OO (p(z — mo) — u(z, i)@' (x — 2o — a(ty)) da.

— 00
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Taking limit as t; — oo in

/C><J (p(x — x0) — ¢z — 0 — a(ti)) ¢ (x — w0 — a(ty)) da

— 00

:/OO (d(z — xo) — ulz,t)) ¢ (x — xo — au(ty)) da

< max |b(x — z0) — u(w, ty)] / ¢ (x — o — afty)) do
=2 max |p(z — o) — u(z, ty)] — 0,
leads to
/ (¢(x — ) — d(x — 9 — a*)) ¢ (¥ — zp — a*) dz < 0. (4.6)

On the other hand, since a* > 0
d(x —x0) —d(x — 29 —a”) > 0. (4.7

Then due to ¢’ > 0, (4.6) and (4.7) lead to

| (6= w0) = 6~ 0~ )« ~ 70~ a”) d = 0
which is a contradiction due to a* > 0.
Step 4. a(t) € C1 (T, +00) is directly from the implicit function theorem. O

Next, we prove the shift a(t) introduced above contributes an exponentially small
error.

LEMMA 4.2. For a(t) and v (x,t) defined in (4.1), there are constants C' and p
such that
() fleall < Ce:
(i) |a(t)] < Ce .

Proof.  Step 1. Decay of ||vg||. From Theorem 2.9, we have b(t) =
maxgeg |u(x,t) — ¢(x — xo)| — 0. Since

max [va (2, )| < b(t) + cra(t) (4.8)
TE
for ¢; := max,cr ¢'(z) = %, we have
max v (z,t)| = 0, ast— 400 (4.9)
T€R

due to Proposition 4.1 (ii). From the definition of v,, for any x € R,

Ove = Oyu + ' 00
= —Au+ Apy + 0,0,
= —Lou— f(u) + f'(da)u+ Ada + 0/ 0rda
= ~Lava — f(Pa +va) + f(Pa) + f/(¢a)va + &/ 0y¢0
= —Lova — 3 f (62 + /0y a, (4.10)
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where £ := £(z) locates between ¢, () and ¢, (x) + va (2, t).
Since the shift «(t) — 0 and the upper/lower bound of f'(¢,) = — cos(mda)
remains same, we can directly apply the spectral gap Theorem 3.4 to L, to obtain

<£avom 1}@} = /\2||Uoc||2'

Therefore, multiplying v, to both sides of (4.10) and integrating with respect to x
lead to

— 5llva 0 < =Xaflval )] — %/Rf”(f(x))vi(%t) dz, (4.11)

where we used (¢/,,v,) = 0. For the second term [ f”(&(x))va(z,t)® dz, from (4.9),

| £7(€@id(e.t)del < maxtoa(e.0) £ €@)lval O < F o017
for t large enough. Therefore, (4.11) gives the exponential decay rate for v,,
[va (-, )| < Ce™". (4.12)
Step 2. Decay of a(t). Multiply (4.10) by 0,4, then we have
(0200 0rva) = (~Lava + 00 — 51" (E)va, Drda) (4.13)
= 00l = [ 317(©)020,00da.

where we used L,0;¢0 = Lo¢, = 0. Differentiating the relation (4.2) with respect
to t leads to

/ L0, dz = o// v dz, (4.14)
R R
which is the left-hand-side of (4.13). Thus (4.13) becomes
o = [ divadet [ 420 do
R R
This, together with the decay of ||v,|| in Step 1, shows
lo'[[lgn )1 < |/l @4 llvall + C max[@)[|lva [ < Ce™ .

Notice also [|¢},[|> = [|¢/[|> = [ 522 m dz and a(+00) = 0. Then standard calcu-
lus gives the exponential decay of |«(t)|. O

Finally we collect all the results above and complete the proof of Theorem 1.1.

Proof of Theorem 1.1. In Lemma 4.2, we proved
|lva |l < Ce™#t.

Since ¢ € H'(R), then from Theorem 2.1 we know u € C(0,00; H}(R)) and thus
ve € C(0,00; HY(R)). However, the uniform H'(R) bound for u, as well as v,, is
only valid for some sequence t,. Therefore we need to use the same trick in the proof
of Theorem 2.9 as explained below. From Theorem 2.9, there exists a time sequence
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tn, — 400 such that Q(t,) — 0 and thus ||u(-,t,)| 4 < ¢ due to (2.15). Applying
Ladyzhenskaya’s inequality to v, (-, t,), we have

: . < St 12 a1 |7
[va (-, )l _mva(,tninz loa (s t)ll s (4.15)
< cf|val- )12,

Hence we obtain the pointwise decay rate for the subsequence v, (z,t,)

[Va (s tn) e < CemHin (4.16)
for t,, large enough. Notice ¢'(x) = %—1 _‘_11:2, which has a maximum % Thus

u(@,tn) = ¢z, 0)| <|va(2,tn)| + [z = x0) = b — z0 — a(tn))|

2 -
<[va (@, tn)| + max|¢'[|a(tn)] < va(@, tn)| + ~|a(ts)] < Ce™,

uniformly in 2 due to Lemma 4.2 and (4.16). Then by the stability result Lemma 2.8,
we know for any ¢ large enough,

lu(x,t) — ¢(x,20)| < ce™™* uniformly in x € R. (4.17)
Notice also the basic estimate for v in Lemma 2.6 which gives

c
sup |u(x,t) — o(x — xg)| < ,

for any t > 0.

We complete the proof of the main Theorem 1.1. O

Proof of Theorem 1.2. The proof of Theorem 1.1 for the special potential F(u) =

23(1 4 cos(mu)) relies only on the concave part of F is (—3,3). Therefore, after
replacing the concave part of F' in Proposition 2.4 and Proposition 3.3 by [a1, as] C

(—1,1), the proof of Theorem 1.2 is exactly the same as the proof of Theorem 1.1. O

REMARK 7. To the end, we discuss the relation to the classical Benjamin-Ono
equation. Benjamin-Ono equation is a nonlinear partial integrodifferential equation
describing one dimensional internal waves in deep water. Consider

he = (=0p2)2hy + hy — 2R, (4.18)
Denote
1 1 h?  h?
EB(h) = §<(7azz)2h,h> + ? — ?
with
6EB 1 2
—— = —(—0z)2h+h—h~.
5h (—0z)2h +
Then (4.18) becomes
0Ep
he=0.(°08)

which is a Hamiltonian system. If we consider a special one-parameter family trans-
formation T, such that

h(z,t) = Tou = u(x — ct),
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then we have the traveling wave form of the Benjamin-Ono equation
(—0pa)?u =1+ (=1 = ¢)u.

Let W:=(1+ c)%2 — “; with W’ = (1 + ¢)u — u? and W” = 1 + ¢ — 2u. The special
traveling wave form of the Benjamin-Ono equation is

(—0pa)?u =1 — (1 + )u = —W(u), (4.19)

which is closely related to our static equation (1.9). Benjamin [4] found that ®, =

% is a solitary solution to (4.19) which, apart from the periodic solution, is
2
unique up to translations [1]. For instance for ¢ = 0, notice ®? — ® = ?&;f)g and

(H(®)) = (1_%;2 )’, then ® = H% is a solitary solution.
Define the linearized operator of the Benjamin-Ono equation along its solitary

profile &, as

(1+¢)32? —3(c+1)
(I1+¢)222+1

ol

Lpu = (—0p)2u+ W (®)u = (—pa)?u + u, (4.20)

1 % is very similar to our problem ;’z—f& in Section 3;
with lower bound —3(c 4 1) and upper bound 1 + ¢. The spectral analysis for this
kind of self-adjoint operators like Lp and L defined in (3.1) is standard. But for
completeness, we give a new proof involving some particular global properties of the
fractional Laplace operator; see Proposition 3.3.

One may also notice that unlike the solitary profile to Benjamin-Ono equation
which vanishes at far field, in the PN model the steady profile to (1.9) is a transition
connecting from —1 to 1 due to the double well potential. The dynamic PN model
is a gradient flow while the Benjamin-Ono equation is a Hamiltonian flow. However,
the steady profile are closely related, the derivative of m¢ is exactly ®(x); see more
connections in [38]. We refer to [5] for the orbit stability of solitary solutions to (4.18);
see also [40, 6, 22] for more general integrodifferential equations.

whose potentia

5. Discussion on slow motion of dislocations. Now we explain how to
choose the slow time scale in order to observe the slow motion behavior after typical
N-transition layers pattern formation. Recall the rescaled PDE (1.18)

Dpv° + é |:(—8,m)%v5 + iF’(UE)} =0 (5.1)

Using the abstract framework of approximated invariant manifold [34], denote

N
M {vf(x;m LD vy (x - h) Lhi= {h)Y e RN} L 62)
i=1

€

We will show formally if M is an N-dimensional approximated invariant manifold,
i.e. we have a gradient flow restricted to this finite dimensional manifold, then it leads
to the expected particle system describing the motion of N transition layers. More
explicitly, denote the tangent space as T then any v, € T can be expressed as

N N
Ov= (3 h) 1 x—h; . N N
Vo = ;:1 aiThi = —— E O[i¢l ( > , Q= {ai}izl c R, (53)

3 9
i=1
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Define the Riemannian metrics g, : RN x RY — R as

gh(aaﬁ) = <Ua,’Uﬁ> = Zgzgalﬁj (54)
4]

with

_l (T =l r(r =N ~ 0, i#J
w6 (50) 0 (50 s { Y0 ooy 09

due to the tail estimate (1.10). Then the gradient flow of the total energy of (1.18)

1 1
P07 = [ 5 l-0u) o + S P o 5.6
R <€ &€
is given by
d
gn(a, Oph) = % 70.7:5(1)6(£E; h+7a)) for any a € RV, (5.7)

Thus some straightforward calculations yield

1 / al / 1 a 1 /(€
g/RM) |2dx;0‘j i3 < [Z(%)zm—?m + F'(v ))] 7va>

1=1
ava> .

N
1 x — hi(t)
N < [_ Sre (10 )
i=1
Equivalently, taking v, = —1¢/ (%ﬁ)), we have for j =1,---, N,
N
1 x — h(t)
/12 / / 2
deh!. == ( |- )Y F _— 5.8
[ 11 can, <[ > o (==Y (58)
1+ ()Y K (o= hi(t) x — hy(t)
7 -z v N e ASA .
P 3o (R ) e (]
As for how much longer we shall wait to observe an O(1) particle system (1.20)
indicating the motion of each transition layer h;(t), we show below heuristically that

the time scale depends only on the tail (decay rate) of steady profile ¢. Notice the
decay estimate (1.10) shows that

hifhj ce
— | ~2H(z) -1 — — . .
¢< - ) (2) ey’ ase —0 (5.9)

To be more general, assume the tail estimate (5.9) is replaced by

(b(iu;izj)NQH(x)_l_K(m;hj), as & = 0. (5.10)

To calculate leading behavior of the particle system for hj, from F(£1) = 0, F is
2-periodic and the tail estimate (5.9), we also know

<§:F’(¢> (r ji(w)),w <fc :j(t)>> ~ =Y ek ("fgh> G

i#j
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)
(o () S () ) o ()

i#]
due to [ F'(¢)¢’ dz = 0. Thus the leading behavior of the particle system is

h;zEZK(hJ;h) j=1,---,N, (5.12)
Iy

which is a O(1) particle system independent of £ if K(r) = L. This ! interaction is a
typical example (edge dislocations with same orientations) of the Peach-Koehler force,
which in our case is a repulsive force acting on dislocations [33]. It shows the time
scale E% depends only on K, i.e. how fast ¢ decay at far field. To rigorously prove the
above approximate, one needs add a corrector ¢ to the ansatz such that (¢, ¢') = 0,
i.e. a corrector perpendicular to the ground state ¢’. The existence of such a corrector
is ensured by the spectral gap analysis (Theorem 3.4), or equivalently the coercivity
in Lax-Milgram theorem [21, Theorem 3.2]. For more general fractional operator
(—=0zz)® with 0 < s < 1, in order to observe the motion of N transition layers, the
slow time scale should be 51% due to the tail estimate for the corresponding steady
profile ¢ ~ H(x) — ‘wliixﬂ, see details in [13, 14].

It is worth to point out that sometimes we can not obtain an O(1) particle system
independent of € by choosing proper slow time scale. Indeed, if the tail estimate is
not algebraic decay, for example K (r) = e~I"l, [11] study the motion of metastable
patterns for u; = £20,,u—W'(u) at original time scale, where the double well potential
is W(u) = %(u2 — 1)2. Then the corresponding steady profile, still denoted as ¢,
satisfies

¢(z) = tanh(x/2), / |¢/|* da = %, o(x) ~ +1 F 2e71 as &z — +o0. (5.13)

R

We consider a new approximated invariant manifold,

N
M — {Us:m;)NJr;(_U% (x_h’),he]RN}. (5.14)

3

This manifold describes a typical pattern alternating between +1 with v®(—o0) = 1,
v¥(4+00) = (—1)". Then by the same calculations, (5.8) becomes

JGRE < [—éF’((—w (=21 (5.15)
S (‘“”))] (-1 (“h(t))>

i=1
Since W/ (£+1) = W”(£1) = 0, we have

<§; F'((-1)'¢ (W) ), (=1 (fﬂ—ahg(t)> >

~_ Z(,l)i+j46*\hi*h;‘|/€ + Z(,1)1'+j46*|hi*hj\/67

i>7 i<J

(5.16)
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<F’<Z(1>Z‘¢ (2O cpe (‘”‘“t))>
~ <F'(j:1 =S (—1yize el L S (il (i <oc — hj(t)>>

i>j i<j ©
~_ Z(_l)l”r]'zle*lhi*hjl/f + Z(_l)i+j4e*\hi*hj\/5_
i>j i<j
(5.17)
From this, together with (5.13) and (5.15), we obtain

hj, ~ 126 | Y (1) TRemheminl/e N (qyitkemihihalle ) =1, N,
i<k i>k
(5.18)
using proper boundary data. For fixed N, [11] also proved the global interactions in
(5.18) can be controlled by the nearest-neighbor interaction for small e, which leads
to

B~ 12¢ <e_(h’“+1_h’“)/5 _ e—“bk—hkfl)/f)  k=1,--- N (5.19)

Here we set hyi1 = +00, hg = —o0.

In solid state physics, the algebraic decay and exponential decay are two typical
tail estimates indicating the physical interactions between particles. For instant, for
the K(r) = %—i— %3, which shows elastic long range interaction between two steps in the
epitaxial growth, [19] study the mean field limit of a similar particle system in a larger
scale (taking particle number N goes to co). They prove if the tail estimate is faster
than a quadratic decay rate, in the mean field limit, the corresponding continuum
PDE from (5.18) with only nearest-neighbor interactions is same as the mean field
limit of (5.18) with global interactions.
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Appendix A. Proof of Theorem 2.1.

Proof of Theorem 2.1. Step 1. We collect some properties for G defined in (2.3).
(a) G : L*(R) — L%(R) is global Lipschiz, i.e.

[G(v1) = G(v2)|] < (1 + max|[f'])[lv1 — vz < 2[jvr — val|. (A1)
(b) If v(-) € HY(R), then G(v(-)) € H'(R). Indeed,
102G () || < |00l + ][],
which implies
1G]y < (7 + 2)]v]]1. (A2)

Step 2. First it is easy to check that operator A defined in (2.3) is m-accretive
in L?(R). Indeed we know Re(Az,x) > 0 for all z € D(A) and from Lemma B.6, we
know o(A) = [1,4+00). Therefore A is an infinitesimal generator of a linear strongly
continuous semigroup of contractions and [e~4*|| < 1. Second from the global Lip-
schitz condition (A.1), there exists a unique mild solution expressed by (2.6) and
v € C([0,400); L2(R)).

Step 3. Lipschitz continuity in ¢ of v and G(v).

ot +h) — v(t) (A9)

At Ahyy o) + /Hh e~ A=) Gy (7)) dr — /t e AU G(u(T)) dr
’ h

= e~ [(em*"vp — o) +/0 e AIG (o(7)) dr]

n / e A [Gu(r + h)) — Gu(7))] dr

0
= e **(u(h) — vo) + / e~ AD[G(u(T + ) = G(o(r))]dr.
0
Since ||e=4|| <1,

lo(t + h) — o()]| < [Jo(R) — voll + / 2wl + h) — v()|| dr.

Then by Gronwall’s inequality, we have

[o(t +h) — o) < [lv(h) — volle™. (A4)
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On the other hand,
h
v(h) — vy = (e~ — Nug + / e~ A= [G (1)) — G(ve) 4+ G(vo)] dr. (A.5)
0
Then from (A.1) and [|e~4*|| < 1 we know

h
[[o(h) = wvol| < hl|Avo +2/ [[o(T) = wvoll A7 + 2hlJv |
0

, (A.6)
= (2ol + 14vol) +2 | fo(r) = wol dr.
0
Thus Gronwall’s inequality gives us
[v(h) = voll < h(2ljvo| + || Avol)e*", (A.7)
which, together with (A.4), leads to the Lipschitz continuity of v(t)
v(t+h)—v(t
(leH < 92|[uo|e2+2", (A.8)
Then from (A.1) we concludes the Lipschitz continuity of G(v(t))
G(t+h)) —G(u(t
H ( ( )})L ( ( ))H S 4H'UO||1€2t+2h- (A9)

Moreover, from (A.3) we know

M _ e—At%h_vo +/0 e—A(t—T)G(v(T—’—h)})L_ Glo(r) dr. (A.10)

On one hand, by the reflexibility of L? space and generalized Rademacher’s theorem,
there exists g(t) € L*(0,T; L?(R)) such that for a.e. t > 0,

}1}3}) G(v(t—&-h)]i—G(v(t)) — g, (A1)

ie. g(t) = 0:G(v(t)) which is the Fréchet derivative of G. Then by Lebesgue’s
dominated convergence theorem and (A.9), we know the limit for the second term on
the right hand side of (A.10) exists. On the other hand, from (A.5),

v(h) —vy e At —1T
h B h
— —Avy + G(vp)

h
wt g [ eI ~ Gl + Gl dr

due to continuity of G, so the first term on the right hand side of (A.10) converges.
Then by Lebesgue’s dominated convergence theorem and (A.8), we know the limit for
the second term on the right hand side of (A.10) also exists. Therefore we know

d(t) = e~ (= Avg + G(vo)) + /0 e A g(7)dr, (A.12)
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which concludes d;v € C([0,T]; L*(R)). Plugging in the formula (A.11), (A.12) be-

comes

d(t) =e=A(—Avg + G(vg)) + /0 e A1 G(u(r)) dr

=e~ (= Avg + G(vg)) + e G (u(r))[h — A /O e MG (o(r)) dr

_G(u(t)) — Ae~ Moy — A /0 A= G(y(r)) dr
— — Au(t) + G(o(t))
due to (2.6). Then since G(v(t)) € C((0, T; L2(R)) we have
Av € C([0,T]; L*(R)). (A.13)

Step 4. Higher order regularities.
Set w; = dyv and wy = J,v. Then

G (v) = G'(v)0w € O([0,T]; L*(R))
and
0;G(v) = (1= f(¢ +2)wv — (f'(¢ +v) = ['(¢))00 € C([0,T]; L*(R)).
Therefore we can repeat Step 1 and 2 for
dywy + Awy = G’ (v)wy (A.14)
and

Oywz + Awy = (1= f'(v+ ¢))wa = (f' (¢ +v) = ['(¢)0x0 (A.15)

to obtain

wy,wy € C((0,T]; L*(R)) N C((0,T]; H'(R))
Oywy, Opwa € C’((O,T];LZ(R))

which concludes v is a global classical solution to (1.12) and satisfies (2.7).
Step 5. (2.8) is directly from (1.12) and above regularity properties. Then we
have

F(v(t)) < F(vo).

Appendix B. Proof of key propositions in Section 3.
B.1. The spectrum o(L) C [-1,400). LEMMA B.1. The operator L in (3.1)
s a densely defined, self-adjoint linear operator.

Proof. First, it is obvious L is linear operator and D(L) = H*(R) is dense in
L?(R).
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x
x

Second, denote () := zjr} which is bounded function. For any y, v € H!,

w+ q(@)u,y) = (u, (—0ax) 2y + q(x)y) = (u, Ly).

Nl

(Lu,y) = ((—0ua)
Hence L is self-adjoint. O

LEMMA B.2. Assume the operator L is a densely defined, self-adjoint linear
operator, then

Ker(M — L) = Ran(\ — L)*.

Proof. For any y € D(A — L), any u € Ker(AI — L), we have

0= (AT — L)u,y) = (u. (M — Lyy).

LEMMA B.3. The operator L in (3.1) is closed.
Proof. Assume we have u, — u in D(L) and y,, := Lu, — y in L*(R). Since
D(L) is dense in L?(R), we first choose any test function ¢ € D(L). Then
(0:9) < (@ yn) = (@, Lun) = (L, un) — (Lp,u) = (¢, Lu),
and dense argument shows that y = Lu. Hence L is closed. O

DEFINITION 2. Let T be a closed operator on a Hilbert space X. A complex
number A is in the resolvent set p(T) if A\I — T is bijection of D(T') onto X with a
bounded inverse. If A € p(T), R\(T) = (M — T)~" is called the resolvent of T'.

REMARK 8. If A\l —T is a bijection of D(T") onto X, by the closed-graph theorem,
its inverse is automatically bounded.

LEMMA B.4. For linear operator L in (3.1) and any A € C\[—1,+00), the range
Ran(Al — L) is closed.

Proof. Notice the lower bound for potential g(x) := zz;i is —1. For A = a+ bi
with b # 0, we have

IAT = Lyu||* = [[bull® + || (aI — Lyul|* > b?||ul|? (B.1)
For A < —1, we have
[ = Lyul* = [(A+Dyul® =2+ D {(LAT)u, u) + | (L+Dul* > (A+1)*[[u]?, (B.2)

where we used ((L + I)u,u) >0 and A+ 1 < 0.

Now, we show that Ran(A — L) is closed. For any y, € Ran(A — L) with
Yn = (M — L)uy, if y, — y, from the lower bound estimate in (B.1) and (B.2),
up, — u. Therefore from Lemma B.3 we know y = (Al — L)u. Thus Ran(Al — L) is
closed. O

LEMMA B.5. For linear operator L in (3.1), 0(L) = 0,(L) Uo.(L) C [—1,+00).

Proof. (1) For a self-adjoint operator, the spectrum locates on the real line.
Indeed, for any b # 0, (B.1) implies there is a lower bound for A\I — L. To obtain A €
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p(L), it remains to prove Al — L is onto. If it is not onto and we assume Ran(Al — L) #
L?. Then by Lemma B.1, B.2 and B.4, Ker(Al — L) = Ran(\ — L)J‘ = Ran(\ — L)l
is not empty, which means there exists u* # 0 such that (Al — L)u* = 0 and it
contradicts with (B.1).

(2) For self-adjoint operator, the residual spectrum is empty. Indeed, if A € o,., we
concludes a contradiction from the fact

Ker(AM — L) = Ran(\ — L)* D Ran(M — L) # 0.

(3) op C [-1,400). Otherwise, if A, = a < —1 is a point spectrum, then (B.2) leads
to an contradiction.
(4) 0. C [-1,400). Otherwise, if A, = a < —1 is a continuous spectrum, then

L? = Ran(\ — L) = Ran(\ — L),

which contradicts with the definition of continuous spectrum. O

B.2. The continuous spectrum o.(L) C [1,+00). It worth to mention that
z2—1

the proof relies only on the lower and upper bound of the potential f'(¢) = 277,

which are —1 and 1 separately.

LEMMA B.6. For linear operator L in (3.1), o.(L) C [1,+00). Besides, for the
linear operator A in (2.3), o(A) = [1,+00).

Proof. Recall the perturbation theorem for spectrum in [37, Theorem XIII 14 and
Corollary 2] .
Let A be a self-adjoint operator and let C' be a relatively compact
perturbation of A. Then L := A+ C has the same essential spectrum
with A.

In our case, notice the upper bound for potential ¢(z) := is 1. Taking

22—1
241
A= (—GM)% + I and C := v(z) — I, we will first prove C' is a relatively compact
perturbation of A, i.e. C(A+i)~! is compact, and then we prove o(A) = [1, +00).
(1) First we prove C'(A+i)~! is compact. Assume u; € L?(R) satisfying |Ju;|| < M
for any j. Denote w; := (A +14) tu; = (L +i)I + (—BM)%)_luj. We want to prove
for any € > 0 there exist J and a subsequence (still denoted as j) such that for any
j>Jand >0, (¢q(x) — 1)(w; — w;4s) are Cauchy sequence in L?(R).
(L.a) For € > 0, n := [1/e], there exists R,, such that for any |z| > R,

. (B.3)

DN ™

/ . (q—1)(wj —wjpe) dz < [lg — Ul r2(ai>r,) - |w; — wisell L2 (je)> R,y <
z|>R,

(1.b) For |z| < R, we claim w; = ((1 +4)I + (—8m)%)_1uj is bounded in H!(|z| <
R,,). Indeed from ((1+4)I + (fam)%)wj = u; and the Fourier transform, we know

; i; (§)
w;i(€) = .
O =i
Then by Parserval’s identity
lwillzr = llws | + [lwjll* = [l [1* + [[1€]w; |

_ 1+ €2 .,

= C/muj(f) d¢ < cffuy]?.
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Since H'(|z| < R,) — L?*(|z|] < R,) compactly, we obtain a subsequence (still
denoted as w;) of w; which strongly converges in L?(|z| < R,,) and ||(g(x) — 1)(w; —
wjte)||L2(jx|<r,) < 5. Combining (1.a) and (1.b) gives a Cauchy sequence in L*(R)
and we conclude C(A +i)~! is compact.

(2) We turn to prove o(A) = [1,400). First notice the lower bound now is 1, so by
Lemma B.5, 0(A) C [1,+00). It remains to prove [0, 400) C o((—8,)2) due to A is a
shift of (—0,,)? with constant 1. For any A > 0, we will prove Ran(Al — (—0,,)2) #
L3(R). Set f := €v*N(0, 1) where N(0, 1) is the normal distribution. Then f € L?(R)
and f(£) = N(&,1). Then by the Fourier transformation, if there exists a solution to

(M — (—0pe)2)u = f, then 4(€) = )\ff—% Therefore u is the inverse Fourier transform

of I\Z\(f‘l)é) which is not integrable. Thus we have [1,+00) C o(A) C [1,+00) and

Oess(A) = 0(A) = [1, +00).
Finally we conclude o.(L) C 0css(L) = 0ess(A) = [1,+00). O
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