
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2019-0223

Vol. 30, No. 3, pp. 874-902
September 2021

Field Model for Complex Ionic Fluids: Analytical

Properties and Numerical Investigation

Jian-Guo Liu1, Jinhuan Wang2, Yu Zhao3,∗ and Zhennan Zhou4

1 Department of Physics and Department of Mathematics, Duke University, Durham,
NC 27708, USA.
2 School of Mathematics, Liaoning University, Shenyang, 110036, P.R. China.
3 School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China.
4 Beijing International Center for Mathematical Research, Peking University,
Beijing, 100871, P.R. China.

Received 23 December 2019; Accepted (in revised version) 29 September 2020

Abstract. In this paper, we consider the field model for complex ionic fluids with an
energy variational structure, and analyze the well-posedness to this model with reg-
ularized kernels. Furthermore, we deduce the estimate of the maximal density func-
tion to quantify the finite size effect. On the numerical side, we adopt a finite vol-
ume scheme to the field model, which satisfies the following properties: positivity-
preserving, mass conservation and energy dissipation. Besides, series of numerical ex-
periments are provided to demonstrate the properties of the steady state and the finite
size effect by showing the equilibrium profiles with different values of the parameter
in the kernel.
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1 Introduction

Nearly all biological processes are related to ions [7]. The electrokinetic system for ion
transport in solutions is an important model in medicine and biology [1,4]. The transport
and distribution of charged particles are crucial in the study of many physical and bio-
logical problems, such as ion particles in the electrokinetic fluids [14], and ion channels in
cell membranes [3,8]. In this paper, we consider the field equations for complex ionic flu-
ids derived from an energetic variational method EnVarA (energy variational analysis)
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which combines Hamilton’s least action and Rayleigh’s dissipation principles to create a
variational field theory [7].

In EnVarA, the free energy of the field systems which is denoted by F for complex
ionic fluids is written in the Eulerian framework

F(cm(·,t))=
∫

Ω

{

M

∑
m=1

cm logcm+φES(·)+ψFSE(·)
}

dx, (1.1)

where cm = cm(x,t), m = 1,··· ,M, is the concentration of the m-th ionic species where
x ∈ Ω ⊂ R

d indicates the location and t > 0 indicates the time [7]. The first part of the
right hand of (1.1) is the entropy term which describes the particle Brownian motion of
the ions. And the second part φES(·) is the electrostatic potential where the electric field
is created by the charge on different ionic species in most cases we considered. In addi-
tion, we focus on the steric repulsion arising from the finite size of solid ions [2, 9, 15, 21],
which is the last term of (1.1). Here all physical parameters are set as 1 for simplicity
in representation. Furthermore, additional free energy due to physical effects such as
screening [6] can also be included in (1.1), which leads to different field equations. The
field equations might either be defined on the whole domain R

n or a bounded domain
Ω equipped with certain physical boundary conditions. However, proposing an appro-
priate boundary condition is a task of great difficulty as well as an interesting research
subject. In this paper, we consider only the unbounded domain R

n and focus on the gen-
eralised field model. We remark that, there have been other ways of modeling ionic and
water flows when considering voids, polarization of water, and ion-ion and ion-water
correlations [18, 19].

The chemical potential ψm of the m-th ionic species is described by the variational
derivative

ψm=
δF(cm(·,t))

δcm
(1.2)

and is referred to in channel biology as the ”driving force” for the current of the m-th
ionic species [7]. Then EnVarA gives us both the equilibrium and the non-equilibrium
(time dependent) equations for complex ionic fluids as follows,

equilibrium: 0=∇·(cm∇ψm), m=1,··· ,M, (1.3)

non-equilibrium (time dependent): ∂tcm=∇·(cm∇ψm), m=1,··· ,M. (1.4)

In this paper, we consider the steric repulsion in the following form

ψFSE(·)=
1

2
θ(x)(W∗θ)(x),

where the total density θ(x) :=∑
M
m=1cm and the electrostatic potential

φES(·)=
1

2
ρ(x)(K∗ρ)(x),
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where the charge density ρ(x) := ∑
M
m=1zmcm with zm ∈ Z being the valence of the m-th

ionic species. Then the free energy (1.1) of the field model for complex ionic fluids is
given by the following functional

F(cm(·,t))=
M

∑
m=1

∫

Rd
cm logcm dx+

1

2

∫

Rd
ρ(x)(K∗ρ)(x)dx+

1

2

∫

Rd
θ(x)(W∗θ)(x)dx. (1.5)

Kernel K(x) in (1.5) represents the effect of the electrostatic potential while kernel W(x)
represents the effect of the steric repulsion arising from the small size. Here, explicit
write out (1.4) using K(x),W(x),θ(x) and ρ(x) etc. In fact, the convolution terms make
it difficult to derive explicit differential equations between the field functions and the
charge density ρ(x) except when the kernel is Newtonian, i.e.

K(x)=















− 1

2π
ln|x|, d=2,

1

d(d−2)α(d)|x|d−2
, d>3,

(1.6)

in which case, the electrostatic field potential function ΦK(x) related to the concentrations
of the ions is determined by Gauss’s law, i.e.

−∆ΦK(x)=ρ(x). (1.7)

Whereas, for the steric repulsion there is no clear way to reformulate the convolution
with the help of an auxiliary potential equation. Hence, in this work, without loss of
generality, we focus on the Cauchy problem of the field model for complex ionic fluids
and the initial conditions can be given as follows,

cm(x,0)= c0
m(x), m=1,··· ,M. (1.8)

We aim to investigate the transport of ions modeled by EnVarA both theoretically and
numerically.

It is worth emphasizing that the Poisson-Nernst-Planck (PNP) equations, which are
widely used by many channologists [8] to describe the transport of ions through ionic
channels and by physical chemists [3], can be derived by such variational method as
well, simply by setting ψFSE(·)=0. The PNP equations describe the transport of an ideal
gas of point charges. However, due to the lack of incorporating the nonideal properties of
ionic solutions, the PNP equations can not describe electrorheological fluids containing
charged solid balls or some other complex fluids in biological applications properly.

In contrast to the limited studies and the partial understanding of the Cauchy prob-
lem of the field model ((1.4), (1.8)), on one hand, as for the nonlinear nonlocal equations
with a gradient flow structure, Carrillo, Chertock and Huang [5] proposed a positivity
preserving entropy decreasing finite volume scheme. On the other hand, for the initial
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boundary value problem of the PNP equations without small size effect, there have been
quit a few numeric studies in the recent years. For instance, Liu and Wang [16] have
designed and analyzed a free energy satisfying finite difference method for solving PNP
equations in a bounded domain that are conservative, positivity preserving and of the
first order in time and the second order in space. Later, a discontinuous Galerkin method
for the one-dimensional PNP equations [17] has been proposed. Both of them satisfy the
positivity preserving property and the discrete energy decay estimate under a parabolic
CFL condition ∆t =O((∆x)2). Furthermore, Flavell, Kabre and Li [10] have proposed
a finite difference scheme that captures exactly (up to roundoff error) a discrete energy
dissipation and which is of the second order accurate in both time and space. Besides, a
finite element method using a method of lines approached developed by Metti, Xu and
Liu [20] enforces the positivity of the computed solutions and obtains the discrete en-
ergy decay but works for the certain boundary while the scheme developed by Hu and
Huang [12] works for the general boundaries. etc.

In this paper, besides the basic properties of the equilibrium and non-equilibrium
state of the field model ((1.4), (1.8)), such as positivity-preserving, mass conservation and
free energy dissipation, we also analyze the existence of the solutions to this model and
the properties of the steady state and estimate the maximal density function to quantify
the finite size effect theoretically, while to supplement this, reliable numerical simula-
tions are necessary to explore such phenomenon. We consider a finite volume scheme
to the field model ((1.4), (1.8)) to preserve the basic physical properties of the ionic fluid
equations. The small size effect can also be demonstrated by such numerical scheme. The
scheme is of the first order in time and the first order in space while the generalization
to higher order schemes in space is of no difficulty. Also higher order in time can be ob-
tained by the strong stability preserving (SSP) Runge-Kutta methods. Another challenge
in numerical simulation of our field model ((1.4), (1.8)) is the handling for the high order
singularity of the kernel K(x) and W(x). Here we just deal with the singularity prelim-
inarily so as to grasp the effect of the finite size effect. More appropriate methods will
only be discussed in future papers.

When considering the way of modeling ionic and water flows in [18], the correlated
electric potential is obtained by making some modifications to the electrostatic poten-
tial function ΦK(x) and taking W = 0 at the same time. We show the proposed scheme
also applies to such a modeling scenario with little extra effort, and some preliminary
numerical explorations are provided.

The rest of the paper is organized as follows. The field model for complex ionic fluids
we considered in this paper is recalled and analyzed in Chapter 2. We show the basic
properties of the Cauchy problem of the field model (1.3) or ((1.4), (1.8)). Furthermore,
the well-posedness of the model ((1.4), (1.8)) is captured when we take the electrostatic
potential φES(·) and the repulsion of finite size effect ψFSE(·) as Newtonian and Lennard-
Jones form respectively. In Chapter 3, we consider a finite volume scheme to the field
system ((1.4), (1.8)) in 1D in the semi-discrete level, and prove its properties : positivity-
preserving, mass conservation and discrete free energy dissipation. In the same section,
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the fully discrete scheme, and the extension to the 2D cases are also discussed. In Chapter
4 we verify the properties of our numerical method with numerous test examples and
provide series of numerical experiments to demonstrate the small size effect in the model.
Concluding remarks and the expectations in the following research are given in Chapter
5.

2 Field system and its properties

Considering the free energy functional (1.5), the chemical potential ψm of the m-th ionic
species is described by the variational derivative (1.2) which is calculated as follows:

ψm =
δF(cm(·,t))

δcm
=1+logcm+zmΦK(x)+ΦW (x)

=1+logcm+zm(K∗ρ)(x)+(W∗θ)(x), m=1,··· ,M. (2.1)

With proper initial conditions (1.8), which we recall here for convenience, the field system
for complex ionic fluids are given by

∂tcm(x,t)=∇·(cm∇(1+logcm+zm(K∗ρ)(x)+(W∗θ)(x))), m=1,··· ,M, (2.2)

ρ(x)=
M

∑
m=1

zmcm, θ(x)=
M

∑
m=1

cm, (2.3)

cm(x,0)= c0
m(x), m=1,··· ,M. (2.4)

2.1 Basic properties for the multi-ionic species case

Here we show some properties of the field model (2.2)-(2.4) for complex ionic fluids.
The first two properties are related to the positivity-preserving and the conservation

of mass.

Proposition 2.1 (Positivity-preserving). Let initial data c0
m, m=1,··· ,M, be non-negative

functions. Then solutions cm to (2.2)-(2.4) are still non-negative.

Proposition 2.2 (Mass conservation). Let cm, m = 1,··· ,M, be non-negative solutions to
(2.2)-(2.4). Then the field model has the following conservation of mass

∫

Rd
cm(x,t)dx≡

∫

Rd
c0

m(x)dx=: m̄m
0 ,

M

∑
m=1

m̄m
0 =: m̄0. (2.5)

Here the notation m̄m
0 represents the mass of the m-th ionic species and m̄0 represents

the total mass of all kinds of the ionic species for m=1,··· ,M.
The proofs for these properties above are standard, which we omit in this paper. And

the third property is to give the energy-dissipation relation for total free energy.
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Proposition 2.3 (Free energy-dissipation relation). Let cm, m = 1,··· ,M, be solutions to
(2.2)-(2.4). Then the following energy-dissipation relation holds that

d

dt
F(cm(·,t))(t)+D=0, (2.6)

where the dissipation

D=
M

∑
m=1

∫

Rd
cm

∣

∣∇ψm

∣

∣

2
dx. (2.7)

Proof. In fact, we only need to take δF (cm(·,t))
δcm

as a test function in the both sides of (1.4).
Consequently, using integration by parts, we have

d

dt
F(cm(·,t))(t)=

M

∑
m=1

∫

Rd

∂cm

∂t
ψm dx=−

M

∑
m=1

∫

Rd
cm

∣

∣∇ψm

∣

∣

2
dx60. (2.8)

This completes the proof.

Next four equivalent statements for the steady solutions are shown.

Proposition 2.4 (Four equivalent statements for the positive steady state). Assuming that
C̄m∈L1∩LlogL is bounded with

∫

Rd C̄mdx=M, C̄m∈C(Rd), C̄m>0 in R
d and C̄m decays

at infinity for all m. Then the following four statements are equivalent:

• Equilibrium (definition of weak steady solutions): ψ̄m∈Ḣ1(Rd) and ∇·(C̄m∇ψ̄m) =
0 in H−1(Rd), ∀ m=1,··· ,M, where ψ̄m=1+logC̄m+zmK∗ρ̄+W∗θ̄, ρ̄=∑

M
m=1zmC̄m,

θ̄=∑
M
m=1C̄m.

• No dissipation: ∑
M
m=1

∫

Rd C̄m|∇ψ̄m|2dx=0.

• (C̄1,··· ,C̄m) is a critical point of F(cm(·,t)).

• ψ̄m is a constant, ∀ m=1,··· ,M.

Proof. At first, we prove (i)⇒(ii). Since ψ̄m∈H1(Rd),∇·(C̄m∇ψ̄m)=0 in H−1
(

R
d
)

, C∞
0 (Rd)

is dense in Ḣ1(Rd) and C̄m is bounded, one has

0=
∫

Rd
ψ̄m∇·(C̄m∇ψ̄m)dx=−

∫

Rd
C̄m |∇ψ̄m|2 dx, ∀ m=1,··· ,M. (2.9)

Hence (ii) holds.
Next we prove (iii)⇔(iv). Notice that C̄m is a critical point of F(cm(·,t)) if and only if

d

dε

∣

∣

∣

∣

ε=0

F (C̄m+εφ)=0, ∀φ∈C∞
0 (Rd) with

∫

Rd
φ(x)dx=0. (2.10)
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Equivalently,
∫

Rd
ψ̄mφdx=0, ∀φ∈C∞

0 (Rd), (2.11)

which implies ψ̄m is a constant, ∀ m=1,··· ,M.
Then we prove (ii)⇒(iv). Suppose ∑

M
m=1

∫

Rd C̄m|∇ψ̄m|2dx= 0. It follows from C̄m > 0

at any point x0∈R
d that ∇ψ̄m =0 in R

d and thus ψ̄m is a constant for all m=1,··· ,M.
Hence we complete the proof for (ii)⇒(iii) and (iii)⇒(iv).
Finally we prove (iv) ⇒ (i). Since ψ̄m is a constant in R

d, (i) is a direct consequence of
(iv).

2.2 Well-posedness with the regularized kernels

In this subsection, the well-posedness of the field model (2.2)-(2.4) is presented provided
that we describe the inter-ion repulsive force by the regularized Lennard-Jones type po-
tential and the electrostatic force by the regularized Newtonian potential. Specifically,
with constant parameters a>0 and η>0, we set the kernel K(x) and W(x) in the follow-
ing form

K(x)=Ka(x) :=



















−1

2
log
(

|x|2+a2
)

, d=2,

1

(|x|2+a2)
d−2

2

, d>2,
(2.12)

and
W(x)=Wa(x) :=

η

(|x|2+a2)
k
2

,d>2, d−26k<d. (2.13)

By classical parabolic theory, we know that there is a global smooth solution for the field
model (2.2)-(2.4) with the kernels K(x) and W(x) defined by (2.12) or (2.13), which is
given by the following theorem without the proof.

Theorem 2.1 (Existence for the multi-ionic species case). Assume that c0
m∈L1

+∩LlogL(Rd),
σ2(0)<∞ and F(0)<∞. Then for any T>0, there is a global smooth solution (c1,··· ,cM) to the
field model (2.2)-(2.4).

The next property for the regularized field model (2.2)-(2.4) is concerned with the
boundedness of the second moment which is essential for showing the tightness of cm,
m=1,··· ,M. Here

σ2(t)=
M

∑
m=1

σm
2 (t)=

M

∑
m=1

∫

Rd
|x|2cmdx.

Proposition 2.5 (Boundness of the second moment). Let cm, m=1,··· ,M, be non-negative
solutions to (2.2)-(2.4). If σ2(0)<∞, then we have

σ2(t)6Ct, for d>2, (2.14)

where C is a constant that only depends on d,k,η,a,zm ,m=1,··· ,M, and the initial data.
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Proof. In fact, taking |x|2 as a test function in the equations of cm, integrating them in R
d,

we have

d

dt

∫

Rd
|x|2cm dx=2dm̄m

0 −2
∫

Rd
x·(∇Ka∗ρ)(x)zmcm dx−2

∫

Rd
x·(∇Wa∗θ)(x)cm dx, (2.15)

where Ka(x) and Wa(x) are defined in (2.12) or (2.13). Summing (2.15) for m from 1 to
M, we obtain

d

dt
σ2(t)=2dm̄0−2

∫

Rd
x·(∇Ka∗ρ)(x)ρ(x)dx−2

∫

Rd
x·(∇Wa∗θ)(x)θ(x)dx. (2.16)

(1) For d>3, notice that

∇Ka(x)=−(d−2)
x

(|x|2+a2)
d
2

, ∇Wa(x)=−kη
x

(|x|2+a2)
k
2+1

. (2.17)

By the symmetry of the potentials, it follows

−2
∫

Rd
x·(∇Ka∗ρ)(x)ρ(x)dx=(d−2)

∫

Rd

∫

Rd

|x−y|2ρ(x)ρ(y)

(|x−y|2+a2)
d
2

dydx,

−2
∫

Rd
x·(∇Wa∗θ)(x)θ(x)dx= kη

∫

Rd

∫

Rd

|x−y|2θ(x)θ(y)

(|x−y|2+a2)
k
2+1

dydx.

Thus,

d

dt
σ2(t)62dm̄0+

(

kηa−k+(d−2)a2−d max{|z1|,··· ,|zM|}2
)

(m̄0)
2
6C. (2.18)

(2) For d=2, noticing that

−2
∫

R2
x·(∇Ka∗ρ)(x)ρ(x)dx=

∫

R2

∫

R2

|x−y|2ρ(x)ρ(y)

(|x−y|2+a2)
dydx,

−2
∫

Rd
x·(∇Wa∗θ)(x)θ(x)dx= kη

∫

Rd

∫

Rd

|x−y|2θ(x)θ(y)

(|x−y|2+a2)
k
2+1

dydx,

we have

d

dt
σ2(t)64m̄0+(kη+1)max{|z1|,··· ,|zM|}2(m̄0)

2 . (2.19)

Hence (2.18) and (2.19) imply that (2.14) holds.

Using Proposition 2.5 and the free energy-dissipation relation (2.6), we can also pro-
vide the estimate on the maximal density function. A maximal density function defined
by DiPerna and Majda [13] associated to a measure u(x) is given by

Mr(u)=sup
x,t

∫

B(x,r)
u(y)dy.

Then the estimate on the maximal density functions Mr(cm), m=1,··· ,M, is in the follow-
ing lemma.
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Lemma 2.1 (Estimate on the maximal density function). Assume that c0
m∈L1

+∩LlogL(Rd),
m=1,··· ,M, F(0)<∞ and σ2(0)<∞, then we have

M

∑
m=1

Mr(cm(·,t))6C((2r)2+a2)
k
4 , (2.20)

where C is a constant dependent on the initial data.

Proof. Since

1

((2r)2+a2)
k
2

(

∫

B(x,r)
cm(y,t)dy

)2

6

∫

B(x,r)

∫

B(z,r)

1

((2r)2+a2)
k
2

cm(y,t)cm(z,t)dydz

6

∫

Rd×Rd

1

((y−z)2+a2)
k
2

cm(y,t)cm(z,t)dydz. (2.21)

Using the energy-dissipation relation (2.6) and the property of the second moment, we
have

∫

Rd×Rd

1

((y−z)2+a2)
k
2

cm(y,t)cm(z,t)dydz6C,

where C is a constant dependent on the initial data. Hence by (2.21), we have
∫

B(x,r)
cm(y,t)dy6C((2r)2+a2)

k
4 .

This completes the proof.

Lemma 2.1 shows that qualitatively as k increases, the small size effect is stronger.
However, as the estimates are not sharp, nor feasible quantitative measurements, we
shall numerically explore such phenomenon.

3 Numerical schemes

In this section, we propose the first-order finite volume schemes both in space and time
for the field model (2.2)-(2.4) in one-dimension and two-dimension and prove the posi-
tivity preserving and entropy dissipation properties.

3.1 First-order scheme for one-dimensional case

Consider the computational domain as [−L,L] and give the grid arrangement −L =
x−Mx− 1

2
< x−Mx+

1
2
< ···< xMx− 1

2
< xMx+

1
2
= L. Then we define the cell average of cm, m=

1,··· ,M, on cell Cj=[xj− 1
2
,xj+ 1

2
] of a small space mesh size ∆xj as

c̄m,j(t)=
1

∆xj

∫

Cj

cm(x,t)dx, m=1,··· ,M, (3.1)
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where ∆xj = xj+ 1
2
−xj− 1

2
and we set the maximum mesh size ∆x = maxj ∆xj. A semi-

discrete finite volume scheme can be given as

dc̄m,j(t)

dt
=−

Fm,j+ 1
2
(t)−Fm,j− 1

2
(t)

∆xj
, m=1,··· ,M, (3.2)

where the numerical flux Fm,j+ 1
2

is defined in the following form

Fm,j+ 1
2
(t)=u+

m,j+ 1
2

(t)c̄m,j(t)−u−
m,j+ 1

2

(t)c̄m,j+1(t). (3.3)

We denote the velocity um =−∇ψm, then the discrete velocity um,j+ 1
2

in one-dimension

can be denoted by the negative difference quotients of the discrete chemical potential ψm,
which is

um,j+ 1
2
(t)=−ψm,j+1(t)−ψm,j(t)

∆xj
. (3.4)

um,j+ 1
2

equals its positive part minus the absolute value of its negative part, i.e.

um,j+ 1
2
=u+

m,j+ 1
2

−u−
m,j+ 1

2

, (3.5)

where the positive and the absolute value of the negative part of um,j+ 1
2
, which are u+

m,j+ 1
2

and u−
m,j+ 1

2

, can be written respectively as

u+
m,j+ 1

2

=max
{

um,j+ 1
2
,0
}

, u−
m,j+ 1

2

=−min
{

um,j+ 1
2
,0
}

. (3.6)

The discrete chemical potential ψm,j, the discrete charge density ρm,j and the discrete total
density θm,j are denoted respectively by

ψm,j= logc̄m,j+1+∑
i

∆xi

[

zmKj−iρi+Wj−iθi

]

, (3.7)

ρj =
M

∑
m=1

zm c̄m,j, (3.8)

θj =
M

∑
m=1

c̄m,j, (3.9)

where the discrete kernel Kj−i =K(xj−xi) and Wj−i=W(xj−xi).
It is worth stating that although we present the scheme for arbitrary grids, we imple-

ment with only uniform grids.

Next, we show the positivity preserving and entropy-dissipation properties of the
one-dimensional semi-discrete finite volume scheme (3.2)-(3.4).
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Theorem 3.1 (Positivity-Preserving). Consider the one-dimensional semi-discrete finite volume
scheme (3.2)-(3.4) of the system (2.2)-(2.4) with initial data c0

m(x)> 0, ∀ m= 1,··· ,M. If we
discretize the ODEs system (3.2) by the forward Euler method, which is

c̄m,j(t+∆t)− c̄m,j(t)

∆t
=−

Fm,j+ 1
2
(t)−Fm,j− 1

2
(t)

∆xj
, m=1,··· ,M. (3.10)

Then, the cell averages c̄m,j>0, ∀ m=1,··· ,M,∀ j, provided that the following CFL condition is
satisfied

∆t6
∆x

2 Umax
, (3.11)

where Umax=maxm,j

{

u+
m,j+ 1

2

,u−
m,j− 1

2

}

, with u+
m,j+ 1

2

and u−
m,j+ 1

2

defined in (3.6).

Proof. Take λj=∆t/∆xj , then λ=∆t/∆x=min j λj. For all given t>0, from (3.10) we have

c̄m,j(t+∆t)= c̄m,j(t)−λj

[

Fm,j+ 1
2
(t)−Fm,j− 1

2
(t)
]

= c̄m,j(t)−λj

[

u+
m,j+ 1

2

(t)c̄m,j(t)−u−
m,j+ 1

2

(t)c̄m,j+1(t)
]

+λj

[

u+
m,j− 1

2

(t)c̄m,j−1(t)−u−
m,j− 1

2

(t)c̄m,j(t)
]

=λju
−
m,j+ 1

2

(t)c̄m,j+1(t)+λju
+
m,j− 1

2

(t)c̄m,j−1(t)

+
(

1−λju
+
m,j+ 1

2

(t)−λju
−
m,j− 1

2

(t)
)

c̄m,j(t). (3.12)

We can conclude that the cell average c̄m,j(t+∆t)>0, m= 1,··· ,M, ∀ j from the fact that
both u+

m,j+ 1
2

and u−
m,j+ 1

2

for all j are non-negative and that the CFL condition (3.11) is

satisfied.

Next we calculate the discrete form of the free energy F defined in (1.5) and of the
dissipation D defined in (2.7) by

E∆(t)=
M

∑
m=1

∑
j

∆xj c̄m,j log c̄m,j+
1

2 ∑
i,j

∆xj∆xi

[

Kj−iρiρj+Wj−iθiθj

]

, (3.13)

and

D∆(t)=
M

∑
m=1

∑
j

∆xj

(

um,j+ 1
2

)2
min

{

c̄m,j, c̄m,j+1

}

. (3.14)

Theorem 3.2 (Free energy-dissipation estimate). Consider the one-dimensional semi-discrete
finite volume scheme (3.2)-(3.4) of the system (2.2)-(2.4) with initial data c0

m(x) > 0, m =
1,··· ,M. Assume that there is no flux boundary condition on [−L,L], i,e. the discrete bound-
ary conditions satisfy Fm,−Mx− 1

2
= Fm,Mx+

1
2
=0, m=1,··· ,M, where L can be big enough. Then

we have
d

dt
E∆(t)6−D∆(t)60, ∀t>0. (3.15)
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Proof. Differentiating (3.13) with respect to time, we have

d

dt
E∆(t)

=
M

∑
m=1

∑
j

∆xj

(

log c̄m,j
d

dt
c̄m,j+

d

dt
c̄m,j

)

+∑
i,j

∆xj∆xi

[

Kj−i

(

M

∑
m=1

zm c̄m,i

)(

M

∑
m=1

zm
d

dt
c̄m,i

)

+Wj−i

(

M

∑
m=1

c̄m,i

)(

M

∑
m=1

d

dt
c̄m,i

)]

=
M

∑
m=1

∑
j

∆xj

[

1+log c̄m,j+∑
i

∆xi

[

zmKj−i

(

M

∑
m=1

zm c̄m,i

)

+Wj−i

(

M

∑
m=1

c̄m,i

)]]

d

dt
c̄m,j

=
M

∑
m=1

∑
j

∆xjψm,j
d

dt
c̄m,j. (3.16)

According to (3.2), we have

d

dt
E∆(t)=−

M

∑
m=1

∑
j

[

ψm,j(Fm,j+ 1
2
−Fm,j− 1

2
)
]

. (3.17)

Using Abel’s summation formula, we obtain

d

dt
E∆(t)=−

M

∑
m=1

∑
j

[

(ψm,j−ψm,j+1)Fm,j+ 1
2

]

=−
M

∑
m=1

∑
j

[

(ψm,j−ψm,j+1)(u
+
m,j+ 1

2

c̄m,j−u−
m,j+ 1

2

c̄m,j+1)
]

=−
M

∑
m=1

∑
j

∆xj

[

um,j+ 1
2
(u+

m,j+ 1
2

c̄m,j−u−
m,j+ 1

2

c̄m,j+1)
]

6−
M

∑
m=1

∑
j

∆xj

(

um,j+ 1
2

)2
min

{

c̄m,j, c̄m,j+1

}

=−D∆(t), (3.18)

that is to say
d

dt
E∆(t)6−D∆(t)60, ∀t>0. (3.19)

This completes the proof.

3.2 First-order scheme for two-dimensional case

Similarly, define the cell average of cm, m=1,··· ,M, on cell Cj,k=[xj− 1
2
,xj+ 1

2
]×[yj− 1

2
,yj+ 1

2
]

of a small space mesh size ∆xj and ∆yk as

c̄m,j,k(t)=
1

∆xj∆yk

∫

Cj,k

cm(x,y,t)dxdy, m=1,··· ,M, (3.20)
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where ∆xj = xj+ 1
2
−xj− 1

2
, ∆yk = yk+ 1

2
−yk− 1

2
and we set the maximum mesh size ∆x =

maxj ∆xj,∆y=maxk ∆yk. A semi-discrete finite volume scheme for two-dimensional case
can be given as

dc̄m,j,k(t)

dt
=−

Fx
m,j+ 1

2 ,k
(t)−Fx

m,j− 1
2 ,k
(t)

∆xj
−

F
y

m,j,k+ 1
2

(t)−F
y

m,j,k− 1
2

(t)

∆yk
, m=1,··· ,M, (3.21)

where the upwind flux is as follows,

Fx
m,j+ 1

2 ,k
(t)=u+

m,j+ 1
2 ,k
(t)c̄m,j,k(t)−u−

m,j+ 1
2 ,k
(t)c̄m,j+1,k(t),

F
y

m,j,k+ 1
2

(t)=v+
m,j,k+ 1

2

(t)c̄m,j,k(t)−v−
m,j,k+ 1

2

(t)c̄m,j,k+1(t).
(3.22)

The discrete velocity
(

um,j+ 1
2 ,k,vm,j,k+ 1

2

)T
is denoted by

um,j+ 1
2 ,k =u+

m,j+ 1
2 ,k
−u−

m,j+ 1
2 ,k

=−ψm,j+1,k−ψm,j,k

∆xj
,

vm,j,k+ 1
2
=v+

m,j,k+ 1
2

−v−
m,j,k+ 1

2

=−ψm,j,k+1−ψm,j,k

∆yk
,

(3.23)

where the positive and the abstract of the negative part of um,j+ 1
2 ,k and vm,j,k+ 1

2
are de-

scribed as before.
The two-dimensional discrete chemical potential ψm,j,k, the two-dimensional discrete

charge density ρm,j,k and the two-dimensional discrete total density θm,j,k are denoted
respectively by

ψm,j,k=1+log c̄m,j,k+∑
i,l

∆xj∆yk

[

zmKj−i,k−lρi,l+Wj−i,k−lθi,l

]

, (3.24)

ρj,k =
M

∑
m=1

zm c̄m,j,k, (3.25)

θj,k =
M

∑
m=1

c̄m,j,k, (3.26)

where the discrete kernel Kj−i,k−l =K(xj−xi,yk−yl) and Wj−i,k−l =W(xj−xi,yk−yl).
For the two-dimensional case, we give the positivity preserving and entropy dissipa-

tion properties. Since the proofs are quite similar to the one dimensional cases, we thus
omit the proofs here.

Theorem 3.3 (Positivity-preserving). Consider the two-dimensional semi-discrete finite vol-
ume scheme (3.21)-(3.23) of the system (2.2)-(2.4) with initial data c0

m(x,y)>0, m=1,··· ,M.
If we discretize the ODEs system (3.21) by the forward Euler method, which is for all m=1,··· ,M,

c̄m,j,k(t+∆t)− c̄m,j,k(t)

∆t
=−

Fx
m,j+ 1

2 ,k
(t)−Fx

m,j− 1
2 ,k
(t)

∆xj
−

F
y

m,j,k+ 1
2

(t)−F
y

m,j,k− 1
2

(t)

∆yk
. (3.27)
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Then, the cell averages c̄m,j,k>0, m=1,··· ,M, ∀ j,∀ k, provided that the following CFL condition
is satisfied

∆t6max

{

∆x

4 Umax
,

∆y

4 Vmax

}

, (3.28)

where Umax=maxm,j,k

{

u+
m,j+ 1

2 ,k
,u−

m,j− 1
2 ,k

}

, Vmax=maxm,j,k

{

v+
m,j,k+ 1

2

,v−
m,j,k− 1

2

}

.

Define the discrete form of the free energy F of the two-dimensional case defined in
(1.5) and of the dissipation D defined in (2.7) as

E∆(t)=
M

∑
m=1

∑
j,k

∆xj∆yk

[

c̄m,j,k log c̄m,j,k

]

+
1

2 ∑
i,j,k,l

∆xj∆xi∆yk∆ylKj−i,k−lρi,lρj,k

+
1

2 ∑
i,j,k,l

∆xj∆xi∆yk∆ylWj−i,k−lθi,lθj,k, (3.29)

and

D∆(t)=
M

∑
m=1

∑
j,k

∆xj∆yk

[

(

um,j+ 1
2 ,k

)2
+
(

vm,j,k+ 1
2

)2
]

min
{

c̄m,j,k, c̄m,j+1,k, c̄m,j,k+1

}

. (3.30)

Theorem 3.4 (Free energy-dissipation estimate). Consider the two-dimensional semi-discrete
finite volume scheme (3.21)-(3.23) of the system (2.2)-(2.4) with initial data c0

m(x)> 0, m=
1,··· ,M. Assume that there is no flux boundary condition on [−Lx,Lx]×[−Ly,Ly] i.e. the discrete
boundary conditions satisfy Fm,−Mx− 1

2 ,±(My+
1
2 )
=Fm,Mx+

1
2 ,±(My+

1
2 )
=0, m=1,··· ,M, where Lx

and Ly can be big enough. Then we have

d

dt
E∆(t)6−D∆(t)60, ∀t>0. (3.31)

4 Numerical experiments

In this section, we give several one- and two-dimensional numerical examples and verify
the properties of the numerical schemes and explore the finite size effect numerically. In
the following numerical examples, we add some additional external field into the original
model (2.2)-(2.4) to make sure the steady states are effectively localized, which is to say,
the system we consider becomes for m=1,··· ,M,

∂tcm(x,t)=∇·[cm∇(1+logcm+zmK∗ρ+W∗θ+Vext)], (4.1)

cm(x,0)= c0
m(x), (4.2)

where Vext is the added external potential.
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4.1 Comparison of kernel functions

At first, we plot the two- and three-dimensional kernel functions K(r) and W(r) in the
form (2.12) and (2.13) with the parameters η=1, a= 1

2 , k=2 and the grid size ∆x=0.0097656
in Fig. 1 respectively, which is, for the two-dimensional case

K(r)=−1

2
log

(

r2+
1

4

)

,

W(r)=
1

r2+ 1
4

,
(4.3)

in Fig. 1(a) and for the three-dimensional case

K(r)=
1

√

r2+ 1
4

,

W(r)=
1

r2+ 1
4

,

(4.4)

in Fig. 1(b).
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Figure 1: Comparison of kernel functions: (a): The two-dimensional kernel functions K(r) and W(r) with the
mesh size ∆x being 0.0097656. (b): The three-dimensional kernel functions K(r) and W(r) with the mesh size
∆x being 0.0097656.

4.2 Convergence test

Consider Eq. (4.1) for complex ionic fluids in one-dimension with the kernel W(x) =
1

x2+ǫ2 ,ǫ= 1
2 , K(x) = exp(−|x|), Vext(x) = 1

2 x2. Note that, the electrostatic kernel K(x) in
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Figure 2: Convergence Test: The loglog plot of errors with the mesh size ∆x being 1.2500, 0.6250, 0.3125,
0.15625, 0.078125, 0.0390625, 0.01953125 at time t=1.

one-dimension is not physically relevant, and thus this numerical example is a toy model,
which only serves the purpose of the convergence test. The initial conditions (4.2) with
which Eq. (4.1) equipped are given by



















c1(x,0)=
1√
2π

exp

(

− (x−2)2

2

)

with z1=1,

c2(x,0)=
1√
2π

exp

(

− (x+2)2

2

)

with z2=−1.

Here, take the computation domain as [−2L,2L], L= 10, then the results of the conver-
gence of error in l∞, l1 and l2 norms at time t= 1 is shown in Fig. 2 where we take the
uniform mesh size ∆x be 1.2500, 0.6250, 0.3125, 0.15625, 0.078125, 0.0390625, 0.01953125
(N be 25,26,27,28,29,210,211), ∆t is determined by (3.11), here ∆t=∆x/(2 Umax). And we
omit it in other one-dimensional examples. Meanwhile, we define the errors of numerical
solutions

‖e‖l∞ :=max
m,j

|cm,j−cref
m,j|, ‖e‖lp :=

(

M

∑
m=1

∆x∑
j

|cm,j−cref
m,j|p

)
1
p

, p=1,2. (4.5)

Here cref
m,j is the reference solution of the m-th species on mesh with mesh size ∆x =

0.0048828125 (N=213). The first order convergence in space can be observed in Fig. 2.
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4.3 Multiple species in one-dimension

4.3.1 Steady state

In this part, we study the steady state of a one-dimensional example. Consider Eq. (4.1)
in one-dimension with the kernel W(x) = η

x2+ǫ2 ,ǫ = 1
10 , K(x) = exp(−|x|), Vext(x) = 1

2 x2

and the initial conditions (4.2) are given by the following form



















c1(x,0)=
1

2
√

π
exp

(

− (x−2)2

2

)

with z1=1,

c2(x,0)=
1√
2π

exp

(

− (x+2)2

2

)

with z2=−1.

(4.6)

In this part, we take the parameter η = 1, the computation domain as [−2L,2L], L= 10
and the uniform mesh size ∆x=0.01953125 (N=211). The results with which we are con-
cerned are on the domain [−L,L]. Then Fig. 3 shows the transport of the ionic species: the
concentrations of the positive ions and the negative ions move towards each other due to
the electrostatic attraction with time t and the concentrations converge to the equilibrium.
According to the fact that every individual part of the free energy F has its own physical
effect, we can define the internal energy F1, the field energy F2, interaction energy F3,
external field energy F4 of the model (4.1)-(4.2) respectively as

F1(t)=
∫

Rd

M

∑
m=1

cm logcm dx,

F2(t)=
1

2

∫

Rd

∫

Rd
K(x−y)ρ(x)ρ(y)dxdy,

F3(t)=
1

2

∫

Rd

∫

Rd
W(x−y)θ(x)θ(y)dxdy,

F4(t)=
M

∑
m=1

∫

Rd
Vext(x)cm dx,

(4.7)

then the total free energy F defined by (1.5) equals the sum of the energy F1,F2,F3 and
F4,

F(t)=F1(t)+F2(t)+F3(t)+F4(t). (4.8)

Fig. 4(a) shows how the discrete forms of the energy F1,F2,F3,F4,F change with time t
and Fig. 4(b) shows the chemical potential ψm, m=1,2, at time t=23. It’s observed that ψm

goes to a constant while the model goes to the equilibrium for all m and the discrete form
of F decays with time t. The results are consistent with our conclusions in this paper.

4.3.2 Finite size effect

As we mentioned before, the kernel W(x) represents the steric repulsion arising from
the finite size, the strength of which is indicated by the parameter η. The larger η is, the
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Figure 3: Multiple species in one-dimension: The space-concentration curves with the mesh size ∆x being
0.01953125 and the time t changing from 0 to 14.
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Figure 4: Multiple species in one-dimension: (a): The time-energy plot of the model (4.1) equipped with the
initial conditions (4.6) with the mesh size ∆x being 0.01953125. (b): Discrete chemical potential at time t=23
with the mesh size ∆x being 0.01953125.

stronger the nonlocal steric repulsion effect is, and thus the less peaked the concentrations
of the steady state are. And η=0 means steric repulsion vanishes. Here we aim to explore
this phenomenon by different values of the parameter η. Let η = 1

2 , 1
4 ,··· , 1

256 ,0 and the
mesh size ∆x = 0.0390625, Fig. 5 shows different steady state solutions with different
values of η, here the density solutions cm, m=1,2, of time t=14 approximate steady state
solution, where we can find that the finite size effect makes the concentrations cm, m=1,2,
not overly peaked.

4.3.3 Boundary value problem

If we retake the initial conditions (4.2) as











c1(x,0)=10−6 with z1=1,

c2(x,0)=
1√
2π

exp

(

− (x+2)2

2

)

with z2=−1,
(4.9)

and the left boundary flux of c1 as

f−L(t)=
1√
2π

exp

(

− (t−5)2

2

)

, (4.10)

then Fig. 6 shows how the density solutions cm, m=1,2, develop with time t and converge
to the equilibrium.

Similarly, Fig. 7(a) shows how the discrete forms of the energyF1,F2,F3,F4,F changes
with time t and Fig. 7(b) shows the discrete chemical potential ψm at time t= 23, which
goes to a constant while the model goes to the equilibrium for all m.
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Figure 5: Multiple species in one-dimension: The steady state density solutions cm with different η.

4.4 Multiple species in two-dimension

4.4.1 Steady state

Here we consider the two-dimensional kernelW(x,y)= 1
r2+ǫ2 , r=

√

x2+y2, ǫ= 1
10 , K(x,y)=

− 1
2π log(

√
r2+ǫ2), Vext(x,y)= 1

2r2 and the initial conditions (4.2) are given by the follow-
ing form



















c0
1=

1√
2π

exp

(

− (x−2)2+(y−2)2

2

)

with z1=1,

c0
2=

1√
2π

exp

(

− (x+2)2+(y+2)2

2

)

with z2=−1.

(4.11)

Here, we retake η =1, the computation domain as [−L,L]×[−L,L], L=10 and the mesh

size ∆x=∆y=0.0390625, ∆t is determined by (3.28), here ∆t=max
{

∆x
5 Umax

,
∆y

5 Vmax

}

. And we
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Figure 6: Multiple species in one-dimension: The space-concentration curves with the mesh size ∆x being
0.01953125 and the time t changing from 1 to 23.

omit it in other two-dimensional examples. Fig. 8 and Fig. 9 show how the concentrations
of the m-th ionic species cm, m=1,2, change with time t respectively. And Fig. 10 shows
the relation between the time t and the discrete forms of the energy F ,F1,F2,F3,F4.
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Figure 7: Multiple species in one-dimension: (a): The time-energy plot of the model (4.1) equipped with
the initial conditions (4.9) and the boundary condition (4.10) with the mesh size ∆x being 0.01953125. (b):
Discrete chemical potential at time t=23 with the mesh size ∆x being 0.01953125.
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Figure 8: Multiple species in two-dimension: The space-concentration c1 curves with both the mesh size ∆x
and ∆y being 0.0390625 and the time t=0,2,4,6.

4.4.2 Finite size effect

The strength of the steric repulsion arising from the finite size is indicated by the param-
eter η in the kernel W(x). Let η=1, 1

4 ,··· , 1
128 ,0 and the mesh size ∆x=∆y=0.1562, Fig. 11
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Figure 9: Multiple species in two-dimension: The space-concentration c2 curves with both the mesh size ∆x
and ∆y being 0.0390625 and the time t=0,2,4,6.
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Figure 10: Multiple species in two-dimension: The time-energy plot of the model (4.1) equipped with the initial
conditions (4.11) with both the mesh size ∆x and ∆y being 0.0390625.
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Figure 11: Multiple species in two-dimension: The steady state density solutions c1 with different η.

shows different steady state solutions with different values of η, where we can find that
the finite size effect makes the concentrations cm, m=1,2, not overly peaked.

4.5 Example 3

4.5.1 Steady state

Consider Eq. (4.1) in one-dimension with the kernelW(x)= η
x2+ǫ2 , ǫ= 1

10 , K(x)=exp(−|x|),
Vext(x)= 1

2 x2 and the initial conditions are given by



















c1(x,0)=
1√
2π

exp

(

− (x−2)2

2

)

with z1=1,

c2(x,0)=
1√
2π

exp

(

− (x+2)2

2

)

with z2=−1.

In addition, we add a constant electric field whose field intensity is 2 to the solutions to
observe the behavior of the ionic species, i.e. the field system (4.1)-(4.2) becomes

∂tcm(x,t)=∇·[cm∇(1+logcm+zmK∗ρ+W∗θ+Vext+zmVelectric field)],

cm(x,0)= c0
m(x), m=1,··· ,M,

(4.12)

where Velectric field=2x.
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Figure 12: Example 3: The space-concentration cm curves with the mesh size ∆x being 0.0390625 and the time
t changing from 0 to 14.

Here, take η = 1, the computation domain as [−2L,2L], L = 10, where we are con-
cerned with the results on domain [−L,L] and the mesh size ∆x = 0.0390625 (N = 210),
Fig. 12 shows how the concentrations cm, m=1,2, change with time t. For positive electric
charges, the velocity concerned with the constant electric field v0=−∂x(zmVelectric field)=
−2zm <0, which means the positively charged ions are driven towards the left boundary
while the negative electric charges are driven towards the right boundary.

4.5.2 Finite size effect

Next we aim to investigate this phenomenon numerically that such electric field can make
positive and negative electric charges gather on different ends and how the nonlocal
repulsion modifies the profile of the steady states. Let η = 1

2 , 1
4 ,··· , 1

128 ,0 and the mesh
size ∆x= 0.0390625, Fig. 13 shows different steady state solutions with different η, here
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Figure 13: Example 3: The steady state density solutions cm with different η with the mesh size ∆x being
0.0390625.

the density solution of time t=14 approximates steady state solution. In conclusion, it’s
observed that the positive and negative particles move in different directions and the
finite size effect makes the concentrations cm, m=1,2, not overly peaked like before.

4.6 Example 4

As for another way in [18,19] to model ionic and water flows which includes voids, polar-
ization effect of water, and ion-ion and ion-water correlations in electrolyte solutions, the
correlated electric potential Φ(x) can be considered as a convolution of potential ΦK(x)
obtained from (1.7) with the exponential van der Waals potential kernel [11, 19, 22, 23]

W (x)=
e−|x|/lc

|x|/lc
,

where lc is the correlation length, i.e.

Φ(x)=
∫

Rd

1

l2
c

W
(

x−x
′)ΦK

(

x
′)dx

′. (4.13)

We rewrite ΦK (x) (1.6) (1.7) in the convolution form and then (4.13) becomes

Φ(x)=
∫

Rd

1

l2
c

W
(

x−x
′)
∫

Rd
K
(

x
′−x

′′)ρ
(

x
′′)dx

′′dx
′. (4.14)
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Figure 14: Example 4: The steady state density solutions cm with different lc.

Next we apply our numerical method to a one-dimension example to show a simple
numerical exploration on such modeling phenomenon. The test model is not physically
relevant in one-dimension, and thus this numerical example is a toy model. However, it
is easy to extend it to high-dimensional cases, where we omit it in this paper.

Consider the kernel

K(x)=exp(−|x|), W (x)=
e−|x|/lc

√

(x2+ǫ2)/lc

, ǫ=
1

10
, Vext(x)=

1

2
x2

and the initial conditions (4.2) are given by (4.6). In this part, we take the parameter
lc = 7.44,1, 1

64 , the computation domain as [−2L,2L], L = 10 and the uniform mesh size
∆x = 0.0390625 (N = 210). The results with which we are concerned are on the domain
[−L,L]. Then Fig. 14 shows different steady state solutions with different values of lc.
The concentrations of the positive ions and the negative ions move towards each other
due to the electrostatic attraction with time t and the concentrations move more closely
to each other near x=0 for smaller lc=

1
64 when they converge to the equilibrium and on

the contrary, the concentrations of the steady state move a little further away from each
other near x=0 for larger lc=7.44.

5 Conclusion

In this paper, we focus on the model for complex ionic fluids proposed by EnVarA
method and analyze the basic properties of the Cauchy problem of it different forms
of the electrostatic potential and the steric repulsion of finite size effect and capture the
well-posedness with certain regularized kernel. Then a finite volume scheme to the field
system in 1D and 2D cases is proposed to observe the transport of the ionic species and
verify the basic properties, such as positivity-preserving, mass conservation and discrete
free energy dissipation. We also provide series of numerical experiments to demonstrate
the small size effect in the model. More appropriate methods will be discussed in the
following papers.
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