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Abstract. We study in this work convolution groups generated by completely mono-
tone sequences related to the ubiquitous time-delay memory effect in physics and en-
gineering. In the first part, we give an accurate description of the convolution inverse
of a completely monotone sequence and show that the deconvolution with a completely
monotone kernel is stable. In the second part, we study a discrete fractional calcu-
lus defined by the convolution group generated by the completely monotone sequence
¢ = (1,1,1,...), and show the consistency with time-continuous Riemann-Liouville
calculus, which may be suitable for modeling memory kernels in discrete time series.

1. Introduction. Many models have been proposed for the ubiquitous time-delay
memory effect in physics and engineering: the generalized Langevin equation model for
particles in heat bath ([7l[18]), linear viscoelasticity models for soft matter ([2l[12]), linear
dielectric susceptibility model [IL[15] for polarization to name a few. In these models, the
response due to memory is given by the one-side convolution fot g(t — s)v(s) ds following
linearity, time-translation invariance and causality [I1, Chap. 1], where ¢ is the memory
kernel and v is the source of memory. Causality means that the output cannot precede
the input so that g(t) = 0 for ¢ < 0. The Tichmarsh’s theorem states that the Fourier
transform G(w) of g is analytic in the upper half plane, and that the real and imaginary
parts of G satisfy the Kramers-Kronig relation [II[16]. Based on the principle of the
fading memory [12], we consider g to be completely monotone, which by the Bernstein
theorem can be expressed as the superposition of (may be infinitely many) decaying
exponentials (see [I141[I7] for more details). If the kernel g is given by the algebraically

decaying completely monotone kernels g = %t’y’l where 0(t) is the Heaviside step
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function and v € (0,1), we are then led to the fractional integrals and the corresponding
fractional derivatives, which have already been used widely in engineering for modeling
memory effects [4].

In practice, the data we collect are at discrete times and we have the one-sided discrete
convolution a*c (see equation ([2:2))). The convolution kernel ¢ is a completely monotone
sequence (see Definition B.T)) if it is the value of g at the discrete times [I7]. If ¢ is
completely monotone, it is shown in [I0] that there exist ¢("), € R, such that ¢(") xc(®) =
%) and ¢ = ¢, i.e. there exists a convolution group generated by the completely
monotone sequence. If 0 < r < 1, ¢() is completely monotone. Further, ¢(®) = §; :=
(1,0,0,...), is the convolution identity. The most interesting sequence is ¢~ the
convolution inverse, which can be used for deconvolution. Since the data are discrete, it
would also be interesting to define discrete fractional calculus using the one-sided discrete
convolution.

In this short note, we first investigate the convolution inverse of a completely mono-
tone sequence ¢ in Section[2l We show that the ¢; norm is bounded and the deconvolution
is stable in any ¢P space. Based on this, some preliminary ideas are explored for deconvo-
lution. In Section [B] we define a discrete fractional calculus using a discrete convolution
group generated by the completely monotone sequence ¢(!) = (1,1,1,...) and show that
it is consistent with the time-continuous Riemann-Liouville calculus (see (B1])).

2. Deconvolution for a completely monotone kernel. In this section, we in-
vestigate the property of convolution inverse of a completely monotone sequence and
deconvolution with completely monotone sequences.

DEFINITION 2.1. A sequence ¢ = {cj}72, is completely monotone if (I — S)icy = 0
for any j > 0,k > 0 where Sc; = ¢j41.

A sequence is completely monotone if and only if it is the moment sequence of a
Hausdorff measure (a finite nonnegative measure on [0,1]) ([I7]). Another description is
given as follows ([I0L13]):

LEMMA 2.2. A sequence c¢ is completely monotone if and only if the generating function
F.(z) = Z;io ;27 is a Pick function that is analytic and nonnegative on (—oo, 1).

Note that a function f : C; +— C (where C; denotes the upper half plane, not
including the real line) is Pick if it is analytic such that Im(z) > 0 = Im(f(z)) > 0.
Consider the one-sided convolution equation

axc=f, (2.1)

where the convolution kernel ¢ is a completely monotone sequence and ¢y > 0. The
discrete convolution is defined as

(@)=Y 6 an,cn,, (2.2)

n120,m220
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and 4, is the Kronecker delta. This convolution is associative and commutative. Let
F.(z) be the generating function of c:

Fu(z) =) cn2™ (2.3)
n=0

Then, Fuuo(z) = Fu(2)F.(2). Given ¢, the convolution inverse ¢(~1) is the sequence
that satisfies ¢ * ¢(-Y = ¢(=V x ¢ = §; := (1,0,0,...). The generating function of
the convolution inverse ¢(~ is 1/F.(z). If we find the convolution inverse of ¢, the
convolution equation (ZI]) can be solved.

2.1. The convolution inverse. Now, we present our results about the convolution in-
verse:

THEOREM 2.3. Suppose ¢ is completely monotone and ¢q > 0. Let ¢(=Y be its convo-
lution inverse. Then, F.1) is analytic on the open unit disk, and thus the radius of

convergence of its power series around z = 0 is at least 1. cé_l) = 1/¢p and the sequence

(_0571), —céfl), ...) is completely monotone. Furthermore, 0 < —>"77 céﬁl) < %

Proof. The first claim follows from that F.(z) has no zeros in the unit disk [10].

By Lemma 22 F.(z) is Pick and it is positive on (—o0,1). Fr(—o00) = 0 if the
corresponding Hausdorff measure does not have an atom at 0 (i.e. the sequence c is
minimal. See [I7, Chap. IV. Sec. 14] for the definition). Since F.(—o0) could be zero,

we consider
1 1

ey A E)

, €>0.

It is easy to verify that G, is a Pick function, analytic and nonnegative on (—oo, 1).
Suppose G. is the generating function of d = (d§, dS, . ..). By Lemmal[Z2] this sequence
is completely monotone. Then,

1 FC(Z) - FC(O)
H.(z) = —-[G(z) — G(0)] = ,
is the generating function of the shifted sequence (df, . ..), which is completely monotone.

Hence, H. is also a Pick function, nonnegative and analytic on (—oo,1).
Taking the pointwise limit of H, as ¢ — 0, we find the limit function

F.(z) — F.(0)
2F.(0)F.(z)

H(z) = (2.4)

to be nonnegative on (—oo,1). By the expression of H, it is also analytic since F.(z) is
never zero on C\ [1,00). Finally, since Im(Hc(z)) > 0 for Im(z) > 0, then Im(H (z)),

as the limit, is nonnegative. It follows that the sequence corresponding to H is also

completely monotone. If ¢ isin 1, 0 < H(1) = % < % If F.(1) = ||c|l1 = oo,
F.(z) 1

we fix zg € (0,1), and then for any z € (zp,1), we have 0 < H(z) < TFOFRGE = e

H(z) is increasing in z since the sequence corresponding to H is completely monotone

and therefore nonnegative. Letting z — 17, by the monotone convergence theorem, we
have H(1) < ﬁ Taking zo — 1, H(1) < %
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4 LEI LI anp JIAN-GUO LIU

Further, H(z) is the generating function of —(c(_l),c(_l), ...) since 1/F.(z) is the
generating function of ¢(~1) = (c((fl), ng), ...). The second claim therefore follows. [
As a corollary of Theorem 23] we find that the deconvolution with a completely

monotone sequence is stable:

COROLLARY 2.4. Equation (Z]) can be solved stably. In particular, Vf € (P, there exists
a unique a € ¥ such that a * ¢ = f and |jal|, < %Hpr

The claim follows directly from the fact that |[c™!||; < 2/co and Young’s inequality.
We omit the proof.

2.2. Computing convolution inverse and deconvolution. To solve the convolution equa-
tion (Z.I)), we can use the algorithm in [I0] to find the convolution group ¢(). Then, the
solution is computed as a = ¢~V % f. The algorithm for ¢(") reads

e Determine the canonical sequence b that satisfies (n + 1)¢p41 = ZZ:O Cr—1bL.

e Compute ¢ by (n + 1)0211 =r> o cgzkbk.
For a completely monotone sequence, the canonical sequence satisfies b, > 0 ([5]). If
co = 1, computing the canonical sequence is straightforward

n—1
b, = (’I’L + 1)Cn+1 - Z Cr—1b. (25)
k=0
_ v _ (=1 _ (=1 1 N (-1
Note that Fy(z) = Fl(2)/Fe(2). If o = 1, ¢ = 1land |c, 7| < ) Y ko lCn_1 bk
It’s clear by induction that |c£;_11)| < c¢py1. For general ¢y, we can apply the above
argument to ¢/cyo and have the pointwise bound: |c§;1)| < 2 lekl.
0
Now, let us show a simple example to illustrate the deconvolution with completely
monotone sequences. Every completely monotone sequence is the moment sequence of

a Hausdorff measure. Fix M as a big integer and denote h = 1/M. x; = (i — 1/2)h.
Consider the discrete measures

M
CM:{u:u:hZAid(az—zi),/\i>O}. (2.6)
=1

The weak star closure ((y, f) = f[071] fdu where f € C[0,1]) of Uy, Car is the set of all
Hausdorff measures. Due to this fact, we can generate completely monotone sequences
using
M
dy = h\ial, n=0,1,2,..., (2.7)
i=1
where A; > 0 are generated randomly (for example uniformly from [0, 1]).

In Fig. [ (a), we have a sequence which is of square shape; in Fig. [l (b), we plot the
convolution between the sequence in (a) and the completely monotone sequence obtained
using (27). Fig. 0 (c) shows the solution a *x ¢ = f by convolving the sequence in Fig,.
M(b) with ¢(=. The original sequence is recovered accurately.

If the sequence ¢ is no longer completely monotone, the generating function of ¢(~1)
may have a small radius of convergence and an iterative method may be desired to
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Fic. 1. A simple example of deconvolution

solve (2.I)). Consider approximating the sequence ¢ by a completely monotone sequence
d = {dy} of the form in equation ([2.7). Writing d in matrix form, we have

1
d=—A\N= An, (2.8)
m
where n = %)\. A simple iterative method then reads:
Pl = fxdY —aP x[(c—d)«dY), p=0,1,2,..., (2.9)
where a is arbitrary. Clearly, the iteration converges if ||(c—d)*d~"|; < 1. A sufficient

condition is therefore

1d Pl fle = dllx < le = Anlly <1, (2.10)

2
Il

because d is completely monotone and dg = ||n||1. As long as we can find a solution 7 to
this optimization problem, the iterative method can be applied to solve the convolution

equation (21)).

3. A discrete convolution group and discrete fractional calculus. In this
section, we introduce a special discrete convolution group generated by a completely
monotone sequence and define discrete fractional calculus. We show that the discrete
fractional calculus is consistent with the Riemann-Liouville fractional calculus ([4,6L18])
with appropriate time scaling. The discrete convolution group proposed may be suitable
for modeling memory effects in discrete time series.

The traditional Riemann-Liouville fractional calculus for a function in C*[0,T),T > 0
with index |a| < 1 is defined as

ﬁ fot(t — )21 f(s)ds, a>0,

f(t)u a = 0,
(T )(t) = -
1"(1:-04) ¢ Jo (t_,(g))mdsa a € (=1,0),

f/(t)v a=—1.

In [8], a slightly different Riemann-Liouville calculus is proposed. The new definition
introduces some singularities at ¢ = 0 such that the resulted Riemann-Liouville calculus
forms a group. However, for ¢ > 0, the modified definition of a smooth function agrees
with the traditional definition.

(3.1)
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6 LEI LI anp JIAN-GUO LIU

To motivate the discrete fractional calculus, we take a grid ¢; = ik : ¢ = 0,1,2,...
where k is the step size. Evaluating f at the grid points yields a sequence a = {a;}2,,
a; = f(ik). Using numerical approximations ([9]) for the fractional calculus, we find the
following sequence for fractional integral J,, 0 <~y < 1:

1 ; Y 57
(Cw)jzm((3+1) 37

Then, J,f =~ kYcy * a. The sequences {c,} do not form a convolution semi-group.
However, each sequence generates a convolution group. Let {c(ya) : € R} be the group
generated by c,, with cgy) = cy. It is desirable that {cga) : € R} can be used to define
discrete fractional calculus.

We focus on the case v = 1 and we have ¢(!) := cga) = (1,1,...), with generating
function Fy(z) = (1 — z)~!. The convolution group generated by ¢ is denoted by
@) = cga) : a € R and the generating function is F,,(2) = (1 — 2)~%,Va € R. ¢ 0 <
a < 1 are completely monotone.

DEFINITION 3.1. For a sequence a = (ag,as,...), we define the discrete fractional
operators I, : RN — RV as a — T a := @ xq.

Clearly, {I, : @ € R} form a group.

3.1. Consistency with the time continuous fractional calculus. In this subsection, we
show that the discrete fractional calculus is consistent with Riemann-Liouville fractional
calculus if |a| < 1.

Given a function time-continuous function f(t), we pick a time step k& > 0 and define
the sequence a with a;, = f(ik) (i =0,1,2,...). We consider

Tof = k%I a. (3.2)
We now show that for t > 0 (T, f), converges to J, f(t) as k =t/n — 0T:

THEOREM 3.2. Suppose f € C?[0,00). Fix t > 0, and define k = t/n. Then, |(Tof), —
(Jof)(t)] = 0 as n — oo for |a| < 1.

We first introduce some useful lemmas and then prove this theorem. The following is
from [3]:

LEMMA 3.3. The m-th term of ¢{® has the following asymptotic behavior as m — oo:

@) o mo—1 ala—1) 1
" (1+ +O( )), (3.3)

a) 2m m?
for a £0,—-1,-2,....

LEMMA 3.4. For |a| <1, let A4, = >, cga) be the partial sum of ¢(* and R be the
convolution between ¢(®) and (1,2,...). Then, as m — co, we have:

A, = r(1m7+aa) (1 + 0(%)) Ry, = g(m i) = % <1 +0(%)> . (34)

Proof. oo = 0 is trivial. Suppose @ # 0. A = {A,,}3°_, is the convolution between
@ and ¢ and A = @+ by the group property. Similarly, since ¢(?) = (1,2,3,...),
R:={R,}_o = c(*"2). Applying Lemma B3] yields the claims. a
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DECONVOLUTION AND DISCRETE FRACTIONAL CALCULUS 7

Proof of Theorem 3.2l Below, we only show the consistency and we are not trying to
find the best estimate for the convergence rate.

a=0, (Tof)n = f(t) and the claim is trivial.

CASE 1 (@ > 0). If o = 1, (Tuf)n = dom_okf(t — mk). It is well known that
(Taf)n — fy F(s)ds| = O(k).

Consider 0 < o < 1. Let n > 1, 1 <« M < n and tpy = (M — 1)k. We break the
summation for (T, f), at m = M and apply Lemma [33] for the terms with m > M:

M-1 n

a—1
(Taf)n =K 32 (0= m)b) + K 37 s = m)k) + O(M k),
m=0 m=M
Since f((n —m)k) = f(t) = f'(§)mk and f(t —s) = f(t) = f'(£)s, by Lemma 1]
M—-1 1 ot
Kk Z cv(’:)f((n —m)k) — m ; flEe— s)sa_lds}
=0
<|f@)I|E" Micgg) _ i’
= I'l+a)
M-1 tar
+Sup|f/|Mka+1 Z Csff)-l-CSUp‘f/‘/ s%ds
m=0 0

S CO(MOTHE 4+ Mgt
Finally, by the error for rectangle rule for quadrature,

n a—1

m Lft—s a1
xS Z mf((n—m)k;)—/m %s ds

m=K

< Ck sup i(f(t —5)s°71) < C(Mk)* k.
s€(tar,t) ds

Choosing M ~ k=1/2 we find M 1k> ~ k042 (ME) e ~ E(+)/2 and Mo—2ko1
~ k2 Then, as k — 0,

‘(Taf)n - ﬁ /Ot(t —8)2 7 f(s)ds| < C(KUH)/2 4 k2/2) 5 0.

CASE 2 (-1 <a<0). Ifa=-1, ¢ =(1,-1,0,0,...). It is then clear that:
(T-1f)n = k= (f(nk) = f((n = Dk)) = f'(nk) + O(k) = J_1f(t) + O(k).

Consider that o € (—1,0) and v = |a|. The continuous Riemann-Liouville fraction
derivative (B1) equals

_ f(0) - 1 ¢ f'(s)
(S F)(t) = -y tTra—y /0 (t—s) ds

ft—Ek/b 1 t (s L ft—s
= ( /)—I— [/tk/b(t_(s))vds—’y/k/b ;H )ds],

kY Il =)
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8 LEI LI anp JIAN-GUO LIU
where b is chosen such that b7 = T'(1 — v) = —yI'(—y) > 1. Since
K7Vf(8) = k77 f(t = k/b) = O(K'™7)

and

[ Ea—ow,

—kyp (= 8)7

(T f)n = (T4 ) (1) (3.5)

< }iZcﬁ’”f((n—i)k)Jr m”_ i fitv;s)ds FO(k).

We first show that the right hand side of (B3] goes to zero for constant and linear
functions. By the first equation of ([B4]) in Lemma B4l and noting 7 = —I['(—7), we
have

k—wicg—v) B <F(T4j7) - 1> +0 ((nkl)m> = F(iw /k:b SvlﬂdsJFO(k).
(3.6)

Hence, the right hand side of (3] goes to zero for constant functions. Similarly, by the
second equation of B.4), k=7 Y1, CE_W) (n—1i)k— ﬁ f]:/b =% ds = O((k/b)*~7), and
then

=t x O(k) + O((k/b):"") = O(K*™).  (3.7)

e R R /t —

k i:Zlcl ik (=) k/bs ds
The right hand side of (B8] goes to zero for linear functions. Combining ([B.6) and (B1),
we can assume without loss of generality that f(¢) = f'(¢) = 0 in equation (31 (actually,
one can consider the function f(s) = f(s) — f(t) — f'(t)(s —t)).

Choose M such that 1 <« M < n and set ¢ty = (M — 1)k again.

We first estimate the integral for s € (k/b,t5r) and the summation from 1 to M — 1.
Since f(t) = f'(t) = 0, one has |f(t — s)] < Cs?, and hence

ty
<C stVds < C(Mk)Q_V.
k/b

G

o) ds

k/b

Similarly, since f(nk) = f'(nk) =0 and 0577) is negative for ¢ > 1,

M—-1 M—-1 M—-1
ST eV f((n = i)k | < ORY N e < OMERTY Y el | < C(MEk)*.
i=1 i=1 i=1

Note that ([B7) also implies | Ef\izl ic§_7)| = O(M'77), which has been used for the last
inequality.
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DECONVOLUTION AND DISCRETE FRACTIONAL CALCULUS 9

Now, we move onto the summation from M to n, and s € (tpr,t). By Lemma B3 and
applying the error analysis for rectangle rule of quadrature,

— —y . f( t—s

k lg]\;cg )f((n—l) /N o
—y - =7 it n—i

<y (d F(_v))f(( )h)

<SOM™'E™7 + (Mk) 2 k.

Taking M = k™ 29 for some small ¢ > 0, (Mk)=2"7k, (Mk)?>=" and M~177k=7 all
tend to zero as k — 0. Hence, the right hand side of (B.5]) goes to zero for all C?[0, 00)

functions. O

REMARK 3.5. In the case @« = —1 and f(0) # 0, (Taf)o = @. This actually
approximates the singular term 6(¢)f(0) in the modified Riemann-Liouville derivative
J_lf in [8]

Acknowledgments. The work of J.-G Liu was partially supported by KI-Net NSF
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