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1. Introduction

We investigate the numerical behavior of shock capturing methods for the com-
putation of slowly moving shocks. Here slowly moving means that the ratio of
the shock speed to the maximum wave speed in the domain is much less than
one. Earlier literatures have reported the difficulty of computing slowly mov-
ing shocks [13,10,9], where first order Godunov or Roe type methods produce
spurious long wave oscillations behind the shock and eventually ruin the down-
stream pattern. Several heuristic arguments, or improvements on the Riemann
solver have been made in [13,10,5,1]. However, none of these improvements
were robust enough to completely eliminate these downstream oscillations.

The goal of this article is to carefully study this peculiar numerical phe-
nomenon, and to understand its formation and propagation. Our study shows
that these downstream oscillations are generated by the perturbation of the dis-
crete shock profile. They propagate along characteristics and decay in L? and
L. The perturbing nature of the viscous shock profile is the constant source
for the generation of the downstream oscillations for all time. In our numerical
experiments we also observed periodic structure of the perturbing viscous shock
profile. The period is exactly the time for the shock to propagate one spatial
grid.

The outline of the paper follows. In section 2 we present a numerical ex-

ample, using a Roe type scheme, on a Riemann problem of the compressible
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Euler equations that admits slow shocks. Among the numerical artifacts ob-
served in this example are the momentum spikes and downstream oscillations.
In section 3 a traveling wave analysis on a viscous isentropic Euler equations
(Euler equations with linear viscosity terms in both the continuity and mo-
mentum equations) is presented to show the existence of the momentum spike,
which differs from the momentum profile of the Navier-Stokes Equations. In
section 4 we study the downstream oscillations, and establish its relation with

the stability of the discrete shock.

2. Numerical Solutions of a Slowly Moving Shock

Consider the 1-D compressible Euler equations of gas dynamics,

Op+0em =0,
dm + dx(pu* +p) =0, (2.1)
Ok + 0-(u(E +p))=0.

Here p, u, m = pu, p and FE are respectively the density, velocity, momentum,

pressure and total energy. For a polytropic gas, the equation of state is given
by

p=(y—1(E-3pu’) . (2.2)

Let A denote the Jacobian matrix dF(U)/0U. The Euler equations (2.1-2.2)

is hyperbolic with eigenvalues

a'=u—c, a*=u, ad=u+c, (2.3)

where ¢ = /vp/p is the local speed of sound. The right eigenvectors of A form
the matrix R = (R', R?, R*) given by

1 1 1
R = u—-c u u+c , (2.4)
H — uc %uQ H + uc
with H = 7651 + % The inverse of R defines the left eigenvectors (L', L?, L?) =
R™' of A by

s +2) S(=bu—73) b
R_l = 1 — bl bgu —bg 5 (25)
2 =) G(=bu+t3) b
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with
2

—1 U
bg = ’7 bl = bQ? . (26)

”
c2

Let U = (p,m, E)T be the vector of conserved quantity, AJ'+1/2 be the Roe
matrix satisfying [11]

F(Ujpr) = F(U;) = Ajy1 po(Uir = U;) (2.7)

By projecting U;;; — U; onto {R;41/2} one obtains the characteristic decompo-
sition .
Uip1 —U; = 2:1 a§+1/2]i’§+1/2 : (2.8)
=
In this decomposition the local characteristic variables oz?_H/Q can be obtained
using Roe’s average which perfectly resolves stationary discontinuities.
We let z;,1/2 be the grid points, U;;;/2 be the pointwise value of U at
T = Zj41/2, and U; be the cell center value of U at x; = (2412 + 2j_1/2). We
use a first order upwind, Roe type scheme, called ENO1-Roe, by Shu and Osher
[12], that has the numerical flux defined by

1

1
Fj+1/2 = §(F(UJ) + F(UJ’H)) - §Sgn()‘§+1/2)(7§+1 - 'Yf)R?H/Qa (2.9a)

where ~7 is the component of F'(U;) in the p-th characteristic family,

3
F(U}) = Y ATRE. (2.9)
p=1

We carry out the following 1-D test on a Riemann problem of the Euler
equations (2.1)-(2.2).

Example 2.1. We take the following initial data [9] that gives a Mach-3 shock
moving to the right with a speed s = 0.1096:

3.86
U, =1 —3.1266 if 0<z<0.5;
27.0913

(2.12)
1

Up=| —3.44 if 0.5<x<1.
8.4168
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Figure 1: A slowly moving shock at ¢ = 0.95 computed by ENO1-Roe using
Az = 0.01 and At = 0.001.

We take v = 1.4 and output the results at { = 0.95 in Fig.1. The computation
is carried out in the domain [0, 1] with Az = 0.01, At = 0.001. One can see

that there is a momentum spike and the post-shock solution is oscillatory.

3. The Momentum Spikes

Here we present a traveling wave analysis on a viscous Euler equations, which
shows precisely the formation of the momentum spike. After comparing it with
the traveling wave solution of the Navier-Stokes equation we find out that this
spike is a numerical artifact.

Consider the following viscous isentropic Euler equations for density p and

momentum m:

Oip + 0o = €0pyp s

m? (3.1)
Here the pressure p(p) = kp” for some constants k& and ~. This hyperbolic
system has two distinct eigenvalues u + ¢ where u = m/p is the velocity, ¢ =
vV kp =1 is the sound speed. Although the true numerical viscosity is far more
complicated than those appeared on the right hand side of Eq.(3.1), a study on

(3.1) is sufficient for a full understanding of the numerical momentum spike.

We look at the traveling wave solution to (3.1). Let £ = £=%t where s is the



OSCILLATIONS INDUCED BY NUMERICAL VISCOSITIES 173

shock speed. Then the traveling wave solution takes the form

ple, ) =€),  m(z,1) =¢(() (3.2)

with asymptotic states

P(too) =¢x,  Pp(foo)=vs. (3.3)

Applying the traveling wave solution (3.2) in (3.1a), after some manipula-

tions one gets the following ODE:

Oep=—s(d—d-)+ ¢ -y,

=56+ 0+ (Y- —sp-). (3.4)

If the density is smeared, then ¢ is monotone, and J¢¢ becomes a spike. (3.4)
shows that @ is a superposition of a monotone profile s¢ with a spike corre-
sponding to Ogp. When s is small (for stationary or slowly moving shock), the
monotone profile s¢ becomes small and the spike term Og¢p dominates. Thus the
shock profile of ¥ is a non-monotone spike. Therefore the spike is usually gen-
erated in a stationary or slowly moving shock, as shown in our earlier example.
For a strong shock the monotone profile s¢p dominates so the shock profile of
the momentum is monotone.

Although our traveling wave analysis applies to linear viscosities, one can
similar argue about the existence of the momentum spike for nonlinear scheme
(such as the ENO1-Roe).

Note that the momentum spike is solely numerical artifacts. By solving the
Riemann problem exactly one obtains a monotone momentum.

In [4] we also studied the traveling wave solution of the Navier-Stokes equa-
tions (where there is no viscosity term in tha continuity equation). The result
shows that the momentum profile given by the Navier-Stokes equations is again
monotone, thus does not have the spike. It is conjectured that the solution of

the Euler equations is the zero viscosity limit of the solution of the Navier-Stokes
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equations. Since the Navier-Stokes equations are more physical, the momentum
spike in unphysical.

By examining the interrelation between the viscous Euler and the Navier-
Stokes equation one can come up with a change of variable that recovers the
Navier-Stokes equations in an asymptotic sense from the Euler equations. This
also motivates a numerical change of variable, i.e., from the cell-center or cell
average momentum to the mass flux, which eliminates the momentum spike ex-
actly. For details see [4]. However, what is more catastrophic is the downstream

oscillations, which can not be easily eliminated, as will be studied next.

4. The Downstream Oscillations

We bear in mind that almost all shock capturing methods are in conservative
form. Due to the conservation of momentum, the total mass of momentum
carried by the spike profile should be compensated by an equal amount of mo-
mentum mass elsewhere. This explains the formation of the downstream waves.

In Fig.2 we output the result of ENO1-Roe for example 2.1 after 5 time
steps to illustrate the formation of the momentum spike and downstream wave.
As the density is smeared, the momentum forms a spike and a downstream
wave. The spike and the downstream wave carry the same mass so the total
momentum is conserved.

In order to demonstrate that the downstream oscillations propagate along
characteristics and are diffusive, we use the Roe decomposition (2.8), where o?
represents the component of Uy — U; in the p-th characteristic family. We

define the numerical “characteristic” variable as
B = E af+1/2A$ : (4.1)
i<y
A distinction between the dispersive oscillations associated with a center differ-
ence schemes and the downstream oscillations studied here is that the latter lie

only in its own characteristic family. For example a wave appears in 37 does not

appear in (37 for p # q. These can be seen in Fig.3. We also see that each wave
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Figure 2: The formation of the momentum spike and the downstream wave in
the ENO1-Roe calculation of example 2.1 after 5 time steps. As the density is
smeared, the momentum forms a spike, and a downstream wave to balance the
mass of the spike for momentum conservation.

moves away with the corresponding characteristic speed, and behaves diffusively
(spread out and decay).

In Fig.4 we display the time evolution of the momentum profile of the ENO1-
Roe for example 2.1. One can see that the spike (viscous) profile keeps fluctu-
ating in an O(1) manner, causing the downstream oscillations for all time. The
diffusive nature of the downstream oscillations is evident in the picture.

In Fig.5 we plot the peak of the momentum spike as a function of time. The
fluctuating nature of the spike is evident. The more the mass of the spike profile
varies the more strongly the diffusion waves emerge for momentum conservation.
Interesting is that the peaks are periodic, with the duration of each period agrees
with the time for the shock to move one grid point. Thus the discrete shock
profile is stable only modulu this period. However, within each period it is
fluctuating, which becomes the source of the new downstream waves.

Recall that the definition of a discrete traveling wave solution ®7, an ap-
proximation of U(z;,t,),t, = nAt, requires

7! = §? (4.2)

J—np?
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Figure 3: The downstream waves in “characteristic” variables. Note that each
wave belongs only to one characteristic family and diffuses.

where sAt/Ax = p/q for some relative prime integers p and ¢g. The stability of
such discrete shock for the Lax-Friedrichs scheme was established by Jennings
[3] for scalar equations and by Majda and Ralston [8] and J.-G. Liu and Xin
[6] for nonlinear systems. The periodicity of the momentum peaks in Fig.5
shows the stability of the discrete traveling wave solution @7 for these schemes
modulus the time for the shock to travel one grid point. This is because, when
sAl << Az, there exists a sufficiently large ¢ such that |g(sAt) — Az| < sAt, or
|sAt/Az—1/q| < 2/¢*. However within each period the numerical shock layer is
unsteady and corresponds to different travelling wave profiles, which becoming

the source of the new downstream waves in all time for these schemes.
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Figure 4: Time evolution of the momentum spike and the downstream waves by
ENO1-Roe for ¢t € [0.5,0.8]. For better visualization these graphs are displayed
upside down. The diffusive nature of the downstream pattern is apparent .

A scheme that completely eliminates the downstream oscillations in later
time should have a steady viscous profile beyond the initial formation of the
spike, i.e., the momentum spike peak should remain a constant in later time.
However this is impossible as long as the shock is moving and it takes many
times for the shock to move to the next cell.

The discrete shock profile perturbs even when the shock does not move
slowly. Thus the downstream oscillations exist even for fast shocks. However,
in the fast shock case the momentum profile is monotone, thus does not leave
much room for the shock profile to perturb. In other words, each perturbation
does not change the mass of the viscous profile much, and the downstream
errors become negligible. For slow shock the momentum profile has a spike,
which increases the mass of the viscous profile and the relative mass change
in each perturbation, so the downstream errors become more significant. This
also illustrates why the downstream errors in the density is far less significant.
Since the density is monotone, thus the relative change in the mass of the viscous
profile is smaller than that of the momentum.

In summary, although each family of the downstream waves decay time-

asymptotically, the perturbing spike or viscous profile is a constant source for



178 S. JIN J-G. LIU

Figure 5: Time evolution of the peak of the momentum spike by ENO1-Roe.

the generation of new downstream waves, causing the downstream noise for all
time. Higher order methods use higher order interpolations, which amplify the

noises and exhibit rich but spurious post-shock structures.

5. Discussions and Conclusions

As studied in [4], similar behavior occurs in schemes that are of monotone, TVD
or ENO type. Note that all these monotonicity theories are established only
for scalar equations, or linear systems via the characteristic variables. For non-
linear systems there are no global characteristic variables, thus these methods
are usually extended to nonlinear systems using the idea for linear systems, i.e.,
via the so-called local characteristic decomposition (using the Roe matrix for
example). Since there is no theory for the monotonicity of these methods for
nonlinear systems, it is not surprising to see the non-monotone behavior repre-
sented by the spike and the downstream oscillations reported here. It seems to
us that, to fully solve this problem, instead of applying scalarly monotone, TVD
or ENO scheme to nonlinear systems, one needs a method that is systemati-
cally “monotone, TVD or ENO”. One also needs to choose numerical viscosity
properly so it mimics the physical viscosity of the Navier-Stokes equations. the

ultimate goal is to have a scheme that not only provides a high resolution but,
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more importantly, has a more stable viscosity profile. These require good theo-
ries for both inviscid and viscous nonlinear systems (such as those in [7]), and

remain open and challenging research subjects for the future.
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