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GENERALIZED MONOTONE SCHEMES,
DISCRETE PATHS OF EXTREMA,

AND DISCRETE ENTROPY CONDITIONS

PHILIPPE G. LEFLOCH AND JIAN-GUO LIU

Abstract. Solutions of conservation laws satisfy the monotonicity property:
the number of local extrema is a non-increasing function of time, and local
maximum/minimum values decrease/increase monotonically in time. This pa-
per investigates this property from a numerical standpoint. We introduce a
class of fully discrete in space and time, high order accurate, difference schemes,
called generalized monotone schemes. Convergence toward the entropy solu-
tion is proven via a new technique of proof, assuming that the initial data has
a finite number of extremum values only, and the flux-function is strictly con-
vex. We define discrete paths of extrema by tracking local extremum values
in the approximate solution. In the course of the analysis we establish the
pointwise convergence of the trace of the solution along a path of extremum.
As a corollary, we obtain a proof of convergence for a MUSCL-type scheme
that is second order accurate away from sonic points and extrema.

1. Introduction

This paper deals with entropy solutions of the Cauchy problem for a one-
dimensional scalar conservation law:

∂tu+ ∂xf(u) = 0, u(x, t) ∈ R, t > 0, x ∈ R,(1.1)

u(x, 0) = u0(x), x ∈ R,(1.2)

where the flux f : R → R is a given function of class C2 and the initial data u0

belongs to the space BV (R) of all integrable functions of bounded total variation.
For the main result of this paper, we assume that

f is a strictly convex function(1.3)

and

u0 has a locally finite number of extrema.(1.4)
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Solutions to conservation laws are generally discontinuous, and an entropy criterion
is necessary to single out a unique solution. We refer the reader to Lax [20], [21]
for background on nonlinear hyperbolic equations and the entropy criterion.

As is well-known [19], [37], problem (1.1)-(1.2) admits a unique entropy solution u
in L∞

(
R+, BV (R)

)
and Lip

(
R+;L1(R)

)
. (This result holds without the restriction

(1.3)-(1.4) and for multidimensional equations as well.) To select the solution one
can use the distributional entropy inequality

∂tU(u) + ∂xF (u) ≤ 0,(1.5)

where the (Lipschitz continuous) function (U, F ) : R → R2 is a convex entropy-
entropy flux pair, i.e. U is a convex function and F ′ = U ′f ′. One can also use the
Lax shock admissibility inequality

u(x−, t) ≥ u(x+, t)(1.6)

for all x and t. Since f is convex and u has bounded variation, a single entropy
U in (1.5) is sufficient to ensure uniqueness, and (1.6) is equivalent to (1.5). At
the discrete level, however, conditions (1.5) and (1.6) leads two drastically different
notions of consistency with the entropy criterion for a difference scheme. In the
present paper we will be using both conditions. Indeed in some regions of the (x, t)
plane it is easier to use a discrete version of (1.5), while in other regions (1.6) is
more adapted.

We are interested in conservative discretizations of problem (1.1)-(1.2) in the
sense of Lax and Wendroff [22]. The monotone schemes and, more generally, the
E-schemes are large classes of schemes (including the Godunov and Lax-Friedrichs
schemes) for which a convergence analysis is available. The main point is that
monotone schemes satisfy a discrete version of the entropy inequality (1.5) (see
(2.9) below). However they turn out to be first order accurate only, and so have
the disadvantage of introducing a large amount of numerical viscosity that spreads
the discontinuities over a large number of computational cells.

The proof of convergence of the monotone schemes and E-schemes is based on
Helly’s and Lax-Wendroff’s theorems. See [3], [6], [8], [11], [16], [26], [31], [35], [23]
and the references therein. The result holds even for multidimensional equations
and/or when irregular (non-Cartesian) meshes are used.

To get high-order accurate approximations, it is natural to proceed from ana-
lytical properties satisfied by the entropy solutions to (1.1), formulate them at the
discrete level, and so design large classes of high-order difference schemes. One
central contribution in this direction is due to Harten [13], [14], who introduced
the concept of TVD schemes, for “Total Variation Diminishing”. Harten shows
that conservative, consistent, TVD schemes necessarily converge to a weak solution
to (1.1). Moreover such schemes possess sharp numerical shock profiles with no
spurious oscillations. However, Harten’s notion of TVD scheme is weaker than the
notion of monotone scheme, and a TVD need not converge to the entropy solution.
The aim of this paper is precisely to single out a subclass of TVD schemes, refining
Harten’s notion, that are both high-order order accurate and entropy satisfying,
cf. Definition 2.2 below.

A very large literature is available on the actual design of second-order shock-
capturing schemes. One approach to upgrading a first order scheme was proposed
by van Leer [23], [24]: the MUSCL scheme extends the Godunov scheme by re-
placing the piecewise constant approximation in the latter with a piecewise affine
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approximation. The heart of the matter is to avoid the formation of spurious oscil-
lations near discontinuities. This is achieved by van Leer via the so-called min-mod
limitor.

Other classes of high order schemes have been built from the maximum principle
and a monotony condition: see the classes of ENO and UNO schemes proposed
by Harten, Engquist, Osher, and Chakravarthy [15]. In this paper we concentrate
attention on the MUSCL scheme, but our main convergence theorem, Theorem 2.3
below, should also be applicable to other schemes.

After Osher’s pioneering result [32] and the systematic study of high-order
schemes by Osher and Tadmor [33] (which however required a technical condi-
tion on the slopes of the affine reconstructions), Lions and Souganidis [27], [28]
and, independently, Yang [38] established the convergence of the MUSCL scheme.
Both proofs apply to an arbitrary BV initial data (so (1.4) is not assumed); the
flux-function is assumed to be convex in [38] and strictly convex in [28]. In both
papers significantly new techniques of proof are introduced by the authors. In [38],
Yang develops a method for tracking local extremum values. In [28], Lions and
Sougadinis elegantly re-formulate the MUSCL scheme at the level of the Hamilton-
Jacobi equation associated with (1.1) and rely on Crandall-Lions’ theory of viscosity
solutions for such equations. A large class of difference approximations is treated in
[28]. Techniques in both papers are restricted in an essential way to semi-discrete
schemes, in which the time variable is kept continuous. In [25] the present authors
announced a proof of the convergence of a class of fully discrete schemes that in-
clude the MUSCL scheme. Independently, Yang [39] also extended his approach to
a large class of fully discrete methods.

Several other works deal with the convergence of van Leer’s scheme or variants
of it. A discrete version of inequality (1.6) was established by Brenier and Osher
[2] and Goodman and LeVeque [12], the latter dealing with both first and second
order methods. Nessyahu, Tadmor, and Tamir [30] establish both the convergence
and error estimates for a variety of Godunov-type schemes. Various approaches
to upgrading Lax-Friedrichs scheme are actively developed by Tadmor and co-
authors; see, for instance, Nessyahu and Tadmor [29]. An extensive discussion
of the discretization of the entropy inequality (1.5) is found in Osher and Tadmor
[33] and the many references cited theirein. See also Bouchut, Bourdarias and
Perthame [1], and Coquel and LeFloch [4].

The objective of the present paper is to provide a framework to prove the conver-
gence of high order accurate and fully discrete difference schemes. We will strongly
rely on a property shared by all entropy solutions to (1.1): the monotonicity prop-
erty. Given an arbitrary entropy solution u, the number of extrema in u(t) is a
non-increasing function of t, and local maximum/minimum values decrease/increase
monotonically in time. (See the Appendix for rigorous statements.) This property
was studied first by Harten [13] from the numerical standpoint, in order to arrive
at his notion of TVD scheme. It was also essential in [28], [38] and [36].

Observe that monotone or TVD schemes do not necessarily satisfy the mono-
tonicity property. For instance the Lax-Friedrichs scheme may increase the num-
ber of extremum values! This motivates the introduction of a subclass of TVD
schemes, guaranteeing this property together with the high order of accuracy. The
scheme then closely mimics an important property of the solutions to the contin-
uous equation. A further requirement is necessary to ensure that the scheme is
entropy-satisfying.
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Based on the monotonicity property, we thus introduce the notion of generalized
monotone scheme (Definition 2.2) characterized by three conditions: maximum
principle, entropy consistency, and local behavior at extrema. The (first order)
Godunov method and the (second order) MUSCL method are prototype examples.

Our first requirement is a (strong) version of the local maximum principle, which
will allow us to show a discrete analogue of the monotonicity property. In particular
our condition prevents the formation of spurious numerical oscillations, and the
scheme is TVD in the sense of Harten.

The second requirement is motivated by the following observation made by Os-
her for semi-discrete schemes [31]: in the non-decreasing parts of the approximate
solutions, it is possible to simultaneously achieve second order accuracy and the ex-
istence of one cell entropy inequality –i.e. a discrete analogue of (1.5). Our second
condition therefore requires a cell entropy inequality in the non-decreasing regions.

Finally, in order to prevent cusp-like behavior near extrema, which may lead
to entropy violating discontinuities, the scheme should be well-behaved near local
extrema. To this end, we introduce a condition referred to as the quadratic decay
property at local extrema. It reflects the nonlinear behavior of the numerical flux-
function near extrema, and assumption (1.3) again is essential. For simplicity, it
is also assumed that the scheme reduces to a three points, first order scheme at
extrema.

The rest of this section is devoted to comments upon the proof of our main result
that any generalized monotone scheme converges to the entropy solution of (1.1)-
(1.2) provided (1.3)-(1.4) holds. Our approach was driven by Yang’s paper [38] on
semi-discrete schemes. However, our technical arguments differ substantially from
the ones in [38]. In particular we restrict attention to initial data having a locally
finite number of extrema, making the tracking of paths of extremum values almost
a trivial matter. The main part of our proof is studying the convergence of the
traces of the approximate solution along it. We make use of the quadratic decay
property above to exclude the formation of a “cusp” near extremum values, which
could lead to entropy-violating shock. This is the main contribution of this present
paper. We do not believe that the extension of our proof to arbitrary BV data is
straightforward. The result we obtain seems satisfactory, however, since condition
(1.4) covers “generic” initial data.

The proof distinguishes between the non-increasing parts and non-decreasing
parts of the solution, and is based on several observations, as follows. We use the
notation uh for the approximate solutions, v for the limiting solution, and h for the
mesh size.

First of all, the strong maximum principle ensures that the uh’s are total vari-
ation diminishing in time, so of uniformly bounded total variation. The strong
maximum principle makes it easy for us to define a discrete path, and with each
time step the discrete path moves at most one grid point. As a consequence, the dis-
crete path is Lipschitz continuous. (This is a major difference between the present
paper and Yang’s paper, in which the construction of the path and the limiting
paths is much more involved.)

By Helly’s Theorem, the scheme converges in the strong L1 topology to a limit-
ing function, say v, which according to Lax-Wendroff’s theorem is a weak solution
to (1.1)-(1.2). It remains to prove that v is the entropy solution. We show that
the strong maximum principle in fact implies a discrete analogue of the monotonic-
ity property. Relying on (1.4), we construct a (locally) finite family of Lipschitz
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continuous paths in the plane by tracking the local extrema in uh. The paths are
shown to converge in the uniform topology to limiting curves.

Next we make the following two observations. On one hand, in a non-increasing
region for uh, the function v is also non-increasing, and so can only admit non-
increasing jumps. Thus v satisfies the Lax shock admissibility inequality (1.6) in
the non-increasing regions. On the other hand, a discrete cell entropy inequality,
by assumption, holds in the non-decreasing regions of uh. So v satisfies (1.5) in the
non-decreasing regions.

It remains to prove that v has only non-increasing jumps along any path of
extrema. This is the most interesting part of the proof. Let ψh be an approximate
path of extrema, and let ψ be its uniform limit. The path ψ is the boundary
separating two regions where the analysis in the paragraph above applies. Indeed,
(1.5) holds in the side where v is non-increasing and (1.6) holds in the side where
v is non-decreasing. A specific proof must be provided to determine the behavior
of v along the path. We analyze the entropy production in a small region of the
plane limited on one side by the path ψh. In the course of this proof we derive a
uniform bound for the time integral of the local oscillation in space along the path
ψh, which is a direct consequence of the quadratic decay property mentioned above.
For the sake of simplicity, we use here the assumption that the scheme reduces to
a three points, first order scheme at extrema.

Note that assumption (1.3) is not used in the construction of the extremum
paths, but is essential in the convergence analysis which strongly relies upon (1.6),
only valid for convex fluxes.

Our analysis shows that, for a class of difference schemes, certain approximate
generalized characteristics—those issuing from an extremum point of the initial
data—can be constructed for scalar conservation laws with convex flux. Construct-
ing approximate generalized characteristics issuing from an arbitrary point remains
a challenging open problem. Recall that, for the random choice scheme, Glimm-Lax
[10] did obtain a general theory of approximate generalized characteristics (appli-
cable to systems, as well).

The organization of this paper is as follows. In Section 2, we define the class of
generalized monotone schemes and state the main result of convergence, Theorem
2.3. Section 3 contains the proof of the main result. In Section 4, we apply Theorem
2.3 to the MUSCL scheme and provide some additional remarks.

2. Generalized monotone schemes

This section introduces a class of TVD schemes which are built to closely mimic
an essential property of the entropy solutions to (1.1), i.e. the monotonicity prop-
erty: the number of local extrema is a non-increasing function of time, and local
maximum/minimum values decrease/increase monotonically in time. See the Ap-
pendix for a precise statement. Here we investigate this property from a numerical
standpoint. Monotone and TVD schemes actually do not necessarily satisfy this
property (see Section 4 for an example), and a more restricted class, the generalized
monotone schemes, is natural.

We consider a (2k + 1)–point difference scheme in conservation form for the
approximation of (1.1)-(1.2):

un+1
j = unj − λ

(
gnj+1/2 − gnj−1/2

)
, n ≥ 0, j ∈ Z,(2.1)



1030 PHILIPPE G. LEFLOCH AND JIAN-GUO LIU

where we use the notation gnj+1/2 = g
(
unj−k+1, . . . , u

n
j+k

)
, and λ = τ/h is the ratio

of the time-increment τ by the space-increment h. We set tn = nτ , xj = jh, and
xj+1/2 = (j + 1/2)h. The value unj presumably is an approximation of the exact
solution at the point (xj , tn). As usual, the numerical flux g : R2k → R is assumed
to be locally Lipschitz continuous and consistent with f , i.e. g(v, . . . , v) = f(v) for
all v. Note that g may depend on λ. For definiteness, we set

u0
j =

1
h

∫ xj+1/2

xj−1/2

u0(y) dy.(2.2)

This is sufficient for second order accuracy. For higher orders, one should use a
Runge-Kutta time-step method (Shu [34]). We also define the piecewise constant
function uh : R× R+ → R by

uh(x, t) = unj , tn ≤ t < tn+1, xj−1/2 ≤ x < xj+1/2.(2.3)

By construction uh is a right continuous function. For simplicity we assume the
following CFL restriction:

λ sup
v
|f ′(v)| ≤ 1/4.(2.4)

Several of the properties below would still hold if, in (2.4), one replaces 1/4 by 1,
although the proofs then become less clear geometrically.

The (first order) Godunov scheme is based on exact solutions to (1.1), and is a
good prototypical example to lead us to defining a class of (high order) schemes
consistent with the monotonicity property.

A main ingredient is the Riemann problem. Given two states v and w, we define
R(.; v, w) to be the entropy solution to (1.1)-(1.2) with, here,

u0(x) = v if x < 0, u0(x) = w if x > 0.

As is well-known, R(·; v, w) depends on the self similarity variable x/t only, and is
given by a closed formula. If v ≤ w, R is a rarefaction wave; if v > w, a shock
wave. More important,

R(
x

t
; v, w) is a monotone function connecting v to w.(2.5)

In the Godunov scheme, one solves Riemann problems and, at each time level,
one projects the solution on the space of piecewise constant functions. If uh(tn) is
known, let ũ(x, t) for t ≥ tn be the entropy solution to (1.1) assuming the Cauchy
data

ũ(tn+) = uh(tn+).

Since uh(tn+) is a piecewise constant function, ũ is obtained explicitly by gluing to-
gether the Riemann solutions R(.;unj , u

n
j+1). In view of (2.4), there is no interaction

between two nearby solutions, at least for t ∈ (tn, tn+1). Set

uh(x, tn+1+) =
1
h

∫ xj+1/2

xj−1/2

ũ(y, tn+1) dy, xj−1/2 ≤ x < xj+1/2.

Using the conservative form of (1.1), the scheme can be written in the form (2.1)
with k = 1 and g = gG given by

gG(v, w) = f(R(0+; v, w)) for all v and w.(2.6)
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The proofs of (2.7)–(2.10) stated below are classical; e.g. [3], [6], [16], [26]. On one
hand, one can think of the Godunov scheme geometrically as a two-step method:
a marching step based on exact (Riemann) solutions and an L2 projection step. In
view of (2.5) and the monotonicity property of the L2 projection, one can easily
get a simple geometrical proof of the properties listed below. On the other hand,
an algebraic approach is based on the explicit formula deduced from (2.6).

The Godunov scheme is monotone: the function gG is non-decreasing with re-
spect to its first argument, and non-increasing with respect to its second. This
property implies that the scheme is monotonicity preserving, i.e.,

if unj1 , u
n
j1+1, . . . , u

n
j2 is a non-increasing (resp. non-decreasing) sequence

for some indices j1 < j2, so is the sequence un+1
j1+1, u

n+1
j1+2, . . . , u

n+1
j2−1.

(2.7)

The Godunov scheme satisfies the local maximum principle, i.e.,

min
(
unj−1, u

n
j , u

n
j+1

) ≤ un+1
j ≤ max

(
unj−1, u

n
j , u

n
j+1

)
(2.8)

for all n ≥ 0 and j ∈ Z. In fact (2.7) and (2.8) are shared by both steps in the
Godunov scheme. It will be convenient for us to rewrite (2.8) in term of the jumps
of uh at the endpoints of a cell:

min
(
unj+1 − unj , u

n
j−1 − unj , 0

) ≤ un+1
j − unj ≤ max

(
unj+1 − unj , u

n
j−1 − unj , 0

)
.

(2.8′)

Any monotone scheme –in particular the Godunov scheme– satisfies a discrete
analogue of (1.5) for every convex entropy pair (U, F ):

U(un+1
j )− U(unj )− λ

(
Gnj+1/2 −Gnj−1/2

) ≤ 0, n ≥ 0, j ∈ Z.(2.9)

In (2.9), Gnj+1/2 = G(unj−k+1, . . . , u
n
j+k), and G is a numerical entropy flux consis-

tent with F ; that is, G(v, v . . . , v) = F (v) for all v.
Finally, concerning the local behavior of uh in the neighborhood of local extrema,

it is known that, say for local maximum,

un+1
j ≤ unj .(2.10)

A similar property holds for local minima.
In fact the classical properties (2.8) and (2.10) can be improved as follows.

Proposition 2.1. Under assumptions (1.3) and (2.4), the Godunov scheme satis-
fies the following two properties:

1. The strong local maximum principle:

1
2

min
(
unj+1 − unj , u

n
j−1 − unj , 0

) ≤ un+1
j − unj ≤

1
2

max
(
unj+1 − unj , u

n
j−1 − unj , 0

)
.

(2.11)

2. The quadratic decay property at local extrema, that is, e.g. for a maximum,

if unj is a local maximum value, un+1
j ≤ unj − αmin±

(
(unj − unj±1)

2
)
,(2.12)

with α = λ inf f ′′/2.

The proof of (2.11) is straightforward from a geometrical standpoint. If also
follows from Proposition 4.1, to be established later in Section 4. Note that the
coefficient 1/4 in (2.4) is essential for (2.11) to hold. Observe that (2.11) is stronger
than (2.8)-(2.8′) and controls the time-increment (i.e., un+1

j − unj ) of the solution
in the cell j in term of the jumps at the endpoints: the values unj evolves “slowly”
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as tn increases. As we shall see, this property implies that the scheme satisfies a
discrete analogue of the monotonicity property.

Estimate (2.12) is stronger than (2.10) and shows that the decrease/increase
of a maximum/minimum is controlled by the quadratic oscillation of uh near this
extremum. It is a truly nonlinear property of the Godunov flux. It will be used
below to prove that a cusp cannot form near extremum points. For convenience,
the proof of (2.12) is postponed to Section 4, where second-order approximations
are treated as well.

In [12], Goodman and LeVeque derive for the Godunov method a discrete version
of the Oleinik entropy inequality. In particular, this shows that the Godunov scheme
spreads rarefaction waves at the correct rate. Our estimate (2.12) is, at least in
spririt, similar to this spreading estimate, and expresses the spreading of extremum
values.

We are now ready to introduce a class of high-order schemes based on the prop-
erties derived in Proposition 2.1.

Definition 2.2. The scheme (2.1) is said to be a generalized monotone scheme if
any sequence

{
unj

}
generated by (2.1) satisfies the following three conditions:

(1) the strong local maximum principle (2.11),
(2) the cell entropy inequality (2.9) for one strictly convex pair (U, F ) in any

non-decreasing region, including local extrema,
(3) the quadratic decay property at local extrema (2.12) for some constant α > 0.

It is also assumed that the numerical flux and the numerical entropy flux are es-
sentially two-point functions at local extrema.

According to Proposition 2.1, the (first order) Godunov scheme belongs to the
class described in Definition 2.2. Section 4 will show that there exist high order
accurate schemes satisfying the conditions in Definition 2.2. Our main convergence
result is:

Theorem 2.3. Let (2.1) be a generalized monotone scheme. Assume that assump-
tions (1.3)-(1.4) hold together with (2.4). Then the scheme (2.1)

(1) is L∞ stable, i.e.,

inf
l∈Z

unl ≤ un+1
j ≤ sup

l∈Z
unl , n ≥ 0, j ∈ Z,(2.13)

(2) is total variation diminishing, i.e.,∑
j∈Z

∣∣un+1
j+1 − un+1

j

∣∣ ≤ ∑
j∈Z

∣∣unj+1 − unj
∣∣, n ≥ 0,(2.14)

(3) and converges in the Lploc strong topology for all p ∈ [1,∞) to the entropy
solution of (1.1)-(1.2).

The proof of Theorem 2.3 is given in Section 3.
Theorem 2.3 is satisfactory from a practical standpoint. Suppose that u0 is an

arbitrary BV function, and we wish to compute an approximation to the solution u
of (1.1)-(1.2) of order ε > 0 in the L1 norm. Let us determine first an approximation
of u0, say u0,ε, that has a finite number of local extrema and is such that

‖u0,ε − u0‖L1(R) ≤ ε.



GENERALIZED MONOTONE SCHEMES 1033

Applying a generalized monotone scheme to the initial condition u0,ε yields an
approximate solution uhε that, in view of Theorem 2.3, satisfies

‖uhε − uε‖L1(R) ≤ o(h) ≤ ε

for h is small enough, where uε is the entropy solution associated with the initial
condition u0,ε. Since the semigroup of solutions associated with (1.1) satisfies the
L1 contraction property, one has

‖uε − u‖L1(R) ≤ ‖u0,ε − u0‖L1(R) ≤ ε,

and therefore

‖uhε − u‖L1(R) ≤ ‖uhε − uε‖L1(R) + ‖uε − u‖L1(R)

≤ 2 ε.

3. Convergence analysis

The proof of Theorem 2.3 is decomposed into several lemmas, Lemmas 3.1–3.11.
For the whole of this section, we assume that the hypotheses of Theorem 2.3 are
satisfied.

We introduce first some notation and terminology. We call unj a local maximum
or a local minimum if there exist two indices j∗ and j∗ with j∗ ≤ j ≤ j∗ such that

unj∗ = unj∗+1 = · · · = unj∗ > max(unj∗−1, u
n
j∗+1)

or

unj∗ = unj∗+1 = · · · = unj∗ < min(unj∗−1, u
n
j∗).

In such a case, there is no need to distinguish between the extrema unj∗ , u
n
j∗+1,

. . . , unj∗ . Based on the strong maximum principle (2.11), we show in Lemmas 3.1
and 3.2 that the scheme satisfies a discrete form of the monotonicity property. We
construct a family of paths in the (x, t)-plane by tracing in time the points where
the approximate solution uh(t) achieves its local extremum values. One difficulty
is proving that the interaction of two (or more) paths does not create new paths,
so the total number of paths at any given time remains less than or equal to the
initial number of local extrema in u0. In passing we observe that an extremum
point moves one grid point at each time-step, at most.

Lemma 3.1. For some j∗ < j∗, suppose that the sequences unj∗−3, u
n
j∗−2, u

n
j∗−1,

unj∗ and unj∗ , u
n
j∗+1, u

n
j∗+2, u

n
j∗+3 are two monotone sequences, no specific assump-

tion being made on the values unj , j∗ ≤ j ≤ j∗. Then the number ν′ of extrema in
the sequence

Sn+1 :=
(
un+1
j

)
j∗−2≤j≤j∗+2

is less than or equal to the number ν of extrema in

Sn :=
(
unj

)
j∗−2≤j≤j∗+2

.

When ν′ ≥ 1, there exists a one-to-one correspondence between ν′ local extrema
of Sn and the ν′ local extrema of Sn+1 with the following property: if a maxi-
mum/minimum unj is associated with a maximum/minimum un+1

j′ , then

|j′ − j| ≤ 1 and un+1
j′ ≤ unj , resp. un+1

j′ ≥ unj .(3.1)
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Proof. We distinguish between various cases depending on the number of local
extrema in the sequence Sn and construct the one-to-one correspondence.

If Sn has no local extremum, for instance is non-decreasing, then Sn+1 is also
non-decreasing. This indeed follows from the inequalities (2.11), which reduce in
this case to

· · · ≤ 1
2
(
unj−1 + unj

) ≤ un+1
j ≤ 1

2
(
unj+1 + unj

) ≤ un+1
j+1 ≤ · · · .

Consider next the case that Sn has exactly one local extremum, say a local
maximum at some unl . The same argument as above shows that the sequences{
un+1
j

}
j∗≤j≤l−1

and
{
un+1
j

}
l+1≤j≤j∗ are non-decreasing and non-increasing re-

spectively. Therefore we only need to exclude the case that both un+1
l−1 > un+1

l

and un+1
l+1 > un+1

l , which would violate the monotonicity property since Sn+1 in
this case would have two local maximum and one local minimum, so two new ex-
trema. Indeed assume that the latter would hold; then using (2.11) at the points
l− 1, l, and l + 1 gives us

un+1
l−1 ≤ 1

2
(
unl−1 + unl

)
,

unl +
1
2

min
(
unl±1 − unl

) ≤ un+1
l ,

and

un+1
l+1 ≤ 1

2
(
unl+1 + unl

)
,

which are incompatible with the inequalities un+1
l−1 > un+1

l and un+1
l+1 > un+1

l .
Consider now the case that Sn has two local extrema, say one local maximum

at l and one local minimum at m with l < m. We distinguish between three cases:
If l < m−2, then the two extrema cannot “interact” and the previous arguments

show that the solution at time tn+1 has the same properties.
If l = m − 2, the two extrema can interact. Using (2.11) at each point j =

l− 1, · · · , l + 3, one gets

un+1
l−1 ≤ 1

2
(
unl−1 + unl

)
,

unl +
1
2

min
(
unl±1 − unl

) ≤ un+1
l ,

and

un+1
l+1 ≤ 1

2
(
unl+1 + unl

)
,

and also

un+1
l+1 ≤ 1

2
(
unl+1 + unl+2

)
,

unl+2 +
1
2

min
(
unl+2±1 − unl+2

) ≤ un+1
l+2 ,

and

un+1
l+3 ≤ 1

2
(
unl+3 + unl+2

)
.

It is not hard to see that these inequalities imply that Sn+1:
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(1) either has one maximum at j = l−1, l, or l+1 and a minimum at j = l+1, l+2,
or l + 3;

(2) or is non-decreasing.
In the first case, we achieve the property we wanted. In the second case, there is
no extremum at the time tn+1.

This analysis can be extended to the case that several extrema can “interact”; we
omit the details. Property (3.1) is a consequence of condition (2.4): an extremum
point can only move up to one grid point at each time step.

Consider the initial condition u0 and its approximation uh(0) defined by L2

projection, cf. (2.2). Locate the minimum and maximum values in the initial data
u0. For h much smaller than the minimal distance between two extrema, uh(0) has
the same number of extrema as u0 and the same increasing/decreasing behavior as
u0. Indeed, there exist indices Jhq (0) for q in a set of consecutive integers E(u0)
depending on u0 but not on h, such that

u0
j is non-decreasing for Jh2p(0) ≤ j ≤ Jh2p+1(0),

u0
j is non-increasing for Jh2p−1(0) ≤ j ≤ Jh2p(0).

(3.2)

Those indices are not uniquely determined in the case that u0 is constant on an
interval associated with a local extremum. Since u0 has a locally finite number
of local extrema, there exists a partition of Z into intervals (j∗, j∗) in which the
hypothesis of Lemma 3.1 holds. It is an easy matter to use the one-to-one corre-
spondence in Lemma 3.1 and trace forward in time up to time t1 = τ the locations
of the extrema in (j∗, j∗) . At each time level a (possibly new) partition of Z is
considered and Lemma 3.1 is used again. Indeed, the values Jhq (n + 1) in Lemma
3.2 below are defined from the Jhq (n)’s according to the one-to-one correspondence
established in Lemma 3.1. Finally, piecewise affine and continuous paths are ob-
tained by connecting together the points of local extrema. It may happen that
the number of extrema decreases from time tn to tn+1. In such a case, one path,
at least, can no longer be further extended in time and so, for that purpose, we
introduce a “stopping time”, denoted by T hq = tn.

The following lemma is established.

Lemma 3.2. There exist continuous and piecewise affine curves ψhq : [0, T hq ] → R
for q ∈ E(u0), passing through the mesh points

(
xJh

q (n), tn
)

and having the following
properties:

ψhq (t) = xJh
q (n) +

t− tn
τ

(
xJh

q (n+1) − xJh
q (n)

)
, t ∈ [tn, tn+1],(3.3)

for each n = 0, 1, 2, . . . , Nh
q with T hq = Nh

q τ ≤ ∞,

ψhq ≤ ψhq+1, |xJh
q (n) − xJh

q (n+1)| ≤ h;(3.4)

there are only a finite number (uniformly bounded w.r.t. h)

of curves ψhq on each compact set
(3.5)

and

x ∈ (ψh2p(tn), ψ
h
2p+1(tn)) 7→ uh(x, tn) is non-decreasing,

x ∈ (ψh2p−1(tn), ψ
h
2p(tn)) 7→ uh(x, tn) is non-increasing.

(3.6)
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Furthermore, the functions whq : [0, T hq ] → R defined by

whq (t) = unJh
q (n) for tn ≤ t < tn+1(3.7)

are non-decreasing if q is even, and non-increasing if q is odd.

Remark 3.3. 1) The definition (3.3) is not essential. All the results below still hold
if ψhq is replaced by any (uniformly) Lipschitz continuous curve passing through
the mesh points

(
xJh

q (n), tn
)
. As a matter of fact, it is an open problem to show

the strong convergence of the derivatives of approximate paths. By comparison, for
the approximate solutions built by the random choice scheme, Glimm and Lax [10]
proved the a.e. convergence of the first order derivatives of the paths.

2) Introducing the stopping times T hq is necessary. At those times, certain paths
cross each other and their extension in time is not well-defined. For instance, a path
of maximum and a path of minimum can cross and “cancel out”. The case of exact
solutions (cf. the appendix) is simpler in this respect: the paths can be defined to be
characteristic curves for all times, even when they are no longer paths of extrema.

3) It is not interesting to trace the minimal (or maximal) paths of extrema in
the approximate solution. Such paths would not converge to the paths obtained in
the continuous case.

By construction, cf. (3.4), a path “jumps” up to one grid point at each time-step.
So the slope of a path remains uniformly bounded by 1/λ and the curves ψhq are
bounded in the W 1,∞

loc norm, uniformly with respect to h and q. On the other hand,
Lemma 3.3 implies that the scheme is TVD, so TV (uh(tn)) is uniformly bounded.
We thus conclude that the approximate solutions and the paths of extrema are
strongly convergent, as stated in the following Lemmas 3.4 and 3.5. For simplicity,
we keep the same notation for a sequence and a subsequence.

Lemma 3.4. There exist times Tq ∈ [0,+∞] and Lipschitz continuous curves ψq :
(0, Tq) → R such that

T hq → Tq as h→ 0,(3.8)

and

ψhq → ψq uniformly on each compact subset of C0([0, Tq)).(3.9)

Lemma 3.5. The sequence uh satisfies estimates (2.13)-(2.14), and so is uniformly
stable in the L∞([0,∞), BV (R)) and Lip([0,∞), L1(R)) norms. There exists a
function v in the same spaces such that

uh(x, t) → v(x, t) for all times t ≥ 0 and almost every x ∈ R,(3.10)

and there exist functions wq in BV ((0, Tq),R) such that

whq → wq almost everywhere on (0, Tq)(3.11)

for all q ∈ E(u0).

The convergence results (3.10) and (3.11) hold in particular at each point of
continuity of v(t) and wq, respectively. Introduce now the following three sets,
which provide us with a partition of the (x, t)-plane into increasing/decreasing
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regions for v:

Ω1(v) =
{
(x, t)|ψ2p1 (t) < x < ψ2p2+1(t), p1 ≤ p2, t < T2p1 , t < T2p2+1,

and t > Tq, for all q = 2p1 + 1, ..., 2p2

}
,

Ω2(v) =
{
(x, t)|ψ2p1−1(t) < x < ψ2p2(t), p1 ≤ p2, t < T2p1−1, t < T2p2 ,

and t > Tq, for all q = 2p1, ..., 2p2 − 1
}
,

Ω3(v) = Closure
{
(ψq(t), t), for all relevant values of t and q

}
.

The set Ω3(v), by construction, contains all of the curves ψq including their end
points. The sets Ω1(v) and Ω2(v) are open and contain regions limited by curves
in Ω3(v). These definitions take into account the fact that the path need not be
defined for all times. Observe also that an arbitrary point in Ω3(v) need not be a
point of extremum value for v. The decomposition under consideration is not quite
the obvious partition of the (x, t)-plane into regions of monotonicity for v. Strictly
speaking, the sets Ωj(v) may not be determined from the function v alone.

Using Lemmas 3.2, 3.4, and 3.5, we immediately check that:

Lemma 3.6. The limiting functions satisfy the properties:
v/Ω1(v)(t) is non-decreasing in each subcomponent of Ω1(v),

v/Ω2(v)(t) is non-increasing in each subcomponent of Ω2(v),
(3.12)

and

wq is non-decreasing if q is even and non-increasing if q is odd.(3.13)

Since the scheme is consistent, conservative, and converges in the L1 strong
norm, we can pass to the limit in (2.1). It follows that v is a weak solution to (1.1).
We note that, in the set Ω1(v), the functions uh, and also v, are non-increasing.
The Lax shock inequality holds for both uh and v. On the other hand, the cell
entropy inequality (2.9) holds for uh in the non-decreasing regions, i.e., in Ω2(v).
The passage to the limit in (2.9) is a classical matter.

Lemma 3.7. The function v is a weak solution to equation (1.1) and satisfies

v(x−, t) ≥ v(x+, t) in the set Ω1(v)(3.14)

and

∂tU(v) + ∂xF (v) ≤ 0 in the set Ω2(v).(3.15)

The rest of this section is devoted to proving that the Lax shock inequality holds
along the paths ψq which we will attain in Lemma 3.10. In a first stage, we prove:

Lemma 3.8. Along each path of extremum ψq and for almost every t ∈ (0, Tq),
one of the following holds:

wq(t) = v(ψq(t)−, t) or wq(t) = v(ψq(t)+, t).(3.16)

Roughly speaking, (3.16) means that that no cusp-like layer can form in the
scheme near local extrema. The idea of the proof of Lemma 3.8 is as follows:
we are going to integrate the discrete form of the conservation law (2.1) on a
(small) domain limited on one side by an approximate path of extremum; then we
shall integrate by parts and pass to the limit as h → 0. Finally, we shall let the
domain shrink and reduce to the path itself. To determine the limits of the relevant
boundary terms as h→ 0, we have to justify the passage to the limit in particular
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in the numerical fluxes evaluated along the approximate path. Lemma 3.9 below
provides us with an a priori estimate for the oscillation of uh along the path, which
follows from the quadratic decay property (2.12).

Lemma 3.9. Along a path of extremum values ψhq , we have

β

n=n+∑
n=n−

min
(|unJh

q (n)±1 − unJh
q (n)|, |unJh

q (n)±1 − unJh
q (n)|2

)
≤ u

n−
Jh

q (n−)
− u

n+

Jh
q (n+)+1

,

(3.17)

for all 0 ≤ n− ≤ n+ ≤ Nh
q , where

β = min(α, 1/2).(3.18)

Proof of Lemma 3.8. We will prove that, for almost every t in (0, Tq), the following
three Rankine-Hugoniot like relations hold:

− dψq
dt

(t)
(
v(ψq(t)+, t)− v(ψq(t)−, t)

)
+ f(v(ψq(t)+), t)− f(v(ψq(t)−, t)) = 0,

(3.19)

−dψq
dt

(t)
(
v(ψq(t)±, t)− wq(t)

)
+ f(v(ψq(t)±, t))− f(wq(t)) = 0.(3.20)

Since there is only one non-trivial pair of values that achieves a Rankine-Hugoniot
relation for a scalar conservation law with a strictly convex flux and a given shock
speed dψq(t)/dt, the desired conclusion (3.16) follows immediately from (3.19)-
(3.20).

Observe that (3.19) is nothing but the standard Rankine-Hugoniot relation, since
v is a weak solution to (1.1) and ψq is Lipschitz continuous. For definiteness we
prove (3.20) in the case of the “+” sign. The proof of (3.20) with “−” sign is
entirely similar. (Actually only one of the two relations in (3.20) suffice for the
present proof.)

Let θ(x, t) be a test-function having its support included in a neighborhood of
the curve ψq and included in the strip R×(0, Tq). So for h small enough the support
of θ is included in R× (0, T hq ), and all the quantities to be considered below make
sense. Let us set θnj = θ(xj , tn). To make use of estimate (3.17), it is necessary
to define a “shifted” path ψ̃hq , to be used instead of ψhq . So we consider the set of
indices

Phq =
{
(j, n)|j ≥ Jhq (n) + εhq (n)

}
,

where εhq (n) = 0 (respectively εhq (n) = 1) if Jhq (n) − 1 (resp. Jhq (n) + 1) achieves
the minimum in the left hand side of (3.17). A shifted path is defined by

ψ̃hq (t) = xJh
q (n)+εhq (n) +

t− tn
τ

(
xJh

q (n+1)+εhq (n+1) − xJh
q (n)+εhq (n)

)
, t ∈ [tn, tn+1].

Introducing the shifts εhq (n) does not modify the convergence properties of the path.
It is not hard to see, using solely the fact that the path is uniformly bounded in
Lipschitz norm, that as h→ 0

ψ̃hq → ψq W 1,∞ weak- ? .(3.21)
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We also set

w̃hq (t) = unJh
q (n)+εhq (n) for tn ≤ t < tn+1.

Using (3.17) and (3.7) of whq , we can check that

w̃hq → wq L1 strongly.(3.22)

Consider

Ih(θ) ≡ −
∑

(n,j)∈Ph
q

(
un+1
j − unj + λ(gnj+1/2 − gnj−1/2)

)
θnj h = 0,(3.23)

which vanishes identically in view of (2.1). Using summation by parts gives

Ih(θ) = −
∑

(n,j)∈Ph
q

(
un+1
j θn+1

j − unj θ
n
j

)
h+

∑
n

gnJh
q (n)+εhq (n)−1/2θ

n
Jh

q (n)τ

+
∑

(n,j)∈Ph
q

un+1
j (θn+1

j − θnj )h+ gnj+1/2(θ
n
j+1 − θnj )τ

= Ih1 (θ) + Ih2 (θ) + Ih3 (θ).

(3.24)

The passage to the limit in Ih3 (θ) is an easy matter, since it has the classical form
met, for instance, in the Lax-Wendroff theorem. We find that

Ih3 (θ) → I3(θ) =
∫∫ {

x≥ψq(t)
} (
v∂tθ + f(v)∂xθ

)
dxdt.(3.25)

To deal with Ih2 (θ), we recall that the flux gnJh
q (n)+εhq (n)−1/2 depends on two argu-

ments, so satisfies

gnJh
q (n)+εhq (n)−1/2 = f(unJh

q (n)+εhq (n)) +O
(|unJh

q (n)−1+εhq (n) − unJh
q (n)+εhq (n)|

)
= f(w̃hq (tn)) +O

(|unJh
q (n)−1+εhq (n) − unJh

q (n)+εhq (n)|
)
.

(3.26)

Indeed, by construction, the point Jhq (n) + εhq (n) − 1/2 is an end point of a cell
achieving an extremum value: One has εhq (n) ∈ {0, 1}, so Jhq (n) + εhq (n) − 1/2 ∈
{Jhq (n) − 1/2, Jhq (n) + 1/2}. Using (3.26), estimate (3.17), the Cauchy-Schwarz
inequality, and the Lebesgue convergence theorem, it is not hard to prove that

Ih2 (θ) → I2(θ) =
∫

R+

f(wq(t))θ(ψq(t), t)dt.(3.27)

It remains to prove that

Ih1 (θ) → I1(θ) = −
∫

R+

dψq
dt

(t)wq(t)θ(ψq(t), t) dt.(3.28)

We return to the definition of the modified path and define ehq (n+ 1) by

Jhq (n+ 1) + εhq (n+ 1) = Jhq (n) + εhq (n) + ehq (n+ 1).

Using only (3.21), one can prove that∑
n

ehq (n)unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)h → −
∫

R+

dψq
dt

(t)θ(ψq(t), t) dt.(3.29)

We claim that

ehq (n+ 1) ∈ {− 1, 0, 1
}
.(3.30)
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Namely, using (2.11) and the definition of εhq (n+ 1), we have either

εhq (n) = 1, Jhq (n+ 1) = Jhq (n) or Jhq (n+ 1) + 1, and ehq (n+ 1) = 1 or 1

or

εhq (n) = 1, Jhq (n+ 1) = Jhq (n) or Jhq (n+ 1) + 1, and ehq (n+ 1) = −1 or 0.

The term Ih1 (θ) then can be rewritten in the form

Ih1 (θ) =
∑

j≥Jh
q (n)+εhq (n)

un+1
j θn+1

j h−
∑

j≥Jh
q (n)+εhq (n)

unj θ
n
j h

=
∑

j≥Jh
q (n−1)+εhq (n−1)

unj θ
n
j h−

∑
j≥Jh

q (n)+εhq (n)

unj θ
n
j h,

so that

Ih1 (θ) = −
∑

eh
q (n)=−1

unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)h

+
∑

eh
q (n)=1

unJh
q (n)+εhq (n)−1θ

n
Jh

q (n)+εhq (n)−1h.

Observe that, in the second sum above, Jhq (n) + εhq (n)− 1 = Jhq (n− 1) + εhq (n− 1),
and consider the decomposition Ih1 (θ) = Ih1,1(θ) + Ih1,2(θ) with

Ih1,1(θ) =
∑

eh
q (n)=1

(
unJh

q (n)+εhq (n)−1θ
n
Jh

q (n)+εhq (n)−1 − unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)

)
h

and

Ih1,2(θ) =
∑

eh
q (n)=1

unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)h−
∑

eh
q (n)=−1

unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)h.

On one hand, we have

Ih1,1(θ) ≤
∑

eh
q (n)=1

∣∣unJh
q (n)+εhq (n)−1θ

n
Jh

q (n)+εhq (n)−1 − unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)

∣∣h
≤ O(1)

∑
eh

q (n)=1

∣∣unJh
q (n)+εhq (n)−1 − unJh

q (n)+εhq (n)

∣∣h
+O(1)

∑
eh

q (n)=1

∣∣θnJh
q (n)+εhq (n)−1 − θnJh

q (n)+εhq (n)

∣∣h,
and, in view of (3.17) and the smoothness property of θ,

Ih1,1(θ) ≤ O(1)h1/2
( ∑

n

|unJh
q (n)−1 − unJh

q (n)|2
)1/2 +O(1)h

≤ O(1)
(
h+ h1/2

) ≤ O(1)h1/2,

which implies

Ih1,1(θ) → 0 as h→ 0.(3.31)
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The expression for Ih1,2(θ) can be simplified, namely

Ih1,2(θ) = −
∑
n

ehq (n)unJh
q (n)+εhq (n)θ

n
Jh

q (n)+εhq (n)h.

Using (3.29), we find that

Ih1,2(θ) → I1(θ) as h→ 0.(3.32)

In view of (3.25), (3.27), and (3.28), we conclude that

I1(θ) + I2(θ) + I3(θ) = 0.(3.33)

Finally, using in (3.33) a sequence of test-functions θ, whose supports shrink and
concentrate on the curve ψq, the desired Rankine-Hugoniot relation (3.20) with the
“+” sign follows at the limit. This completes the proof of Lemma 3.8.

Proof of Lemma 3.9. For definiteness, we assume that unJh
q (n) is a maximum value

and that

min
(
unJh

q (n) − unJh
q (n)±1

)
= unJh

q (n) − unJh
q (n)−1.

The other cases are treated similarly. To simplify the notation, set j∗ = Jhq (n). By
the uniform decay property (2.12), we have

unj∗ − un+1
j∗ ≥ α(unj ∗ − unj∗−1)

2.(3.34)

By the strong maximum principle (2.11), we have

un+1
j∗−1 − unj∗−1 ≤

1
2
(unj∗ − unj∗−1).(3.35)

From (3.35), we deduce that

un+1
j∗−1 ≤ unj∗−1 + 1

2 (unj∗ − unj∗−1)

= unj∗ − 1
2 (unj∗ − unj∗−1)

≤ unj∗ − 1
2 min

(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)(3.36)

Note that unj∗ − unj∗−1 might be either ≤ 1 or ≥ 1. Then we get

un+1
j∗−1 ≤ unj∗ − βmin

(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)
.(3.37)

On the other hand, (3.34) can be written in the form

un+1
j∗ ≤ unj∗ − α(unj ∗ − unj∗−1)

2.(3.38)

Moreover, using (2.11) again, we obtain

un+1
j∗+1 ≤ unj∗+1 +

1
2
(
unj∗ − unj∗+1

) ≤ unj∗ +
1
2
(
unj∗ − unj∗−1

)
.

Hence, in view of (3.36),

un+1
j∗+1 ≤ unj∗ − βmin

(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)
.(3.39)

It follows from (3.37)–(3.39) that

max
(
un+1
j∗−1, u

n+1
j∗ , un+1

j∗+1

) ≤ unj∗ − βmin
(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)
,(3.40)

and thus

un+1
Jh

q (n+1)
≤ unj∗ − βmin

(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)
,(3.41)
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since un+1
Jh

q (n+1)
by definition achieves the maximum in (3.20). Finally, we have

proved that

unJh
q (n) − un+1

Jh
q (n+1)

≥ βmin
(
(unj∗ − unj∗−1), (u

n
j∗ − unj∗−1)

2
)
.(3.42)

By assumption, unj∗ − unj∗−1 ≤ unj∗ − unj∗ . Thus (3.42) gives (3.17) after summation
w.r.t. n.

Lemma 3.10. We have

v(x−, t) ≥ v(x+, t) in the set Ω3(v).(3.43)

The proof is based on the fact that one of the entropy criteria is satisfied on each
side of a path: the Lax shock inequality on the non-increasing side, and the cell
entropy inequality on the non-decreasing one.

Proof. We claim that, along any path of extremum ψq,

v(ψq(t)−, t) ≥ v(ψq(t)+, t) for a.e. t ∈ (0, Tq).(3.44)

We use the notation introduced in the proof of Lemma 3.8. A new difficulty arises:
several paths may accumulate in a region. Lemma 3.8 was concerned with the
discrete conservation law (2.1), which holds in both the non-increasing and non-
decreasing regions. For the entropy consistency, we do not use the same criterion,
and this complicates the proof.

To begin with, consider a path ψq and a point (ψq(t0), t0), that is supposed to
be an “isolated” point of change of monotonicity, in the sense that ψq−1(t0) <
ψq(t0) < ψq+1(t0). By continuity, these inequalities then hold with t0 replaced by
any t lying in a small neighborhood of t0. For definiteness, we also suppose that
ψq is a path of minimum values. We later analyze the case that two or more paths
of extrema accumulate in a neighborhood of (ψq(t0), t0).

Let θ be a non-negative test function of the two variables (x, t) having its support
included in a small neighborhood of (ψq(t0), t0). We can always assume that uh

is non-increasing on the left side of the curve ψhq , and non-decreasing on the right
side. Using the notation introduced in the proof of Lemma 3.8, we aim at passing
to the limit in

Ih(θ) = −
∑

(j,n)∈Ph
q

(
Un+1
j − Unj + λ (Gnj+1/2 −Gnj−1/2)

)
θnj h ≥ 0.

Note that Ih(θ) is non-positive, according to the cell entropy inequality (2.9) and
since the uh’s are non-decreasing on the right side.

Integrating by parts in Ih(θ) gives

Ih(θ) = −
∑

(j,n)∈Ph
q

(
Un+1
j θn+1

j − Unj θ
n
j

)
h

+
∑
n

GnJh
q (n)+εhq (n)−1/2 θ

n
Jh

q (n)+εhq (n)−1/2 τ

+
∑

(j,n)∈Ph
q

Un+1
j (θn+1

j − θnj )h+Gnj+1/2 (θnj+1 − θnj )τ

= Ih1 (θ) + Ih2 (θ) + Ih3 (θ).

(3.45)
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The passage to the limit in the term Ih3 (θ) is a classical matter. The treatment of
Ih2 (θ) and Ih1 (θ) is similar to what was done to prove (3.27) and (3.28), respectively.
Therefore we have

Ih1 (θ) → I1(θ) = −
∫

R+

dψq
dt

(t)U(wq(t)) θ(ψq(t), t) dt,(3.46)

Ih2 (θ) → I2(θ) =
∫

R+

F (wq(t)) θ(ψq(t), t) dt,(3.47)

Ih3 (θ) → I3(θ) =
∫∫ {

x≥ψq(t)
} (
U(v)∂tθ + F (v)∂xθ

)
dxdt.(3.48)

It follows from (3.46)–(3.48) that

I1(θ) + I2(θ) + I3(θ) ≥ 0.(3.49)

Finally, using a sequence of test functions whose supports shrink and concentrate
on the curve ψq, we deduce from (3.49) that the entropy dissipation is non-positive
along the path, i.e.

−dψq
dt

(t)
(
U

(
v(ψq(t)+, t)

)− U
(
wq(t)

))
+ F (v(ψq(t)+, t))− F (wq(t)) ≤ 0.

Combined with (3.20), this inequality is equivalent to

v(ψq(t)+, t)) ≤ wq(t),

which yields the desired inequality (3.44).
Consider next the case that several paths accumulate in the neighborhood of

(ψq(t0), t0). In view of (1.4), a finite number of paths only can accumulate at a
given point. For definiteness we suppose that

– the point (ψq(t0), t0) is a point of minimum values for uh;
– the curves ψq+1 and ψq+2 coincide with ψq in a neighborhood of t0;
– and we have ψq−1 < ψq and ψq+2 < ψq+3 in a neighborhood of t0.

Suppose that, for instance, wq(t) ≤ wq+2(t). The other cases are treated similarly.
In this situation, we are going to prove that

v(ψq(t)−, t) ≥ wq(t) = wq+1(t) ≥ wq+2(t) = v(ψq(t)+, t),(3.50)

at those points t near t0 where ψq(t) = ψq+1(t) = ψq+2(t). Of course, (3.41) is a
much stronger statement than (3.34). By definition of the paths of extrema, we
have

wq(t) ≤ wq+1(t) and wq+1(t) ≥ wq+2(t),

v(ψq(t)−, t) ≥ wq(t) and wq+2(t) ≤ v(ψq(t)+, t).

Lemma 3.8 shows that

wq(t), wq+1(t), wq+1(t) ∈
{
v(ψq(t)−, t), v(ψq(t)+, t)

}
.

Thus, in order to get (3.50), it is sufficient to check the following two inequalities:

wq+2(t) ≥ v(ψq(t)+, t),(3.51)

wq(t) ≥ wq+1(t).(3.52)

On one hand, the argument used in the first part of the present proof applies
directly to the path ψq+2(t) and the region located to the right of this curve,
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since ψq+2(t) < ψq+3(t) in a neighborhood of t0. As a consequence, we obtain
wq+2(t) ≥ v(ψq+2(t)+, t), which is exactly (3.51), since ψq+2 = ψq.

On the other hand, to prove (3.52), let Phq,q+1 be the (small) region limited by
the curves ψhq and ψhq+1 for t belonging to a small neighborhood of t0. Specifically,
Phq,q+1 is a set of indices of the form (j, n) defined along the lines of the proof of
Lemma 3.8. In particular, both paths are modified according to estimate (3.17), as
explained before. Consider

Ih(θ) = −
∑

(j,n)∈Ph
q,q+1

(
Un+1
j − Unj + λ (Gnj+1/2 −Gnj−1/2)

)
θnj h ≥ 0.(3.53)

Note that Ih(θ) is non-negative and

Ih(θ) = −
∑

(j,n)∈Ph
q,q+1

(
Un+1
j θn+1

j − Unj θ
n
j

)
h

+
∑
n

GnJh
q (n)+εhq (n)−1/2 θ

n
Jh

q (n)+εhq (n)−1/2 τ

−
∑
n

GnJh
q+1(n)+εhq+1(n)−1/2 θ

n
Jh

q+1(n)+εhq+1(n)−1/2 τ

+
∑

(j,n)∈Ph
q,q+1

Un+1
j (θn+1

j − θnj )h+Gnj+1/2 (θnj+1 − θnj )τ

= Ih1 (θ) + Ih2,q(θ)− Ih2,q+1(θ) + Ih3 (θ).

Using the technique developed for the proof of Lemma 3.8, we get

Ih1 (θ) → I1(θ) = −
∫

R+

dψq
dt

(t)U(wq(t)) θ(ψq(t), t) dt

+
∫

R+

dψq+1

dt
(t)U(wq+1(t)) θ(ψq+1(t), t) dt,

Ih2,q(θ) → I2,q(θ) =
∫

R+

F (wq(t)) θ(ψq(t), t)dt,

Ih2,q+1(θ) → I2,q+1(θ) = −
∫

R+

F (wq+1(t)) θ(ψq+1(t), t) dt,

Ih3 (θ) → 0.

It follows that

I1(θ) + I2,q(θ) + I2,q+1(θ) ≥ 0,(3.54)

which, since ψq = ψq+1 near t0, is equivalent to the jump condition

−dψq
dt

(t)
(
U(wq+1(t))− U(wq(t))

)
+ F (wq+1(t))− F (wq(t)) ≤ 0,

which gives (3.52). This completes the proof of Lemma 3.10.

It is a classical matter to check that the initial condition (1.2) is satisfied by
using (2.2) and the uniform BV bound. Since the function v(t) has bounded total
variation, it admits left and right traces at each point, and (1.5) and (1.6) are
known to be equivalent at a point of discontinuity. Therefore the following result
follows from Volpert’s proof in [37].
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Lemma 3.11. Supose v is a function of bounded variation and a weak solution to
the conservation law (1.1), and satisfies the initial condition (1.2) and the inequal-
ities (3.14), (3.15), and (3.34), where Ω1(v) ∪ Ω2(v) ∪ Ω3(v) = R× R+. Then v is
the unique entropy solution to (1.1)-(1.2).

The proof of Theorem 2.3 is now complete.
The limiting paths ψq associated with the scheme determine a decomposition

of the plane into non-increasing/non-decreasing regions for the exact solution u.
Such a decomposition is not unique, in general. Consider the decomposition found
in the Appendix for the function v and the corresponding paths ϕp. When v is
not constant in any neighborhood of an extremum path ϕp, the path is unique and
must coincide with one of the paths ψq. When v is constant in the neighborhood
of a path ϕp, then the path may be arbitrarily modified and it may happen that
no limiting path ψq coincides with ϕp.

4. Application to the MUSCL scheme

The purpose of this section is to apply Theorem 2.3 to van Leer’s MUSCL scheme
(for Monotone Upstream Scheme for Conservation Laws); cf. [23], [24]. This section
also provides a proof of estimate (2.12) stated in Proposition 2.1, a new property
of the Godunov scheme which does also hold for the MUSCL scheme.

It is convenient to formulate (2.1) in terms of the incremental coefficients C±,nj+1/2

defined by

C+,n
j+1/2 = − λ

gnj+1/2 − f(unj )

unj+1 − unj
, C−,nj−1/2 = λ

f(unj )− gnj−1/2

unj − unj−1

,(4.1)

so that

un+1
j = unj + C+,n

j+1/2

(
unj+1 − unj

)
+ C−,nj−1/2

(
unj−1 − unj ).(4.2)

The numerical viscosity coefficient (cf. Tadmor [35]) being defined by

Qnj+1/2 = C+,n
j+1/2 + C−,nj+1/2,(4.3)

the viscous form of the scheme is

un+1
j = unj −

λ

2
(
f(unj+1)− f(unj−1)

)
+

1
2
Qnj+1/2

(
unj+1 − unj

)
− 1

2
Qnj−1/2

(
unj−1 − unj ).

Proposition 4.1. The scheme (2.1) satisfies the local maximum principle (2.11)
provided

C+,n
j+1/2 ≥ 0, C−,nj−1/2 ≥ 0, and C+,n

j+1/2 + C−,nj−1/2 ≤
1
2
.(4.4)

A sufficient condition for (4.4) to hold is

C±,nj+1/2 ≥ 0 and Qnj+1/2 ≤ 1/4.(4.5)

Namely, if (4.5) holds, then 0 ≤ C+,n
j+1/2 ≤ 1/4 and 0 ≤ C−,nj+1/2 ≤ 1/4, so that (4.4)

is satisfied. In particular, the Godunov and Engquist-Osher schemes satisfy (4.4)
under the CFL condition (2.4). When the numerical flux is independent of λ, the
second inequality in (4.5) is always satisfied provided λ is small enough.
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The Lax-Friedrichs type schemes have a constant numerical viscosity Qnj+1/2 ≡
Q. For the original Lax-Friedrichs scheme Q = 1. Proposition 4.1 applies provided
Q ≤ 1/4. Observe that the monotonicity property does fail when Q ∈ (2/3, 1]: take
for instance f ≡ 0 and unj ≡ 0 for all j 6= 0 but un0 > 0. This initial data has one
maximum point, and at the next time step

un+1
j =

Q

2
unj+1 + (1 −Q)unj +

Q

2
unj−1

admits two maximum points j = −1 and j = 1. A related observation was made
by Tadmor in [35]: for Q ≤ 1/2, better properties can be obtained for the Lax-
Friedrichs scheme.

Proof of Proposition 4.1. Inequalities (2.11) can be written in terms of the incre-
mental coefficients, namely

1
2

min
(
δnj+1, δ

n
j , δ

n
j−1

) ≤ C+,n
j+1/2δ

n
j+1 +

(1
2
− C+,n

j+1/2 − C−,nj−1/2

)
δnj + C−,nj−1/2δ

n
j−1

≤ 1
2

max
(
δnj+1, δ

n
j , δ

n
j−1

)
(4.6)

with

δnj+1 = unj+1 − unj , δnj = 0, δnj−1 = unj−1 − unj .

If (4.4) holds, then

2C+,n
j+1/2δ

n
j+1 +

(
1− 2C+,n

j+1/2 − 2C−,nj−1/2

)
δnj + 2C−,nj−1/2δ

n
j−1)

is a convex combination of the δj ’s. So (4.6) and therefore (2.11) follow.

We now introduce van Leer’s scheme, composed of a reconstruction step based
on the min-mod limitor and a resolution step based on the Godunov solver. We
use the notation introduced in Section 2. For simplicity in the presentation, we
normalize the flux to satisfy f(0) = f ′(0) = 0. From the approximation

{
unj

}
at

the time t = tn, we construct a piecewise affine function

ũnj (x) = unj + snj (x− xj)/h for x ∈ (xj−1/2, xj+1/2),(4.7)

where the slope snj is

snj = minmod
(
uj − uj−1, (uj+1 − uj−1)/2, uj+1 − uj

)
(4.8)

with

minmod(a, b, c) =


min(a, b, c) if a > 0, b > 0, and c > 0,
max(a, b, c) if a < 0, b < 0, and c < 0.
0 in all other cases.

(4.9)

We introduce the notation

unj+1/2− = unj + snj /2 and unj+1/2+ = unj+1 − snj+1/2.

Then the solution is updated with (2.1), where the numerical flux is defined de-
pending upon the values of the reconstruction at the interfaces.
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(1) If either 0 ≤ unj ≤ unj+1 or 0 ≤ unj+1 ≥ unj , then the numerical flux is defined by
using the characteristic line traced backward from the point (xj+1/2, tn+1/2).
Since the latter has a positive slope, we set

gnj+1/2 = f(unj+1/2−) + f ′(unj+1/2−) (v − unj+1/2−)(4.10a)

with v solving

unj+1/2− = v +
λ

2
f ′(v)snj .(4.10b)

(2) If either unj ≤ unj+1 ≤ 0, or unj+1/ ≤ unj ≤ 0, then the backward characteristic
has a negative slope and we set

gnj+1/2 = f(unj+1/2+) + f ′(unj+1/2+) (v − unj+1/2+)(4.11a)

with v solving

unj+1/2+ = v +
λ

2
f ′(v)snj+1.(4.11b)

(3) In all other cases we set

gnj+1/2 = f(0) = 0.(4.12)

Equations (4.10b) and (4.11b) can be solved explicitly for the Burgers equation,
since then f ′(u) = u is linear. Observe that the scheme reduces to first order at
sonic points and extrema.

The main result of this section is:

Theorem 4.2. For λ small enough, the MUSCL method defined by (4.7)–(4.12) is
a generalized monotone scheme in the sense of Definition 2.2. When (1.3)-(1.4)
hold, the scheme converges in the strong L1 topology to the unique entropy solution
of (1.1)-(1.2).

It would be interesting to extend Theorem 4.2 to higher-order methods such as
the Woodward-Collela P.P.M. scheme.

Proof of Theorem 4.2. We have to check that the scheme satisfies the three condi-
tions in Definition 2.2. We always assume that λ is, at least, less than or equal to
1/4.

Step 1. Local maximum principle.
Estimate (2.11) is easily obtained by applying Proposition 4.1 and relying on the

convexity of the flux function f . We omit the details.

Step 2. Cell entropy inequality.
Consider a region where the sequence

{
unj

}
is non-decreasing. We will use the

entropy pair (U, F ) with U(u) = u2/2 and F ′(u) = uf ′(u). Define the numerical
entropy flux by

Gnj+1/2 = F (unj+1/2−) + U ′(unj+1/2−) (f(v) − f(unj+1/2−)),(4.13i)

Gnj+1/2 = F (unj+1/2+) + U ′(unj+1/2+) (f(v) − f(unj+1/2+)),(4.13ii)

and

Gnj+1/2 = 0(4.13iii)
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in cases (1), (2), and (3), respectively. Inequality (2.9) is checked by direct calcu-
lation, for λ small enough. Observe that case (3) is obvious since our scheme then
reduces to a first order, entropy consistent scheme.

For definiteness we treat case (1), i.e. f ′ > 0 for the values of u under consider-
ation. We view the left hand side of (2.9) as a function of w = uj−1/2−, u = unj ,
v = uj+1/2− and the value w̃ defined as

w = w̃ +
λ

2
f ′(w̃)t,

where t stands for the slope in the cell j − 1. We also introduce ṽ, defined by

v = ṽ +
λ

2
f ′(ṽ)s

with s = 2(v − u). Since the approximate solution is non-increasing, we have
w̃ ≤ w ≤ 2u− v ≤ u ≤ v ≤ ṽ. Set

Ω(w̃, w, u, v;λ)

= U(ū)− U(u) + λ
[
F (v) + U ′(v)(f(ṽ)− f(v))− F (w) − U ′(w)(f(w̃)− f(w))

]
,

and

ū = u− λ
[
f(v) + f ′(v)(ṽ − v)− f(w)− f ′(w)(w̃ − w)

]
.

Observe that

∂w̃Ω = U ′(ū)λf ′(w) − λU ′(w) f ′(w̃),

and

∂2
w̃Ω = U ′′(ū)λ2f ′(w)− λU ′(w) f ′′(w̃) ≤ −Cλ |w|

for w > 0 and λ small enough. Therefore Ω is a concave function in w̃, and

Ω(w̃, w, u, v;λ) ≤ Ω(w,w, u, v;λ) − (w − w̃)∂w̃Ω(w,w, u, v;λ) − Cλ|w| |w̃ − w|2.
But

∂w̃Ω(w,w, u, v;λ) = λf ′(w)
(
U ′(ū)− U ′(w)

)
= U ′′(ξ)λf ′(w)

[
u− w − λ

(
f(v) + f ′(v)(ṽ − v)− f(w)

)]
≤ Cλ |u− w|

for some ξ > 0 and λ small enough. This proves that

Ω(w̃, w, u, v;λ) ≤ Ω(w,w, u, v;λ) − Cλ
(|w̃ − w||u − w|+ |w| |w̃ − w|2)

≤ Ω(w,w, u, v;λ),

and we now simply use the notation Ω(w, u, v;λ).
Taylor-expanding Ω with respect to λ shows that the dominant term is the first

order coefficient in λ given by

Ω̂1(w, u, v) ≡ −U ′(u)(f(v)− f(w)
)

+ F (v)− F (w),

in which w ≤ 2u− v ≤ u ≤ v. Since

∂wΩ̂1(w, u, v) = (U ′(u)− U ′(w)
)
f ′(w) ≥ C |w| |u − w|,

we have

Ω̂1(w, u, v) ≤ Ω̂1(2u− v, u, v)− C |w|
∫ 2u−v

w

(u− z) dz,
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so

Ω̂1(w, u, v) ≤ Ω̂1(2u− v, u, v)− C′ |w| |2u− v − w| |u − w|.
It remains to study Ω̂1(2u− v, u, v) = Ω̃1(u, v) with u ≤ v. We find that

∂vΩ̃1(u, v) =
(
U ′(v) − U ′(u)

)
f ′(v) +

(
U ′(2u− v)− U ′(u)

)
f ′(2u− v)

= (v − u)
(
f ′(v)− f ′(2u− v)

) ≤ −C |u− v|2.
It follows that Ω̃(u, v) is a non-increasing function of v for all v ≥ u, and since it
vanishes for v = u,

Ω̃1(u, v) ≤ −C′ |u− v|3.
This proves that the first order term in λ in the expansion of the function Ω is

negative.
The same arguments are now applied to the function Ω(λ) directly. We have

∂wΩ(w, u, v;λ) = (U ′(ū)− U ′(w))λf ′(w)

= λf ′(w)U ′′(ξ)(u − w − λ(f(v) + f ′(v)(ṽ − v)− f(w)))

= λf ′(w)U ′′(ξ)(u − w − λO(1)(u − w))

≥ λC |w| |u − w| .
Therefore,

Ω(w, u, v;λ) ≤ Ω(2u− v, u, v;λ)− λC′ |w| |2u − v − w| |u − w|.
Denote Ω̂(u, v;λ) = Ω(2u− v, u, v;λ); then

Ω̂(u, v;λ) = U(ū)− U(u) + λ
[
F (v) + U ′(v)(f(ṽ)− f(v))− F (2u− v)

]
,

where

ū = u− λ
[
f(v) + f ′(v)(ṽ − v)− f(2u− v)

]
.

We easily compute that

∂vΩ̂(u, v;λ)
λ

= f ′(v)
(
U ′(v)− U ′(ū)

)
+ f ′(2u− v)

(
U ′(2u− v)− U ′(ū)

)
+ λA(u, v;λ)

with

|A(u, v;λ)| ≤ C |u− v|2.
This establishes the desired conclusion for λ small enough.

Step 3. Quadratic decay property.
Near a local extremum, the MUSCL scheme essentially reduces to the Godunov

scheme. So it is enough to check the quadratic decay property (2.12) for the Go-
dunov scheme. This can be done from the explicit formula (2.6).

The simplest situation is obtained with the Godunov scheme and when f ′ has a
sign, say is positive. Assume unj is a local maximum. We have

un+1
j = unj − λ

(
f(unj )− f(unj−1)

)
;
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thus
unj − un+1

j = λ
(
f(unj )− f(unj−1)

)
≥ λf ′(unj−1)

(
unj − unj−1

)
+ λ

(
inf f ′′/2

) (
unj − unj−1

)2

≥ λ
(
inf f ′′/2

)
min±

(
unj − unj±1

)2
.

This establishes (2.11) when f ′ > 0.
It remains to treat the sonic case where f ′ has no definite sign. We will rely on

the following technical remark. Given two points such that

u− < 0 < u+, f(u−) = f(u+),

there exist c1, c2 > 0 (independent of u±) such that

c1 |u−| ≤ |u+| ≤ c2 |u−|.
Considering the case unj−1 < 0 < unj , and using Osher’s formula for the Riemann

problem, we have

unj − un+1
j = λ ( max

(un
j+1,u

n
j )
f − min

(un
j−1,u

n
j )
f)

= λ
(

max
(un

j+1,u
n
j )
f − f(0))

= λ
(
inf f ′′/2

)
( max
|un

j+1|,|un
j |
f)2

≥ c|unj+1 − unj |2.
Consider next the case 0 < unj−1 < unj ; then

unj − un+1
j = λ

(
max

(un
j+1,u

n
j )
f − f(unj ))

≥ λ
(
inf f ′′/2

)
min(|unj+1 − unj |2, |unj − unj−1|2).

This completes the proof of Theorem 4.2.
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Appendix: Monotonicity Property

In this appendix we brieffly discuss the monotonicity property together with more
basic properties of entropy solutions to conservation laws, which go back to Kružkov
[19] and Volpert [37]. In the paper by Keyfitz, [18], somewhat simpler proofs are
available for piecewise Lipschitz continuous solutions. We are interested in the
local versions of the properties, i.e. formulated in domains limited by characteristic
curves. To cope with discontinuous solutions, we use the concept of generalized
characteristic curves introduced for ordinary differential equations by Filippov [9]
and developed in the context of conservation laws by Dafermos; see e.g. [7] and
the references therein. We recall that, through any point (x0, t0), there exists a
funnel of forward and backward generalized characteristic curves, which fill up a
domain

{
ξm(t) ≤ x ≤ ξM (t)

}
. Here ξm (respectively ξM ) is called the minimal
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(resp. maximal) characteristic curve originating at (x0, t0). It is known [9], [7] that
a characteristic, say ξ, is Lipschitz continuous and for almost every time t > 0
satisfies

dξ

dt
(t) =

{
f ′(u(ξ(t), t)) if u−(t) = u+(t) = u(ξ(t), t),
f(u+)−f(u−)

u+−u− if u− 6= u+,
(A.1)

where u± = u
(
ξ(t)±, t). For our purposes, f is strictly convex and there is a unique

forward characteristic issuing from (x0), t0; and there is no need to distinguish
between the minimal characteristic and the maximal one, with the exception of
those points where t0 = 0 and u0 has an increasing jump at x0; cf. [7].

Solutions u to (1.1) are Lipschitz continuous in time with values in L1 and, for
all times t, u(t) has bounded total variation in x.

The following properties follow from [37], [19] and the technique of generalized
characteristic in [9], [7].

Proposition A.1. Let u be the entropy solution to (1.1)-(1.2). Given x1 and x2

with x1 < x2, consider the maximal forward characteristic ξu1 (t) issuing from (0, x1)
and the minimal forward characteristic ξu2 (t) from (0, x2). For all times t ≥ 0, u
satisfies

(1) the local maximum principle for all t ≤ s and y ∈ (ξu1 (s), ξu2 (s)):

inf
ξu
1 (t)<x<ξu

2 (t)

{
u(x, t)

} ≤ u(s, y) ≤ sup
ξu
1 (t)<x<ξu

2 (t)

{
u(x, t)

}
,(A.2)

(2) the local L1 contraction property:

d

dt

∫ min(ξu
2 (t),ξv

2 (t))

max(ξu
1 (t),ξv

1 (t))

∣∣u(x, t)− v(x, t)
∣∣ dx ≤ 0,(A.3)

(3) the local order preserving property:

if u0(x) ≤ v0(x) for all x ∈ (
max(ξu1 (0), ξv1 (0)),min(ξu2 (0), ξv2 (0))

)
,

then u(x, t) ≤ v(x, t) for all x ∈ (
max(ξu1 (t), ξv1 (t)) < x < min(ξu2 (t), ξv2 (t))

)
,

(A.4)

(4) and the local TVD property:
d

dt
TVξu

2 (t)

ξu
1 (t) u(t) ≤ 0.(A.5)

where in (1) and (3) the function v denotes the solution to (1.1)-(1.2) with u0

replaced by a function v0 ∈ BV (R), and the curves ξv1 (t) and ξv2 (t) are defined in
the obvious way. �

In (A.5), TVb
a(w) denotes the total variation of a function w : (a, b) → R. The

derivatives in (A.3) and (A.5) are to be understood in the distributional sense. At
least with x1 = ξu1 = −∞ and x2 = ξu2 = ∞, (A.5) is a direct consequence of (A.3)
and the invariance by translation of the solution-operator for (1.1).

The following proposition concerns the monotonicity property, which is a refine-
ment to the statement that the solution-operator is monotonicity preserving, i.e.
satisfies

if u0 is monotone, then u(t) is monotone for all t ≥ 0.(A.6)

Namely, (A.6) follows from (A.3) by taking x1 = ξu1 = −∞ and x2 = ξu2 = ∞ and
v0(x) = u0(x+ y) for positive or negative values of y.

It is convenient now to assume that (1.4) is satisfied.
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Proposition A.2 (Monotonicity property). Suppose that the initial condition u0

has a locally finite number of local extrema. There exist (Lipschitz continuous)
generalized characteristic curves ϕq : [ 0,∞) → R –the index q describing a subset
E(u0) of consecutive integers– such that

ϕq ≤ ϕq+1,(A.7)

there are only a finite number of such curves in each compact set,(A.8)

and, for all t ≥ 0 and all relevant values of p,

u(t) is non-decreasing for x ∈ (ϕ2p(t), ϕ2p+1(t)),

u(t) is non-increasing for x ∈ (ϕ2p−1(t), ϕ2p(t)),
(A.9)

and, as long as ϕ2p(t) 6= ϕ2p+1(t),

u(ϕ2p(t)+, t) is non-decreasing,

u(ϕ2p+1(t)−, t) is non-increasing.
(A.10)

The paths ϕ2p and ϕ2p+1 are called a path of local maximum and a path of local
minimum for u, respectively. By convention, ϕq ≡ −∞ for q > maxE(u0) and
ϕq ≡ +∞ for q < minE(u0).

If two initially distinct paths cross at a later time, then from that time they will
coincide thanks to the uniqueness property for forward characteristics. Note also
that such paths need no longer be paths of local extremum in a strict sense, but
arbitrary characteristics, even though (A.9) would still hold. On the other hand,
when simultaneously u0 has a decreasing jump at a point x0, that u0(x0−) is a local
maximum, and u(x0+) is a local minimum, then two equal paths originate from
(0, x0), one being a path of minimum and the other a path of maximum. When
simultaneously u0 has an increasing jump at x0, that u0(x0−) is a local minimum,
and that u0(x0+) a local maximum, then two distinct paths originate from (0, x0).

Proposition A.2 is a classical matter in the literature, although no specific ref-
erence seems available. Cf. however Harten [13] and Tadmor [35], where the ideas
are developed.

Proof of Proposition A.2. First of all, the points ϕq(0) and the set E(u0) are defined
from the initial condition u0 in an obvious way so that the conditions (A.7)–(A.10)
hold true at time t = 0. Let us define ϕ2p(t) to be the maximal forward charac-
teristic issuing from ϕ2p(0). Similarly, let ϕ2p+1(t) be the minimal forward charac-
teristics issuing from ϕ2p+1(0). Indeed, one needs to distinguish between minimal
and maximal characteristics only in the case of an initially increasing jump. It may
happen that both a path of minimum and a path of maximum may originate from
such a point of increasing jump.

Property (A.7) is an immediate consequence of the uniqueness property of the
forward characteristic. Condition (A.8) follows from the property of propagation
with finite speed satisfied by solutions to (1.1) and the fact that the initial data
has a locally finite number of local extrema. Indeed, (A.1) yields a uniform bound
for the slopes of the characteristics.

In order to establish (A.9) and (A.10), we first suppose that u0 does not admit
increasing jumps. Consider an interval of the form (ϕ2p(t), ϕ2p+1(t)) for those
values of t when this interval is not empty. Note first that, taking ξu1 = ϕ2p and



GENERALIZED MONOTONE SCHEMES 1053

ξu2 = ϕ2p+1, the local maximum principle (A.2) implies in particular that

u
(
ϕ2p(t)+, t

) ≥ u0

(
ϕ2p(0)+

)
,

u
(
ϕ2p+1(t)−, t

) ≤ u0

(
ϕ2p+1(0)−)

.
(A.11)

Let w be the entropy solution to (1.1) associated with the initial condition

w(x, 0) = w0(x) ≡


u0

(
ϕ2p(0)+

)
if x < ϕ2p(0),

u0(x) if ϕ2p(0) < x < ϕ2p+1(0),
u0

(
ϕ2p+1(0)−)

if x > ϕ2p+1(0).
(A.12)

The data w0 is non-decreasing and, in view of (A.6),

the solution w is non-decreasing for all times.(A.13)

Let ψ2p and ψ2p+1 be the forward characteristics associated with w and issued
ϕ2p(0) and ϕ2p+1(0) at time t = 0, respectively. Observe that the maximum forward
and the minimum forward curves coincide, since by construction w0 is continuous
at ϕ2p(0) and ϕ2p+1(0). Note in passing that the function w satisfies

w(x, t) =

{
u0

(
ϕ2p(0)+

)
if x < ψ2p(t),

u0

(
ϕ2p+1(0)−)

if x > ψ2p+1(t).
(A.14)

Using (A.11) and (A.14) and the fact that f ′(.) is increasing, one gets
dϕ2p+1

dt
(t) ≤ f ′(u(ϕ2p+1(t)−, t)) ≤ f ′(u0(ϕ2p+1(0)−)) ≤ dψ2p+1

dt
(t),

which implies

ϕ2p+1(t) ≤ ψ2p+1(t).

Similarly,

ψ2p(t) ≤ ϕ2p(t).

Using the L1 contraction principle (A.3), it follows that

u = w for ϕ2p(t) < x < ϕ2p+1(t),

and, in view of (A.13), the function u is non-decreasing and (A.9) holds. Using
(A.9) and the local maximum principle (A.2) finally provides (A.10). The proof
is complete in the case of an interval of the form (ϕ2p(t), ϕ2p+1(t)). An interval
(ϕ2p−1(t), ϕ2p(t)) can be treated in a similar fashion.

It remains to consider increasing jumps in u0. That situation can be treated by
using the following property. Suppose u0 has an increasing jump at a point x0, and
let ϕm(t) and ϕM (t) be the minimal and maximal forward curves from x0. It is
known that at least for small times the function u(t) coincides with the rarefaction
wave connecting the values u0(x0±) in the interval

(
ϕm(t), ϕM (t)

)
.

This completes the proof of Proposition A.2.
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