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ERROR ESTIMATE OF A RANDOM PARTICLE BLOB METHOD

FOR THE KELLER-SEGEL EQUATION

HUI HUANG AND JIAN-GUO LIU

Abstract. We establish an optimal error estimate for a random particle blob
method for the Keller-Segel equation in R

d (d ≥ 2). With a blob size ε = hκ

(1/2 < κ < 1), we prove a rate h| lnh| of convergence in �ph (p > d
1−κ

) norm

up to a probability 1− hC| ln h|, where h is the initial grid size.

1. Introduction

The vortex method was first introduced by Chorin in 1973 [6], which is one of
the most significant computational methods for fluid dynamics and other related
fields. The convergence of the vortex method for two- and three-dimensional in-
viscid incompressible fluid flows was first proved by Hald [13], Beale and Majda
[2, 3]. Then Anderson and Greengard [1] gave a simpler proof for the estimate of
the consistency error. When the effect of viscosity is involved, the vortex method
is replaced by the so-called random vortex method by adding a Brownian motion
to every vortex. The convergence analysis of the random vortex method for the
Navier-Stokes equation has been given by [11, 19, 20, 23] in 1980s.

Generally speaking, there are two ways to set up the initial data. On one hand,
some authors like Marchioro and Pulvirenti [20], Osada [23], Goodman [11] and [17]
took the initial positions as independent identically distributed random variables
Xi(0) with common density ρ0(x). Specifically, Goodman proved a rate of conver-
gence for the incompressible Navier-Stokes equation in two dimensions of the order
N−1/4 lnN , where N is the number of vortices used in the computation. However,
this Monte Carlo sampling method is very inefficient in the computation. On the
other hand, Chorin’s original method assumed that initial positions of the vortices
are on the lattice points hi ∈ R

2 with mass ρ0(hi)h
2. In particular, Long [19]

achieved an almost optimal rate of convergence of the order N−1/2 lnN ∼ h| lnh|
except an event of probability hC′C ; much of his technique will be adapted to this
article. A similar probabilistic approach has been used on the Vlasov-Poisson sys-
tem by [5]. Finally, we refer to the book [7] for theoretical and practical use of the
vortex methods, and also refer to [8] for recent progress on a blob method for the
aggregation equation.
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In this paper, we introduce a random particle blob method for the following
classical Keller-Segel (KS) equation [14] in R

d (d ≥ 2):

(1.1)

⎧⎪⎨
⎪⎩

∂tρ = νΔρ−∇ · (ρ∇c), x ∈ R
d, t > 0,

−Δc = ρ(t, x),

ρ(0, x) = ρ0(x),

where ν is a positive constant. This model is developed to describe the biological
phenomenon chemotaxis. In the context of biological aggregation, ρ(t, x) represents
the bacteria density, and c(t, x) represents the chemical substance concentration,
which is given by a fundamental solution as follows:

(1.2) c(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

Cd

∫
Rd

ρ(t, y)

|x− y|d−2
dy, if d ≥ 3,

− 1

2π

∫
Rd

ln |x− y|ρ(t, y)dy, if d = 2,

where Cd =
1

d(d− 2)αd
and αd =

πd/2

Γ(d/2 + 1)
, i.e., αd is the volume of the d-

dimensional unit ball. We can recast c(t, x) as c(t, x) = Φ ∗ ρ(t, x) with Newton
potential Φ(x), which can be represented as

(1.3) Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

Cd

|x|d−2
, if d ≥ 3,

− 1

2π
ln |x|, if d = 2.

Furthermore, we take the gradient of the Newtonian potential Φ(x) as the attractive
force F (x). Thus, we have F (x) = ∇Φ(x) = −C∗x

|x|d , ∀ x ∈ R
d\{0}, d ≥ 2, where

C∗ = Γ(d/2)
2πd/2 .

Now we consider the KS equation (1.1) under the following assumption.

Assumption 1. The initial density ρ0(x) satisfies:

(1) ρ0(x) has a compact support D with D ⊆ B(R0);
(2) 0 ≤ ρ0 ∈ Hk(Rd) for k ≥ 3d

2 + 1.

In fact, the above assumption is sufficient for the existence of the unique local
solution to (1.1) with the following regularity:

(1.4) ‖ρ‖L∞(0,T ;Hk(Rd)) ≤ C(‖ρ0‖Hk(Rd)),

(1.5) ‖∂tρ‖L∞(0,T ;Hk−2(Rd)) ≤ C(‖ρ0‖Hk(Rd)),

where T > 0 only depends on ‖ρ0‖Hk(Rd). The proof of this result is a standard
process and it will be given in Appendix A. Denote Tmax to be the largest existence
time, such that (1.4) and (1.5) are valid for any 0 < T < Tmax. As a direct result of
the Sobolev imbedding theorem, one has ρ(t, x) ∈ Ck−d/2−1(Rd) for any t ∈ [0, T ].
We define the drift term

(1.6) G(t, x) :=

∫
Rd

F (x− y)ρ(t, y)dy,
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then −ΔG(t, x) = ∇ρ(t, x). By using the Sobolev imbedding theorem, one has

‖G‖
L∞

(
0,T ;Wk− d

2
,∞(Rd)

) ≤ C‖G‖L∞(0,T ;Hk+1(Rd)) ≤ C(‖ρ0‖Hk(Rd)),(1.7)

‖∂tG‖
L∞

(
0,T ;Wk− d

2
−2,∞(Rd)

) ≤ C(‖ρ0‖Hk(Rd)).(1.8)

So G(t, x) is bounded and Lipschitz continuous with respect to x for k ≥ d/2 + 1
from (1.7) and the Sobolev imbedding theorem. Thus, the stochastic differential
equation (SDE)

(1.9) X(t) = X(0) +

∫ t

0

∫
Rd

F (X(s)− y)ρ(s, y)dyds+
√
2νB(t)

has a unique strong solution X(t) by a basic theorem of SDE [22, Theorem 5.2.1],
where X(0) = α ∈ D and B(t) is a standard Brownian motion.

If we denote the fundamental solution of the PDE

(1.10)

{
ut = νΔu−∇ · (uG),

u(0, x) = δα(x), α ∈ D,

to be g(t, x ← 0, α), then it is the transition probability density of the diffusion
process X(t), i.e., g(t, x ← 0, α) is the density that a particle reached the position
x at time t from position α at time 0, and we have

(1.11) ρ(t, x) =

∫
Rd

g(t, x ← 0, α)ρ0(α)dα.

See Friedman [10, Theorem 5.4 on p. 149].
We take h as the grid size and decompose the domain D into the union of non-

overlapping cells Ci = Xi(0) + [−h
2 ,

h
2 ]

d with center Xi(0) = hi =: αi ∈ D, i.e.,

D ⊂
⋃
i∈I

Ci, where I = {i} ⊂ Z
d is the index set for cells. The total number of cells

is given by N =
∑
i∈I

≈ |D|
hd .

Suppose Xi(t) is the strong solution to (1.9), i.e.,

(1.12) Xi(t) = Xi(0) +

∫ t

0

∫
Rd

F
(
Xi(s)− y

)
ρ(s, y)dyds+

√
2νBi(t), i ∈ I,

with the initial data Xi(0) = αi = hi where Bi(t) are independent standard Brown-
ian motions.

For any test function ϕ ∈ C∞
0 (Rd) and t ∈ [0, T ], we define

(1.13) u(s, α) =

∫
Rd

ϕ(x)g(t, x ← s, α)dx, s ∈ [0, t].

Then u(s, α) is the solution to the following backward Kolmogrov equation:

(1.14)

{
∂su = −νΔu−G · ∇u, α ∈ R

d, s ∈ [0, t],

u(t, α) = ϕ(α).

Following the standard regularity estimate, we have

(1.15) ‖u(s, ·)‖Hd+1(Rd) ≤ CT ‖ϕ‖Hd+1(Rd), s ∈ [0, t].
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Moreover, on one hand, we have

〈ϕ, ρ〉 =
∫
Rd

ϕ(x)ρ(x)dx =

∫
Rd

ϕ(x)

∫
D

ρ0(α)g(t, x ← 0, α)dαdx(1.16)

=

∫
D

u(0, α)ρ0(α)dα.

On the other hand, we define the empirical measure μN (t):=
∑
j∈I

δ(x−Xj(t))ρ0(αj)h
d,

and define E[μN (t)] in the sense of the Pettis integral [25], i.e.,

〈ϕ,E[μN(t)]〉 = E[〈ϕ, μN(t)〉](1.17)

=
∑
j∈I

∫
Rd

ϕ(x)g(t, x ← 0, αj)dxρ0(αj)h
d

=
∑
j∈I

u(0, αj)ρ0(αj)h
d.

Combining (1.16) and (1.17), and using (2.1) from Lemma 2.3, we conclude that

|〈ϕ,E[μN (t)]− ρ〉| =

∣∣∣∣∣∣
∑
j∈I

u(0, αj)ρ0(αj)h
d −

∫
D

u(0, α)ρ0(α)dα

∣∣∣∣∣∣(1.18)

≤ Chd+1‖u(0, ·)ρ0‖Wd+1,1(Rd)

≤ Chd+1‖u(0, ·)‖Hd+1(Rd) ≤ Chd+1‖ϕ‖Hd+1(Rd)

which leads to

(1.19) ‖E[μN (t)]− ρ‖H−(d+1)(Rd) ≤ Chd+1.

Our above error estimate (1.19) is in the weak sense (see [12] for the concept).
Recently, the error estimate in the strong sense up to a small probability was
obtained by [18]. Therefore, the main task of this article is to establish the error
estimate between Xi(t) and Xi,ε(t). Here Xi,ε(t) is the solution to the random
particle blob method which we will describe below.

Introducing a random particle blob method for the KS equation as in [19], we
have the following system of SDEs:

(1.20) Xi,ε(t) = Xi,ε(0)+

∫ t

0

∑
j∈I

Fε

(
Xi,ε(s)−Xj,ε(s)

)
ρjh

dds+
√
2νBi(t), i ∈ I,

with the initial data Xi,ε(0) = αi = hi where

(1.21) ρj = ρ0(αj), Fε = F ∗ ψε, ψε(x) = ε−dψ(ε−1x), ε > 0.

The choice of the blob function ψ is closely related to the accuracy of our method.
Following [16], we choose ψ(x) ≥ 0, ψ(x) ∈ C2d+2

0 (Rd),

(1.22) ψ(x) =

{
C(1 + cosπ|x|)d+2, if |x| ≤ 1,

0, if |x| > 1,

where C is a constant such that
∫
Rd ψ(x)dx = 1.
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For convenience, we will give the following notation for the drift term:

G(t, x) := F ∗ ρ =

∫
Rd

F (x− y)ρ(t, y)dy,(1.23)

Gh
ε (t, x) :=

∑
j∈I

Fε

(
x−Xj(t)

)
ρjh

d,(1.24)

Ĝh
ε (t, x) :=

∑
j∈I

Fε

(
x−Xj,ε(t)

)
ρjh

d.(1.25)

Define the discrete �ph norm of a vector v = (vi)i∈I such that

(1.26) ‖v‖�ph = ‖(vi)i∈I‖�ph =

(∑
i∈I

|vi|phd

)1/p

, p > 1.

Then we have the following main theorem.

Theorem 1.1. Suppose the initial density ρ0(x) satisfies Assumption 1. Let Tmax

be the largest existence time of the regular solution (1.4), (1.5) to KS equation
(1.1). Assume that Xh(t) = (Xi(t))i∈I is the exact path of (1.12) and Xh,ε(t) =
(Xi,ε(t))i∈I is the solution to the random particle blob method (1.20). We take

ε = hκ with any 1
2 < κ < 1 and p > d

1−κ , then for all 0 < h ≤ h0 with h0 sufficiently

small, there exist two positive constants C and C ′ depending on Tmax, p, d, R0 and
‖ρ0‖Hk(Rd), such that the estimate

P

(
max
0≤t≤T

||Xh,ε(t)−Xh(t)||�ph < Λh| lnh|
)

≥ 1− hCΛ| lnh|

holds for any Λ > C ′ and 0 < T < Tmax.

Remark 1.1. For the Coulomb interaction case F = −∇Φ(x), the above estimate
holds for any T > 0, since the regular solution ρ exists globally.

To conclude this introduction, we present the outline of the paper. In Section
2, we give some essential lemmas including kernel, sampling, concentration and far
field estimates. In Section 3, we give a proof of the consistency error at the fixed
time t ∈ [0, T ]. Then we give a stability theorem in Section 4. Next, by using
results from Sections 3 and 4, we conclude the proof of the convergence of the
particle path in Section 5. In Appendix A, we give a sketch proof of the regularity
ρ ∈ L∞ (

0, T ;Hk(Rd)
)
. Finally, we extend our result to the particle system with

regular force in Appendix B.

2. Preliminaries on kernel, sampling, concentration

and far field estimates

Notation. The inessential constants will be denoted generically by C, even if it is
different from line to line.

First, we summarize some useful estimates about the kernel Fε in (1.21) and its
derivatives.
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Lemma 2.1 (Pointwise estimates).

(i) Fε(0) = 0 and Fε(x) = F (x)h( |x|ε ) for any x �= 0,where

h(r) =
2πd/2

Γ(d/2)

∫ r

0

ψ(s)sd−1ds;

(ii) Fε(x) = F (x) for any |x| ≥ ε and Fε(x) ≤ min{C |x|
εd
, |F (x)|};

(iii) |∂βFε(x)| ≤ Cβε
1−d−|β|, for any x ∈ R

d;

(iv) |∂βFε(x)| ≤ Cβ|x|1−d−|β|, for any |x| ≥ ε.

The estimates (i) and (ii) have been proved in [16, Lemma 2.1]. For (iii) and
(iv), we can follow the argument of [2, Lemma 5.1] by making dimensional changes
and using the definition of Fε(x) in our this paper.

Lemma 2.2 (Integral estimates).

(i)
∫
|x|≤R

|Fε(x)|dx ≤ CR, ∀ ε < 1;

(ii) ‖Fε‖W |β|,q(Rd) ≤ Cεd/q+1−d−|β|, for q > 1.

Lemma 2.2 is a direct result from Lemma 2.1.
Also, we will need the following sampling lemma, which is essential to our error

estimate.

Lemma 2.3 ([1, Lemma 2.2]). Suppose that f ∈ W d+1,1(Rd), then

(2.1)

∣∣∣∣∣∣
∑
i∈Zd

f(hi)hd −
∫
Rd

f(x)dx

∣∣∣∣∣∣ ≤ Cdh
d+1‖f‖Wd+1,1(Rd).

The proof of this lemma is based on the Poisson summation formula, which was
given by Anderson and Greengard [1].

Since the initial positions Xi(0) are chosen on the lattice points instead of being
chosen randomly, the following lemma is essential to our analysis.

Lemma 2.4. Let X(t, α) be the solution of the following SDE under Assumption 1:

X(t;α) = X(0;α) +

∫ t

0

G (s,X(s;α))ds+
√
2νBα(t),

with initial data X(0;α) = α ∈ D and Bα(t) is the standard Brownian motion.
Assume {Xi(t)} are solutions of the SDEs

Xi(t) = Xi(0) +

∫ t

0

G (s,Xi(s)) ds+
√
2νBi(t), i ∈ I,

with initial data Xi(0) = αi = hi ∈ D and {Bi(t)} are independent standard

Brownian motions. For functions f ∈ W d+1,q(Rd;Rd′
) and Γ ∈ W d+1,q′

0 (Rd;Rd′
)

with supp Γ = D and 1/q + 1/q′ = 1, we have the following estimate for the
quadrature error:

max
0≤t≤T

∣∣∣∣∣
∑
i∈I

E [f (Xi(t))] Γ(αi)h
d −

∫
D

E [f (X(t;α))] Γ(α)dα

∣∣∣∣∣(2.2)

≤Chd+1‖f‖Wd+1,q(Rd;Rd′ ),

where C depends only on d, d′, T, ‖ρ0‖Hk(Rd) and ‖Γ‖
Wd+1,q′

0 (Rd;Rd′ )
.
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Proof. To prove this lemma, for any t ∈ [0, T ], we define

(2.3) u(s, y) =

∫
Rd

f(x)g(t, x ← s, y)dx, s ∈ [0, t].

Then, one has

(2.4) u(t, y) = f(y); u(0, y) =

∫
Rd

f(x)g(t, x ← 0, y)dx = E [f (X(t; y))] .

Thus, u(s, y) is the solution to the following backward Kolmogrov equation

(2.5)

{
∂su = −νΔu−G · ∇u, y ∈ R

d, s ∈ [0, t],

u(t, y) = f(y).

Following the standard regularity estimate, we have

(2.6) ‖u(s, ·)‖Wd+1,q(Rd) ≤ C‖f‖Wd+1,q(Rd;Rd′ ), s ∈ [0, t],

where C depends only on d, d′, T and ‖G‖L∞(0,T ;Wd+1,∞(Rd)).
Notice that Γ(α) has support D, and we can use Lemma 2.3, which leads to∣∣∣∣∣

∑
i∈I

u(0, αi)Γ(αi)h
d −

∫
D

u(0, α)Γ(α)dα

∣∣∣∣∣(2.7)

≤Chd+1‖u(0, α)Γ(α)‖Wd+1,1(Rd) ≤ Chd+1‖u(0, α)‖Wd+1,q(Rd)

≤Chd+1‖f‖Wd+1,q(Rd;Rd′ ),

where C depends only on d, d′, T ‖ρ0‖Hk(Rd) and ‖Γ‖
Wd+1,q′

0 (Rd;Rd′ )
.

Substitute u(0, α) = E [f (X(t;α))] in (2.7); then one has

max
0≤t≤T

∣∣∣∣∣
∑
i∈I

E [f (X(t;αi))] Γ(αi)h
d −

∫
D

E [f (X(t;α))] Γ(α)dα

∣∣∣∣∣(2.8)

≤Chd+1‖f‖Wd+1,q(Rd;Rd′ ),

where C depends only on d, d′, T, ‖ρ0‖Hk(Rd) and ‖Γ‖
Wd+1,q′

0 (Rd;Rd′ )
. Since Xi(t)

and X(t;αi) have the same distribution, we have

(2.9) E [f (Xi(t))] = E [f (X(t;αi))] ,

which leads to our lemma. �

Next, we introduce the following concentration inequality, which is a reformation
of the well-known Bennett’s inequality; it plays a very important role in the sequel
analysis.

Lemma 2.5. Let {Yi}ni=1 be n independent bounded d-dimensional random vectors
satisfying:

(i) E[Yi] = 0 and |Yi| ≤ M for all i = 1, · · · , n;
(ii)

n∑
i=1

Var(Yi) ≤ V with Var(Yi) = E[|Yi|2].
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If M ≤ C
√
V
η with some positive constant C, then we have

(2.10) P

(
|

n∑
i=1

Yi| ≥ η
√
V

)
≤ exp

(
−C ′η2

)
,

for all η > 0, where C ′ only depends on C and d.

Proof. See Pollard [24, Appendix B] for a proof of Bennet’s inequality in case d = 1,
which leads to

(2.11) P

(
|

n∑
i=1

Yi| ≥ η
√
V

)
≤ 2 exp

[
−1

2
η2B(MηV − 1

2 )

]
,

where B(λ) = 2λ−2[(1 + λ) ln(1 + λ)− λ], λ > 0, lim
λ→0+

B(λ) = 1, lim
λ→+∞

B(λ) = 0

and B(λ) is decreasing in (0,+∞).

Since M ≤ C
√
V
η and B(λ) is decreasing, one concludes that

(2.12) P

(
|

n∑
i=1

Yi| ≥ η
√
V

)
≤ 2 exp

[
−1

2
B(C)η2

]
.

Denote S =
n∑

i=1

Yi; then for d-dimensional random vector Yi, we have

P
(
|S| ≥ η

√
V
)

≤
d∑
j

P (|Sj | ≥
η
√
V√
d

)

≤ 2d exp

[
− 1

2d
B(C)η2

]
≤ exp

[
−C ′η2

]
,(2.13)

where C ′ only depends on C and d. �

Lemma 2.6. For i, j ∈ I, let M �
ij = max

|y|≤C0ε
max
|β|=l

|∂βFε(Xi(t) − Xj(t) + y)| with

some positive constant C0. We take ε ≥ h| lnh| 2d , then there exist two positive
constants C, C
 depending on T, d and ‖ρ0‖Hk(Rd), such that

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P

⎛
⎝∑

j∈I

M �
ijh

d ≥ Λ| ln ε|

⎞
⎠ ≤ hCΛ| lnh|, for any i ∈ I, if � = 1,

P

⎛
⎝∑

j∈I

M �
ijh

d ≥ Λε−1

⎞
⎠ ≤ hCΛ| lnh|, for any i ∈ I, if � = 2,

hold true at any fixed time t for any Λ > C
.

This lemma can be obtained using the same approach as in [19, Lemma 9].

Lemma 2.7 ([19, Lemma 10]). Assume B(t) is a standard Brownian motion in
R

d. Then

P

{
max

t≤s≤t+Δt
|B(s)−B(t)| ≥ b

}
≤ C(

√
Δt/b) exp(−C ′b2/Δt),

where b > 0 and the positive constants C,C ′ depend only on d.
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Proof. We give the proof of d = 1; then the case d ≥ 2 can be obtained easily. See
Freedman [9, p. 18], then one has
(2.15)

P

{
max

t≤s≤t+Δt
|B(s)−B(t)| ≥ b

}
≤ 2P {|B(Δt)| ≥ b} = 4P

{
|B(1)| ≥ b/

√
Δt
}
.

Since B(1) ∼ N(0, 1), a simple computation leads to our lemma. �

Finally, we introduce the following far field estimate:

Lemma 2.8. Assume that Xi(t) is the exact solution to (1.12), for R bigger than
the diameter of D. Then we have

(2.16) P (|Xi(t)| ≥ R) ≤ C

R2
,

where C depends on d, T, R0 and ‖ρ‖Hk(Rd).

Proof. Recall that g(t, x ← 0, α) is the solution to the following equation:

(2.17)

{
ut = νΔu−∇ · (uG),

u(0, x) = δα(x), α ∈ D.

We denote the second moment estimate of u as m2(t) =
∫
Rd |x|2u(t, x)dx, then one

has

dm2(t)

dt
= 2d+ 2

∫
Rd

(x ·G)udx(2.18)

=2d+ 2C∗

∫
Rd

∫
Rd

x · (x− y)

|x− y|d ρ(y)u(x)dxdy

≤2d+ 2C∗

∫
Rd

|x|u(x)
[∫

|x−y|≤1

ρ(y)

|x− y|d−1
dy +

∫
|x−y|>1

ρ(y)

|x− y|d−1
dy

]
dx

≤2d+ C(‖ρ‖L1 , ‖ρ‖L∞)(‖u‖L1 +m2(t)), t ∈ (0, T ].

By using Gronwall’s inequality, we have

(2.19) m2(t) ≤ eC1T (m2(0) + C2T ), t ∈ (0, T ].

Notice that m2(0) =
∫
Rd |x|2δα(x)dx ≤ CR2

0, which leads to

(2.20) m2(t) ≤ C1R
2
0 + C2, t ∈ [0, T ],

where D satisfies D ⊆ B(R0) and C1, C2 depend on d, T, ‖ρ‖1, ‖ρ‖∞. Now, we
compute P (|Xi(t)| ≥ R), and one has

P (|Xi(t)| ≥ R) =

∫
|x|≥R

g(t, x ← 0, αi)dx ≤ m2(t)

R2
.(2.21)

Thus, we conclude the proof. �

3. Consistency error at the fixed time

In this section, we will achieve the following consistency estimate result at any
fixed time. Recall the definition of G(t, x), Gh

ε (t, x) in (1.23) and (1.24), then we
have the result as below.
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Theorem 3.1. Assume that Xi(t) is the exact path of (1.12). Under the same
assumption as in Theorem 1.1, there exist two constants C,C ′ > 0 depending only
on T, d, R0 and ‖ρ0‖Hk(Rd), such that at any fixed time t ∈ [0, T ], we have

(3.1) P

(
max
i∈I

∣∣Gh
ε (t,Xi(t))−G(t,Xi(t))

∣∣ < Λh| lnh|
)

≥ 1− hCΛ| lnh|,

for all Λ > C ′.

Proof. For any fixed x and t, we decompose the consistency error into the sampling
error, the discretization error and the moment error as follows:

|Gh
ε (t, x)−G(t, x)| =

∣∣∣∣∣∣
∑
j∈I

Fε(x−Xj(t))ρjh
d −

∫
Rd

F (x− y)ρ(t, y)dy

∣∣∣∣∣∣(3.2)

≤

∣∣∣∣∣∣
∑
j∈I

Fε(x−Xj(t))ρjh
d −

∑
j∈I

E[Fε(x−Xj(t))]ρjh
d

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈I

E[Fε(x−Xj(t))]ρjh
d −

∫
Rd

Fε(x− y)ρ(t, y)dy

∣∣∣∣∣∣
+

∣∣∣∣
∫
Rd

Fε(x− y)ρ(t, y)dy −
∫
Rd

F (x− y)ρ(t, y)dy

∣∣∣∣
= : es(t, x) + ed(t, x) + em(t, x).

Step 1. For the moment error, it can be proved that

(3.3) em(t, x) ≤ C1ε
2.

Indeed, if we rewrite em(t, x) =
∣∣∫

Rd [Fε(y)− F (y)]ρ(t, x− y)dy
∣∣, and from (i) in

Lemma 2.1, then one has

em(t, x) =

∣∣∣∣
∫
Rd

[h(
|y|
ε
)− 1]F (y)ρ(t, x− y)dy

∣∣∣∣(3.4)

= ε

∣∣∣∣
∫
Rd

[h(|z|)− 1]F (z)ρ(t, x− εz)dz

∣∣∣∣
= ε

∣∣∣∣
∫
Rd

[h(|z|)− 1]F (z)[ρ(t, x− εz)− ρ(t, x)]dz

∣∣∣∣
≤ Cε2‖∇ρ‖L∞

∫ 1

0

r2|1− h(r)|dr ≤ C1ε
2,

where C1 depends only on d, ‖ρ0‖Hk(Rd).

Step 2. For the discretization error ed(t, x), we notice that∫
Rd

Fε(x− y)ρ(t, y)dy =

∫
Rd

Fε(x− y)

[∫
D

g(t, y; 0, α)ρ0(α)dα

]
dy(3.5)

=

∫
D

[∫
Rd

Fε(x− y)g(t, y; 0, α)dy

]
ρ0(α)dα

=

∫
D

E [Fε(x−X(t;α))] ρ0(α)dα.
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By applying Lemma 2.4 with f(y) = Fε(x− y),Γ(α) = ρ0(α), we obtain∣∣∣∣∣∣
∑
j∈I

E[Fε(x−Xj(t))]ρjh
d −

∫
D

E [Fε(x−X(t;α))] ρ0(α)dα

∣∣∣∣∣∣(3.6)

≤Chd+1‖Fε‖Wd+1,q(Rd) ≤ C2h
d+1εd/q−2d.

It follows from (3.5) and (3.6) that

ed(t, x) =

∣∣∣∣∣∣
∑
j∈I

E[Fε(x−Xj(t))]ρjh
d −

∫
Rd

Fε(x− y)ρ(t, y)dy

∣∣∣∣∣∣(3.7)

≤ C2h
d+1εd/q−2d,

where C2 only depends on T, d and ‖ρ0‖Hk(Rd).

Step 3. For the sampling error es(t, x), we will use Lemma 2.5 to give an estimate
of es(t, x) = |

∑
j∈I

Yj |, where

(3.8) Yj =
(
Fε(x−Xj(t))− E[Fε(x−Xj(t))]

)
ρjh

d.

It is obvious that

(3.9) E[Yj ] = 0 and |Yj | ≤ Chdε1−d =: M, for all j ∈ I.

Next, we will show that
∑
j∈I

Var Yj is uniformly bounded by some V . Actually,

∑
j∈I

Var Yj =
∑
j∈I

{
E[|Fε(x−Xj(t))|2]− |E[Fε(x−Xj(t))]|2

}
ρ2jh

2d(3.10)

≤
∑
j∈I

E[|Fε(x−Xj(t))|2]ρ2jh2d.

We apply Lemma 2.4 again with f(y) = |Fε(x − y)|2 = C|∂d−1Fε(x − y)|,Γ(α) =
ρ0(α)

2. Then one has∣∣∣∣∣∣
∑
j∈I

E[|Fε(x−Xj(t))|2]ρ2jh2d − hd

∫
D

E[|Fε(x−X(t;α))|2]ρ0(α)2dα

∣∣∣∣∣∣(3.11)

≤ Chd‖Fε‖W 2d,q(Rd)h
d+1 ≤ Chd+1εd/q−3d+1hd,

which follows from Lemma 2.2 as we have done in (3.7).
Notice that ∫

D

E[|Fε(x−X(t;α))|2]ρ0(α)2dα(3.12)

=

∫
D

∫
Rd

|Fε(x− y)|2g(t, y ← 0, α)ρ0(α)
2dydα

=

∫
Rd

|Fε(x− y)|2
{∫

D

g(t, y ← 0, α)ρ0(α)
2dα

}
dy,

where g(t, y ← 0, α) is the Green’s function. Notice also that

u(t, x) :=

∫
D

g(t, x ← 0, α)ρ0(α)
2dα
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is the solution of the following equation:

(3.13)

⎧⎪⎨
⎪⎩

∂tu = νΔu−∇ · (u∇c), x ∈ R
d, t > 0,

−Δc = u(t, x),

u(0, x) = ρ20(x).

So the L∞ norm of u are bounded by ‖ρ0‖Hk . Therefore, using Lemma 2.2, one
has that (3.12) is bounded by

C

∫
Rd

|Fε(x− y)|2dy = C‖Fε‖22 ≤ Cε2−d.(3.14)

Collecting (3.10), (3.11) and (3.14), we have∑
j∈I

Var Yj ≤ Chd+1εd/q−3d+1hd + Chdε2−d(3.15)

≤ Chd+ q(2−d)
2q−1 =: V (by ε = h

q
2q−1 ),

where the constant C depends only on T, d and ‖ρ0‖Hk(Rd).
For any C3 > 0, we let η = C3| lnh| in Lemma 2.5. In order to use Lemma 2.5,

we need to verify that M ≤ C
√
V
η , which leads to

(3.16) h
3qd−d−2q

2(2q−1)(d−1) (| lnh|) 1
d−1 ≤ ε.

Since we choose ε = h
q

2q−1 with q > 1, (3.16) can be verified when h is sufficiently
small. Hence, it follows from the concentration inequality (2.10) that

P
(
es(t, x) ≥ C3| lnh|

√
V
)
≤ exp[−C ′C2

3 | lnh|2] ≤ hC′′C3| lnh|,(3.17)

for some C ′′ > 0 depending only on T, d and ‖ρ0‖Hk(Rd).

Step 4. We take ε = h
q

2q−1 with any q > 1 and h sufficiently small. Then

(3.18) C1ε
2 + C2h

d+1εd/q−2d + C3| lnh|
√
V < C4h| lnh|,

where C4 is bigger than a positive constant depending only on T, d and ‖ρ0‖Hk(Rd).
In summary, at any fixed x and t, we have

P (|Gh
ε (t, x)−G(t, x)| ≥ 3C4h| lnh|)

(3.19)

≤P (em(t, x) + ed(t, x) + es(t, x) ≥ 3C4h| lnh|)
≤P (em(t, x) ≥ C4h| lnh|) + P (ed(t, x) ≥ C4h| lnh|) + P (es(t, x) ≥ C4h| lnh|)
≤0 + 0 + P (es(t, x) ≥ C4h| lnh|) ≤ hC′′′C4| lnh|,

with some C ′′′ > 0.

Step 5. For the lattice points zk = hk in ball B(R) with R = h−γ| lnh| (γ will be
determined later), it follows from inequality (3.19) that

P

(
max

k
|Gh

ε (t, zk)−G(t, zk)| ≥ 3C4h| lnh|
)

(3.20)

≤
∑
k

P (|Gh
ε (t, zk)−G(t, zk)| ≥ 3C4h| lnh|)

≤C ′′′′h−(1+γ| lnh|)dhC′′′C4| lnh| = C ′′′′h−d+(C′′′C4−γd)| lnh|,
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which leads to

(3.21) P

(
max

k
|Gh

ε (t, zk)−G(t, zk)| ≥ C ′
4h| lnh|

)
≤ hCC′

4| lnh|,

with some constant C > 0 provided that C ′′′C4 − γd > 0.

Step 6. For any fixed t, denote the event U := {Xi(t) ∈ B(R)}. Then we know
from Lemma 2.8 that P (Uc) ≤ C

R2 = Ch2γ| lnh|. Now, we do the estimate under
event U , and suppose zi is the closest lattice point to Xi(t) with |Xi(t)− zi| ≤ h.

We compute∣∣Gh
ε (t,Xi(t))−G(t,Xi(t))

∣∣(3.22)

≤
∣∣Gh

ε (t,Xi(t))−Gh
ε (t, zi)

∣∣+ ∣∣Gh
ε (t, zi)−G(t, zi)

∣∣+ |G(t, zi)−G(t,Xi(t))|
= : I1 + I2 + I3.

Then P (I2 ≥ C ′
4h| lnh|) ≤ hCC′

4| lnh| follows from (3.21).
For I1, we have

I1 =

∣∣∣∣∣∣
∑
j∈I

Fε(Xi(t)−Xj(t))ρjh
d −

∑
j∈I

Fε(zi −Xj(t))ρjh
d

∣∣∣∣∣∣(3.23)

=

∣∣∣∣∣∣
∑
j∈I

∇Fε(Xi(t)−Xj(t) + ξ)ρjh
d

∣∣∣∣∣∣ |Xi(t)− zi| ≤ C
∑
j∈I

M1
ijh

dh,

by applying the mean-value theorem. We take ε = h
q

2q−1 with any q > 1 and h

sufficiently small; this ensures ε ≥ h| lnh| 2d . Apply Lemma 2.6 for any C5 > CC
,
one has

(3.24) P (I1 ≥ C5h| ln ε|) ≤ P (
∑
j∈I

M1
ijh

d ≥ C5

C
| ln ε|) ≤ hCC5| lnh|,

which leads to

(3.25) P (I1 ≥ C5h| lnh|) ≤ hCC5| lnh| (by h ≤ ε),

with some C > 0.
For I3, since G(t, x) is smooth enough, one has

(3.26) I3 = |∇G(t, zi + ξ)‖ zi −Xi(t)| ≤ C6h ≤ C6h| lnh|,
by using the mean-value theorem.

Take C7 > max{C ′
4, C5, C6}, and collect the estimates of I1, I2 and I3. Then

one has

P

(
max
i∈I

∣∣Gh
ε (t,Xi(t))−G(t,Xi(t))

∣∣ ≥ 3C7h| lnh|
)

(3.27)

≤NP (I1 + I2 + I3 ≥ 3C7h| lnh|)
≤NhCC7| lnh| +NhCC7| lnh| + 0 ≤ hCC7| lnh|,

with some C > 0 and C7 bigger than a positive constant depending only on T, d
and ‖ρ0‖Hk(Rd).

Until now, we have only proved that

P

({
max
i∈I

∣∣Gh
ε (t,Xi(t))−G(t,Xi(t))

∣∣ ≥ C ′
7h| lnh|

}
∩ U

)
≤ hCC′

7| lnh|.(3.28)
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Hence, we have

P

(
max
i∈I

∣∣Gh
ε (t,Xi(t))−G(t,Xi(t))

∣∣ ≥ C ′
7h| lnh|

)
(3.29)

≤hCC′
7| lnh| + P (Uc) ≤ hCC′

7| lnh| + Ch2γ| lnh| ≤ hCC′
7| lnh|.

Finally, we conclude the proof of this theorem by using P (Ac) = 1− P (A). �

4. Stability estimate

In this section, we will focus on giving a proof of the stability estimate, which
can be expressed as follows.

Theorem 4.1 (Stability). Under the same assumption as in Theorem 1.1. Denote
the event

(4.1) B :=

{
max
0≤t≤T

max
i∈I

|Xi,ε(t)−Xi(t)| ≤ ε

}
.

Then there exist two positive constants C, C ′ depending only on T, p, d, R0 and
‖ρ0‖Hk(Rd), such that for any Λ > C ′, if we denote the event
(4.2)

A :=
{
‖Ĝh

ε (t,Xh,ε(t))−Gh
ε (t,Xh(t))‖�ph < Λ‖Xh,ε(t)−Xh(t)‖�ph , ∀ t ∈ [0, T ]

}
,

the following stability estimate holds:

P (A ∩ B) ≥ 1− hCΛ| lnh|,(4.3)

where Gh
ε , Ĝ

h
ε are defined in (1.24) and (1.25).

Proof. In order to prove (4.3), we divide [0, T ] into N ′ subintervals with length
Δt = hr for some r > 2 and tn = nhr, n = 0, . . . , N ′. If we denote the events

An :=
{
‖Ĝh

ε (t,Xh,ε(t))−Gh
ε (t,Xh(t))‖�ph ≥Λ‖Xh,ε(t)−Xh(t)‖�ph , ∃ t∈ [tn, tn+1]

}
,

(4.4)

Ã :=
{
‖Ĝh

ε (t,Xh,ε(t))−Gh
ε (t,Xh(t))‖�ph ≥ Λ‖Xh,ε(t)−Xh(t)‖�ph , ∃ t ∈ [0, T ]

}
,

(4.5)

then one has

P
(
Ã
)
= P

⎛
⎝N ′−1⋃

n=0

An

⎞
⎠ .(4.6)

So our main idea of this proof is to give the estimate of P (An) first.
Directly, we apply Lemma 2.7 and get

P

(
max
n

max
tn≤t≤tn+1

|Xi(t)−Xi(tn)| ≥ Chr +
√
2νh

)
(4.7)

≤C ′hr/2−1 exp(−C ′′h2−r) → 0,
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which leads to

(4.8) P

(
max
n

max
tn≤t≤tn+1

|Xi(t)−Xi(tn)| ≥ ε

)
≤ C ′hr/2−1 exp(−C ′′h2−r) → 0,

provided that

(4.9) Chr +
√
2νh ≤ ε.

Again, (4.9) can be verified by our choice of ε = h
q

2q−1 with h sufficiently small.
Actually, (4.8) ensures that the position Xi(t) for t ∈ [tn, tn+1] is close to Xi(tn).

For t ∈ [tn, tn+1], recalling the definition of drift term (1.24) and (1.25), we write

Ĝh
ε (t,Xi,ε(t))−Gh

ε (t,Xi(t))(4.10)

=
∑
j∈I

[
Fε

(
Xi,ε(t)−Xj,ε(t)

)
− Fε

(
Xi(t)−Xj(t)

)]
ρjh

d

=
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
·
(
Xi,ε(t)−Xi(t) +Xj(t)−Xj,ε(t)

)
ρjh

d

=
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
·
(
Xi,ε(t)−Xi(t)

)
ρjh

d

+
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
·
(
Xj(t)−Xj,ε(t)

)
ρjh

d

= : Ii + Ji,

where the term ξij is from the mean-value theorem, which may depend on the
components Xi,ε(t),Xj,ε(t), Xi(t), Xj(t), Xi(tn), Xj(tn). Furthermore, from (4.8),
one has

(4.11) P ({ξij : |ξij | < 4ε, ∀ t ∈ [tn, tn+1]} ∩ B) ≥ 1− C ′hr/2−1 exp(−C ′′h2−r),

We will give the estimates of Ii and Ji under the event A := {ξij : |ξij | <
4ε, ∀ t ∈ [tn, tn+1]} ∩ B in the following steps 1–2.

Step 1 (Estimate of Ii). In order to do the estimate of Ii, we first need to give the
uniform bound of

∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
ρjh

d. To do this, we are required

to prove the uniform bound of
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn)

)
ρjh

d.

We may write

∑
j∈I

∇Fε

(
x−Xj(tn)

)
ρjh

d =
∑
j

E[∇Fε

(
x−Xj(tn)

)
]ρjh

d

+
∑
j∈I

[
∇Fε

(
x−Xj(tn)

)
− E[∇Fε

(
x−Xj(tn)

)
]
]
ρjh

d

=: I1 + I2.
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For I1, it can be estimated by Lemma 2.4 with f(y) = ∇Fε(x−y), Γ(α) = ρ0(α)
as we have done before:∣∣∣∣I1 −

∫
Rd

E[∇Fε

(
x−X(tn;α)

)
]ρ0(α)dα

∣∣∣∣(4.12)

≤hd+1‖Fε‖Wd+2,q(Rd) ≤ Chd+1εd/q−2d−1 ≤ C (by ε = h
q

2q−1 ),

where C depends on T, d, ‖ρ0‖Hk(Rd). On the other hand, we notice that∣∣∣∣
∫
Rd

E[∇Fε

(
x−X(tn;α)

)
]ρ0(α)dα

∣∣∣∣(4.13)

=

∣∣∣∣
∫
Rd

Fε(x− y)∇ρ(tn, y)dy

∣∣∣∣
≤‖∇ρ‖L∞‖Fε‖L1(B) + ‖∇ρ‖L1‖Fε‖L∞(Rd/B) ≤ C,

where ‖∇ρ‖L1 ≤ C(T, d,R0, ‖ρ0‖Hk(Rd)) has been used and B is the unit ball in R
d.

Actually, the proof of the estimate of ‖∇ρ‖L1 can be done by using the standard
semigroup method. We recall the heat semigroup operator etΔ defined by

(4.14) etΔρ := H(t, x) ∗ ρ,

where H(t, x) = 1
(4πt)d/2

e−
|x|2
4t is the heat kernel. Then the solution to the KS

equation (1.1) can be represented as

(4.15) ρ = etΔρ0 +

∫ t

0

e(t−s)Δ(−∇ · (ρ∇c))ds.

A simple computation leads to

(4.16) ‖∇ρ‖L1 ≤ C‖∇ρ0‖L1 + C(T )‖∇ · (ρ∇c)‖L∞(0,T ;L1(Rd)).

Furthermore, one has

‖∇ · (ρ∇c)‖L1 = ‖∇ρ · ∇c− ρ2‖L1 ≤ ‖∇ρ‖L2‖∇c‖L2 + ‖ρ‖2L2(4.17)

≤ C(d)‖∇ρ‖L2‖ρ‖
L

2d
d+2

+ ‖ρ‖2L2 ≤ C(d, ‖ρ0‖Hk).

Thus, we have ‖∇ρ‖L1 ≤ C(T, d,R0, ‖ρ0‖Hk(Rd)). Combining (4.12) and (4.13),
one concludes that

(4.18) |I1| ≤ C1(T, d, R0, ‖ρ0‖Hk(Rd)).

To estimate I2, let I2 =
∑
j∈I

Yj :

(4.19) Yj =
[
∇Fε

(
x−Xj(tn)

)
− E[∇Fε

(
x−Xj(tn)

)
]
]
ρjh

d.

We have E[Yj ] = 0, |Yj | ≤ Chdε−d ≤ C| lnh|−2 := M provided that

(4.20) h| lnh| 2d ≤ ε.

Indeed, (4.20) can be verified since we choose ε = h
q

2q−1 with 1 < q and sufficiently
small h.

Furthermore,

(4.21)
∑
j∈I

VarYj ≤
∑
j∈I

E
[
|∇Fε

(
x−Xj(tn)

)
|2
]
ρ2jh

2d.
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We once again apply Lemma 2.4 with f(y) = |∇Fε(x − y)|2 = C|∂d+1Fε(x − y)|,
Γ(α) = ρ0(α)

2:

∣∣∣∣∣∣
∑
j∈I

E
[
|∇Fε

(
x−Xj(tn)

)
|2
]
ρ2jh

2d − hd

∫
Rd

E
[
|∇Fε

(
x−X(tn;α)

)
|2
]
ρ0(α)

2dα

∣∣∣∣∣∣
(4.22)

≤Chdhd+1εd/q−3d−1 ≤ C| lnh|−2 (by ε = h
q

2q−1 ),

where the constant C depends only on T, d and ‖ρ0‖Hk(Rd).
On the other hand, as we have done in (3.12) and (3.14), we have

(4.23)

∣∣∣∣hd

∫
Rd

E
[
|∇Fε

(
x−X(tn;α)

)
|2
]
ρ0(α)

2dα

∣∣∣∣ ≤ Chdε−d ≤ C| lnh|−2.

Hence, one has
∑
j

VarYj ≤ C| lnh|−2 =: V .

For any C2 > 0, we choose η = C2| lnh| in Lemma 2.5. It is easy to check that

(4.24) M = C| lnh|−2 ≤ C

√
V

η
.

Thus, we can use Lemma 2.5 now, for any C2 > 0:

P
(
|I2| ≥ C2| lnh|

√
C| lnh|−1

)
(4.25)

=P
(
|I2| ≥ C2

√
C
)
≤ exp

{
−C ′C2

2 | lnh|2
}
≤ hC′′C2| lnh|.

We take C3 > C1 + C2

√
C; thus we have

P

⎛
⎝
∣∣∣∣∣∣
∑
j∈I

∇Fε

(
x−Xj(tn)

)
ρjh

d

∣∣∣∣∣∣ ≥ 2C3

⎞
⎠ ≤ P (|I1|+ |I2| ≥ 2C3) ≤ hC′′′C3| lnh|,

(4.26)

with some C ′′′ > 0. Hence, at the fixed time tn,∣∣∣∣∣∣
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn)

)
ρjh

d

∣∣∣∣∣∣ < C ′
3,

except for an event of probability less than hCC′
3| lnh| with C ′

3 bigger than a positive
constant depending only on T, d, R0 and ‖ρ0‖Hk(Rd).

Notice that∣∣∣∣∣∣
∑
j∈I

[
∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
−∇Fε

(
Xi(tn)−Xj(tn)

)]
ρjh

d

∣∣∣∣∣∣(4.27)

≤εC ′′′′
∑
j∈I

M2
ijh

d.
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So one has

P

⎛
⎝
∣∣∣∣∣∣
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
ρjh

d

∣∣∣∣∣∣ ≥ 2C ′
3

⎞
⎠(4.28)

≤P

⎛
⎝
∣∣∣∣∣∣
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn)

)
ρjh

d

∣∣∣∣∣∣+ εC ′′′′
∑
j∈I

M2
ijh

d ≥ 2C ′
3

⎞
⎠

≤P

⎛
⎝
∣∣∣∣∣∣
∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn)

)
ρjh

d

∣∣∣∣∣∣ ≥ C ′
3

⎞
⎠+ P

⎛
⎝εC ′′′′

∑
j∈I

M2
ijh

d ≥ C ′
3

⎞
⎠

≤hCC′
3| lnh|,

where Lemma 2.6 has been used in the last inequality since we can choose C ′
3 >

C ′′′′C
.
Recall Ii =

∑
j∈I

∇Fε

(
Xi(tn)−Xj(tn)+ξij

)
·
(
Xi,ε(t)−Xi(t)

)
ρjh

d; hence it follows

from (4.28) that

(4.29) P
(
‖(Ii)i∈I‖�ph ≥ C ′′

3 ‖Xh,ε(t)−Xh(t)‖�ph , ∃ t ∈ [tn, tn+1]
)
≤ hCC′′

3 | lnh|,

with some C > 0 and C ′′
3 bigger than a positive constant depending only on T, d, R0

and ‖ρ0‖Hk(Rd).

Step 2 (Estimate of Ji). At the fixed time tn, let Zi ∈ ε · Zd be the closest lattice
point to Xi(tn). If there is more than one lattice point closest to Xi(tn), then we
choose an arbitrary one. We write

Ji =
∑
j∈I

∇Fε(Zi − Zj) · ejρjhd(4.30)

+
∑
j∈I

[∇Fε

(
Xi(tn)−Xj(tn) + ξij

)
−∇Fε(Zi − Zj)] · ejρjhd

=: J1i + J2i,

where ej = Xj(t) − Xj,ε(t). For each zk = εk, k ∈ Z
d, we define fk to be the

average of all ejρjh
d where Xj(tn) is in the square Qk = zk + [− ε

2 ,
ε
2 ]

d. Namely,

(4.31) fk = ε−d
∑

Xj(tn)∈Qk

ejρjh
d,

with convention of fk = 0 if Qk contains none of the Xj(tn). Then one has

(4.32) ‖(fk)k∈Zd‖�pε ≤ Cp‖(ejρj)j∈I‖�ph ,

P

(
‖(J1i)i∈I‖�ph ≥ C4‖(

∑
k

∇Fε(zk′ − zk) · fkεd)k′∈Zd‖�pε , ∃ t ∈ [tn, tn+1]

)(4.33)

≤hCC4| lnh|,

for some C > 0 and C4 is bigger than a positive constant depending on T, p, d and
‖ρ0‖Hk(Rd). The derivation of these two results can be achieved by the argument
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in [19, p. 797]. In addition, it follows from Beale [3, pp. 47-48] that

(4.34) ‖(
∑
k

∇Fε(zk′ − zk) · fkεd)k′∈Zd‖�pε ≤ C‖(fk)k∈Zd‖�pε ,

which implies

(4.35) P
(
‖(J1i)i∈I‖�ph ≥ C4‖(ejρj)j∈I‖�ph , ∃ t ∈ [tn, tn+1]

)
≤ hCC4| lnh|.

For J2i, we use the mean-value theorem again,

(4.36) J2i =
∑
j∈I

[∇2Fε

(
Xi(tn)−Xj(tn) + ξij + ξ′ij

)
· ξ′′ij ] · ejρjhd,

where ξ′′ij = ξij + (Xi(tn)− Zi) − (Xj(tn)− Zj). Since |ξij | ≤ ε, |ξ′ij | ≤ |ξ′′ij | ≤ 3ε,
then one has

(4.37) |J2i| ≤
∑
j∈I

3M2
ijε|ejρj |hd.

Applying the discrete version of Young’s inequality, we conclude that

‖(J2i)i∈I‖�ph ≤ 3ε
∑
j∈I

M2
ijh

d‖(ejρj)j∈I‖�ph .(4.38)

By Lemma 2.6 with C0 = 4, one has

(4.39) P
(
‖(J2i)i∈I‖�ph ≥ C5‖(ejρj)j∈I‖�ph , ∃ t ∈ [tn, tn+1]

)
≤ hCC5| lnh|,

with any C5 > 3C
.
Recall (4.35) and (4.38), then we have

(4.40) P
(
‖(Ji)i∈I‖�ph ≥ 2C6‖(ejρj)j∈I‖�ph , ∃ t ∈ [tn, tn+1]

)
≤ hCC6| lnh|,

for any C6 > C4 + C5.

Step 3. Collecting the estimate of Ii (4.29), the estimate of Ji (4.40) and the
definition of event An (4.4), one concludes that

(4.41) P (An ∩ A) ≤ hCΛ| lnh|, n = 0, · · · , N ′ − 1,

for some C > 0 and Λ bigger than a positive constant depending on T, p, d, R0

and ‖ρ0‖Hk(Rd). Since (4.6) and (4.41), we have

P
(
Ã ∩ A

)
= P

⎛
⎝N ′−1⋃

n=0

(An ∩A)

⎞
⎠ ≤ N ′hCΛ| lnh| = C ′h−rhCΛ| lnh| ≤ hCΛ| lnh|,

(4.42)

for some C > 0. Finally, we have

P
(
Ã
)
≤ P

(
Ã ∩ A

)
+ P (Ac) ≤ hCΛ| lnh| + C ′hr/2−1 exp(−C ′′h2−r) ≤ hCΛ| lnh|,

(4.43)

for some C > 0 and Λ bigger than a positive constant depending on T, p, d, R0

and ‖ρ0‖Hk(Rd). Now, the proof of the stability theorem can be completed, since

P
(
Ãc
)
= 1− P

(
Ã
)
. �
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5. The convergence analysis and the proof of Theorem 1.1

In order to prove the convergence of particle paths, we need to extend the consis-
tency error to all time. It can be obtained by combining the consistency estimates
for a finite number of times 0 = t0 < t1 < · · · < tN ′ = T where Δt = hr with r > 2.
We denote the following events:

An
1 :

{
max
i∈I

∣∣Gh
ε (tn, Xi(tn))−G(tn, Xi(tn))

∣∣ < Λ1h| lnh|
}
,(5.1)

A2 :

{
max
n

max
tn≤t≤tn+1

|Xi(t)−Xi(tn)| < C(hr + ν1/2h)

}
,(5.2)

A3 :
{
‖Ĝh

ε (t,Xh,ε(t))−Gh
ε (t,Xh(t))‖�ph < Λ3‖Xh,ε(t)−Xh(t)‖�ph , ∀ t ∈ [0, T ]

}
,

(5.3)

with Λ1, Λ3 bigger than a constant depending only on T, p, d, R0 and ‖ρ0‖Hk(Rd).
For all t ∈ [tn, tn+1], under the event An

1 ∩ A2, we obtain

‖Gh
ε (t,Xh(t))−G(t,Xh(t))‖�ph

≤‖Gh
ε (t,Xh(t))−Gh

ε (tn, Xh(tn))‖�ph
+ ‖Gh

ε (tn, Xh(tn))−G(tn, Xh(tn))‖�ph + ‖G(tn, Xh(tn))−G(t,Xh(t))‖�ph
<C‖Xh(t)−Xh(tn)‖�ph + Chr + Λ1h| lnh|
<(C + Λ1)h| lnh|,

by the estimate |Xi(t) − Xi(tn)| ≤ C(hr + ν1/2h) and the fact that G(t, x) has
bounded derivatives. Therefore,

(5.4) max
0≤t≤T

‖Gh
ε (t,Xh(t))−G(t,Xh(t))‖�ph < (C + Λ1)h| lnh|,

under the event
N ′⋂
n=0

An
1 ∩ A2.

The convergence can be proved by the same argument as in [2,3]. Denote ei(t) =
Xi,ε(t)−Xi(t) and vector e(t) = (ei)i∈I = Xh,ε(t)−Xh(t). One has

(5.5)
dei
dt

= Ĝh
ε (t,Xi,ε(t))−G(t,Xi(t))

and the differential inequality

‖de
dt

‖�ph ≤ ‖Ĝh
ε (t,Xh,ε(t))−Gh

ε (t,Xh(t))‖�ph + ‖Gh
ε (t,Xh(t))−G(t,Xh(t))‖�ph

(5.6)

< Λ3‖e(t)‖�ph + (C + Λ1)h| lnh|,

under the event
N ′⋂
n=0

An
1 ∩ A2 ∩ A3 by the stability Theorem 4.1 and the consis-

tency estimate (5.4). It follows from (5.6) and the fact
d‖e‖�

p
h

dt ≤ ‖de
dt ‖�ph , by using

Gronwall’s inequality with e(0) = 0, that

(5.7) max
0≤t≤T

‖e(t)‖�ph < C(T,Λ1,Λ3)h| lnh| = Λh| lnh|,

under the event
N ′⋂
n=0

An
1 ∩ A2 ∩A3. Here we denote Λ := C(T,Λ1,Λ3).
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To complete the proof, we need to justify the stability condition: |ei(t)| ≤ ε for

all i and 0 ≤ t ≤ T under the event
N ′⋂
n=0

An
1 ∩ A2 ∩ A3. Since hd max

i∈I
|ei(t)|p ≤

(‖e(t)‖�ph)
p, one has

(5.8) max
i∈I

|ei(t)| ≤ h−d/p‖e(t)‖�ph < Ch1−d/p| lnh| < ε

2
, for 0 ≤ t ≤ T,

by choosing p > d(2q−1)
q−1 , ε = h

q
2q−1 with q > 1, and h small enough. Hence, max

i∈I
|ei|

can hardly reach ε. Thus if we denote (5.8) as event B, one has P ((A3 ∩ B)c) ≤
hCΛ3| lnh| according to (4.3) in Theorem 4.1. From the discussion above, we have

P

(
max
0≤t≤T

‖Xh,ε(t)−Xh(t)‖Lp
h
≥ Λh| lnh|

)
≤ P

⎛
⎝
⎛
⎝ N ′⋂

n=0

An
1 ∩ A2 ∩A3 ∩ B

⎞
⎠

c⎞
⎠

(5.9)

=P

⎛
⎝N ′−1⋃

n=0

(An
1 )

c ∪ Ac
2 ∪ (A3 ∩ B)c

⎞
⎠ ≤

N ′−1∑
n=0

P ((An
1 )

c) + P (Ac
2) + P ((A3 ∩ B)c)

≤Ch−rhCΛ1| lnh| + C ′hr/2−1 exp(−C ′′h2−r) + hCΛ3| lnh| ≤ hCΛ| lnh|,

where we have used (3.1) in Theorem 3.1 and (4.8). Finally, we denote κ = q
2q−1 ;

then the proof has been completed.

Appendices

Appendix A. Proof of ρ ∈ Hk(Rd) with initial data ρ0 ∈ L1 ∩Hk(Rd).

Theorem A.1. Assume that the initial data ρ0 satisfies

(A.1) 0 ≤ ρ0 ∈ L1 ∩Hk(Rd) with k >
d

2
.

Then the KS system (1.1) has a local solution with the regularity
(A.2)
‖ρ‖L∞(0,T ;Hk(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)), ‖ρ‖L2(0,T;Hk+1(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)),

where T > 0 only depends on ‖ρ0‖L1∩Hk(Rd).

Proof. We give a sketch of the proof here. By the weak Young’s inequality [15,
p. 107], one has

(A.3) ‖∇c‖2 ≤ C‖|x|−(d−1)‖ d
d−1 ,w

‖ρ‖ 2d
d+2

≤ C‖ρ‖ 2d
d+2

.

To estimate ‖ρ‖ 2d
d+2

, we multiply (1.1) by dρd−1 and integrate over Rd, which leads

to

(A.4)
d

dt
‖ρ‖dd +

4(d− 1)

d
‖∇ρ

d
2 ‖22 ≤ (d− 1)‖ρ‖d+1

d+1.

Let us recall the Gagliardo-Nirenberg inequality [21, p. 176, (2.3.50)]:

(A.5) ‖ρ‖q ≤ C‖∇ρ‖θp‖ρ‖1−θ
r ,
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where 1 ≤ p, r ≤ ∞, 0 ≤ θ ≤ 1, and 1
q = θ( 1p − 1

d ) +
1−θ
r . We choose q = 2(d+1)

d

and p = r = 2; then one has

(A.6) ‖ρ‖d+1
d+1 = ‖ρ d

2 ‖
2(d+1)

d
2(d+1)

d

≤ C‖∇ρ
d
2 ‖2‖ρ

d
2 ‖

d+2
d

2 .

Hence, by using the Young’s inequality, we obtain

d

dt
‖ρ‖dd ≤ C(‖ρ‖dd)

d+2
d .(A.7)

Solving the above ordinary differential inequality, we know there exists a T1 > 0
depending on ‖ρ0‖L1∩Hk(Rd), such that

(A.8) ‖ρ‖L∞(0,T1;Ld(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)).

Furthermore, as shown in [4], we know the mass conservation holds true:

(A.9) ‖ρ‖1 = ‖ρ0‖1.

Hence, by applying the interpolation inequality (1 ≤ 2d
d+2 < d), we know that

(A.10) ‖ρ‖ 2d
d+2

≤ C(‖ρ0‖L1∩Hk(Rd)),

which leads to

(A.11) ‖∇c‖2 ≤ C(‖ρ0‖L1∩Hk(Rd)),

for 0 < t ≤ T1.
A simple computation of system (1.1) shows that, for 0 ≤ |s| ≤ k,

(A.12)
d

dt
‖Dsρ‖22 +

1

2
‖Ds∇ρ‖22 ≤ 1

2
‖Ds(ρ∇c)‖22.

Using the Leibniz formula and Sobolev imbedding theorem, one concludes that

(A.13) ‖Ds(ρ∇c)‖2 ≤ ‖ρ‖∞‖∇c‖Hk + ‖ρ‖Hk‖∇c‖∞ ≤ C‖ρ‖Hk‖∇c‖Hk .

Recall the fact that

(A.14) ‖∇c‖Hk ≤ ‖ρ‖Hk + ‖∇c‖2 ≤ ‖ρ‖Hk + C(‖ρ0‖L1∩Hk(Rd)),

which leads to

(A.15)
d

dt
‖ρ‖2Hk +

1

2
‖ρ‖2Hk+1 ≤ C(‖ρ0‖L1∩Hk(Rd))(1 + ‖ρ‖2Hk)

2.

Solving the above ordinary differential inequality, there exists 0 < T ≤ T1 depend-
ing on ‖ρ0‖L1∩Hk(Rd), such that

(A.16) ‖ρ‖L∞(0,T ;Hk(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd))

and

(A.17) ‖ρ‖L2(0,T;Hk+1(Rd)) ≤ C(‖ρ0‖L1∩Hk(Rd)),

which concludes our proof. �
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Appendix B. Extension to general regular attractive force F

In this section, we will extend our result to the particle system with interacting
function F regular enough, which satisfies

(B.1) F ∈ Hd+1(Rd).

We consider the regular solution ρ of the following PDE:

(B.2)

{
∂tρ = νΔρ−∇ · (ρF ∗ ρ), x ∈ R

d, t > 0,

ρ(0, x) = ρ0(x),

with ρ0 has a compact support D with D ⊆ B(R0) and 0 ≤ ρ0 ∈ Hk(Rd) with
k ≥ d+ 1. Then ρ has the following regularity for any T > 0:

(B.3) ‖ρ‖L∞(0,T ;Hd+1(Rd)) ≤ C
(
T, ‖ρ0‖Hd+1(Rd), ‖F‖Hd+1(Rd)

)
and

‖G‖L∞(0,T ;Wd+1,∞(Rd))(B.4)

=‖F ∗ ρ‖L∞(0,T ;Wd+1,∞(Rd)) ≤ C
(
T, ‖ρ0‖Hd+1(Rd), ‖F‖Hd+1(Rd)

)
.

Again we suppose the self-consistent process Xi(t) satisfying

(B.5) Xi(t) = Xi(0) +

∫ t

0

∫
Rd

F
(
Xi(s)− y

)
ρ(s, y)dyds+

√
2νBi(t), i ∈ I,

with the initial data Xi(0) = αi.
Since F is regular enough, there is no need to mollify the force F anymore. To

be specific, we consider trajectories {X̂i(t)}i∈I satisfying the SDEs:

(B.6) X̂i(t) = X̂i(0) +

∫ t

0

∑
j∈I

F
(
X̂i(s)− X̂j(s)

)
ρjh

dds+
√
2νBi(t), i ∈ I,

with initial data X̂i(0) = αi, and we denote

Gh(t, x) :=
∑
j∈I

F
(
x−Xj(t)

)
ρjh

d,(B.7)

Ĝh(t, x) :=
∑
j∈I

F
(
x− X̂j(t)

)
ρjh

d.(B.8)

The extended result can be described in the following theorem.

Theorem B.1. Suppose the initial density ρ0(x) has a compact support D with
D ⊆ B(R0) and 0 ≤ ρ0 ∈ Hk(Rd) with k ≥ d + 1. For the attractive force F
satisfying (B.1), ρ is the global regular solution to (B.2). Assume that Xh(t) =

(Xi(t))i∈I is the exact path of (B.5) and X̂h(t) =
(
X̂i(t)

)
i∈I

is the solution to the

particle system (B.6). There exist two positive constants C and C ′ depending on
T, p, d, R0, ‖F‖Hd+1(Rd) and ‖ρ0‖Hk(Rd) such that the following estimate holds:

P

(
max
0≤t≤T

∥∥∥X̂h(t)−Xh(t)
∥∥∥
�ph

< Λh| lnh|
)

≥ 1− hCΛ| lnh|,

for any Λ > C ′, p ≥ 1 and T > 0.

The idea of the proof of Theorem B.1 can be done as before, which is the con-
sistency and stability implying convergence.

Like we have done in Section 3, the consistency can be proved.
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Theorem B.2. Under the same assumption as Theorem B.1, there exist two con-
stants C,C ′ > 0 depending only on T, d, R0, ‖F‖Hd+1(Rd) and ‖ρ0‖Hk(Rd) such
that at any fixed time t ∈ [0, T ], we have

(B.9) P

(
max
i∈I

∣∣Gh(t,Xi(t))−G(t,Xi(t))
∣∣ < Λh| lnh|

)
≥ 1− hCΛ| lnh|,

for all Λ > C ′, where G = F ∗ ρ and Gh is defined in (B.7).

Proof. The proof is almost the same as the proof of Theorem 3.1. In this case, we
have

|Gh(t, x)−G(t, x)| ≤

∣∣∣∣∣∣
∑
j∈I

F (x−Xj(t))ρjh
d −

∑
j∈I

E[F (x−Xj(t))]ρjh
d

∣∣∣∣∣∣(B.10)

+

∣∣∣∣∣∣
∑
j∈I

E[F (x−Xj(t))]ρjh
d −

∫
Rd

F (x− y)ρ(t, y)dy

∣∣∣∣∣∣
=: es(t, x) + ed(t, x),

and one can prove that

(B.11) ed(t, x) ≤ Chd+1; P (es(t, x) ≥ Λh| lnh|) ≤ hCΛ| lnh|.

Then this theorem can be proved similarly. �

As we have done in Section 4, we have the following stability result.

Theorem B.3. Under the same assumption as Theorem B.1, there exist a constant
C > 0 depending only on T, p, d, R0, ‖F‖Hd+1(Rd) and ‖ρ0‖Hk(Rd) such that

(B.12) ‖Ĝh(t, X̂h(t))−Gh(t,Xh(t))‖�ph ≤ C‖X̂h(t)−Xh(t)‖�ph , ∀ t ∈ [0, T ],

where Gh, Ĝh are defined in (B.7) and (B.8).

Proof. Instead of using Lemma 2.6, we have that M1
i,j = |∇F (Xi(t)−Xj(t)+y)| ≤

C for any t ∈ [0, T ], which leads to

(B.13)
∑
j∈I

M1
i,jh

d ≤ C, ∀ t ∈ [0, T ].

In addition, one has

Ĝh(t, X̂i(t))−Gh(t,Xi(t))(B.14)

=
∑
j∈I

[
F
(
X̂i(t)− X̂j(t)

)
− F

(
Xi(t)−Xj(t)

)]
ρjh

d

=
∑
j∈I

∇F
(
Xi(t)−Xj(t) + ξij

)
·
(
X̂i(t)−Xi(t) +Xj(t)− X̂j(t)

)
ρjh

d

=
∑
j∈I

∇F
(
Xi(t)−Xj(t) + ξij

)
·
(
X̂i(t)−Xi(t)

)
ρjh

d

+
∑
j∈I

∇F
(
Xi(t)−Xj(t) + ξij

)
·
(
Xj(t)− X̂j(t)

)
ρjh

d

= : Ii + Ji.
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Hence, we have

(B.15) |Ii| ≤ C|X̂i(t)−Xi(t)|; |Ji| ≤
∑
j∈I

M1
i,j |Xj(t)− X̂j(t)|ρjhd,

which concludes the proof. �

Finally, combining Theorem B.2 and Theorem B.3, we can get Theorem B.1 as
we have done in Section 5.
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