
COMMUN. MATH. SCI. c© 2017 International Press

Vol. 15, No. 7, pp. 1821–1842

DISCRETE-IN-TIME RANDOM PARTICLE BLOB METHOD FOR
THE KELLER–SEGEL EQUATION AND CONVERGENCE ANALYSIS∗

HUI HUANG† AND JIAN-GUO LIU‡

Abstract. We establish an error estimate of a discrete-in-time random particle blob method for

the Keller–Segel (KS) equation in Rd (d≥2). With a blob size ε=N
− 1
d(d+1) log(N), we prove the

convergence rate between the solution to the KS equation and the empirical measure of the random
particle method under L2 norm in probability, where N is the number of the particles.
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1. Introduction
Analogously to the random vortex blob method for the Navier–Stokes equations,

we propose a discrete-in-time random particle blob method for the Keller–Segel (KS)
equation in Rd (d≥2) [19,25], which reads

∂tρ=ν∆ρ−∇·(ρ∇c), x∈Rd, t>0,

−∆c=ρ(t,x),

ρ(0,x) =ρ0(x),

(1.1)

where ν is a positive constant. In the context of biological aggregation, ρ(t,x) represents
the bacteria density, and c(t,x) represents the chemical substance concentration, which
is given from the fundamental solution of Laplace’s equation as follows

c(t,x) =


Cd

∫
Rd

ρ(t,y)

|x−y|d−2
dy, if d≥3,

− 1

2π

∫
Rd

ln|x−y|ρ(t,y)dy, if d= 2,

(1.2)

where Cd=
1

d(d−2)αd
,αd=

πd/2

Γ(d/2+1)
, i.e. αd is the volume of the d-dimensional unit

ball. We can recast c(t,x) as c(t,x) = Φ∗ρ(t,x) with Newton potential Φ(x), which can
be represented as

Φ(x) =


Cd
|x|d−2

, if d≥3,

− 1

2π
ln|x|, if d= 2.

(1.3)
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Furthermore, we take the gradient of the Newtonian potential Φ(x) as the attractive
force F (x). Thus we have

F (x) =∇Φ(x) =−C∗x
|x|d

, ∀ x∈Rd\{0}, d≥2, (1.4)

with C∗= Γ(d/2)
2πd/2

.

In recent years, there has been a surge of activities focused on properties of the
KS equation, both for parabolic-elliptic and parabolic-parabilic systems. In the case
of two dimensions, for the parabolic-elliptic model (1.1), a sharp bound on the critical
mass, mc= 8π, was given by Dolbeault and Perthame in [12] through using the loga-
rithmic Hardy–Littlewood–Sobolev inequality. Critical mass means that if the initial
mass is less than mc, the solution will exist globally; otherwise there must be mass
concentration [12]. This result was further completed and improved in [5], where the
existence of free-energy solutions had been proved. In [3], Bedrossian and Masmoudi
proved a local existence and uniqueness of mild solutions for initial measure only sat-
isfying maxx∈R2 µ{x}<8π. For the parabolic-parabolic KS model, the global existence
was analyzed and the critical mass (which is also 8π) was derived in [8]. There was in-
depth analyses for the case of critical mass mc= 8π in [4, 6]. In space dimension d≥3,
global existence, finite time blow-up and large time asymptotic behavior were studied
in [7, 26, 28]. Last, we refer readers to the review paper [16] or Chapter 5 in [26] for
more details.

Since the error estimates obtained later are valid when the solution of the KS
equation is regular enough, we assume that

0≤ρ0∈L1∩Hk(Rd) with k>d/2+3, (1.5)

then the KS system (1.1) has a unique local solution with the following regularity

‖ρ‖L∞(0,T ;Hk(Rd))≤C
(
‖ρ0‖L1∩Hk(Rd)

)
, (1.6)

where T >0 depends on ‖ρ0‖L1∩Hk(Rd). The proof of this result is a standard process
and it can be found in [17, Theorem A.1]. As a direct result of the Sobolev imbedding
theorem, one has

‖ρ‖L∞(0,T ;W 3,∞(Rd))≤C
(
‖ρ0‖L1∩Hk(Rd)

)
, (1.7)

for k>d/2+3.
Let {Xi(0)}Ni=1 be N independent, identically distributed (i.i.d) random vectors

with common density ρ0(x). Then we introduce a random particle blob method for the
KS equation, and it is given by the following stochastic particle system of N particle
paths {Xi(t)}Ni=1

dXi(t) =
1

N−1

N∑
j=1

Fε
(
Xi(t)−Xj(t)

)
dt+
√

2νdBi(t), i= 1,·· · ,N, (1.8)

where {Bi(t)}Ni=1 are N independent standard Brownian motions and

Fε=ψε ∗F, ψε(x) =ε−dψ(ε−1x), ε>0. (1.9)

In this article, we take the cut-off function 0≤ψ(x)∈C∞0 (Rd) as in [17], which satisfies
ψ(x) =ψ(|x|) and

∫
Rdψ(x)dx= 1.
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To discretize equation (1.8) in time, take a time step ∆t>0 and let tn=n∆t. Our

approximation X
(n)
i ≈Xi(tn), will satisfy

X
(n+1)
i =X

(n)
i +∆tGN

(
X

(n)
i

)
+
√

2ν∆tN
(n)
i , i= 1, ·· · ,N, (1.10)

where the N
(n)
i are independent standard Gaussian random vectors and

GN
(
X

(n)
i

)
:=

1

N−1

N∑
j=1

Fε
(
X

(n)
i −X

(n)
j

)
. (1.11)

Our error estimate is based on the coupling method. To do this, we will construct

independent particles
{
Y

(n)
i

}N
i=1

from the mean field equation and prove that they are

close to particles
{
X

(n)
i

}N
i=1

with high probability (see Theorem 3.1).

Before the construction of
{
Y

(n)
i

}N
i=1

, we recall a simple fact from the probability

theory. Suppose X ∈Rd is a random vector with density ρ(x). Let u(x) be a smooth
vector field so that the mapping y=x+∆tu(x) is a smooth homeomorphism for all ∆t
small enough. If Y =X+∆tu(X), then Y has the density function ρ̄(x) defined by

ρ̄
(
x+∆tu(x)

)
= det−1

(
I+∆tDu(x)

)
ρ(x). (1.12)

Now, we can construct independent particles
{
Y

(n)
i

}N
i=1

to approximate
{
X

(n)
i

}N
i=1

by following the approach in [13]. Assume that we have independent random variables{
Y

(0)
i

}N
i=1

with the same density ρ(0)(x) =ρ0(x). If G(0) =Fε ∗ρ(0) and Y
(1/2)
i =Y

(0)
i +

∆tG(0)
(
Y

(0)
i

)
, then

{
Y

(1/2)
i

}N
i=1

are independent and have common density ρ(1/2) (see

equation (1.14)) by the definition (1.12). Furthermore, if Y
(1)
i =Y

(1/2)
i +

√
2ν∆tN

(0)
i ,

the N
(0)
i being the independent standard Gaussian random vectors, then

{
Y

(1)
i

}N
i=1

has

density ρ(1) given by equation (1.15). Continuing this process, we have constructed{
Y

(n)
i

}N
i=1

with common density ρ(n) satisfying the discretized equations:

G(n)(x) =Fε ∗ρ(n)(x), (1.13)

ρ(n+1/2)
(
x+∆tG(n)(x)

)
= det−1

(
I+∆tDG(n)(x)

)
ρ(n)(x), (1.14)

ρ(n+1)(x) =H(
√
ν∆t)ρ(n+1/2)(x). (1.15)

Here, the operator H(s) is the solution operator of the heat equation at time s. In
addition, the splitting algorithm from equations (1.13)–(1.15) is a splitting scheme with
the linear transport approximation, and it has been proved in [18] that ρ(n) converges
to ρ(tn,x) with the rate C∆t when Fε in equation (1.13) is replaced by F .

To approximate X
(n)
i , we define Y

(0)
i =X

(0)
i and

Y
(n+1)
i =Y

(n)
i +∆tG(n)

(
Y

(n)
i

)
+
√

2ν∆tN
(n)
i , i= 1, ·· · ,N, (1.16)

where G(n)
(
Y

(n)
i

)
is the vector field constructed in equation (1.13). Note that Y

(n)
i is

independent of Y
(n)
j if i 6= j, and they share the common density ρ(n).

Now, we define the regularized empirical measure as follows: consider a non-negative
function ϕ(x) =ϕ(|x|)∈C∞0 (Rd), which satisfies:
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• ϕ(x) is bounded and compactly supported;

•
∫
Rdϕ(x)dx= 1 and

∫
Rd xx

Tϕ(x)dx=aId, where a= 1
d

∫
Rd x

2ϕ(x)dx and Id is the
identity matrix.

And for some δ>0, which will be specified later, let ϕδ(x) = δ−dϕ(δ−1x). Then the

regularized empirical measure of
{
X

(n)
i

}N
i=1

can be defined as

µ
(n)
X (x) :=

1

N

N∑
i=1

ϕδ
(
x−X(n)

i

)
, (1.17)

and similarly, one has the regularized empirical measure of
{
Y

(n)
i

}N
i=1

µ
(n)
Y (x) :=

1

N

N∑
i=1

ϕδ
(
x−Y (n)

i

)
. (1.18)

The use of such regularized empirical measures above is important in computation.
The vortex method was first introduced by Chorin in 1973 [9], which is one of the most
significant computational methods for fluid dynamics and other related fields. The
convergence of the vortex method for two and three dimensional inviscid incompressible
fluid flows was first proved by Hald etal. [14,15], Beale and Majda [1,2]. When the effect
of viscosity is involved, the vortex method is replaced by the so called random vortex
method by adding a Brownian motion to every vortex. The convergence analysis of the
random vortex method for the Navier–Stokes equation have been given by [13, 22–24]
in 1980s. Lastly, we refer to the book [10] for theoretical and practical use of the vortex
methods, and also refer to [11] for recent progress on a blob method for the aggregation
equation.

For the KS equation, a random particle blob method has been studied in [20], where
a rigorous global convergence without probability rate has been obtained. Furthermore,
our recent paper [17] studied the time continuous system (1.8), and proved the conver-
gence of particle paths in probability. However, in this paper, we study the fully dis-
cretized system (1.10) and prove the convergence of the regularized empirical measure
in L2 space. Since the system (1.8) has a very large size N and the kernel Fε is singular,
the standard convergence analyses of time discretization does not work. To overcome
this, in [18], we proposed a splitting method with the linear transport approximation
as in equations (1.13)–(1.15), so that we can fully use the regularity of ρ(n). Based
on the stability and regularity of the splitting method, we use the coupling method to
achieve our objective. In order to realize this approach, this splitting method requires

us to take the initial positions as i.i.d. random vectors
{
Xi(0)

}N
i=1

with the common
density ρ0. On the contrary, the initial positions of the particles were taken on the lat-
tice points N−1/dα∈Rd with mass 1

N ρ0

(
N−1/dα

)
in [17], where α= (α1, ·· · ,αd)∈Zd,

and a sampling letter plays a crucial part in the proof. This tool could not be adapted
here. Based on the convergence result of random particle trajectories in [17], Liu and
Zhang [21] showed the convergence of regularized empirical measures of many particle
systems in probability under a Sobolev norm to the corresponding mean field PDE by
using a new martingale method.

With defining the regularized empirical measure µ
(n)
X , we can state the main result

in this paper, which shows that µ
(n)
X converges to the unique solution of KS Equation

(1.1) in L2 norm with high probability.
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Theorem 1.1. Suppose that 0≤ρ0(x)∈L1∩Hk(Rd) with k>d/2+3. Let ρ(t,x) be
the unique regular solution of the KS Equation (1.1) with local existence time T and

µ
(n)
X be the regularized empirical measure as in definition (1.17) with δ=N−

1
d(d+2) (N

sufficiently large). If ε=N−
1

d(d+1) log(N) , then there exists some T∗, C∗ depending
only on T and ‖ρ0‖L1∩Hk(Rd), for T∗/N ≤∆t≤C∗ and (n+1)∆t≤T∗, such that the
following estimate holds

P

(
max

0≤n∆t≤T∗
‖ρ(tn,·)−µ(n)

X (·)‖2<C1

(
N−

1
d(d+2) +∆t

))
≥1−C2N

− 2
d(d+2) ,

where C1, C2 depend only on T∗ and ‖ρ0‖L1∩Hk(Rd).

To conclude the introduction, we give the outline of this paper. First (Section
2), we provide several lemmas including kernel estimates, the regularity of ρ(n) and

a concentration inequality. In Section 3, we consider the independent particles Y
(n)
i

moving with the velocity field constructed from equations (1.13)–(1.15). And given
sufficient smoothing, we prove that these independent particles satisfy Equation (1.10)
up to an error. Then we establish the error estimate between the regularized empirical

measure µ
(n)
X and the solution to KS Equation (1.1) in L2 norm in Section 4. Then

(Section 5), we obtain the error estimate on the interaction. In Section 6, we extend
our results to general regular attractive force F .

2. Preliminaries
Notation: For convenience, we denote the index set of the particles as I :=

{1,·· · ,N} and the number of particles N is assumed to be sufficiently large in the
sequel. In this paper, we use ‖·‖p for Lp norm of a function and use ‖·‖`2 for discrete
L2 norm of a vector, which can be represented as

‖(vi)i∈I‖`2 =

(
1

N

N∑
i=1

|vi|2
)1/2

. (2.1)

Moreover, we denote f̂(ξ) as the Fourier transformation of f(x), which is

f̂(ξ) :=

∫
Rd
f(x)e−2πix·ξ dx. (2.2)

The generic constant will be denoted generically by C, even if it is different from line
to line.

Firstly, we summarize some useful estimates about the regularized kernel Fε as in
definition (1.9).

Lemma 2.1 (Kernel estimates).

(i) Fε(0) = 0, Fε(x) =F (x) for any |x|≥ε and |Fε(x)|≤ |F (x)|;
(ii) |∂βFε(x)|≤Cβ ε1−d−|β|,for any x∈Rd;

(iii) ‖Fε‖W |β|,q(Rd)≤εd/q+1−d−|β|,for q>1.

These results can be found in [17, Lemma 2.1-2.2].
The following lemma shows that the algorithm from equations (1.13)–(1.15) is Hk

stable.

Lemma 2.2 ( [18, Proposition 3]). Suppose that the initial density 0≤ρ0(x)∈
L1∩Hk(Rd) with k> d

2 +1. Then there exists some C∗,T1>0 depending only on
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‖ρ0‖L1∩Hk(Rd), such that for the algorithm (1.13)–(1.15) with ∆t≤C∗, we have

‖ρ(n)‖Hk ≤C(T1,‖ρ0‖L1∩Hk(Rd)), ∀ 0≤n∆t≤T1. (2.3)

The next lemma can be found in [13], which provides us the probability bounds of
random vectors in the sequel.

Lemma 2.3 ( [13, Lemma 1]). Let Zi,·· · ,ZN be i.i.d. random vectors with E[Zi] = 0,

E[Z2
i ]≤g(N) and |Zi|≤C

√
Ng(N). Then the sample mean Z̄= 1

N

∑N
i=1Zi satisfies

E

[
exp

(√
N

g(N)
|Z̄|

)]
≤C, (2.4)

and

P

(
|Z̄|≥

Cp
√
g(N)log(N)√

N

)
≤N−p, (2.5)

where Cp depends only on C and p>0.

Applying Lemma 2.3, we obtain the probability bound of the gradient of the regu-
larized kernel Fε:

Lemma 2.4. Let Fε be the regularized kernel as in definition (1.9) with ε≥
N−

1
2d log(N). Then there exists a positive constant C depending only on p>0, T1

and ‖ρ0‖L1∩Hk(Rd), such that if T1/N ≤∆t≤C∗ (T1,C∗ are used in Lemma 2.2), then

P

max
x

∣∣∣∣∣∣ 1

N−1

N∑
j=1

∇Fε
(
x−Y (n)

j

)∣∣∣∣∣∣≥C for some n∆t≤T1

≤N1−p. (2.6)

Proof. The main idea of this proof is to use the Fourier transform and Markov’s
inequality. First, let us define

L(n)(x) :=
1

N

N∑
j=1

∇Fε
(
x−Y (n)

j

)
−
∫
Rd
∇Fε(x−y)ρ(n)(y)dy. (2.7)

So in order to give a rough bound on

1

N−1

N∑
j=1

∇Fε
(
x−Y (n)

j

)
, (2.8)

we only need to bound

Sn := max
x
|L(n)(x)|, (2.9)

since the integral contribution to L(n)(x) is bounded. We shall use the fact that

max
x
|L(n)(x)|≤

∫
Rd
|L̂(n)(ξ)|dξ, (2.10)
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with

L̂(n)(ξ) =
1

N

N∑
j=1

(
e−2πiξ·Y (n)

j − ρ̂(n)(ξ)
)
∇̂Fε(ξ). (2.11)

If we define

L1(ξ) :=
1

N

N∑
j=1

(
e−2πiξ·Y (n)

j − ρ̂(n)(ξ)
)

=:
1

N

N∑
j=1

Zj , (2.12)

then it is easy to verify that

E(Zj) = 0, E(|Zj |2)≤C, |Zj |≤C. (2.13)

Thus it follows from Lemma 2.3 that

E
[
exp{

√
NL1(ξ)}

]
≤C. (2.14)

Set L2(ε) =
∫
Rd |∇̂Fε(ξ)|dξ. Then one has∫

Rd

|∇̂Fε(ξ)|
L2(ε)

dξ= 1. (2.15)

Now we can apply Jensen’s inequality since ex is a convex function:

exp

{∫
Rd

√
NL1(ξ)

|∇̂Fε(ξ)|
L2(ε)

dξ

}
≤
∫
Rd

exp{
√
NL1(ξ)} |∇̂Fε(ξ)|

L2(ε)
dξ, (2.16)

which leads to

E

[
exp

{∫
Rd

√
NL1(ξ)

|∇̂Fε(ξ)|
L2(ε)

dξ

}]
≤
∫
Rd

E
[
exp{

√
NL1(ξ)}

] |∇̂Fε(ξ)|
L2(ε)

dξ

≤C
∫
Rd

|∇̂Fε(ξ)|
L2(ε)

dξ=C. (2.17)

Hence,

E

[
exp

{√
NSn
L2(ε)

}]
≤E

[
exp

{√
N
∫
Rd |L̂

(n)(ξ)|dξ
L2(ε)

}]

=E

[
exp

{∫
Rd

√
NL1(ξ)

|∇̂Fε(ξ)|
L2(ε)

dξ

}]
≤C. (2.18)

If we use Markov’s inequality, it follows that

P

(
Sn≥

Cp log(N)L2(ε)√
N

)
≤N−p. (2.19)

Notice that

L2(ε) =

∫
Rd
|∇̂Fε(ξ)|dξ=

∫
Rd
|F̂ (ξ)||∇̂ψε(ξ)|dξ≤C

∫
Rd
|ψ̂(εξ)|dξ≤Cε−d, (2.20)
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since |F̂ (ξ)|≤ C
|ξ| and |∇̂ψε(ξ)|= |ξ||ψ̂(εξ)|. So if we assume that ε≥N− 1

2d log(N), then

inequalities (2.19) and (2.20) imply that

P
(
Sn≥Cp log1−d(N)

)
≤N−p. (2.21)

By the constriction of time size T1/N ≤∆t, one has

n≤T1/∆t≤N. (2.22)

Taking unions of N sets of the events

Γn :=
{
Sn≥Cp log1−d(N)

}
, (2.23)

inequality (2.21) implies that

P
(

max
x
|L(n)(x)|≥Cp log1−d(N) for some n∆t≤T1

)
=P (∪nΓn)≤N1−p. (2.24)

For N sufficiently large, there exists some Λ such that

P
(

max
x
|L(n)(x)|≥Λ for some n∆t≤T1

)
≤N1−p. (2.25)

and

P

(
max
x

∣∣∣∣∫
Rd
∇Fε(x−y)ρ(n)(y)dy

∣∣∣∣≥Λ for some n∆t≤T1

)
= 0. (2.26)

Hence, it follows from the definition (2.7), that

P

max
x

∣∣∣∣∣∣ 1

N−1

N∑
j=1

∇Fε
(
x−Y (n)

j

)∣∣∣∣∣∣≥2Λ for some n∆t≤T1


≤P

(
max
x
|L(n)(x)|≥Λ for some n∆t≤T1

)
+P

(
max
x

∣∣∣∣∫
Rd
∇Fε(x−y)ρ(n)(y)dy

∣∣∣∣≥Λ for some n∆t≤T1

)
≤N1−p, (2.27)

which concludes the proof.

3. The error estimate between X
(n)
i and Y

(n)
i

In this section, we will show that Y
(n)
i is a good approximation of X

(n)
i . Actually,

it satisfies

Y
(n+1)
i =Y

(n)
i +∆tGN

(
Y

(n)
i

)
+
√

2ν∆tN
(n)
i +∆t r

(n)
i , i∈ I, (3.1)

where

GN
(
Y

(n)
i

)
:=

1

N−1

N∑
j=1

Fε
(
Y

(n)
i −Y (n)

j

)
, (3.2)

and

r
(n)
i :=G(n)

(
Y

(n)
i

)
− 1

N−1

N∑
j=1

Fε
(
Y

(n)
i −Y (n)

j

)
. (3.3)
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The following proposition states that the residual vector r(n) :=
(
r

(n)
i

)
i∈I is small in

`2 norm with high probability.

Proposition 3.1. Assume that ε≥N−1/d. Then there exists a positive con-
stant C depending only on p>1, T1 and ‖ρ0‖L1∩Hk(Rd), such that if T1/N ≤∆t≤C∗
(T1,C∗ are used in Lemma 2.2), then

P
(
|r(n)
i |≥CN

−1/d log(N) for some i∈ I,n∆t≤T1

)
≤N2−p, (3.4)

and

P
(
‖r(n)‖`2 ≥CN−1/d log(N) for some n∆t≤T1

)
≤N2−p, (3.5)

where r
(n)
i is the residual as in definition (3.3).

Proof. First, we are ready to bound

r
(n)
1 =G(n)

(
Y

(n)
1

)
− 1

N−1

N∑
j=1

Fε
(
Y

(n)
1 −Y (n)

j

)
=

1

N−1

N∑
j=2

Zj , (3.6)

where Zj =G(n)
(
Y

(n)
1

)
−Fε

(
Y

(n)
1 −Y (n)

j

)
and we have used Fε(0) = 0. Since Y1 and Yj

are independent, let us consider Y1 as given and denote E′[·] =E[·|Y1]. It is easy to show
that E′[Zj ] = 0 since

E′
[
Fε
(
Y

(n)
1 −Y (n)

j

)]
=

∫
Rd
Fε
(
Y

(n)
1 −y

)
ρ(n)(y)dy=E′

[
G(n)(Y

(n)
1 )

]
. (3.7)

To use Lemma 2.3, we need a bound for the variance

E′
[
|Zj |2

]
=E′

[
|G(n)(Y

(n)
1 )−Fε

(
Y

(n)
1 −Y (n)

j

)
|2
]
. (3.8)

Since G(n) is bounded and Y
(n)
1 could be any point, it suffices to bound

E′
[
Fε(Y

(n)
1 −Y (n)

j )
]

=

∫
Rd
Fε(Y

(n)
1 −x)ρ(n)(x)dx≤‖ρ(n)‖2‖Fε‖2≤Cε1−d/2 (3.9)

and

E′
[
Fε(Y

(n)
1 −Y (n)

j )2
]

=

∫
Rd
Fε(Y

(n)
1 −x)2ρ(n)(x)dx≤‖ρ(n)‖∞‖Fε‖22≤Cε2−d, (3.10)

where we have used ‖ρ(n)‖∞≤C‖ρ(n)‖Hk ≤C(T1,‖ρ(0)‖Hk) and ‖Fε‖2≤Cε1−d/2.
Hence one has

E′
[
|Zj |2

]
≤Cε2−d. (3.11)

Under the assumption that ε≥N−1/d, the hypotheses of Lemma 2.3 are satisfied
with g(N) =CN1−2/d. In addition, |Zi|≤Cε1−d≤CN1−1/d≤C

√
Ng(N). Hence, we

have the probability bound of r
(n)
1 by Lemma 2.3:

P
(
|r(n)

1 |≥CpN−1/d log(N)
)
≤N−p. (3.12)
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Similarly, the same bound must also apply hold to other r
(n)
i with i= 2,·· · ,N , which

leads to

P
(
|r(n)
i |≥CpN

−1/d log(N) for some i∈ I,n∆t≤T1

)
≤N2−p. (3.13)

As a direct result of inequality (3.13), we obtain inequality (3.5) by the definition of `2
norm.

Recall the definition (1.11) of GN
(
X

(n)
i

)
and the definition (3.2) of GN

(
Y

(n)
i

)
. We

obtain the following proposition of stability.

Proposition 3.2. Suppose that ε≥N−
1

d(d+1) log(N), vectors X(n) :=
(
X

(n)
i

)
i∈I and

Y (n) :=
(
Y

(n)
i

)
i∈I satisfy equations (1.10) and (1.16) respectively. If we denote events

A :=
{∥∥GN(X(n)

)
−GN

(
Y (n)

)∥∥
`2
<C‖X(n)−Y (n)‖`2 for any n∆t≤T1

}
, (3.14)

B :=

{
max

0≤n∆t≤T1

‖X(n)−Y (n)‖`2 ≤N−
1
d log

3
2 (N)

}
, (3.15)

and

L :=

max
x

max
0≤n∆t≤T1

∣∣∣∣∣∣ 1

N−1

N∑
j=1

∇Fε
(
x−Y (n)

j

)∣∣∣∣∣∣<C
, (3.16)

where C depends only on p>0, T1 and ‖ρ0‖L1∩Hk(Rd), then for T1/N ≤∆t≤C∗
(T1,C∗ are used in Lemma 2.2), we have

B∩L⊂A. (3.17)

Here the event A can be seen as the stability result and the event B∩L can be treated
as the stability condition.

Proof. First, we split GN
(
X

(n)
i

)
−GN

(
Y

(n)
i

)
into two parts:

GN
(
X

(n)
i

)
−GN

(
Y

(n)
i

)
=

1

N−1

N∑
j=1

(
Fε
(
X

(n)
i −X

(n)
j

)
−Fε

(
Y

(n)
i −Y (n)

j

))

=
1

N−1

N∑
j=1

(
Fε
(
X

(n)
i −X

(n)
j

)
−Fε

(
Y

(n)
i −X(n)

j

))

+
1

N−1

N∑
j=1

(
Fε
(
Y

(n)
i −X(n)

j

)
−Fε

(
Y

(n)
i −Y (n)

j

))
=: I1,i+I2,i. (3.18)

To estimate I1,i, one has

I1,i=
1

N−1

N∑
j=1

∫ 1

0

∂sFε
(
sX

(n)
i +(1−s)Y (n)

i −X(n)
j

)
ds
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=

∫ 1

0

1

N−1

N∑
j=1

∇Fε
(
sX

(n)
i +(1−s)Y (n)

i −X(n)
j

)
ds

(X(n)
i −Y

(n)
i

)
=:

∫ 1

0

fi(s)ds(X
(n)
i −Y

(n)
i ). (3.19)

Notice that

|fi|≤

∣∣∣∣∣∣ 1

N−1

N∑
j=1

∇Fε
(
sX

(n)
i +(1−s)Y (n)

i −Y (n)
j

)∣∣∣∣∣∣+ C

εd+1(N−1)

N∑
j=1

|X(n)
j −Y

(n)
j |.

(3.20)

The first term in inequality (3.20) can be bounded under the event L:

max
i

max
0≤n∆t≤T1

∣∣∣∣∣∣ 1

N−1

N∑
j=1

∇Fε
(
sX

(n)
i +(1−s)Y (n)

i −Y (n)
j

)∣∣∣∣∣∣<C, (3.21)

for ε≥N− 1
2d log(N). To estimate the second term in inequality (3.20), since we assume

that ε≥N−
1

d(d+1) log(N), using the Hölder inequality, one has

C

εd+1(N−1)

N∑
j=1

|X(n)
j −Y

(n)
j |≤C log−

1
2−d(N)≤C, (3.22)

under the event B.
Hence, it follows from inequalities (3.21) and (3.22) that

max
i

max
0≤n∆t≤T1

|fi|<C, (3.23)

under the event B∩L, which leads to the following bound of I1,i under the event B∩L

1

N

N∑
i=1

|I1,i|2<
C

N

N∑
i=1

|X(n)
i −Y

(n)
i |2 for any n∆t≤T1. (3.24)

Next, we will estimate I2,i:

I2,i=
1

N−1

N∑
j=1

∇Fε
(
Y

(n)
i −Y (n)

j

)(
X

(n)
j −Y

(n)
j

)
+

1

N−1

N∑
j=1

∇2Fε(ζij)
(
X

(n)
j −Y

(n)
j

)2
=:g1i+g2i. (3.25)

For g1i, by Young’s inequality, under the event L, we conclude that

‖(g1i)i∈I‖`2 <C‖X(n)−Y (n)‖`2 for any n∆t≤T1. (3.26)

For g2i, we notice that

|g2i|≤
C

εd+1
‖X(n)−Y (n)‖2`2 , (3.27)
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which leads to

‖(g2i)i∈I‖`2 ≤
C

εd+1
‖X(n)−Y (n)‖`2‖X(n)−Y (n)‖`2 ≤C‖X(n)−Y (n)‖`2 (3.28)

under the event B, since the assumption ε≥N−
1

d(d+1) log(N). Hence, it follows from
inequalities (3.26) and (3.28) that

‖(I2,i)i∈I‖`2 <C‖X(n)−Y (n)‖`2 for any n∆t≤T1 (3.29)

under the event B∩L. Combing inequalities (3.24) and (3.29) and equation (3.18)
implies that

B∩L⊂A. (3.30)

As a direct result of the Proposition 3.1 and Proposition 3.2, we have the following
theorem:

Theorem 3.1. Under the same assumption as Proposition 3.2, then for T1/N ≤
∆t≤C∗ (T1,C∗ are used in Lemma 2.2) and n∆t≤T1, Y (n) is a good approximation of
X(n), and the following estimate holds

P

(
max

0≤n∆t≤T1

‖X(n)−Y (n)‖`2 <C1N
−1/d log(N)

)
≥1−C2N

3−p, (3.31)

where C1, C2 depend only on p>3, T1 and ‖ρ0‖L1∩Hk(Rd).

Proof. First, we prove the following inequality by the induction on n.

P

(
max

0≤k≤n
‖X(k)−Y (k)‖`2 ≤C

(n)
1 N−1/d log(N)

)
≥1−3nN2−p, (3.32)

where

C
(n)
1 :=

C4

C3
[(1+C3∆t)n−1]≤ C4

C3
exp(C3n∆t)≤ C4

C3
exp(C3T1), (3.33)

with C3, C4 given below. It is obvious that inequality (3.32) holds for n= 0, since
P
(
‖X(0)−Y (0)‖`2 = 0

)
= 1. Assume that inequality (3.32) holds true up to n. That is,

if we denote

An :=

{
max

0≤k≤n
‖X(k)−Y (k)‖`2 ≤C

(n)
1 N−1/d log(N)

}
,

then one has

P ((An)c)≤3nN2−p. (3.34)

If we denote the event

B :=

{
max

0≤k≤n
‖X(k)−Y (k)‖`2 ≤N−

1
d log

3
2 (N)

}
, (3.35)

then we have

An⊂B, for N sufficiently large. (3.36)
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In addition, we define the event

An1 :=
{∥∥GN (X(k))−GN (Y (k))

∥∥
`2
<C3‖X(k)−Y (k)‖`2 for any k≤n

}
, (3.37)

where C3 is independent of n, then it follows from (3.17) in Proposition 3.2 that

An∩L⊂B∩L⊂An1 . (3.38)

Now, we show inequality (3.32) holds for n+1. Indeed, notice that

X(k+1)−Y (k+1) =X(k)−Y (k) +∆t
(
GN (X(k))−GN (Y (k))

)
−∆tr(k), (3.39)

then one concludes that

max
0≤k≤n

‖X(k+1)−Y (k+1)‖`2 < (1+C3∆t) max
0≤k≤n

‖X(n)−Y (n)‖`2 +∆t max
0≤k≤n

‖r(k)‖`2 ,

(3.40)
under the event An1 .

Moreover, we define event

An2 :=
{
‖r(k)‖`2 <C4N

−1/d log(N) for any k≤n
}
, (3.41)

where C4 is independent of n. Thus we have

max
0≤k≤n

‖X(k+1)−Y (k+1)‖`2 < (1+C3∆t) max
0≤k≤n

‖X(k)−Y (k)‖`2 +∆t max
0≤k≤n

‖r(k)‖`2

< (C
(n)
1 +C

(n)
1 C3∆t+C4∆t)N−1/d log(N)

=C
(n+1)
1 N−1/d log(N), (3.42)

under the event An∩An1 ∩An2 ⊃An∩B∩L∩An2 ⊃An∩L∩An2 , where we have used the

definition of C
(n)
1 in (3.33).

Now collecting inequality (3.5) in Proposition 3.1, inequality (2.6) in Lemma 2.4
and the induction assumption (3.34), one has

P

(
max

0≤k≤n
‖X(k+1)−Y (k+1)‖`2 ≥C

(n+1)
1 N−1/d log(N)

)
≤P ((An∩An1 ∩An2 )c)≤P ((An∩L∩An2 )c)

≤P (Lc)+P ((An)c)+P ((An2 )c)≤N1−p+3nN2−p+N2−p≤3(n+1)N2−p, (3.43)

which leads to

P

(
max

0≤k≤n+1
‖X(k)−Y (k)‖`2 ≤C

(n+1)
1 N−1/d log(N)

)
≥1−3(n+1)N2−p. (3.44)

Hence, we finish the proof of inequality (3.32) by induction. Using the fact n≤N from
inequality (2.22) and definition (3.33), inequality (3.32) implies the theorem.

4. Convergence analysis and the proof of Theorem 1.1

In order to prove the error estimate between ρ and µ
(n)
X , let us split the error into

three parts

‖ρ−µ(n)
X ‖2≤‖ρ−ρ

(n)‖2 +‖ρ(n)−µ(n)
Y ‖2 +‖µ(n)

Y −µ
(n)
X ‖2. (4.1)

Then the idea of the proof of Theorem 1.1 is to obtain the error estimates of those three
parts respectively.
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4.1. The error estimate between ρ and ρ(n).
Lemma 4.1. Under the same assumption as Theorem 1.1, the solution to the splitting
algorithm from equations (1.13)–(1.15) is convergent to ρ(tn,x) in L2 norm. There
exists some T∗ := min{T,T1} such that the following estimate

max
0≤n∆t≤T∗

‖ρ(n)−ρ(tn, ·)‖2≤C(T∗,‖ρ0‖L1∩Hk(Rd))(∆t+ε), (4.2)

holds for ∆t≤C∗ and (n+1)∆t≤T∗ (T1,C∗ are used in Lemma 2.2).

The process of the proof of this lemma is almost the same as the proof of [18,
Theorem 1.2]. The only difference is that we consider Fε here instead of F . Hence we
omit the details.

4.2. The error estimate between ρ(n) and µ
(n)
Y . Before we establish the

error estimate between ρ(n) and µ
(n)
Y , let us introduce the following lemma about kernel

density estimation.

Lemma 4.2. Assume that {Y (n)
i }Ni=1 are i.i.d. random vectors that we have constructed

in definition (1.16), and they share with the common density ρ(n). Let µ
(n)
Y be the

regularized empirical measure of {Y (n)
i }Ni=1 as in definition (1.18), then we have the

following mean integrated squared error estimate

E
[
‖ρ(n)−µ(n)

Y ‖
2
2

]
≤CN−1δ−d+Cδ4, (4.3)

where C depends only on T1 (T1 is used in Lemma 2.2), ‖ρ0‖L1∩Hk(Rd) and∫
Rd |x|

2ϕ(x)dx.

Proof. This lemma can be found in [27, Chap. 4], and for completeness and precise
regularity used in the bound, we give the sketch of the proof here. First, we calculate
that

E[µ
(n)
Y ] =

∫
Rd
ρ(n)(x−y)

1

δd
ϕ(
y

δ
)dy=

∫
Rd
ρ(n)(x−δz)ϕ(z)dz

=

∫
Rd
ϕ(z)

(
ρ(n)(x)−(δz)T ·∇ρ(n)(x)+

1

2
δ2zTD2ρ(n)(x)z

)
dz+o(δ2)

=ρ(n)(x)−δ
∫
Rd
zT ·∇ρ(n)(x)ϕ(z)dz+

1

2
δ2

∫
Rd
zTD2ρ(n)(x)zϕ(z)dz+o(δ2)

=ρ(n)(x)+
1

2
δ2trace

(
D2ρ(n)(x)

∫
Rd
zzTϕ(z)dz

)
+o(δ2)

=ρ(n)(x)+
1

2
δ2

d∑
i=1

ρ(n)
xixi(x)

∫
Rd
|zi|2ϕ(z)dz+o(δ2). (4.4)

Hence,

‖E[µ
(n)
Y ]−ρ(n)‖22≤C

(∫
Rd
|z|2ϕ(z)dz,‖ρ(n)‖H2

)
δ4. (4.5)

Then, we estimate Var(µ
(n)
X ) as

Var(µ
(n)
Y ) =

1

N

[
1

δd

∫
Rd
ϕ2(z)ρ(n)(x−δz)dz−

(∫
Rd
ϕ(z)ρ(n)(x−δz)dz

)2
]
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=
1

Nδd
ρ(n)(x)

∫
Rd
ϕ2(z)dz+o(

1

Nδd
). (4.6)

Notice that

E
[
|ρ(n)−µ(n)

Y |
2
]

= Var(µ
(n)
Y )+

(
E[µ

(n)
Y ]−ρ(n)

)2

. (4.7)

Integrating equation (4.7) over x in Rd and applying inequality (4.5) with equation
(4.6), one has

E
[
‖ρ(n)−µ(n)

Y ‖
2
2

]
≤C 1

Nδd
+Cδ4, (4.8)

which concludes the proof of this lemma.

As a direct result of Lemma 4.2, we can get the distance between ρ(n) and µ
(n)
Y .

Indeed, one has

P

(
max

0≤n∆t≤T∗
‖ρ(n)−µ(n)

Y ‖2≥N
− 1
d(d+2)

)
=P

(
max

0≤n∆t≤T∗
‖ρ(n)−µ(n)

Y ‖
2
2≥N

− 2
d(d+2)

)
=E

[
1{

max
0≤n∆t≤T∗

‖ρ(n)−µ(n)
Y ‖22≥N

− 2
d(d+2)

}
]

≤E

[
max

0≤n∆t≤T∗
‖ρ(n)−µ(n)

Y ‖
2
2N

2
d(d+2) 1{

max
0≤n∆t≤T∗

‖ρ(n)−µ(n)
Y ‖22≥N

− 2
d(d+2)

}
]

≤N
2

d(d+2)E
[

max
0≤n∆t≤T∗

‖ρ(n)−µ(n)
Y ‖

2
2

]
. (4.9)

If we choose δ=N−
1

d(d+2) in estimate (4.3), then one has

P

(
max

0≤n∆t≤T∗
‖ρ(n)−µ(n)

Y ‖2≥N
− 1
d(d+2)

)
≤CN−

2
d(d+2) , (4.10)

which gives the probability bound of the error between ρ(n) and µ
(n)
Y .

4.3. The error estimate between µ
(n)
X and µ

(n)
Y . Recall that

µ
(n)
X :=

1

N

N∑
i=1

ϕδ
(
x−X(n)

i

)
, (4.11)

and

µ
(n)
Y :=

1

N

N∑
i=1

ϕδ
(
x−Y (n)

i

)
. (4.12)

The L2 norm of the difference between µ
(n)
X and µ

(n)
Y is given by

‖µ(n)
X −µ

(n)
Y ‖2 =‖µ̂(n)

X− µ̂(n)
Y ‖2≤

1

N

N∑
i=1

∥∥∥ϕ̂(δξ)(e−iξX
(n)
i −e−iξY

(n)
i )

∥∥∥
2
, (4.13)

where we have used the properties of Fourier transformation.
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Since |e−iξX
(n)
i −e−iξY

(n)
i |≤ |ξ||X(n)

i −Y
(n)
i |, one has

‖µ(n)
X −µ

(n)
Y ‖2≤

1

N

N∑
i=1

|X(n)
i −Y

(n)
i |

∥∥ϕ̂(δξ)|ξ|
∥∥

2

≤
∥∥ϕ̂(δξ)|ξ|

∥∥
2
‖X(n)−Y (n)‖`2 . (4.14)

Notice that ∥∥ϕ̂(δξ)|ξ|
∥∥2

2
= δ−(d+2)

∫
Rd
ϕ̂2(y)|y|2dy≤Cδ−(d+2), (4.15)

which leads to

‖µ(n)
X −µ

(n)
Y ‖2≤Cδ

−1−d/2‖X(n)−Y (n)‖`2 . (4.16)

So applying Theorem 3.1 and choosing δ=N−
1

d(d+2) , one concludes that

P

(
max

0≤n∆t≤T∗
‖µ(n)

X −µ
(n)
Y ‖2<CN

− 1
2d log(N)

)
≥1−CN3−p. (4.17)

4.4. The proof of Theorem 1.1. Finally, collecting inequalities (4.2), (4.10)
and (4.17), we compute that:

P

(
max

0≤n∆t≤T∗
‖ρ−µ(n)

X ‖2≥3C
(
N−

1
d(d+2) +∆t+ε

))
≤P

(
max

0≤n∆t≤T∗
{‖ρ−ρ(n)‖2 +‖ρ(n)−µ(n)

Y ‖2 +‖µ(n)
Y −µ

(n)
X ‖2}≥3C

(
N−

1
d(d+2) +∆t+ε

))
≤P

(
max

0≤n∆t≤T∗
‖ρ−ρ(n)‖2≥C(∆t+ε)

)
+P

(
max

0≤n∆t≤T∗
‖ρ(n)−µ(n)

Y ‖2≥CN
− 1
d(d+2)

)
+P

(
max

0≤n∆t≤T∗
‖µ(n)

Y −µ
(n)
X ‖2≥CN

− 1
2d log(N)

)
≤0+CN−

2
d(d+2) +CN3−p≤CN−

2
d(d+2) , (4.18)

for p≥3+ 2
d(d+2) . Hence Theorem 1.1 has been proved.

5. The error estimate on interaction
Theorem 5.1. For 2≤d≤3, suppose that 0≤ρ0(x)∈L1∩Hk(Rd) with k>d/2+3
and F , Fε satisfy equations (1.4), (1.9) respectively. Let ρ(t,x) be the regular solution of

the KS Equation (1.1) with local existence time T and {X(n)
i }Ni=1 satisfy equation (1.10)

(N sufficiently large). If we choose N−
1

d(d+1) log(N) =ε, then there exists some T∗, C∗
depending only on T and ‖ρ0‖L1∩Hk(Rd), for T∗/N ≤∆t≤C∗ and (n+1)∆t≤T∗, such
that the following estimate holds

P

(
max

0≤n∆t≤T∗
max

x

∣∣∣∣∣
∫
Rd
F (x−y)ρ(tn,y)dy− 1

N−1

N∑
j=1

Fε

(
x−X(n)

j

)∣∣∣∣∣
<C1

(
ε1− d

2 ∆t+ε2− d
2 +N

− 1
d(d+1)

))
≥1−C2N

3−p, (5.1)
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where C1, C2 depend only on p>3, T∗ and ‖ρ0‖L1∩Hk(Rd).
Proof. First, we split the error into two parts:∣∣∣∣∣∣

∫
Rd
F (x−y)ρ(tn,y)dy− 1

N−1

N∑
j=1

Fε
(
x−X(n)

j

)∣∣∣∣∣∣
≤
∣∣∣∣∫

Rd
F (x−y)ρ(tn,y)dy−

∫
Rd
Fε(x−y)ρ(n)(y)dy

∣∣∣∣
+

∣∣∣∣∣∣
∫
Rd
Fε(x−y)ρ(n)(y)dy− 1

N−1

N∑
j=1

Fε
(
x−X(n)

j

)∣∣∣∣∣∣=:en1 (x)+en2 (x). (5.2)

To estimate en1 (x), we have

en1 (x)≤
∣∣∣∣∫

Rd

(
F (x−y)−Fε(x−y)

)
ρ(tn,y)dy

∣∣∣∣+ ∣∣∣∣∫
Rd
Fε(x−y)

(
ρ(tn,y)−ρ(n)(y)

)
dy

∣∣∣∣
=:en11(x)+en12(x). (5.3)

A simple computation we know that

en11(x)≤Cε, (5.4)

and

en12(x)≤‖Fε‖2
∥∥ρ(tn, ·)−ρ(n)

∥∥
2
≤Cε1− d2 (∆t+ε), (5.5)

which leads to

max
x
en1 (x)≤C

(
ε1− d2 ∆t+ε2− d2

)
. (5.6)

As for en2 (x), we compute

en2 (x)≤

∣∣∣∣∣∣
∫
Rd
Fε(x−y)ρ(n)(y)dy− 1

N−1

N∑
j=1

Fε
(
x−Y (n)

j

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

N−1

N∑
j=1

Fε(x−Y (n)
j )− 1

N−1

N∑
j=1

Fε
(
x−X(n)

j

)∣∣∣∣∣∣
=:en21(x)+en22(x). (5.7)

To estimate en21(x), we follow the same procedure in the proof of Lemma 2.4. Indeed,
similar to definition (2.9), we let Sn := max

x
en21(x), and we can prove that

P

(
Sn≥

Cp log(N)L2(ε)√
N

)
≤N−p, (5.8)

as presented in inequality (2.19), where L2(ε) =
∫
Rd |F̂ε(ξ)|dξ≤Cε

1−d.

So if we assume that ε≥N−
1

d(d+1) log(N)≥N−
1

4(d−1) log(N), then it implies that

P
(

max
x
en21(x)<CN−

1
4 log2−d(N) for any n∆t≤T∗

)
≥1−N1−p, (5.9)
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similar to inequality (2.24).
To estimate en22(x), by Lemma 2.1, one has

en22(x)≤Cε−d 1

N−1

N∑
j=1

|X(n)
j −Y

(n)
j |≤CN

1
d+1 log−d(N)‖X(n)−Y (n)‖`2 , (5.10)

under the assumption that ε≥N−
1

d(d+1) log(N). Then we apply Theorem 3.1 and obtain

P
(

max
x
en22(x)<CN−

1
d(d+1) log1−d(N) for any n∆t≤T∗

)
≥1−CN3−p. (5.11)

Collecting estimates (5.9) and (5.11), we conclude that

P
(

max
x
en2 (x)<CN−

1
d(d+1) for any n∆t≤T∗

)
≥1−CN3−p. (5.12)

Combining estimates (5.6) and (5.12), one has

P

(
max

0≤n∆t≤T∗
max
x

∣∣∣∣∣∣
∫
Rd
F (x−y)ρ(tn,y)dy− 1

N−1

N∑
j=1

Fε
(
x−X(n)

j

)∣∣∣∣∣∣
≥2C

(
ε1− d2 ∆t+ε2− d2 +N−

1
d(d+1)

))

≤P
(

max
0≤n∆t≤T∗

max
x
{en1 (x)+en2 (x)}≥2C

(
ε1− d2 ∆t+ε2− d2 +N−

1
d(d+1)

))
≤P

(
max

0≤n∆t≤T∗
max
x
en1 (x)≥C

(
ε1− d2 ∆t+ε2− d2

))
+P

(
max

0≤n∆t≤T∗
max
x
en2 (x)≥CN−

1
d(d+1)

)
≤0+CN3−p=CN3−p. (5.13)

Then we conclude the proof.

6. Extension to general regular attractive force F
In this section, we will further extend our result to the particle system with inter-

acting function F regular enough, which satisfies

F ∈Hk(Rd) with k>
d

2
+3. (6.1)

We consider the regular solution ρ of the following Fokker–Planck equation{
∂tρ=ν∆ρ−∇·(ρF ∗ρ), x∈Rd, t>0,

ρ(0,x) =ρ0(x),
(6.2)

where 0≤ρ0∈Hk(Rd) with k> d
2 +3. Then ρ has the following regularity for any T >0

‖ρ‖L∞(0,T ;Hk(Rd))≤C
(
T,‖ρ0‖L1∩Hk(Rd),‖F‖Hk(Rd)

)
. (6.3)
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Since F is non-singular, there is no need to mollify the force F anymore. To be
specific, we consider trajectories {Xi(t)}Ni=1 satisfying SDEs:

dXi(t) =
1

N−1

N∑
j=1

F
(
Xi(t)−Xj(t)

)
dt+
√

2νdBi(t), i= 1, ·· · ,N, (6.4)

where {Bi(t)}Ni=1 are N independent standard Brownian motions. To discretize this
system, one has

X
(n+1)
i =X

(n)
i +∆tGN

(
X

(n)
i

)
+
√

2ν∆tN
(n)
i , i= 1, ·· · ,N, (6.5)

where the N
(n)
i are independent standard Gaussian random vectors and

GN
(
X

(n)
i

)
:=

1

N−1

N∑
j=1

F
(
X

(n)
i −X

(n)
j

)
. (6.6)

Moreover, the splitting scheme we constructed from equations (1.13)–(1.15) becomes

G(n)(x) =F ∗ρ(n)(x), (6.7)

ρ(n+ 1
2 )
(
x+∆tG(n)(x)

)
= det−1

(
I+∆tDG(n)(x)

)
ρ(n)(x), (6.8)

ρ(n+1)(x) =H(
√
ν∆t)ρ(n+ 1

2 )(x). (6.9)

To approximate X
(n)
i , we define Y

(0)
i =X

(0)
i and

Y
(n+1)
i =Y

(n)
i +∆tG(n)

(
Y

(n)
i

)
+
√

2ν∆tN
(n)
i , i= 1, ·· · ,N, (6.10)

where G(n)
(
Y

(n)
i

)
are the vector fields constructed in definition (6.7). Note that Y

(n)
i

is independent of Y
(n)
j if i 6= j, and they share the common density ρ(n).

Then the regularized empirical measure of
{
X

(n)
i

}N
i=1

can be defined as

µ
(n)
X (x) :=

1

N

N∑
i=1

ϕδ
(
x−X(n)

i

)
, (6.11)

and similarly, we can define

µ
(n)
Y (x) :=

1

N

N∑
i=1

ϕδ
(
x−Y (n)

i

)
. (6.12)

First, similar to Theorem 3.1, we have the following extended result.

Theorem 6.1. Suppose that 0≤ρ0(x)∈L1∩Hk(Rd) and F ∈Hk(Rd) with k>d/2+

3. Let ρ(t,x) be the regular solution of equation (6.2) and {X(n)
i }Ni=1, {Y (n)

i }Ni=1 (N
sufficiently large) satisfy equations (6.5) and (6.10) respectively. Then for any T >0,
there exists some C∗ depending only on T , ‖F‖Hk(Rd) and ‖ρ0‖L1∩Hk(Rd), for T/N ≤
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∆t≤C∗, such that Y (n) is a good approximation of X(n), and the following estimate
holds

P

(
max

0≤n∆t≤T
‖X(n)−Y (n)‖`2 <C1N

− 1
2 log(N)

)
≥1−C2N

3−p, (6.13)

where C1, C2 depend only on p>3, T , ‖F‖Hk(Rd) and ‖ρ0‖L1∩Hk(Rd).

Proof. As we have done in Proposition 3.1, for

r
(n)
i =G(n)

(
Y

(n)
i

)
− 1

N−1

N∑
j=1

F
(
Y

(n)
i −Y (n)

j

)
, (6.14)

we prove that

P

(
max

0≤n∆t≤T
‖r(n)‖`2 ≥CN−1/2 log(N)

)
≤N2−p. (6.15)

Then, similar to Proposition 3.2, we have the stability result∥∥GN(X(n)
)
−GN

(
Y (n)

)∥∥
`2
<C‖X(n)−Y (n)‖`2 , for any n∆t≤T, (6.16)

under the following event

B :=

{
max

0≤n∆t≤T
‖X(n)−Y (n)‖`2 <N−

1
2 log

3
2 (N)

}
. (6.17)

Finally, following the approach of the proof in Theorem 3.1, inequality (6.13) can
be obtained from inequality (6.15).

Next we can extend the result in Theorem 1.1 to the following theorem.

Theorem 6.2. Under the same assumption as in Theorem 6.1, let µ
(n)
X be the

regularized empirical measure as in definition (6.11) with δ=N−
1

2(d+2) (N sufficiently
large). Then for any T >0, there exists some C∗ depending only on T , ‖F‖Hk(Rd) and
‖ρ0‖L1∩Hk(Rd), for T/N ≤∆t≤C∗ and (n+1)∆t≤T , such that the following estimate
holds

P

(
max

0≤n∆t≤T
‖ρ(tn, ·)−µ(n)

X ‖2<C1(N−
1

2(d+2) +∆t)

)
≥1−C2N

− 1
d+2 ,

where C1, C2 depend only on T , ‖F‖Hk(Rd) and ‖ρ0‖L1∩Hk(Rd).

Proof. We only give the sketch of the proof here, since it is almost the same as we
have done in Theorem 1.1. First, we have the error estimate between ρ and ρ(n)

max
0≤n∆t≤T

‖ρ(n)−ρ(tn, ·)‖2≤C∆t. (6.18)

Next, we obtain the error estimate between ρ(n) and µ
(n)
Y

P

(
max

0≤n∆t≤T
‖ρ(n)−µ(n)

Y ‖2≥N
− 1

2(d+2)

)
≤CN−

1
d+2 . (6.19)

Furthermore, we can prove the error estimate between µ
(n)
X and µ

(n)
Y

P

(
max

0≤n∆t≤T
‖µ(n)

X −µ
(n)
Y ‖2<CN

− 1
4 log(N)

)
≥1−CN3−p. (6.20)
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Collecting inequalities (6.18)–(6.20), we conclude the proof.
Moreover, we can extend the result in Theorem 5.1.

Theorem 6.3. For d≥2, suppose that 0≤ρ0(x)∈L1∩Hk(Rd), F ∈Hk(Rd) with

k>d/2+3. Let ρ(t,x) be the regular solution of equation (6.2) and {X(n)
i }Ni=1 satisfy

equation (6.5) (N sufficiently large). Then for any T >0, there exists some C∗ depending
only on T , ‖F‖Hk(Rd) and ‖ρ0‖L1∩Hk(Rd), for T/N ≤∆t≤C∗ and (n+1)∆t≤T , such
that the following estimate holds

P

(
max

0≤n∆t≤T
max
x

∣∣∣∣∣∣
∫
Rd
F (x−y)ρ(tn,y)dy− 1

N−1

N∑
j=1

F
(
x−X(n)

j

)∣∣∣∣∣∣
<C1(N−

1
2 log(N)+∆t)

)
≥1−C2N

3−p,

where C1, C2 depend only on p>1, T , ‖F‖Hk(Rd) and ‖ρ0‖L1∩Hk(Rd).

Proof. We split the error into two parts:∣∣∣∣∣∣
∫
Rd
F (x−y)ρ(tn,y)dy− 1

N−1

N∑
j=1

F
(
x−X(n)

j

)∣∣∣∣∣∣
≤
∣∣∣∣∫

Rd
F (x−y)ρ(tn,y)dy−

∫
Rd
F (x−y)ρ(n)(y)dy

∣∣∣∣
+

∣∣∣∣∣∣
∫
Rd
F (x−y)ρ(n)(y)dy− 1

N−1

N∑
j=1

F
(
x−X(n)

j

)∣∣∣∣∣∣=:en1 (x)+en2 (x). (6.21)

Following the method in Theorem 5.1, it is easy to prove that

max
x
en1 (x)≤C∆t, (6.22)

and

P

(
max

0≤n∆t≤T
max
x
en2 (x)<CN−

1
2 log(N)

)
≥1−CN3−p, (6.23)

which leads to inequality (6.21).
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