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ABSTRACT
In this paper, we consider the mean field limit of Brownian particles with Coulomb repulsion in 3D space using compactness. Using a
symmetrization technique, we are able to control the singularity and prove that the limit measure almost surely is a weak solution to the
limiting nonlinear Fokker-Planck equation. Moreover, by proving that the energy almost surely is bounded by the initial energy, we improve
the regularity of the weak solutions. By a natural assumption, we also establish the weak-strong uniqueness principle, which is closely related
to the propagation of chaos.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114854

I. INTRODUCTION
There are many phenomena in natural and social sciences that are related to interacting particles.1–4 An effective method for studying

these large and complex systems where small individuals interact with each other is the mean field approximation.5–8 In this approximation,
the effect of surrounding particles is approximated by a consistent averaged force field so that we have a one body problem. The mean field
approximation naturally applies to the kinetic theory where themacroscopic properties of gases are studied.9–12 Adesired property in themean
field limit is the so-called “propagation of chaos.”10,13–15 Roughly speaking, starting with a chaotic initial configuration where the particles are
from independent copies of the initial state, the statistical correlation between finite groups of particles vanishes at a later (fixed) time as the
number of particles goes to infinity. In other words, the particles reduce to independent copies of nonlinear Markov processes.

In this paper, we are interested in the mean field limit of Brownian particles with Coulomb interaction in three dimensional space. More
precisely, we consider the N particle system

dXi,N
t = −

1
N
∇xiH(X1,N

t , . . . ,XN,N
t ) dt +

√
2 dBN

i , i = 1, . . . ,N, (1.1)

where
H(x1, . . . , xN) = ∑

i,j:i<j
g(xi − xj) =

1
2 ∑i,j:i≠j

g(xi − xj), (1.2)

with g being the interaction potential. This system can be regarded as the overdamped limit of Langevin equations16 so that dX’s are from
the friction terms, while 1

N∇xiH can be thought as the interacting forces. Hence, in the remaining part of the paper, we will call this the
“interacting forces,” though it may have other interpretations in some applications. The scaling 1/N appears because we desire to have a
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total mass or charge to be O(1) so that there is a mean field limit as N →∞. The Brownian motion is not scaled since the strength is
determined by the temperature instead of the mass of the particle. Of course, if one desires to consider other scaling regimes, there may
be factors depending on N for both terms. The initial values {Xi,N

0 } are independent and identically distributed (iid) from some given den-
sity ρ0. Also, {BN

i }
N
i=1 are independent d-dimensional standard Brownian motions. Hence, the N-particle system is totally determined by

(X1,N
0 , . . . ,XN,N

0 ,BN
1 , . . . ,B

N
N). It is standard by the Kolmogorov extension theorem17,18 that there exists a probability space (Ω,F ,P) so that all

the random variables {(X1,N
0 , . . . ,XN,N

0 ,BN
1 , . . . ,B

N
N)}

∞
N=1 are on this probability space and they are all independent. Clearly, if we identify BN

i
for different N’s, the law of Xi,N

t is unchanged. Hence, we will drop the index N for the Brownian motions from now on. Moreover, we use E
to mean the expectation under P. If the interaction potential is given by

g(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

− 1
2π log ∣x∣, d = 2,

Cd∣x∣
−(d−2), d ≥ 3,

(1.3)

where

Cd =
1

d(d − 2)π
⎛

⎝

Γ(d)
Γ( d2 )
⎞

⎠

2
d

(1.4)

is chosen such that −Δg = δ0 holds in the distributional sense, then the interaction is called the Coulomb repulsive interaction. Moreover, we
define the Coulomb repulsive force as

F(x) = −∇g(x) = (d − 2)Cd
x
∣x∣d

. (1.5)

We will particularly focus on the d = 3 case, but some discussions are performed for general d.
Our goal is to show that as N →∞, the empirical measure

μN =
1
N

N

∑
i=1
δXi,N (1.6)

[as a random variable taking values in P(C([0,T];Rd))] converges in law to a random measure μ, whose density is almost surely a solution of
the nonlinear Fokker-Planck equation

∂tρ = Δρ +∇ ⋅ (ρ∇(g ∗ ρ)), ρt ∣t=0 = ρ0, (1.7)

provided that the initial empirical measure converges weakly to the initial data ρ0. The meaning of “solution” here is the weak solution, which
will be clarified later (Definition 3.1). In fact, we have the following result.

Theorem (Informal version of Theorem 3.1).When d = 3, under suitable conditions of the initial data ρ0, any limit point μ of the empirical
measure μN under the topology of convergence in law [as random variables in P(C([0,T];Rd))] has a density ρ a.s., and ρ is a weak solution to
(1.7) a.s. in the sense of Definition 3.1.

If the solution ρ is proved to be unique so that the limit measure μ is deterministic, then we have the propagation of chaos (see Ref. 15,
Proposition 2.2). However, the regularity of the weak solution in Definition 3.1 is limited and it is very challenging to show the uniqueness
of the weak solutions under these conditions even though the initial data ρ0 are very good. On the other hand, it is standard to show that if
ρ0 ≥ 0, ρ0 ∈ L1(Rd) ∩Hm(Rd) with some m > d/2, the equation has a unique global strong solution ρ ∈ C([0,T];L1(Rd)) ∩ C([0,T];Hm(Rd))
with ρ ≥ 0. Moreover, ∥ρ∥1 = ∥ρ0∥1 and ρ ∈ C∞((0,∞),Hs) for all s ≥ 0. See Appendix A (Propositions A.2 and A.3) for reference. Hence, one
desires to improve the regularity of the weak solutions so that one can eventually show that the “weak solution” by the limit measure is the
same as the strong solution, which is one common way to establish the propagation of chaos. This is known to be the “weak-strong uniqueness
principle.”19–22

As a second main result of this work, we show that the energy almost surely is bounded by the initial energy so that we can improve
the regularity of the limiting weak solutions (see Propositions 3.2 and 3.3). Together with this, the extra assumption that the weak solution
ρ ∈ L2loc([0,T];L

2(R3)) can imply the weak-strong uniqueness principle.

Theorem (Informal version of Propositions 3.2 and 4.1). With suitable assumptions on the initial data ρ0, for general dimension d ≥ 3,
for any limit point μ of μN , the energy is bounded by the initial energy almost surely,

1
2∬Rd×Rd

g(x − y)μt(dx)μt(dy) ≤
1
2∬Rd×Rd

g(x − y)ρ0(x)ρ0(y) dxdy.

Consequently, the density satisfies ρ ∈ L∞(0,T;H−1) and ∇(g ∗ ρ) ∈ L∞(0,T;L2) almost surely. Finally, for d = 3, if one further assumes such a
weak solution ρ ∈ L2loc(0,T;L

2(R3)), then it must be the unique strong solution.
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We will explain in Sec. IV that the L2loc(0,T;L
2(R3)) assumption makes perfect physical sense due to the energy dissipation. However,

rigorous justification is not easy. Combining these two results, we obtain a condition for the propagation of chaos.

Theorem (Informal version of Theorem 4.1). Consider d = 3. With suitable assumptions on the initial data ρ0, if the density ρ for any
limit point μ of the empirical measures μN satisfies E∫

T
0 ∫R3ρ2 dxdt <∞, then there is propagation of chaos.

The tool we use to establish the above results is the compactness method based on entropy and Fisher information estimates. In
Ref. 23, the propagation of chaos result for the d = 2 case is proved using compactness through a self-consistent martingale problem. The
proof needs to control singularity with (d − 1)-th order using the Fisher information from Ref. 24 (see Lemma 2.5 for a slightly gener-
alized form). However, the proof there cannot be applied directly to d ≥ 3 cases. What we do is to use certain symmetrization to reduce
the singularity in the third term of (1.7) from d − 1 to d − 2. Using this trick and the estimates of Fisher information, we show that the
limit measure almost surely is a weak solution to the limiting nonlinear Fokker-Planck equation (1.7) for d = 3 (Theorem 3.1). This is the
first main result in this work. As already mentioned, the weak-strong uniqueness principle is only established by assuming that the den-
sity of the limit measure almost surely is in L2loc(0,T;L

2(R3)) (see Proposition 4.1). Although physically significant, the justification seems
hard. As will be remarked in Sec. III, the compactness method based on Fisher information seems not to work for d ≥ 4 cases, and new tools
should be developed to tackle this problem.

Let us mention some related references, which by no means are exhaustive. In Refs. 12, 21, and 25, the mean field limit problems for
particle systems without Brownian motions with various interaction kernels have been established. In particular, in Ref. 12, Serfaty and Duer-
inckx established the results for particles with Coulomb interaction even for d ≥ 3. When Brownian motions are present, we have stochastic
systems.23,24,26–30 In Ref. 27, propagation of chaos was proved uniformly in time when the interaction kernel is regular enough and a confining
potential is present. In Ref. 23, the propagation of chaos for 2D Coulomb interaction was proved using nonlinear martingale problems. In
Ref. 29, the propagation of chaos for W−1,∞ kernels has been established, and this includes the kernels considered in Refs. 23 and 24. By
estimating the relative entropy, they found the convergence rate of propagation of chaos for some models. However, the 3D Coulomb kernel
is not included in their model, so their method does not apply.

The rest of the paper is organized as follows. In Sec. II, we review and prove some basic results for Fisher information of probability
measures and N particle systems. In particular, the empirical measures of the N particle systems are tight so that any subsequence has a
further converging subsequence to some limiting measure. Also, there are uniform estimates of the Fisher information. In Sec. III, using
a symmetrization technique together with the Fisher information estimate, we show that the limit measure almost surely is a weak solu-
tion to the nonlinear Fokker-Planck equation (1.7). In Sec. IV, we establish the weak-strong uniqueness principle based on the assumption
ρ ∈ L2loc(0,T;L

2(R3)) and remark on the propagation of chaos. In Appendices A and B, we provide the notes for strong solutions and missing
proofs for reference.

II. SETUP AND EXISTING RESULTS
In this section, we first recall some basic properties of Fisher information and extend the estimates in Ref. 24 to high-dimensional cases.

Then, we give an alternative proof for the well-posedness of the system (1.1). Finally, we present the results of tightness of the empirical
measures in Ref. 23.

A. Entropy and Fisher information of probability measures
We begin with the definition of Fisher information. For any probability measure f ∈ P((Rd)k), we recall that the entropy and Fisher

information are defined, respectively, by

H( f ) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫Rkd
ρ log ρ dx, if f = ρ dx,

+∞ otherwise,
I( f ) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫Rkd

∣∇ρ∣2

ρ dx, if f = ρ dx,

+∞ otherwise.
(2.1)

We also introduce the normalized entropy and Fisher information for f ∈ P((Rd)k),

Hk( f ) ∶=
1
k
H( f ), Ik( f ) ∶=

1
k
I( f ). (2.2)

The normalized version is introduced so that Hk( f⊗k) = H1( f ) and Ik( f⊗k) = I1( f ) for f ∈ P(Rd), which is convenient for the mean field
limit discussion. We remark that the notations we use here are different from those in Ref. 31, where they use H to mean the normalized
version while Hj is the un-normalized version. In the following discussion, we sometimes use Ik(ρ) and Hk(ρ) to represent Ik( f ) and Hk( f )
[or I(ρ) and H(ρ) to represent I( f ) and H( f )].
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We denote the set of all symmetric probability measures on (Rd)k by Psym((Rd)k). By “symmetric,” wemean the measure stays unchanged
under the pushforward corresponding to any permutation of the k copies of Rd. If the distribution of some k particle system is symmetric for
all time, then the system is said to be exchangeable. Recall that for the joint probability distribution F ∈ P(X k) of k random variables taking
values in X , the marginal distribution of Xi1 , . . . ,Xir with {i1, . . . , ir} ⊂ {1, . . . ,N} is defined by

Fi1 ,⋅ ⋅ ⋅ ,ir ∶= ∫X k−rF dx
ir+1 . . . dxik , (2.3)

where {ir+1, . . . , ik} = {1, . . . ,N}/{i1, . . . , ir}. If F is symmetric, the marginal distributions are the same for different choices of i1, . . . , ir , and
this will be called the r-marginal distribution later, denoted by F(r).

Below, we list out some standard properties of the entropy and Fisher information.

Lemma 2.1 (Ref. 31, Lemma 3.3).We have the following superadditivity of entropy:

1. Suppose all the one marginal distributions of F ∈ P((Rd)k) are the same, denoted by f ∈ P(Rd). If H1(f ) <∞, then Hk(F) ≥ H1(f ). The
equality holds if and only if F = f⊗k.

2. Consider F ∈ P((Rd)k). Then, the un-normalized entropies satisfy

H(F) ≥ H(Fi1 ,⋅ ⋅ ⋅ ,ir ) +H(Fir+1 ,⋅ ⋅ ⋅ ,ik ). (2.4)

The equality holds if and only if F = Fi1 ,...,ir ⊗ Fir+1 ,...,ik , where r ∈ {1, . . . , k − 1}.

Proof. By Jensen’s inequality, we have ∫Eg log h
g dx ≤ 0 for any probability densities g,h on a Polish space E. Hence,

∫
E
g log g dx ≥ ∫

E
g log h dx. (2.5)

The equality holds if and only if g = h, a.e. Now, we take E = (Rd)k. The first part of the claim follows by taking g = F and h = f⊗k in (2.5).
Also, the second part follows by taking g = F and h = Fi1 ,...,ir ⊗ Fir+1 ,...,ik .

Lemma 2.2 (Ref. 32, Theorem 3). Suppose F ∈ P((Rd)k). Then, the non-normalized Fisher information satisfies

I(F) ≥ I(Fi1 ,...,ir ) + I(Fir+1 ,...,ik ). (2.6)

The equality holds if and only if F = Fi1 ,...,ir ⊗ Fir+1 ,...,ik .

From Lemmas 2.1 and 2.2, for f ∈ Psym((Rd)k) with jth marginal distribution f (j), where k = qj + r, q, r ∈ Z, q ≥ 0, 0 ≤ r ≤ j − 1, one then
has

kIk( f ) ≥ qjIj( f
(j)) + rIr( f (r)), kHk( f ) ≥ qjHj( f (j)) + rHr( f (r)). (2.7)

Moreover, Ref. 31, Lemma 3.7 shows that

Ij( f (j)) ≤ Ik( f ), (2.8)

i.e., for symmetric probability measures, the normalized Fisher information for marginal distributions f (j) can always be bounded by Ik( f ).
Since the entropy might be negative, we do not have Hj( f (j)) ≤ Hk( f ) and Hj( f j) ≤ (k/(qj))Hk( f ). To resolve this, we note the following

lemma, which gives a lower bound for the entropy by moments of f .

Lemma 2.3 (Ref. 31, Lemma 3.1). For any p, λ > 0, there exists a constant Cp,λ ∈ R such that for any k ≥ 1, F ∈ P((Rd)k) with

Mp(F) = ∫
(Rd)k

1
k

k

∑
i=1

(∣xi∣2 + 1)
p
2 F(dx) <∞,

one has

Hk(F) ≥ −Cp,λ − λMp(F). (2.9)

Combining Eqs. (2.7) and (2.9), one gets a control of Hj( f j) in terms of Hk( f ) as follows:
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Hj( f (j)) ≤
k
qj
Hk( f ) +

r
qj
(λMp( f (r)) + Cp,λ). (2.10)

Next, we extend the estimates in Ref. 24 to high-dimensional cases.

Lemma 2.4. Let d ≥ 3. For any probability density f in Rd with finite Fisher information I(f ), one has

∀q ∈ [1,
d

d − 1
], ∥∇ f ∥Lq(Rd) ≤ Cq,dI( f )

d+1
2 −

d
2q , (2.11)

∀p ∈ [1,
d

d − 2
], ∥ f ∥Lp(Rd) ≤ Cp,dI( f )

d
2 (1−

1
p ). (2.12)

If d = 2, then (2.11) holds for q ∈ [1, 2), while (2.12) holds for p ∈ [1, +∞).

Proof. We start from (2.11). By Hölder’s inequality,

∥∇ f ∥qq ≤ (∫Rd

∣∇ f ∣2

f
dx)

q
2

∥ f ∥
q
2
q

2−q
. (2.13)

For 1 ≤ q ≤ d
d−1 , we use the interpolation along with Sobolev’s inequality,

∥ f ∥ q
2−q
≤ ∥ f ∥1−θ1 ∥ f ∥

θ
dq
d−q
≤ Cq,d∥∇ f ∥θq, (2.14)

where θ is given by 2−q
q =

d−q
dq θ + (1 − θ). Note that f is a probability density. Plugging (2.13) into (2.14), we get (2.11).

Now, for 1 ≤ p ≤ d
d−2 , we can find some 1 ≤ r ≤ d

d−1 satisfying p =
r

2−r . Then, by (2.14) and (2.11), we can easily obtain (2.12).

The following lemma is a slight generalization of those in Ref. 31 to higher dimension, which is important to control some singular
integrals using Fisher information.

Lemma 2.5. Suppose (X1,X2) is a random variable with density F in Rd
×Rd. Assume that F has finite Fisher information I(F).

1. For any 0 < γ < 2 and γ
d < β ≤

2
d , there exists Cγ, β such that

E[∣X1 − X2∣
−γ
] = ∫Rd×Rd

F(x1, x2)
∣x1 − x2∣γ

dx1dx2 ≤ Cγ,β(I(F)
βd
2 + 1). (2.15)

Moreover, for any ε > 0, the following estimate holds:

∫
∣x−y∣<ε

F(x, y)
∣x − y∣γ

dxdy ≤ Cγ,βε
dβ−γI(F)

dβ
2 . (2.16)

2. For d ≥ 3 and γ = 2, it also holds that

E[∣X1 − X2∣
−2
] = ∫Rd×Rd

F(x1, x2)
∣x1 − x2∣2

dx1dx2 ≤
C

(d − 2)2
I(F). (2.17)

Proof. Set Y1 =
X1−X2√

2
, Y2 =

X1+X2√
2

and denote the joint distribution of (Y1,Y2) by F̃(y1, y2). Then, I(F) = I(F̃). Denote the density of Y1

by f̃ . From the superadditivity property of Fisher information (Lemma 2.2), we see that I(f̃ ) ≤ I(F̃) = 2I2(F).

1. By simple computation,

∫Rd×Rd

F(x1, x2)
∣x1 − x2∣γ

dx1dx2 = 2
γ
2∫Rd

f̃ (y)
∣y∣γ

dy

≤ 2
γ
2 (∫

∣y∣>1
f̃ (y)dy + ∫

∣y∣≤1

f̃ (y)
∣y∣γ

dy).
(2.18)

The first term does not exceed 1, while for the second term one applies Hölder’s inequality and (2.12),

∫
∣y∣≤1

f̃ (y)
∣y∣γ

dy ≤ (∫
∣y∣≤1
∣y∣−

γ
β dy)

β
∥f̃ ∥ 1

1−β
≤ Cγ,βI(f̃ )

βd
2 ≤ 2Cγ,βI2(F)

dβ
2 . (2.19)
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Note that the restriction γ
β < d comes from the integrability of ∣y∣s, while β ≤ 2

d comes from (2.12). Therefore, (2.15) holds. For (2.16),
one has

∫
∣x−y∣<ε

F(x, y)
∣x − y∣γ

dxdy = ∫
∣y∣≤ ε√

2

f̃ (y)
∣y∣γ

dy

≤ (∫
∣y∣≤ ε√

2

∣y∣−
γ
β dy)

β

∥f̃ ∥ 1
1−β
≤ Cγ,βε

dβ−γI(f̃ )
dβ
2 ≤ 2Cγ,βε

dβ−γI2(F)
dβ
2 ,

(2.20)

which implies (2.16).

2. For d ≥ 3 and γ = 2, we note

∫Rd

1
∣y∣2

f̃ (y) dy = −
1

d − 2∫Rd

y
∣y∣2
⋅ ∇f̃ (y) dy ≤

1
d − 2

(δ∫Rd

1
∣y∣2

f̃ (y) dy +
1
4δ∫Rd

∣∇f̃ (y)∣2

f̃ (y)
dy).

One can choose δ = d−2
2 and obtain

∫Rd

1
∣y∣2

f̃ (y) dy ≤
1

(d − 2)2
I(f̃ ).

The integration by parts can be easily justified by approximating f̃ with compactly supported smooth functions. The claim therefore
follows.

B. The N-particle system
In this part, we study the N-particle system (1.1) and provide some estimates on the entropy and energy. Most of the results have been

established in Ref. 23, but we will give alternative proofs here for the convenience of the readers. These results will be used further in the proof
for the propagation of chaos result in Sec. IV.

Assume that the dimension d ≥ 3 and N is set to be fixed throughout this part. We will also use Xi
t to represent Xi,N

t in this section for
convenience. The joint distribution of the particles (X1

t , . . . ,XN
t ) is denoted by f Nt . The important quantities associated with the system include

entropy and energy. Recall the entropy defined in (2.2) and we also define the energy given by [recall (1.6) for the empirical measure μN]

E N(t) ∶=
1
2∬Dc

g(x − y)μN(dx)μN(dy)(t) =
1

2N2∑
i≠j

g(Xi
t − X

j
t), (2.21)

whereD represents the diagonal {(x, y) : x = y}. For convenience, we define

h0 = (−Δ)−1ρ0 = ∫Rd
g(x − y)ρ0(y) dy. (2.22)

The continuous system has an initial energy,

E(ρ0) ∶=
1
2∬(Rd)2

g(x − y)ρ0(x)ρ0(y)dxdy =
1
2∫Rd

∣∇h0(x)∣2 dx =
1
2
∥ρ0∥2H−1 ≤ C∥ρ0∥

2
2d
d+2
, (2.23)

by the Hardy-Littlewood-Sobolev inequality. Moreover, it holds that

EE N(0) =
N − 1
N

E(ρ0).

We first of all state the results about the well-posedness of the system (1.1).

Theorem 2.1. For any d ≥ 3 and N ≥ 2, consider a sequence of independent d-dimensional Brownian motions {(Bi
t)t≥0}Ni=1 and the inde-

pendent and identically distributed (i.i.d.) initial data {Xi
0}

N
i=1 with a common distribution f 0 that has a density ρ0 satisfying H1(ρ0) < +∞,

E(ρ0) < +∞, and ρ0 ∈ L1(Rd, (1 + ∣x∣2)dx). Then, there exists a unique global strong solution to (1.1) with Xi
t ≠ X

j
t a.s. for all t > 0 and i ≠ j.

J. Math. Phys. 60, 111501 (2019); doi: 10.1063/1.5114854 60, 111501-6

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

The proof for the noncollision result and energy estimate is based on the mollification approximation. Recall that the potential
g(x) = Cd∣x∣2−d is the solution to −Δg = δ, and the mollification we use is given by

gε = Jε ∗ g, Fε(x) = −∇gε(x), (2.24)

where Jε = 1
εd J(

x
ε ), for some fixed J(x) ∈ C2(Rd) which is non-negative, radial, with supp J(x) ⊂ B(0, 1) and ∫Rd J(x) dx = 1. This mollification

has the following standard properties, for which we omit the proofs.

Lemma 2.6 (Ref. 23, Lemma 2.1).

(i) gε(x) = g(x),Fε(x) = F(x) whenever ∣x∣ ≥ ε;
(ii) Fε(0) = 0,∇ ⋅ Fε(x) = Jε(x);
(iii) ∣Fε(x)∣ ≤ min{ Cd ∣x∣

εd , ∣F(x)∣}.

We first consider the following regularized system for (1.1):

dXi,ε
t =

1
N

N

∑
j=1,j≠i

Fε(Xi,ε
t − X

j,ε
t )dt +

√
2dBi

t , X
i,ε
t ∣t=0 = X

i
0. (2.25)

We try to use system (2.25) to approximate (1.1). Since Fε ∈ C2
b(R

d), (2.25) is well-defined and has a unique strong solution. We start with the
a priori estimates of the entropy and energy for this regularized system.

Lemma 2.7. Let {Xi,ε
t }

N
i=1 be the unique strong solution to (2.25) with joint distribution ( f N,ε

t )t≥0 and density (ρN,ε
t )t≥0. Then, we have the

following relation for energy:

⟨ρN,ε
t ,EN,ε

⟩ + ∫
t

0
⟨ρN,ε

s , ∣FN,ε
1 ∣

2
⟩ds +

N − 1
N ∫

t

0
⟨ρN,ε

s , Jε(x1 − x2)⟩ ds

=
N − 1
2N ∬

(Rd)2
gε(x − y)ρ0(x)ρ0(y) dxdy ≤ C1E(ρ0), (2.26)

and we have uniform estimates for entropy and second moment as follows:

HN( f N,ε
t ) + ∫

t

0
IN( f N,ε

s )ds +
N − 1
N ∫

t

0
⟨ρN,ε

s , Jε(x1 − x2)⟩ ds = HN( f N0 ) = H1(ρ0),

E[∣Xi,ε
t ∣

2
] ≤ 3E[∣X1

0 ∣
2
] + CtE(ρ0) + 6td.

(2.27)

Here,

EN,ε(x) =
1

2N2

N

∑
i,j=1,i≠j

gε(xi − xj), FN,ε
1 (x) =

1
N

N

∑
j=2

Fε(xj − x1). (2.28)

Sketch of the proof. Since the force field is bounded and smooth and the initial density ρN,ε
0 is continuous, ρN,ε

t is a classical non-negative
solution to the Fokker-Planck equation,

∂tρN,ε
t =

1
2
∇ ⋅ (ρN,ε

t ∇g
N,ε) + ΔρN,ε

t , (2.29)

where

gN,ε(x) =
1
N ∑i,j:i≠j

gε(xi − xj)⇒ ∇x1g
N,ε(x) = −2FN,ε

1 .

For (2.26), one starts with (2.29) to obtain

d
dt
⟨ρN,ε

t , gN,ε
⟩ = −⟨ρN,ε

t ,
1
2
∣∇gN,ε

∣
2
⟩ − ⟨ρN,ε

t ,
2
N

N

∑
i,j=1,i≠j

Jε(xi − xj)⟩. (2.30)

By exchangeability,

⟨ρN,ε, ∣∇gN,ε
∣
2
⟩ = N⟨ρN,ε, ∣∇x1g

N,ε
∣
2
⟩ = 4N⟨ρN,ε, ∣FN,ε

1 ∣
2
⟩.
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By dividing both sides by 2N and integrating on time, the equality in (2.26) follows. Moreover,

1
2N
⟨ρN,ε

0 , gN,ε
⟩ =

N − 1
2N ∬

(Rd)2
gε(x − y)ρ0(x)ρ0(y) dxdy ≤

1
2∫Rd

∇h0(x) ⋅ ∇hε0(x) dx ≤ C∥∇h0∥
2
2.

This holds because ∥∇hε0∥2 ≤ ∥∇h0∥2 by Young’s convolutional inequality.
Now, by simple computations and integration by parts,

d
dt
HN( f N,ε

t ) = −IN( f N,ε
t ) −

1
N2∫RNd

N

∑
i,j=1,i≠j

Jε(xi − xj)ρN,ε
t dx, (2.31)

which gives the entropy relation in (2.27) since Jε is non-negative.
For the moment estimate in (2.27), since XN,ε

t is the solution to (2.25), one can deduce that

∣Xi,ε
t ∣

2
≤ 3∣Xi

0∣
2 +

3t
N2∫

T

0

RRRRRRRRRRR

N

∑
j=1,j≠i

Fε(Xi,ε
s − X

j,ε
s )
RRRRRRRRRRR

2

ds + 6∣Bi
t ∣
2. (2.32)

Taking expectation of (2.32), and noting exchangeability, one has

E
⎡
⎢
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRRRR

N

∑
j=1,j≠i

Fε(Xi,ε
s − X

j,ε
s )
RRRRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
N

N

∑
i=1

RRRRRRRRRRRRR

N

∑
j=1,j≠i

Fε(Xi,ε
s − X

j,ε
s )
RRRRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

= N2
⟨ρN,ε

s , ∣FN,ε
1 ∣

2
⟩.

Then, the moment estimate in (2.27) follows from (2.26) directly.

Proof for Theorem 2.1. First, we restrict ourselves to a finite time period [0,T]. In order to show that the particles in (1.1) a.s. never
collide, we consider system (2.25) along with the stopping time

τε = inf{t ≥ 0∣min
i≠j
∣Xi,ε

t − X
j,ε
t ∣ ≤ ε}.

Since (1.1) and (2.25) take the same initial value, and by the fact that Fε(x) = F(x) whenever ∣x∣ ≥ ε, for any ε1 > ε and ω ∈ Ω, if we define

X̂s
ε(ω) = 1τε1 (ω)≤tX

ε
s (ω) + 1τε1 (ω)>tX

ε1
s (ω), (2.33)

then (2.33) is also a solution for system (2.25) on [0, t] since Fε(x) = Fε1 (x) when ∣x∣ ≥ ε1. Therefore, from the uniqueness of the solution (since
Fε is Lipschitz over Rd), we see that

P(Xε1
s 1τε1>t = X

ε
s1τε1>t ,∀0 ≤ s ≤ t) = 1. (2.34)

Now, we consider the set

Aε,ε1 ∶= ⋂
t∈Q
{Xε1

s 1τε1>t = X
ε
s1τε1>t ,∀0 ≤ s ≤ t},

where Q is the set of rational numbers. By (2.34), P(Aε,ε1 ) = 1. For ω ∈ Aε, ε1 , if τε(ω) < τε1 (ω), then there exists a rational number t ∈ Q such
that τε(ω) < t < τε1 (ω), and then by the definition of Aε, ε1 , we see that X

ε1
s = Xε

s for 0 ≤ s ≤ t, which contradicts with the assumption τε(ω) < t.
Therefore, we have proved that when ε1 > ε, τε ≥ τε1 for a.s. ω ∈ Ω.

We take εn = 1
2n . Consider

A ∶= ⋂
n>m≥1

Aεn ,εm .

From the discussion above, {τεn} is nondecreasing as n→∞ for ω ∈ A and P(A) = 1.
Define

A0 ∶= {τεn↑ +∞}.

If we can show that
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P(A0) = 1, (2.35)

then forω ∈ A0 ∩ A, there exists anM(ω) such that τεn (ω) > T when n ≥M(ω). This implies thatXεn
t (ω) = X

εM(ω)
t (ω) for n ≥M(ω) and 0 ≤ t ≤ T.

Therefore, we can define

X̃t(ω) = X
εM(ω)
t (ω) (2.36)

whenever ω ∈ A0 ∩ A, and for other ω ∈ Ω, we just put X̃t(ω) = X0(ω). Then, X̃t satisfies (1.1) when 0 ≤ t ≤ T a.s. ω ∈ Ω, which gives the
existence of the solution.

For the uniqueness, suppose that Xt is another solution that solves (1.1). Consider the stopping time

σε = inf{t ≥ 0∣min
i≠j
∣Xi

t − X
j
t ∣ ≤ ε}.

Similar to (2.33),

X̂s
ε(ω) = 1σε(ω)≤tX

ε
s (ω) + 1σε(ω)>tXs(ω) (2.37)

gives a solution for (2.25), from which by using the uniqueness it is not hard to see the set

A1 ∶= ⋂
t∈Q
{Xs1σεn>t = X

ε
s1σεn>t ,∀0 ≤ s ≤ t,n ≥ 1}

satisfies P(A1) = 1. Now, for ω ∈ A1, if σε < τε for some ε = εn, since for fixed ω, Xt and Xε
t are continuous in t, from the definition of the

stopping time, we see

min
i≠j
∣Xi

σε − X
j
σε ∣ = ε,min

i≠j
∣Xi,ε

σε − X
j
σε ∣ > ε;

by continuity, there exists a t ∈ Q such that

min
i≠j
∣Xi

t − X
j
t ∣ −min

i≠j
∣Xi,ε

t − X
j,ε
t ∣ < 0, t < σε,

which contradicts with the definition of A1. This gives the fact that σεn (ω) ≥ τεn (ω) as long as ω ∈ A1. Now, if (2.35) holds, then P(A0 ∩ A
∩ A1) = 1, and for ω ∈ A0 ∩ A ∩ A1, we have Xt(ω) = X

εM(ω)
t (ω) = X̃t(ω), which concludes the proof for uniqueness.

Now, we show (2.35). Since τεn is a.s. nondecreasing, to show τεn↑ +∞, a.s., it suffices to show that for any fixed T,

lim
ε→0

P(τε ≤ T) = 0. (2.38)

We consider the un-normalized energy

Φε,N
t ∶=

1
N

N

∑
i,j=1,i≠j

gε(Xi,ε
t − X

j,ε
t ).

Then, we have the following basic fact:

{τε ≤ T} ⊂
⎧⎪⎪
⎨
⎪⎪⎩

sup
t∈[0,T]

Φε,N
t∧τε ≥ Φ

ε,N
τε

⎫⎪⎪
⎬
⎪⎪⎭

. (2.39)

Since gε ∈ C2
b(R

d), by Itô’s formula and the fact that −Δgε(x) = Jε(x) = 0 on ∣x∣ ≥ ε, we get

Φε,N
t = Φ

ε,N
0 −

2
N2∫

t

0

N

∑
i=1

RRRRRRRRRRR

N

∑
j=1,j≠i

Fε(Xi,ε
s − X

j,ε
s )
RRRRRRRRRRR

2

ds −
2
N

N

∑
i,j=1,i≠j

∫

t

0
Jε(Xi,ε

s − X
j,ε
s )ds −M

ε
t , (2.40)

where
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Mε
t =

√
2

N

N

∑
i,j=1,i≠j

∫

t

0
Fε(Xi,ε

s − X
j,ε
s ) ⋅ (dB

i
s − dB

j
s) =

2
√
2

N

N

∑
i,j=1,i≠j

∫

t

0
Fε(Xi,ε

s − X
j,ε
s ) ⋅ dB

i
s.

Since Fε is bounded,Mε
t is a martingale with

E[(Mε
t )

2
] =

8
N2∫

t

0

N

∑
i=1

E
⎡
⎢
⎢
⎢
⎢
⎣

∣(
N

∑
j=1,j≠i

Fε(Xi,ε
s − X

j,ε
s ))∣

2⎤⎥
⎥
⎥
⎥
⎦

ds

= ∫

t

0
⟨ρN,ε

s , 2∣∇gN,ε
∣
2
⟩ds

= 8N∫
t

0
⟨ρN,ε, ∣FN,ε

1 ∣
2
⟩ ds ≤ CNE(ρ0).

(2.41)

The last inequality comes from (2.26). Combining (2.39) and (2.40), from the positivity of gε (since d ≥ 3), we have

{τε ≤ T} ⊂ {(Φε,N
0 − inf

0≤t≤T
Mε

t ) >
1
N
g(ε)}, (2.42)

⊂ {Φε,N
0 > R} ∪ { sup

0≤t≤T
(−Mε

t ) >
1
N
g(ε) − R}, (2.43)

for any R > 0. Here, g(ε) = Cdε2−d. We notice that

E[Φε,N
0 ] = (N − 1)∫R2d

ρ0(x)ρ0(y)gε(x − y)dxdy ≤ C(N − 1)E(ρ0). (2.44)

Therefore, Markov’s inequality gives

P(Φε,N
0 > R) ≤

1
R
(N − 1)CE(ρ0). (2.45)

For the second term, we apply Doob’s inequality for martingales (p. 203, Theorem 7.31 in Ref. 33),

P( sup
0≤t≤T

(−Mε
t ) >

1
N
g(ε) − R) ≤

N
g(ε) −NR

(E[∣ sup
0≤t≤T

(−Mε
t )∣

2
])

1
2

≤
4N

g(ε) −NR
(E[∣Mε

T ∣
2
])

1
2 ≤

C(N,d,E(ρ0))
g(ε) −NR

,

(2.46)

where we used (2.41). Combining (2.42), (2.45), and (2.46),

P(τε ≤ T) ≤ C(N)(
1
R
+

1
g(ε) −NR

). (2.47)

We take R = g(ε)
1
2 , and the conclusion follows from the fact that g(ε) = C(d)ε2−d →∞ as ε→ 0.

Finally, we conclude the global existence and uniqueness. For k ≥ 1, suppose X(k)
t is the a.s. unique solution to (1.1) on the time interval

t ∈ [0, k]. From the previous local existence and uniqueness proof, we find that the set

S0 = ⋂
ℓ≥1
{X(k)

t = X
(ℓ)
t , ∀k ≥ ℓ, t ∈ [0, ℓ]}

has probability 1. Therefore, if we define

X̃t(ω) = X([t+1])
t (ω)1S0 (ω) + X0(ω)1Sc0 (ω),

then X̃t satisfies (1.1) for all t > 0 a.s. (here, [t] rounds t to the nearest integer). Meanwhile, if Xt is another global solution for t > 0, then by
local uniqueness we know that for any k ≥ 1, Xt = X(k)

t ,∀0 ≤ t ≤ k, a.s. This implies that Xt = X̃t , which gives the global uniqueness.
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Next, we state some useful estimates for the N-particle system (1.1).

Proposition 2.1. Suppose {Xt}t≥0 is the solution for (1.1) with joint distribution f Nt . Then, f Nt has a density function ρNt . Moreover, we have
the following estimates:

HN( f Nt ) + ∫
t

0
IN( f Ns )ds ≤ H1( f 0)(= HN( f N0 )), (2.48)

EE N(t) + E∫
t

0

1
N∑i

∣
1
N∑j:j≠i

F(Xj − Xi)∣
2
ds ≤

N − 1
N

E(ρ0), (2.49)

E[∣Xi
t ∣
2
] ≤ 3E[∣X1

0 ∣
2
] + CtE(ρ0) + 6td. (2.50)

Proof. Throughout this proof, C denotes the constant that depends on N, ρ0,d and so on, but not on ε. Note that for any density
ρ ∈ L1(RNd), ∣ρ log−ρ∣ < 1. For α < 1,

∫
∣x∣≥1
∣ρ(x)log− ρ(x)∣ dx ≤ C∫

∣x∣≥1
∣ρ∣αdx ≤ C(∫RNd

∣x∣2ρdx)
α
(∫
∣x∣≥1
∣x∣−

2α
1−α dx)

1−α
. (2.51)

If we take Nd
Nd+2 < α < 1, then from the uniform estimate (2.27), we deduce

∫RNd
∣ρN,ε

t (x) log ρN,ε
t (x)∣dx ≤ C, (2.52)

which means that ρN,ε
t is uniformly integrable in L1(RNd). Consider the sequence {ρN,εn

t : εn = 1
2n }. Denote by Br = {∣x∣ ≤ r} the ball in RNd

centered at the origin with radius r. By the Dunford-Pettis theorem (p. 412, Theorem 12 in Ref. 34), there exists a subsequence {ρN,εn
t,(1)}

converging weakly in L1(B1) to some ρNt,(1). This subsequence has a further subsequence converging weakly in L1(B2) to some ρNt,(2). From
the uniqueness of the weak limit, we see that ρNt,(2) = ρ

N
t,(1) a.e. on B1. Proceeding this process and taking the diagonal sequence, there exists a

subsequence (without relabeling) and a ρNt ∈ L1loc(R
Nd) such that

ρN,εn
t ⇀ ρNt in L1(Bk),∀k ≥ 1. (2.53)

(2.53) also gives ∥ρNt ∥L1(RNd) ≤ 1. Now, the moment estimate in (2.27) gives the tightness of ρN,ε
t , i.e., ∫ ∣x∣≥Mρ

N,ε(x)dx goes to 0 as M →∞

uniformly in ε; by (2.53), it is not hard to observe that for any ϕ ∈ L∞(RNd), ⟨ϕ, ρN,εn
t ⟩→ ⟨ϕ, ρNt ⟩, i.e.,

ρN,εn
t ⇀ ρNt in L1(RNd). (2.54)

In particular, ∥ρNt ∥L1(RNd) = 1. From the Proof of Theorem 2.1, we see that Xεn
t → Xt , a.s.; therefore, for any φ ∈ Cb(RNd), we have

⟨φ, ρNt ⟩ = lim
n→∞
⟨φ, ρN,εn

t ⟩ = lim
n→∞

E[φ(Xεn
t )] = E[φ(Xt)] = ⟨φ, f Nt ⟩. (2.55)

This gives the fact that f Nt has density ρNt . Note that

⟨ρN,ε
t ,EN,ε

⟩ + ∫
t

0
⟨ρN,ε

s , ∣FN,ε
1 ∣

2
⟩ds = E[EN,ε(XN,ε

t )] + ∫
t

0
E[∣FN,ε

1 (XN,ε
s )∣2]ds (2.56)

and that for a.s. ω ∈ Ω, XN,εn
t (ω) = XN

t (ω) when n is big enough, from Fatou’s lemma, the exchangeability, and (2.26), we obtain (2.49). Sim-
ilarly, (2.50) holds. Now, combining the entropy estimate in (2.27) and the fact that the functionals H and I are both lower semicontinuous
with respect to weak convergence (Theorems 5.4 and 5.7 in Ref. 31), we see that

HN( f Nt ) + ∫
t

0
IN( f Ns )ds ≤ lim inf

n→∞
(HN( f N,εn

t ) + ∫
t

0
IN( f N,εn

s )ds) ≤ H1(ρ0), (2.57)

which gives (2.48).
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C. The weak convergence of the empirical measures
In this part, we recall the results in Ref. 23 for the weak convergence of the empirical measures.

Proposition 2.2 (Ref. 23, Lemma 3.1). For any N ≥ 2 and d ≥ 3, let {(Xi,N
t )0≤t≤T}Ni=1 be the unique strong solution to (1.1)with the iid initial

data {Xi,N
0 }

N
i=1. Suppose the common density ρ0(x) ∈ L

2d
d+2 (Rd) ∩ L1(Rd, (1 + ∣x∣2)dx) and H1(ρ0) <∞. Recall the empirical measure μN defined

in (1.6).

(i) The sequence {L(X1,N)} is tight in P(C([0,T];Rd)).
(ii) The sequence {L(μN)} is tight in P(P(C([0,T];Rd))).

Here, L(X1,N) is the law of X1,N , i.e., L(X1,N)(A) = P(X1,N
∈ A) for A ⊂ C([0,T];Rd) that is Borel measurable, similar for L(μN). For the

convenience of the readers, we provide a concise proof in Appendix B.
We consider the projection πt : (C([0,T];Rd),B)→ Rd, where B is the standard Borel σ-algebra in C([0,T];Rd),

πt(X) = X(t).

Then, for some measure ν ∈ P(C([0,T];Rd)), we define the time marginal νt as the pushforward of ν under πt ,

νt ∶= (πt)#ν (2.58)

or

νt(E) = ν(π−1t (E)), ∀E ∈ Rd, Borelmeasurable.

Consequently, we have

(t ↦ νt) ∈ C([0,T];P(Rd)),

where P(Rd) is equipped with the topology of weak convergence.
We easily conclude the following by change of measures, i.e., for T : (X , ν)→ (Y, ν̃) with ν̃(A) = ν(T−1(A)), one has ∫Y f dν̃ = ∫X f ○ Tdν.

Lemma 2.8. Suppose ν ∈ P(C([0,T];Rd)) with time marginal νt ∈ P(Rd), and ψ is a Borel measurable function on Rd. Then, for 0 ≤ t ≤ T,
the equation

∫
C([0,T];Rd)

ψ(Xt)ν(dX) = ∫Rd
ψ(x)νt(dx) (2.59)

holds if either side is integrable. Similarly, for the product space C([0,T];Rd) × C([0,T];Rd) and Borel measurable function ψ on Rd
×Rd,

∬
C([0,T];Rd)2

ψ(Xt ,Yt)ν(dX)ν(dY) = ∫
C([0,T];Rd)

∫Rd
ψ(x,Yt)νt(dx)ν(dY) =∬Rd×Rd

ψ(x, y)νt(dx)νt(dy) (2.60)

if either side of (2.60) is integrable.

Recall that a sequence of random variables Zn taking values in some Polish spaceX converges in law to Zmeaning that Eφ(Zn)→ Eφ(Z)
for any φ ∈ Cb(X ) (i.e., bounded continuous functions). The following lemma gives the consequence of the tightness in Proposition 2.2.

Lemma 2.9. 1. There is a subsequence of the empirical measures, μN ∈ P(C([0,T];Rd)) (without relabeling), and a random measure μ :
(Ω,F ,P)→ P(C([0,T];Rd)) such that

μN → μ in law asN →∞. (2.61)

[Or L(μN) converges weakly to L(μ) in P(P(C([0,T];Rd))).]

2. For the subsequence in 1, μNt , as P(Rd) valued random measures, converge in law to μt . In other words, L(μNt ) converges weakly to L(μt)
in P(P(Rd)).

Proof. The first claim follows from the tightness of {L(μN)} in P(P(C([0,T];Rd))) by Prokhorov’s theorem.
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For the second, we first note that a sequence νn ∈ P(C([0,T];Rd)) converging weakly to ν ∈ P(C([0,T];Rd)) will imply that (νn)t ∈ P(Rd)
converges weakly to νt ∈ P(Rd). In fact, for any function ϕ ∈ Cb(Rd), we have ∫Rdϕ(x)d(νn)t = ∫C([0,T];Rd)ϕ(Xt)dνn. Note that X → ϕ(Xt) is a

continuous functional on C([0,T];Rd) and thus

lim
n→∞∫Rd

ϕ(x)d(νn)t = ∫
C([0,T];Rd)

ϕ(Xt)dν = ∫Rd
ϕ(x)dνt .

Now, consider a continuous functional Γ : P(Rd)→ R. We define Γ1 : P(C([0,T];Rd))→ R as

Γ1(ν) ∶= Γ(νt).

According to what has been justified, Γ1 is a continuous functional on P(C([0,T];Rd)). Consequently,

EΓ1(μN)→ EΓ1(μ)⇒ EΓ(μNt )→ EΓ(μt).

This then verifies the second claim.

The following lemma gives another property which will be useful to us.

Lemma 2.10. Let X be a Polish space. Suppose μN ,μ are randommeasures onX (i.e., P(X )-valued random variables) such that μN converge
to μ in law. For any ψ ∈ Cb(X ×X ), if we define a functional Kψ : P(X )→ R with

Kψ(ν) = ∫X 2
ψ(X,Y)ν(dX)ν(dY),

thenKψ(μN)→ Kψ(μ) in law as N →∞.

Proof. We consider the metric on P(X ) induced by weak convergence. By p. 23, Theorem 2.8 in Ref. 35, νN ⇀ ν in P(X ) implies that
Kψ(νN)→ Kψ(ν); therefore, for any ϕ ∈ Cb(R), ϕ ○Kψ is a bounded continuous functional on P(X ), and then

E[ϕ(Kψ(μN))]→ E[ϕ(Kψ(μ))], N →∞,

which gives the last claim.

We note the following facts regarding the marginal distributions (see Ref. 31, Lemma 5.6; Ref. 24, Theorem 4.1; Ref. 23, Lemma 3.2). The
results are modified for our purpose here, and we sketch a quick proof for reference.

Proposition 2.3. Under the assumption of Proposition 2.2, we denote by ( f Nt )t≥0 the joint distribution of {(Xi,N
t )t≥0}Ni=1 and f (j),Nt the j-th

marginal of f Nt for any j ≥ 1.

(i) For any j that is a positive integer, we have

sup
t∈[0,T],N

∫Rdj
∣x∣2 f (j),Nt (dx) <∞, sup

t∈[0,T],N
Hj( f (j),Nt ) <∞, sup

N
∫

T

0
Ij( f (j),Nt )dt <∞. (2.62)

(ii) f (j),Nt has a density ρ(j),Nt . Consider ρ(j),N = (ρ(j),Nt ) ∈ L1([0,T] ×Rdj). It has a subsequence ρ(j),N (without relabeling) weakly converging
to ρ(j) in L1([0,T] ×Rdj) as N →∞, and also for a.e. t ∈ [0,T], f (j),Nj = ρ(j),Nt dx converges weakly to ρ(j)t dx as probability measures.
Besides,

sup
t∈[0,T]

∫Rdj
∣x∣2ρ(j)t dx <∞, sup

t∈[0,T]
∫Rdj

ρ(j)t ∣ log ρ
(j)
t ∣ dx <∞, ∫

t

0
Ij(ρ(j)t )ds <∞. (2.63)

Moreover, let μ be the limit (random) measure of any further subsequence of μN , and let μt be the time marginal of μ. Then, for a.e.
t ∈ [0,T], it holds that

∫Rdj
ρ(j)t φ dx = E(⟨μ

⊗j
t ,φ⟩), ∀φ ∈ Cb(R

dj).

(iii) The entropy and Fisher information of the limit random measure μ satisfy that for all t ∈ [0,T],
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E(H1(μt)) = sup
j≥1

Hj(ρ(j)t ) ≤ lim inf
N→∞

HN( f Nt ),

E(I1(μt)) = sup
j≥1

Ij(ρ(j)t ) ≤ lim inf
N→∞

IN( f Nt ).
(2.64)

(iv) We have the following estimates for the Fisher information:

E∫
T

0
I1(μt)dt < C. (2.65)

Consequently, for a.s. ω, μ(ω) has a density (ρt(ω))t∈[0,T]. At time t = 0, ρt(ω) = ρ0 for a.s. ω.

Proof. (i) The second moment estimate follows directly from Eq. (2.50). Equations (2.8) and (2.48) imply that ∫
T
0 Ij( f (j),Nt ) dt

≤ ∫
T
0 IN( f (j),Nt ) dt ≤ H1( f 0) −HN( f Nt ). By the second moment estimates and Lemma 2.3 with p = 2, λ = 1, we see that

H1(ρ(1),NT ) ≥ −Cp,λ −M2(ρ(1),NT ) ≥ −C, (2.66)

where C depends only on ρ0,T and d. By Lemma 2.1, we have HN(ρNT ) ≥ H1(ρ(1),NT ) ≥ −C. We thus have

sup
N
∫

T

0
Ij( f (j),Nt ) dt ≤ sup

N
∫

T

0
IN( f Nt ) dt ≤ C(j,T,d) <∞. (2.67)

We note that HN( f Nt ) is uniformly bounded. Then, by (2.7), we have (note that entropy can be negative)

Hj( f (j),Nt ) ≤ (1 +
N −mj
mj

)HN( f Nt ) −
N −mj
mj

HN−mj( f (N−mj),N
t ), (2.68)

wherem is an integer chosen so thatN −mj ∈ [0, j). A simple application of (2.9) with second moment gives the uniform bound forHj( f (j),Nt ).
(ii) By the uniform second moment estimate, ρ(j),N is tight in L1([0,T] ×Rdj). Moreover, we have ∫Rdjρ(j),N ∣ log ρ(j),N ∣ dx to be uniformly

bounded by the uniform estimates of Hj and a similar calculation for (2.52). Hence, ρ(j),N is uniformly integrable on [0,T] ×Rdj. Although
the Dunford-Pettis theorem is stated for finite measures, combined with the tightness, the uniform integrability implies that ρ(j),N is weakly
compact in L1([0,T] ×Rdj). Hence, we can find a subsequence ρ(j),N converging weakly to ρ(j) in L1([0,T] ×Rdj).

The secondmoment mapping ν↦ ∫Rdj ∣x∣2ν(dx) is lower-semicontinuous with respect to the topology of weak convergence, which can be
seen by approximating ∣x∣ with ∣x∣ ∧m. After taking sup in t, it is still lower semicontinuous. It has been proved in Ref. 24 (Lemma 4.2) thatHj
and Ij are lower semicontinuous. Taking supremum in t or taking integral of non-negative lower semicontinuous functionals still yields lower
semicontinuous functionals. Hence, taking N →∞ in (2.62), we get the corresponding estimates for ρ(j)t . The second moment and entropy
estimates then yield supt∈[0,T]∫Rdjρ

(j)
t ∣ log ρ

(j)
t ∣ dx <∞ similarly as we did in (2.52).

We now take ϕ ∈ C[0,T] and φ ∈ Cb(Rdj). Then, Γ : C([0,T];Rd)j → R defined by (X1, . . . ,Xj)→ ∫
T
0 ϕ(t)φ(X

1
t , . . . ,X

j
t) dt is a bounded

continuous functional. A slight generalization of Lemma 2.10 with X = C([0,T];Rd) shows that

E⟨(μN)⊗j, Γ⟩→ E⟨μ⊗j, Γ⟩ = ∫
T

0
ϕ(t)E⟨μ⊗jt ,φ⟩ dt,

where the last term is obtained by Fubini and the definition of μt . Let

νt ∶= L(μt) ∈ P(P(Rd)).

Define

νjt ∶= ∫
P(Rd)

g⊗jνt(dg) ∈ P(Rdj).

By this definition, we have for any φ ∈ Cb(Rdj) that

⟨νjt ,φ⟩ = ∫
P(Rd)
∫Rdj

φ(x)g⊗j(dx)νt(dg) = E(⟨μ⊗jt ,φ⟩).

This means that E⟨(μN)⊗j, Γ⟩→ ∫
T
0 ϕ(t)⟨ν

j
t ,φ⟩ dt.
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On the other hand, by definition and the Fubini theorem,

E⟨(μN)⊗j, Γ⟩ = ∫
T

0
ϕ(t)E( 1

N j ∑φ(Xi1 ,N
t , . . . ,Xij ,N

t ))dt =
N!

N j(N − j)!∫
T

0
ϕ(t)×

Eφ(X1,N
t , . . . ,Xj,N

t )dt +
1
N j ∑

some i′ks are equal
∫

T

0
ϕ(t)Eφ(Xi1 ,N

t , . . . ,Xij ,N
t )dt. (2.69)

A simple estimate shows that the second term goes to zero as N →∞, while the first term converges to ∫
T
0 ϕ(t)∫Rdjφρ

(j)
t dxdt by the results we

have just proved.
Since ϕ(t) is arbitrary, for a fixed φ, we have for a.e. t that

∫Rdj
φρ(j)t dx = ⟨νjt ,φ⟩. (2.70)

Moreover, since C∞c is separable, we know for a.e. t and all φ ∈ Cc that (2.70) holds. Using the uniform second moment bounds of ρ(j)t and νjt
(the proof of second moment for νjt can be obtained similarly as for ρ(j)t ), we know that they are tight. We thus can pass from Cc to Cb for these
t. Hence, ρ(j)t is in fact the density of νjt for a.e. t ∈ [0,T].

Now, a slight generalization of Lemma 2.10 with X = Rdj shows that for φ ∈ Cb(Rdj),

E⟨(μNt )
⊗j,φ⟩→ E⟨(μt)⊗j,φ⟩ = ⟨νjt ,φ⟩

since μNt converges in law to μt by Lemma 2.9. A similar computation of (2.69) shows that we in fact have

lim
N→∞∫Rdj

φ f (j),Nt (dx) = ⟨νjt ,φ⟩.

This in fact means f (j),Nt = ρ(j),Nt dx ⇀ νjt for all t. Thus, for a.e. t, ρ
(j),N
t dx ⇀ ρ(j)t dx as probability measures.

(iii) In Ref. 24, Lemma 4.2, it is proved that the functional Ij is convex, proper, and lower semicontinuous. Then, Ref. 31, Lemma 5.6
shows that

E(I1(μt)) = ∫
P(Rd)

I1(g)νt(dg) = sup
j≥1

Ij(νjt).

On the one side, the convexity gives

∫
P(Rd)

I1(g)νt(dg) = ∫
P(Rd)

1
j
I(g⊗j)νt(dg) ≥

1
j
I(∫

P(Rd)
g⊗jνt(dg)) = Ij(νjt).

On the other side, it is more tricky. One uses a type of affine property for the functional ν↦ supj≥1Ij(ν), and we refer the readers to Ref. 31,
Theorems 5.4 and 5.7.

Then, using (2.7), it is clear that limN→∞Ij(ρ(j),N) ≤ limN→∞IN( f Nt ). The lower semicontinuity then implies Ij(νjt) ≤ limN→∞Ij(ρ(j),N).
For the entropy, it is shown in Ref. 24 (Lemma 4.2) that Hj is convex, lower semicontinuous and a certain affine property. E(H1(μt))

= ∫P(Rd)H1(g)νt(dg) = supj≥1Hj(νjt) holds.
Since the entropy could be negative, we should use the fact that the second moment of ρ(j),N is uniformly bounded and (2.9) to control

the entropy of the marginal distributions ρ(j),N . We apply (2.9) in (2.68) and haveHj(ρ(j),N) ≤ (1 + N−mj
mj )HN( f Nt ) +

N−mj
mj (M2(ρ(N−mj),N) + Cj,2).

It then follows that limN→∞Hj(ρ(j),N) ≤ limN→∞HN( f Nt ) still holds. The lower semicontinuity then gives the desired result.
(iv) By (2.67), we obtain (2.65). Now, since ∫

T
0 I1(μs) ds <∞ a.s., the definition of Fisher information [Eq. (2.1)] implies that for such ω,

(μs)s∈[0,T] has density for a.e. s ∈ [0,T]. The claim for t = 0 is a simple consequence of law of large numbers.

III. THE LIMIT MEASURE ALMOST SURELY IS A WEAK SOLUTION
Now, we define the weak solution of (1.7) in the following sense:

Definition 3.1. We say ρ ∈ L∞(0,T;L1(Rd)) is a weak solution to (1.7) if

● ρ dx ∈ C([0,T];Cb(Rd)′) and ρ∇h ∈ L1(0,T;L1(Rd)), where h = g∗ρ.
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● For all t ∈ [0,T],

⟨ρt ,ϕ⟩ − ⟨ρ0,ϕ⟩ − ∫
t

0
∫Rd
∇ϕ(x) ⋅ ∇h(x)ρs(x) dxds − ∫

t

0
⟨ρs,Δϕ⟩ds = 0 (3.1)

for any ϕ ∈ C2
c (Rd).

We first of all prove the following important result for d = 3.

Proposition 3.1. Let d = 3 and {(Xi,N
t )}Ni=1 be the unique solution to (1.1) with the iid initial data {Xi,N

0 }
N
i=1. Suppose that the common

density ρ0 satisfies H(ρ0) <∞, m2(ρ0) <∞, and E(ρ0) <∞. Assume that the randommeasure μ on C([0,T];R3) is a limit point of μN under the
topology induced by convergence in law. Then, μ has a density (ρs)s∈[0,T] a.s. as we have seen, and for fixed ϕ ∈ C2

b(R
3) and t ∈ [0,T], ρ satisfies

the following integral equation almost surely:

⟨ρt ,ϕ⟩ − ⟨ρ0,ϕ⟩ −
1
2∫

t

0
∫R3×R3

(∇ϕ(x) −∇ϕ(y)) ⋅ F(x − y)ρs(x)ρs(y) dxdy ds − ∫
t

0
⟨ρs,Δϕ⟩ds = 0. (3.2)

Proof. We divide our proof into the following steps.
Step 1 The integral (3.2) involves the singularity; therefore, we need to show that it is well-defined. Since ϕ ∈ C2

b(R
3), we only need to

show that the third term is integrable for a.s. ω ∈ Ω. By Tonelli’s theorem, it suffices to show that

E[1
2∫

t

0
∫R2d
∣(∇ϕ(x) −∇ϕ(y)) ⋅ F(x − y)∣μs(dx)μs(dy)ds] <∞. (3.3)

Since ϕ ∈ C2
b(R

3), by Lemma 2.5, we take d = 3 and 1
3 < β ≤

2
3 , and there exists a constant C depending only on ϕ,T, and β such that

E[1
2∫

t

0
∫R3×R3

∣(∇ϕ(x) −∇ϕ(y)) ⋅ F(x − y)∣μs(dx)μs(dy)ds]

≤ 2∥∇2ϕ∥∞E[∣∫
t

0
∫R3×R3

ρs(x)ρs(y)
∣x − y∣

dxdyds∣]

≤ CE[∫
T

0
(I2(ρ⊗2s )

3β
2 + 1)ds] = CE[∫

T

0
I1(ρs)

3β
2 ds] + CT.

(3.4)

Since β < 2
3 , using Hölder’s inequality, there exists a constant C = C(ϕ,T,β) such that

E[∫
T

0
I1(ρs)

3β
2 ds] ≤ C(∫

T

0
I(ρs)ds)

3β
2

. (3.5)

Combining (2.65), (3.4), and (3.5) together, we obtain (3.3), which means that the integral (3.2) is well-defined.
Now from Lemma 2.8 and (2.60), we can rewrite the integral (3.2) as

⟨μt ,ϕ⟩ − ⟨ρ0,ϕ⟩ −
1
2∫

t

0
∫R3×R3

(∇ϕ(x) −∇ϕ(y)) ⋅ F(x − y)μs(dx)μs(dy)ds − ∫
t

0
⟨μs,Δϕ⟩ds

= −
1
2∫

t

0
∬

(C([0,T];R3))2
(∇ϕ(Xs) −∇ϕ(Ys)) ⋅ F(Xs − Ys)μ(dX)μ(dY)ds

+ ∫
C([0,T];R3)

(ϕ(Xt) − ϕ(X0))μ(dX) − ∫
C([0,T];R3)

∫

t

0
Δϕ(Xs)dsμ(dX).

(3.6)

For X,Y ∈ C([0,T];R3), we define the functional

ψ(X,Y) = ϕ(Xt) − ϕ(X0) −
1
2∫

t

0
(∇ϕ(Xs) −∇ϕ(Ys)) ⋅ F(Xs − Ys)ds − ∫

t

0
Δϕ(Xs)ds, (3.7)

and similarly, ψε(X,Y) is the functional with F being replaced by Fε. We also define functionalKψ andKψε on P(C([0,T];Rd)) by

Kψ(ν) = ∫
(C([0,T];R3))2

ψ(X,Y)ν(dX)ν(dY),

Kψε (ν) = ∫
(C([0,T];R3))2

ψε(X,Y)ν(dX)ν(dY).
(3.8)
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If ν is a randommeasure, i.e., a (measurable) mapping from (Ω,F ,P) to P(C([0,T];R3)), thenKψ(ν) is a random variable on (Ω,F ,P). Since
we can change the order of integration in light of (3.3), from definition (3.8), we see that for a.s. ω ∈ Ω, the left side of (3.2) is actually equal to
Kψ(μ(ω)). Therefore, it suffices to show that E[∣Kψ(μ)∣] = 0.

For ε > 0, one certainly has

E[∣Kψ(μ)∣] ≤ E[∣Kψ(μ)−Kψε (μ)∣] + E[∣Kψε (μ)∣]. (3.9)

In the following steps, we show that each term of (3.9) goes to 0 as ε→ 0.
Step 2 Now, we investigate the first term of (3.9). For fixed ω ∈ Ω, μ is a probability measure on C([0,T],R3); thus, we can apply

Lemma 2.8 and obtain

E[∣Kψ(μ)−Kψε (μ)∣]

=
1
2
E[∣∫

t

0
∫
C×C
[∇ϕ(Xs) −∇ϕ(Ys)] ⋅ [Fε(Xs − Ys) − F(Xs − Ys)]μ(dX)μ(dY)ds∣]

=
1
2
E[∣∫

t

0
∬R3×R3

[∇ϕ(x) −∇ϕ(y)] ⋅ [Fε(x − y) − F(x − y)]μs(dx)μs(dy)ds∣]

=
1
2
E[∣∫

t

0
∬
∣x−y∣<ε

[∇ϕ(x) −∇ϕ(y)] ⋅ [Fε(x − y) − F(x − y)]ρs(x)ρs(y)dxdyds∣]

≤ CdE∥∇
2ϕ∥∞∫

t

0
∬
∣x−y∣<ε

ρs(x)ρs(y)
∣x − y∣

dxdyds.

(3.10)

In the equation, we used the fact that ∣Fε(x)∣ ≤ ∣F(x)∣ and Fε(x) = F(x) when ∣x∣ ≥ ε. Now, we apply (2.16) in Lemma 2.5 by taking γ = 1 and
obtain

E∫
t

0
∬
∣x−y∣<ε

ρs(x)ρs(y)
∣x − y∣

dxdyds ≤ Cβε
3β−1E∫

t

0
I(ρ⊗2s )

3β
2 ds

≤ C(β,T)ε3β−1(E∫
t

0
I(ρs)ds)

3β
2
,

(3.11)

where 1
3 < β <

2
3 . Therefore, by (2.65), there exists C = C(ϕ,T,β, ρ0) such that

E[∣Kψ(μ)−Kψε (μ)∣] ≤ Cε
3β−1. (3.12)

Step 3 For the second term of (3.9), since ψε is bounded and continuous on C([0,T];R3) × C([0,T];R3) and μN → μ in law, applying
Lemma 2.10 withX = C([0,T];R3), the random variableKψε (μ

N) converges toKψε (μ) in law for fixed ε. SinceKψε (μ
N) andKψε (μ) are bounded

by ∥ψε∥L∞ , we can take ϕ(x) = ∣x∣ ∧ ∥ψε∥L∞ as the test function and conclude

lim
N→∞

E[∣Kψε (μ
N)∣] = E[∣Kψε (μ)∣]. (3.13)

Now, we investigate E[∣Kψε (μ
N)∣]. By definition, it holds that

Kψε (μ
N)

1
N2

N

∑
i,j=1

ψε(Xi,N
t ,Xj,N

t ) =
1
N2

N

∑
i,j=1
[ϕ(Xi,N

t ) − ϕ(Xi,N
0 ) −

1
2∫

t

0
(∇ϕ(Xi,N

s ) −∇ϕ(Xj,N
s )) ⋅ Fε(Xi,N

s − X
j,N
s )ds − ∫

t

0
Δϕ(Xi,N

s )ds]. (3.14)

Now, we apply the Itô’s formula to ϕ ∈ C2
b(R

3) and obtain

N

∑
i=1

(ϕ(Xi,N
t ) − ϕ(Xi,N

0 )) =
1
N

N

∑
i=1

N

∑
k=1,k≠i

∫

t

0
∇ϕ(Xi,N

s ) ⋅ F(Xi,N
s − X

k,N
s )ds +

N

∑
i=1
∫

t

0
Δϕ(Xi,N

s )ds +
√
2

N

∑
i=1
∫

t

0
∇ϕ(Xi,N

s ) ⋅ dBi
s. (3.15)

Note that by symmetry
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N

∑
j=1

1
N

N

∑
i=1

N

∑
k=1,k≠i

∫

t

0
∇ϕ(Xi,N

s ) ⋅ F(Xi,N
s − X

k,N
s )ds =

1
2

N

∑
i=1

N

∑
j=1,j≠i

∫

t

0
(∇ϕ(Xi,N

s ) −∇ϕ(Xj,N
s )) ⋅ F(Xi,N

s − X
j,N
s )ds. (3.16)

Therefore, one has

Kψε (μ
N)

1
2N2

N

∑
i=1

N

∑
j=1,j≠i

∫

t

0
[(∇ϕ(Xi,N

s ) −∇ϕ(Xj,N
s )) ⋅ (F(Xi,N

s − X
j,N
s ) − Fε(Xi,N

s − X
j,N
s ))]ds +

√
2

N

N

∑
i=1
∫

t

0
∇ϕ(Xi,N

s ) ⋅ dBi
s (3.17)

and thus

E[∣Kψε (μ
N)∣] ≤

N − 1
2N ∫

t

0
∬R3×R3

ρ(2),Ns (x, y)∣(∇ϕ(x) −∇ϕ(y)) ⋅ (F(x − y) − Fε(x − y))∣dxdyds + E[∣
√
2

N

N

∑
i=1
∫

t

0
∇ϕ(Xi,N

s ) ⋅ dBi
s∣]. (3.18)

Again note that Fε(x) = F(x) when ∣x∣ ≥ ε, and one has

∫

t

0
∬R3×R3

ρ(2),Ns (x, y)∣(∇ϕ(x) −∇ϕ(y)) ⋅ (F(x − y) − Fε(x − y))∣dxdyds ≤ 2Cd∥∇
2ϕ∥∞∫

t

0
∬
∣x−y∣<ε

ρ(2),Ns (x, y)
∣x − y∣

dxdyds. (3.19)

Applying Lemma 2.5 once more with 1
3 < β <

2
3 and γ = 1, one obtains

∫

t

0
∬
∣x−y∣<ε

ρ(2),Ns (x, y)
∣x − y∣

dxdyds ≤ Cβε
3β−1
∫

t

0
I(ρ(2),Ns )

3β
2 ds ≤ C(β,T)ε3β−1(∫

t

0
I(ρ(2),Ns (x, y))ds)

3β
2
≤ Cε3β−1. (3.20)

Here, the constant C = C(ϕ,T,β, ρ0) comes from (2.62) for j = 2.
For the second term of (3.18), from the independence of the Brownian motions {Bi

t}
N
i=1, one can easily calculate its second moment,

E[∣
√
2

N

N

∑
i=1
∫

t

0
∇ϕ(Xi,N

s ) ⋅ dBi
s∣
2
] =

2
N2

N

∑
i=1
∫

t

0
E[∣∇ϕ(Xi,N

s )∣2]ds ≤
2
N
T∥∇ϕ∥2∞, (3.21)

which implies

E[∣
√
2

N

N

∑
i=1
∫

t

0
∇ϕ(Xi,N

s ) ⋅ dBi
s∣] ≤

C
√
N
. (3.22)

Plugging (3.20) and (3.22) into (3.18), one finds that for any ε,N > 0,

E[∣Kψε (μ
N)∣] ≤ C(

1
√
N

+ ε3β−1). (3.23)

Step 4 Finally, we combine the estimates above together.
Plugging (3.23) into (3.13), one finds that

E[∣Kψε (μ)∣] = lim
N→∞

E[∣Kψε (μ
N)∣] ≤ Cε3β−1. (3.24)

By (3.12),
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E[∣Kψ(μ)−Kψε (μ)∣] ≤ Cε
3β−1. (3.25)

Finally by (3.24) and (3.25),

E[∣Kψ(μ)∣] ≤ lim inf
ε→0

(E[∣Kψ(μ)−Kψε (μ)∣] + E[∣Kψε (μ)∣]) = 0. (3.26)

This is the desired conclusion.

Note that in (3.2), we have symmetrized Eq. (3.1). This symmetrization technique reduces the singularity from ∣x∣−3 to ∣x∣−2 so that
Lemma 2.5 can be applied to control the singularity. This is one of the important observations in this work. The bottleneck for general d is that
the singularity allowed in Lemma 2.5 is only (0, 2) for all d. In fact, for d ≥ 4 cases, Proposition 3.2 below (the proof does not rely on d) actually
implies that (3.3) still holds. Therefore, step 1 and step 2 of the proof are still valid with (3.12) replaced by limε→0E[∣Kψ(μ)−Kψε (μ)∣] = 0.
However, the difficulty arises from the N particle system (3.20), where the Fisher Information no longer provides the uniform estimate and
we know nothing about

lim
ε→0

lim
N→∞∫

t

0
∬
∣x−y∣<ε

ρ(2),Ns (x, y)
∣x − y∣d−2

dxdyds.

Recalling the Proof of Lemma 2.5, if we can find better uniform Lp estimates for the density of Xi,N
t − X

j,N
t , then one might be able to pass the

limit for d ≥ 4 cases. Hence, we think that for general d ≥ 4, the entropy way does not work unless new estimates are found.
We now give some Lp estimates for the density ρ of the limit measure μ. For convenience, we will then reserve h as

h = (−Δ)−1ρ = g ∗ ρ. (3.27)

Lemma 3.1. Let d = 3. Let ρ be the density of the (random) limit measure μ. Then, for a.s. ω ∈ Ω, we have the following claims:

ρ ∈ L
2q

4q−3 (0,T; Ẇ1,q) ∩ L
2p

3(p−1) (0,T;Lp), p ∈ [1, 3], q ∈ [1, 3/2],

∇h ∈ L2p1/(2p1−3)(0,T;Lp1 ), p1 ∈ (3/2,∞).

Consequently, ρ∇h ∈ L1(0,T;L1(R3)) a.s.

The claims for ρ follow from Eq. (2.65) and Lemma 2.4. The claims of ∇h are due to the Hardy-Littlewood-Sobolev inequality since
∇h = ∇g ∗ ρ. We skip the details.

By Proposition 3.1 and Lemma 3.1, now we are able to prove that the density of the limit measure μ is a.s. a weak solution for Eq. (1.7).

Theorem3.1. Suppose that d = 3 and ρ0,μN ,μ, ρ satisfy the assumptions in Proposition 3.1, i.e., the common density ρ0 satisfies H(ρ0) <∞,
m2(ρ0) <∞, and E(ρ0) <∞, while the random measure μ on C([0,T];R3) is a limit point of μN under the topology induced by convergence in
law with a.s. density ρ. Then, for a.s. ω ∈ Ω, ρ is a weak solution to the nonlinear Fokker-Planck equation (1.7).

Proof. First, we fix ϕ and show that (3.2) holds for all t ∈ [0,T] and a.s. ω ∈ Ω. In fact, by Proposition 3.1 and (3.4), the following set has
probability 1:

A = {ω ∈ Ω∣∫
t

0
∫R3×R3

∣(∇ϕ(x) −∇ϕ(y)) ⋅ F(x − y)∣μs(dx)μs(dy)ds <∞, (3.2) holds for t ∈ [0,T] ∩Q}. (3.28)

For any probability measure μ ∈ P(C([0,T];R3))), ψ ∈ Cb(R3), and tn → t, we may apply the dominant convergence theorem,

∫
C([0,T];R3)

ψ(Xtn )μ(dX)→ ∫
C([0,T];R3)

ψ(Xt)μ(dX), (3.29)

which gives

lim
n→∞∫R3

ψ(x)μtn (dx) = ∫R3
ψ(x)μt(dx) (3.30)

by Lemma 2.8. From (3.30), we see that both ⟨Δϕ,μt⟩ and ⟨ϕ,μt⟩ are continuous functions on [0,T]. The continuity then implies that for
ω ∈ A, (3.2) holds for all t ∈ [0,T].
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Now, we show that for a.s. ω ∈ Ω, ρ(ω) satisfies (3.2) both for all t ∈ [0,T] and all ϕ ∈ C2
c (R3). In fact, since C2

c (R3) is separable (note that
C2
b(R

3) is not separable), there is a countable dense set {ϕn}. Then, for a.s. ω ∈ Ω, μ(ω) satisfies (3.2) for all t ∈ [0,T] and ϕ = ϕn. Now, in light
of (3.4), for a.s. ω ∈ Ω, the left side of (3.2) can be viewed as a bounded linear functional on C2

c (R3). The conclusion then follows from the
density of {ϕn}.

Finally, ρ∇h ∈ L1(0,T;L1(R3)) from Lemma 3.1, and we can then change the symmetric integral equation (3.2) into the usual
one (3.1).

The weak solution defined above has the minimal regularity requirement. In fact, the system we consider could give more information
and we can improve the regularity. We first of all have the following important claim about the energy.

Proposition 3.2. Consider a general dimension d ≥ 3. Suppose μ is any limit point of μN which a.s. has density as we have seen. Then, for
a.s. ω ∈ Ω, the energy

E (t,ω) ∶=
1
2∬Rd×Rd

g(x − y)μt(dx)μt(dy) (3.31)

is bounded by the initial energy

sup
t∈[0,T]

E (t,ω) ≤ E(ρ0) =
1
2∬Rd×Rd

g(x − y)ρ0(x)ρ0(y) dxdy.

Proof. From (2.40), it holds that

sup
0≤t≤T

1
N2

N

∑
i,j=1,i≠j

gε(Xi,ε
t − X

j,ε
t ) ≤

1
N2

N

∑
i,j=1,i≠j

gε(Xi
0 − X

j
0) +

1
N

sup
0≤t≤T

(−Mε
t ). (3.32)

Since for fixed N, gε(Xi,ε
t − X

j,ε
t ) = g(X

i
t − X

j
t) for all t ∈ [0,T] outside a set Aε whose probability goes to zero as ε→ 0 by the noncollision

result, we then have almost surely that

sup
0≤t≤T

1
N2

N

∑
i,j=1,i≠j

g(Xi
t − X

j
t) = limε→0

sup
0≤t≤T

1
N2

N

∑
i,j=1,i≠j

gε(Xi,ε
t − X

j,ε
t ).

Fatou’s lemma gives us that

E
⎡
⎢
⎢
⎢
⎢
⎣

sup
0≤t≤T

1
N2 ∑

i,j:i≠j
g(Xi

t − X
j
t) − 2E(ρ0)

⎤
⎥
⎥
⎥
⎥
⎦

+

≤ lim inf
ε→0

E
⎛

⎝

1
N2 ∑

i,j:i≠j
gε(Xi

0 − X
j
0) − 2E(ρ0)

⎞

⎠

+

+ lim inf
ε→0

1
N
E[sup

0≤t≤T
(−Mε

t )]
+
.

(3.33)

Doob’s Lp inequality for martingale (p. 203, Theorem 7.31 in Ref. 33) and (2.41) imply that

1
N
∥ sup
0≤t≤T

(−Mε
t )∥

L2(P)
≤

1
N
(E sup

0≤t≤T
(−Mε

t )
2
)

1/2

≤
2
N
E[(Mε

T)
2
]

1
2 ≤

Cd,ρ0
√
N
. (3.34)

Hence, the last term goes to zero as N →∞. Moreover, at t = 0, the joint distribution of (Xi
0,X

j
0,X

m
0 ,X

n
0 ) is simply ρ⊗40 if they are all distinct.

In the square of∑i,j:i≠jg
ε(Xi

0 − X
j
0), the number of terms where some Xi

0’s are repeated is O(N3). Hence, most terms are those where the four
Xi
0’s are distinct. Using this fact and direct computation, we find

lim
N→∞

lim inf
ε→0

E( 1
N2 ∑

i,j:i≠j
gε(Xi

0 − X
j
0) − 2E(ρ0))

+

≤ lim
N→∞

lim inf
ε→0

⎛

⎝
E∣ 1
N2 ∑

i,j:i≠j
gε(Xi

0 − X
j
0) − 2E(ρ0)∣

2⎞

⎠

1
2

= 0. (3.35)

Consequently,

lim
N→∞

E[sup
0≤t≤T

1
N2 ∑

i,j:i≠j
g(Xi

t − X
j
t) − 2E(ρ0)]

+
= 0.
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Now, for ν ∈ P(C[0,T],Rd), we define

Qt(ν) ∶=∬Dc
g(x − y)νt(dx)νt(dy), (3.36)

where νt is defined in (2.58).
We also define

Q(ν) ∶= sup
0≤t≤T

Qt(ν) = sup
0≤t≤T
∬Dc

g(x − y)νt(dx)νt(dy). (3.37)

We claim that if we consider the topology induced by weak convergence on P(C[0,T],Rd), then Q(ν) is a lower semicontinuous functional
on P(C[0,T],Rd). In fact, we can define

Q(m)
t (ν) ∶=∬

(C([0,T];Rd))2
g(m)(X(t) − Y(t))ν(dX)ν(dY),

where g(m)(x) = g(∣x∣) if ∣x∣ ≥ 1/m and g(m)(x) = m∣x∣g(1/m) if ∣x∣ < 1/m. Since g(m) is a continuous bounded function, by Ref. 35, Theorem 2.8
(p. 23), Q(m) is a continuous functional. Moreover, by the monotone convergence theorem, ∀ν ∈ P(C[0,T],Rd), Qt(ν) = supmQ(m)(ν). Hence,
Qt is lower semicontinuous, and thus, Q = suptQt is lower semicontinuous.

From the previous proof, a subsequence of {μN} converges in law to some randommeasure μ. Since P(C[0,T],Rd) is now a Polish space,
from Ref. 36, p. 415, Theorem 11.7.2, there exists some probability space (Ω̃, F̃ , P̃) and random measures μ̃N , μ̃ : (Ω̃, F̃ , P̃)→ P(C[0,T],Rd)
such that μ̃N → μ̃ a.s., and μ̃N , μ̃ has the same law as μN ,μ. By the Fatou Lemma and the lower semicontinuity, we have

E[(Q(μ) − 2E(ρ0))+] = Ẽ[(Q(μ̃) − 2E(ρ0))+] ≤ lim inf
N→∞

Ẽ[(Q(μ̃N) − 2E(ρ0))+] = lim inf
N→∞

E[(Q(μN) − 2E(ρ0))+] = 0. (3.38)

Moreover, since μ has density almost surely, then almost surely it holds that

sup
0≤t≤T
∬Rd×Rd

g(x − y)μt(dx)μt(dy) ≤ 2E(ρ0). (3.39)

With the above estimate, ρ ∈ L∞(0,T;H−1) and∇h ∈ L∞(0,T;L2). Then, we have the following improved weak solution, and we provide
the proof in Appendix B.

Proposition 3.3. Let d = 3. Suppose μ(.) is a time-dependent probability measure, which has a density ρ. Assume that ρ is a weak solution
to (1.7) in the sense of Definition 3.1. If moreover ∫

T
0 I(μt) dt <∞ and supt∈[0,T]∬R3×R3g(x − y)μt(dx)μt(dy) ≤ 2E(ρ0), then

1. ρ ∈ L3r/(5r − 6)(0,T;Lr) for r ∈ [3/2, 3]; ∇h ∈ Lq/(q − 2)(0,T;Lq) for q ≥ 2; consequently, ρ∇h is in L3p/(8p − 6)(Lp) for 1 ≤ p ≤ 6
5 (recall

h = g ∗ ρ);
2. in L6/5((0,T),W−1, 12/11), it holds that

∂tρ = ∇ ⋅ (ρ∇h) + Δρ. (3.40)

Moreover, ρ is a mild solution in L4/3(0,T;L3/2(R3)) so that

ρ(t) = etΔρ0 + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ∇h) ds. (3.41)

Note that the mild solution form here does not necessarily give the continuity of ρ(t) at t = 0 because we do not know whether the second
term goes to 0 as t → 0+.

IV. A COMMENT ABOUT PROPAGATION OF CHAOS IN 3D
We have established the fact that the limit measure is almost surely a weak solution to the nonlinear Fokker-Planck equation (1.7). An

important question in the mean field limit research is whether we have propagation of chaos. In other words, we expect that the j-marginal
tends to the tensor product of the limit law ρ. First, we recall the following standard equivalent notions of propagation of chaos which can be
found in the lecture of Sznitman (Proposition 2.2 in Ref. 15).
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Definition 4.1. Let X be a Polish space and f be a probability measure on X . A sequence of symmetric probability measures f N on XN is
said to be f−chaotic, if one of the three following equivalent conditions is satisfied:

(i) The sequence of second marginals f (2),N⇀ f ⊗ f as N →∞.
(ii) For all j ≥ 1, the sequence of j-th marginals f (j),N⇀ f⊗j as N →∞;
(iii) Let (X1,N , . . . ,XN,N) ∈ XN be drawn randomly according to f N . The empirical (random) measure μN = 1

N∑iδXi,N converges in law to the
constant probability measure f as N →∞.

Note that since X is a Polish space, there exists a metric d0 on P(X ) such that for νN , ν ∈ P(X ), νN → ν in law if and only if d0(νN , ν)→ 0
as N →∞. Therefore, as f is constant, (iii) is equivalent to μN converging to f in probability.

The key point of propagation of chaos is therefore to establish a strong-weak uniqueness principle for the solutions so that ρt(ω) is a.s.
deterministic. The definition of weak solution in Definition 3.1 is too weak, and it is very hard to prove the uniqueness. We need to put more
constraints to make it unique. In fact, we have the strong-weak uniqueness principle by assuming ρ ∈ L2loc((0,T);L

2(R3)).

Proposition 4.1. Let the initial density ρ0 ∈ Hm(R3) with m > 3/2. Suppose that μ(.) is a time-dependent probability measure, which has a
density ρ. Assume that ρ is a weak solution to (1.7) in the sense of Definition 3.1. If moreover ∫

T
0 I(μt) dt <∞, ρ ∈ L2loc((0,T);L

2(R3)), and

sup
t∈[0,T]

∬R3×R3
g(x − y)μt(dx)μt(dy) ≤ 2E(ρ0) =∬R3×R3

g(x − y)ρ0(x)ρ0(y) dxdy,

then ρt is the unique strong solution of (1.7).

The Proof of this proposition, though important, is tedious, and we attach it in Appendix B. In fact, we do not have good enough a priori
Lp estimates, so the usual hypercontractivity method for Keller-Segel equations (for instance, see Refs. 37 and 38) will not work. What we use
is an energy method appeared in Ref. 12.

Recall that the energy equality (2.26) tells us that

sup
N,ε
∫

T

0
∬R3×R3

Jε(x1 − x2)μ(2)N,ε(x1, x2) dx1dx2dt <∞. (4.1)

Formally, if we take ε→ 0, we would have

∫

T

0
ρ̃N(0, t) dt ≤ C,

where ρ̃N is the density for XN
1 − X

N
2 . As N →∞, it is expected that

∫

T

0
∫R3

μ(2)(x, x) dxdt ≤ C1.

This should be

E∫
T

0
∫R3

ρ2 dxdt ≤ C1,

which is desired. However, rigorously justifying these limits needs some uniform convergence, and this seems hard. We will keep on working
on the weak-strong uniqueness principle.

One may be tempted to send N →∞ first in

sup
N,ε
∫

T

0
∬R3×R3

Jε(x1 − x2)μ(2)N,ε(x1, x2) dx1dx2dt < C.

The mollified system has the propagation of chaos, and the limit measure is unique, which is the strong solution ρε to the nonlinear
Fokker-Planck equation with F being replaced by Fε. Although ρε has a uniform L2(0,T;L2) bound, one can show that ρε converges to the
strong solution of the nonlinear Fokker-Planck equation constructed in Appendix A, instead of the limit measure ρ. Hence, this does not
work.

Remark 4.1. Note that for the d = 2 case, the assumption ρ ∈ L2(0,T;L2(R2)) is a direct corollary from (2.12) in Lemma 2.4 by taking
p = d = 2, and one can check that the Proof of Proposition 4.1 is valid for d = 2. Also, for Proposition 3.1, the self-consistent martingale
problem proved in Sec. 4 of Ref. 23 implies the conclusion. Hence, combining these two results, one obtains the propagation of chaos result
for d = 2 easily.
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Remark 4.2. In fact, in the energy estimate, one also expects that the first negative term will give us

∫

T

0
∫R3

ρ∣∇h∣2 dxdt < C. (4.2)

If this is true, many proofs can be simplified. For example, we will then have ∇ρ ⋅ ∇h = ∇√ρ(√ρ∇h) ∈ L1(0,T;L1). Then, using the mild
solution form (3.41) and the non-negativity of ρ2, one finds ρ ∈ L2(0,T;L2). However, (4.2) seems difficult to justify.

With Theorem 3.1 and Proposition 4.1, we conclude the following.

Theorem 4.1. For d = 3, let {(Xi,N
t )}Ni=1 be the unique solution to (1.1) with iid initial data {(X

i,N
0 )}Ni=1. Suppose the common initial density

ρ0 ∈ L1(R3) ∩Hm(R3) for m > 3/2, with m2(ρ0) <∞, H1(ρ0) <∞. Suppose that any limit point of the empirical measure μN defined in (1.6)
satisfies

E∫
T

0
∫R3

ρ2 dxdt <∞.

Then, μN goes in probability to a deterministic measure μ ∶= (ρt dx)t∈[0,T] in P(C([0,T];R3)) as N →∞, where ρt is the unique strong solution
to (1.7) with initial value ρ0.

Proof. We consider the metric d0 on P(C([0,T],R3)) induced by weak convergence. From Proposition 2.2, we know that L(μN) is tight
in P(P(C([0,T];R3))). Therefore, for any subsequence of μN , there exists a further subsequence {μNk} converging in law to some random
measure μ: (Ω,F ,P)→ C([0,T];R3). Then, by Theorem 3.1, for a.s. ω ∈ Ω, the limiting point μ has a density ρ, which is a weak solution
to (1.7). By the assumption and Proposition 4.1, the weak solution to (1.7) is unique. Therefore, if we denote μ the (deterministic) random
measure with density ρ, which is the strong solution to (1.7), then for any 0 ≤ t ≤ T and ω ∈ Ω, μ = μ for a.s. ω ∈ Ω. Since the subsequence
{μNk} converge in law to μ and μ is a.s. equal to the deterministic probability measure μ, we see that μNk converge in probability to μ. In other
words, any subsequence of {μN} has a further subsequence {μNk} converging in probability to μ. Hence, {μN} converges in probability to the
deterministic probability measure μ in P(C([0,T];R3)).
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APPENDIX A: NOTES ON THE NONLINEAR FOKKER-PLANCK EQUATION

In this part, we investigate some properties of the nonlinear Fokker-Planck equation (1.7). We will show the local existence and unique-
ness of strong solution for (1.7), given the initial data are small in some space Hs, and then, we will discuss some potential methods for the
uniqueness of the weak solution.

First, we state a useful lemma in Ref. 39, which is some type of Banach fixed point theorem.

Lemma A.1. Let (X, ∥ ⋅ ∥X) be a Banach space and H : X × X → X be a bounded bilinear form satisfying ∥H(x1, x2)∥X ≤ η∥x1∥X∥x2∥X for
all x1, x2∈ X and a constant η > 0. Then, if 0 < ε < 1

4η and if f ∈ X is such that ∥ f ∥X< ε, the equation x = f +H(x, x) has a solution in X such
that ∥x∥X≤ 2ε. This solution is unique in the ball B(0, 2ε).

In light of Duhamel’s principle, we define the mild solution of (1.7) in the following sense.

Definition A.1. Let X be a Banach space over space and time. We call ρ ∈ X a mild solution to (1.7) with initial data ρ0 if ρ satisfies the
following equation in X:

ρ(x, t) = etΔρ0 + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ(s, ⋅)∇(g ∗ ρ(s, ⋅)))ds. (A1)

Now, we have the following local existence and uniqueness of mild solution:

Proposition A.1. Suppose m > d
2 , d ≥ 3, and the initial data ρ0 ∈ L

1(Rd) ∩Hm(Rd). Then, there exists a T > 0 such that Eq. (1.7) admits a
unique mild solution ρ in C([0,T];L1(Rd)) ∩ C([0,T];Hm(Rd)). If we define Tb to be the largest time of existence, i.e.,
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Tb = sup{T > 0∣ (1.7) has amild solution in C([0,T];L1(Rd)) ∩ C([0,T];Hm(Rd))},

then Tb<∞ implies that lim supt→T−b
(∥ρt∥Hm + ∥ρt∥L1 ) = +∞. Moreover, the integral of the mild solution is preserved, i.e.,

∫Rd
ρ(x, t)dx = ∫Rd

ρ0(x)dx. (A2)

Proof. We will apply Lemma A.1 to prove this result. We set

X ∶= C([0,T];L1(Rd)) ∩ C([0,T];Hm(Rd))

with norm ∥u∥X ∶= ∥u∥C([0,T];L1) + ∥u∥C([0,T];Hm) and define the bilinear form H on X × X by

H(u, v) = ∫
t

0
e(t−s)Δ(∇ ⋅ (u(s, ⋅)∇(g ∗ v(s, ⋅))) ds.

We also denote

∥ f ∥ ∶= ∥ f ∥L1 + ∥ f ∥Hm

for f ∈ L1(Rd) ∩Hm(Rd).
First, since Hm is an algebra as long asm > d

2 , for f 1, f 2 ∈ L
1(Rd) ∩Hm(Rd), we have

∥ f 1∇(g ∗ f 2)∥Hm ≤ Cm∥ f 1∥Hm∥∇(g ∗ f 2)∥Hm . (A3)

Note that

∥∇(g ∗ f 2)∥2Hm = ∫Rd
∣∇̂(g ∗ f2)(ξ)∣2(1 + ∣ξ∣2)mdξ

= ∫
∣ξ∣≤1

∣̂f 2∣2(1 + ∣ξ∣2)m

∣ξ∣2
dξ + ∫

∣ξ∣>1

∣̂f 2∣2(1 + ∣ξ∣2)m

∣ξ∣2
dξ

≤ Cm,d∥f̂2∥
2
∞ + ∥ f 2∥2Hm .

(A4)

Combining (A3) and (A4) and the fact that ∥̂f 2∥∞ ≤ ∥ f 2∥L1 , one finds that

∥ f 1∇(g ∗ f 2)∥Hm ≤ Cm,d∥ f 1∥∥ f 2∥. (A5)

For 0 ≤ α < 1, one also has the following for f ∈ Hm:

∥etΔ∇ f ∥2Hm+α = ∫Rd
∣̂f (ξ)∣2(1 + ∣ξ∣2)m+α

∣ξ∣2e−2∣ξ∣
2tdξ

≤ ∥ f ∥2Hm sup
ξ∈Rd

(∣ξ∣2(1 + ∣ξ∣2)αe−2∣ξ∣
2t)

≤ C∥ f ∥2Hm (t−1 + t−1−α).

(A6)

Hence, for u, v ∈ X, one has that

sup
t∈[0,T]

∥H(u, v)∥Hm+α ≤ C(T1/2 + T(1−α)/2)∥u∥X∥v∥X . (A7)

The heat kernel P(x, t) = 1

(4πt)
d
2
e−

∣x∣2
4t satisfies ∥∇P(⋅, t)∥L1 = αdt−

1
2 , where αd is a constant. Note that e(t−s)Δ∇ ⋅ (u∇(g ∗ v)) = ∫Rd∇P

(x − y, t − s) ⋅ u∇(g ∗ v)(y, s) dy. One thus has

sup
t∈[0,T]

∥H(u, v)∥L1 ≤ C∫
t

0
(t − s)−

1
2 ∥u∇(g ∗ v)∥1(s) ds

≤ C∥u∥X∥v∥X∫
T

0
(T − s)−1/2 ds.

(A8)

Note that we used ∥u(s)∇(g ∗ v)(s)∥1 ≤ ∥u(s)∥2∥∇g ∗ v(s)∥2 ≤ C∥u(s)∥Hm∥v(s)∥ by settingm = 0 in (A4).
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We now check that H(u, v) ∈ X. By (A7) and (A8), it is easy to verify that H(u, v) is continuous at t = 0 in the Hm+α and L1 norm. We
now fix t > 0. Pick δ1 ∈ (0, t) and set w = u∇(g ∗ v). We calculate for ∣δ∣ small enough (note that δ can be negative) that

∥H(u, v)(t + δ) −H(u, v)(t)∥Hm+α ≤ ∫

t−δ1

0
∥(e(t+δ−s)Δ − e(t−s)Δ)∇ ⋅ w∥Hm+αds

+ ∫
t

t−δ1
∥e(t−s)Δ∇ ⋅ w(s)∥Hm+αds + ∫

t+δ

t−δ1
∥e(t+δ−s)Δ∇ ⋅ w(s)∥Hm+αds. (A9)

Using (A6), the last two terms of (A9) are bounded by C(∣δ∣ + δ1)min( 12 ,
1−α
2 )
∥u∥X∥v∥X . The first term of (A9) is similarly estimated as in (A6),

∫

t−δ1

0
∥(e(t+δ−s)Δ − e(t−s)Δ)∇ ⋅ w(s)∥Hm+αds

≤ C∥u∥X∥v∥X∫
t−δ1

0
∥(1 + ∣ξ∣2α)(e−∣ξ∣

2(t+δ−s)
− e−∣ξ∣

2(t−s)) ⋅ ξ∥1/2∞ ds

≤ C∥u∥X∥v∥X∫
t

δ1
∥ξe−∣ξ∣

2(s−δ1/2)(1 + ∣ξ∣2α)(e−δ1 ∣ξ∣
2
/2
− e−∣ξ∣

2(δ1/2+δ))∥1/2∞ ds.

(A10)

By discussing the domains for ∣ξ∣ ≥ L and ∣ξ∣ ≤ L, one can easily find that as δ → 0, the ∥ ⋅ ∥ ∞ norm goes to zero. Hence,H(u, v) is continuous
at t under the Hm+α norm. So, we have actually verified that H(u, v) ∈ C([0,T];Hm+α(Rd)) where 0 ≤ α < 1.

Similar to (A9), we have

∥H(u, v)(t + δ) −H(u, v)(t)∥L1 ≤ ∫
t−δ1

0
∥(e(t+δ−s)Δ − e(t−s)Δ)∇ ⋅ w(s)∥L1ds

+ ∫
t

t−δ1
∥e(t−s)Δ∇ ⋅ w(s)∥L1ds + ∫

t+δ

t−δ1
∥e(t+δ−s)Δ∇ ⋅ w(s)∥L1ds.

(A11)

Similarly as in (A8), the last two terms of (A11) are controlled by 4Cd
√
∣δ∣ + δ1∥u∥X∥v∥X . For the first term, we similarly write

∫

t−δ1

0
∥(e(t+δ−s)Δ − e(t−s)Δ)∇ ⋅ w(s)∥L1ds

≤ C∥u∥X∥v∥X∫
t−δ1

0
∥∇P(⋅, t + δ − s) −∇P(⋅, t − s)∥L1 .

(A12)

Since ∇P ∈ C([δ1,T],L1(Rd)) and thus uniformly continuous in time on [δ1,T]. This term goes to zero as δ → 0. Hence, H(u, v)
∈ C([0,T];L1(Rd)). We thus have H(u, v) ∈ X with

∥H(u, v)∥X ≤ Cd,m
√
T∥u∥X∥v∥X . (A13)

Now, we apply Lemma A.1 by taking f = etΔρ0. Since

∥etΔρ0∥L1 = ∥P(⋅, t) ∗ ρ0∥L1 ≤ ∥ρ0∥L1 ,

∥etΔρ0∥Hm = ∥e−∣ξ∣
2t(1 + ∣ξ∣2)

m
2 ρ̂0∥L2 ,

we find that ∥ f ∥X ≤ ∥ρ0∥L1 + ∥ρ0∥Hm = ∥ρ0∥. Therefore, by Lemma A.1, Eq. (1.7) admits a unique mild solution ρ ∈ C([0,T];L1(Rd))
∩ C([0,T];Hm(Rd)), where T = 1

16C2
d,m
∥ f ∥−2X . Moreover, ∥ρ∥X ≤ 2∥ f ∥ X ≤ 2 ∥ρ0∥.

Moreover, we claim that the mild solution is also unique on [0,Tb), not just on [0,T]. In fact, for two mild solutions ρi(t), i = 1, 2. Define
I = {t : ρ1(s) = ρ2(s), for all s ≤ [0, t)}. Clearly, I is an interval and [0,T] ⊂ I. By viewing ρ1(t), t ∈ I as the new initial data and applying Lemma
A.1 again, we find that ρ is unique on some interval [t, t + ε(t)] with ε(t) > 0. Hence, I is an open subinterval of [0,Tb) with the topology
inherited from R. Moreover, by the continuity of ρi(t), I is also closed. Hence, I = [0,Tb).

If the blow-up criterion does not hold, there existsM > 0 such that supt∈[0,Tb)∥ρ(t)∥X ≤M. Set t1 ∶= 1
16C2

d,m
M−2. Equation (1.7) with initial

data ρ(Tb − t1/2) has a mild solution ρ̃ in C([0, t1];L1(Rd)) ∩ C([0, t1];Hm(Rd)). If we define ρ(t) = ρ(t) for 0 ≤ t ≤ Tb − t1/2 and ρ(t) = ρ̃
(t − (Tb − t1/2)) for t ∈ [Tb − t1/2,Tb + t1/2], then ρ is a mild solution on [0,Tb + t1/2], which contradicts with the definition of Tb.

Finally, we have

∫Rd
ρ(x, t)dx = ∫Rd

(etΔρ0(x) + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ(s, ⋅)∇(g ∗ ρ(s, ⋅))ds))dx. (A14)
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Since we have shown in (A8) that the right side is in L1, we can freely change the order of the integral and the integral preservation
follows.

We now show that the mild solution is a strong solution. We say ρ ∈ C([0,T];L1(Rd)) ∩ C([0,T];Hm(Rd)) is a strong solution if (i) ρ is a
weak solution that satisfies the equation in the distributional sense and (ii) both ∂tρ and ∇ . (ρ∇(g ∗ ρ)) + Δρ are locally integrable functions
on (0,T) ×Rd so that the equation holds.

Proposition A.2. Let ρ0 ∈ L1(Rd) ∩Hm(Rd) with m > d
2 . Then, the mild solution ρ is a strong solution belonging to C∞((0,Tb),Hm′ (Rd))

for any m′ ≥ m. Moreover, the strong solution is unique.

Proof. We take T ∈ (0,Tb). From the proof of previous proposition, for 0 ≤ α < 1,

H(ρ, ρ) ∈ C([0,T];Hm+α(Rd)).

Meanwhile, since ρ0 ∈ Hm(Rd), it is easy to verify that etΔρ0 ∈ C((0,T];Hm
′

) for anym′ > 0. Therefore, we see that ρ is in C((0,T];Hm+α(Rd)).
Now, for any 0 < t1 < T, we take α = 1

2 with the new initial value ρ(1)0 = ρ t1
2
. Then, ρ(1)(t) ∶= ρ(t − t1

2 ) is a mild solution of (1.7) in C([0,T

−
t1
2 ];H

m+α(Rd)) ∩ C([0,T − t1
2 ];L

1(Rd)). Therefore, the previous argument implies that ρ(1) ∈ C((0,T − t1
2 ];H

m+2α(Rd)). Then, we can
take the new initial value ρ(2)0 = u

(1)
t1
4

along with ρ(2)(t) = u(1)(t − t1
4 ). Iterating this process for 2(m′ −m) + 2 times, we find that

ρ ∈ C([t1,T],Hm′ (Rd)).
Take t1 > 0. Let ρ(t) = ρ(t + t1). Then, ρ satisfies

ρ(t) = etΔρ(0) + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ∇(g ∗ ρ)).

We have w ∶= ∇ ⋅ (ρ∇(g ∗ ρ)) ∈ C([0,T − t1];Hm(Rd)) for anym > 0. It then follows

Δρ(t) = ΔetΔρ(0) + ∫
t

0
e(t−s)ΔΔws ds. (A15)

By the property for heat equation with L2 initial data, we have etΔu − u = ∫
t
0 Δe

τΔu dτ if u ∈ L2. Hence,

∫

t

0
(Δρ(τ) + w(τ))dτ = ∫

t

0
ΔeτΔρ0dτ + ∫

t

0
∫

τ

0
e(τ−s)ΔΔws dsdτ + ∫

t

0
w(τ)dτ

= (etΔρ0 − ρ0) + ∫
t

0
∫

t

s
e(τ−s)ΔΔws dτds + ∫

t

0
w(τ) dτ

= ρ(t) − ρ0.

(A16)

We exchanged the order of integral since e(τ−s)ΔΔws is bounded under the L2 norm. This identity first of all implies that ρ is a weak solution
since ρ ∈ C([0,T];L2). Moreover, it also implies that ρ ∈ C∞([t1,T]) under any Hm norm. Hence, taking derivative on time, we find that ρ is
a strong solution. Since t1 is arbitrary, the claim follows.

The strong solution is a mild solution on [0,T]. The uniqueness then follows trivially by the uniqueness of mild solutions.

We are more interested in the non-negative initial data due to the problem we consider.

Proposition A.3. Besides the conditions in Proposition A.1, if we also have ρ0≥ 0, then

1. for all t in the integral of existence, we have ρ(x, t) ≥ 0 and
2. the strong solution exists globally, i.e., Tb=∞.

Proof. 1. The proof of non-negativity follows in a similar way as in Ref. 40. Here, we sketch the proof briefly.
We fix an arbitrary T ∈ (0,Tb) and let ρ be the mild solution on [0,T]. We consider the approximated problem

ρn(t) = etΔρ0 + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ+n(s)∇(g

εn ∗ ρ)),

where εn = 1/n. Since∇(gεn ∗ ρ) is a smooth function with the derivatives bounded, ρn ∈ C([0,T],H1) ∩ C([0,T],L1) ∩ C∞((0,T),H1). Then,
for t > 0, it holds in H−1 that
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∂tρn = ∇ ⋅ (ρ+n(s)∇(g
εn ∗ ρ) + Δρn.

Multiply ρ−n = −min(ρn, 0) on both sides and integrate. The right hand side is equal to ∥∇ρ−n ∥22. Consider the left hand side. Since
∂tρn = limh→0+

ρn(t)−ρn(t−h)
h converges in L2, we have

⟨ρ−n ,∂tρn⟩ = lim
h→0+
⟨ρ−n ,

ρn(t) − ρn(t − h)
h

⟩ ≤ −
1
2
lim
h→0+

∥ρ−n (t)∥22 − ∥ρ−n (t − h)∥2

h
.

Since ∣ρ−n (t2) − ρ−n (t1)∣ ≤ ∣ρn(t2) − ρn(t1)∣ holds pointwise and therefore in L2, we find that t → ∥ρ−n ∥2 is in C[0,T] ∩ C1(0,T) and

∂t∥ρ−n ∥
2
2 ≤ 0.

This implies that ρ−n = 0 and thus ρ+n = ρn. As n→∞, we can show that ρn → ρ in C([0,T],L2), which further implies that ρ ≥ 0 on [0,T].
2. It suffices to show that the solution does not blow up in the L1 andHm norm in a finite time. By the integral preservation and positivity

preservation, ∥ρ(t)∥L1 = ∥ρ0∥L1 . Hence, we only need to consider the Hm norm.
Note ρ0 ∈ Lp for all p ∈ [1,∞). Using the facts that ρ ∈ Hm

′

for any m′ > 0 and that ρ is smooth in time for t > 0, we can multiply the
equation with pρp−1 and integrate to have, for t > 0,

∂t∥ρ∥pp = −p(p − 1)⟨∇ρ, ρ
p−2
∇ρ⟩ − ⟨ρ2, pρp−1⟩ + ⟨∇(g ∗ ρ),∇ρp⟩

= −(p − 1)∫Rd
(pρp−2∣∇ρ∣2 + ρp+1) dx. (A17)

Using the non-negativity of ρ, we find that ∥ ρ ∥ p ≤ Cp is uniformly bounded.
Now, we consider n = [m] + i (where i = 1, 2 so that n is even) and use the data at some t1 > 0 as the initial data. Set ∥ f ∥Ḣs = ∥(−Δ)

s
2 f ∥L2

= ∥ξ∣ŝf ∥L2 , then ∥ρ∥Hn can be controlled by ∥ρ∥Ḣn and ∥ρ∥L2 . Therefore, we only need to show that ∥ρ∥Ḣn does not blow up, which clearly will
indicate that the original ∥ ⋅ ∥Hm norm does not blow up. Multiplying (1.7) by (−Δ)nρ and integrating, we have, for t > t1,

1
2
∂t∥ρ∥2Ḣn = −∥ρ∥2Ḣn+1 − ⟨ρ2, (−Δ)nρ⟩ + ⟨∇ρ ⋅ ∇(g ∗ ρ), (−Δ)nρ⟩. (A18)

For the second term of (A18), after integrating by parts for n times, we obtain

− ⟨ρ2, (−Δ)nρ⟩ = −⟨(−Δ)n/2ρ, (−Δ)n/2(ρ2)⟩. (A19)

Expanding (−Δ)n/2(ρ2) out, this contains terms of the form CℓDℓρDn−ℓρ, where ℓ = 0, 1, . . . ,n, and D denotes any partial derivative. For
the ℓ = 0,n terms, we use the non-negativity of ρ and find −∫Rdρ∣(−Δ)n/2ρ∣2 dx ≤ 0. Consider that 1 ≤ ℓ ≤ n − 1. By the Gagliardo-Nirenberg
inequality,

∥Dj f ∥Lp ≤ C∥ f ∥1−αLr ∥ f ∥
α
Ḣn+1 , α =

j − d/p + d/r
(n + 1) − d/2 + d/r

. (A20)

Setting pℓ = 2n
ℓ
, qℓ = 2n

n−ℓ and applying the Hölder inequality and (A20), we find that for 1 ≤ ℓ ≤ n − 1,

∣⟨DℓρDn−ℓρ,Dnρ⟩∣ ≤ ∥Dℓρ∥Lpℓ ∥D
n−ℓρ∥Lqℓ ∥ρ∥Ḣn ≤ C∥ρ∥

n−d/2+2d/r
(n+1)−d/2+d/r
Ḣn+1 ∥ρ∥Ḣn . (A21)

Here, we have used the fact that ∥ρt∥Lr ≤ ∥ρ0∥Lr . Here, pℓ and qℓ are chosen so that the corresponding α ∈ (0, 1). We pick r > d, and then, the
power of ∥ρ∥Ḣm+1 is less than 1.

For the third term of (A18), we similarly have

⟨∇ρ ⋅ ∇(g ∗ ρ), (−Δ)nρ⟩ = ⟨(−Δ)
n
2 (∇ρ ⋅ ∇(g ∗ ρ)), (−Δ)

n
2 ρ⟩. (A22)

Expanding out, we have terms of the form (∇Dn−ℓρ)Dℓ
∇(g ∗ ρ). The ℓ = 0 term contributes to

∫Rd
∇((−Δ)n/2ρ) ⋅ ∇(g ∗ ρ)(−Δ)

n
2 ρ dx = −

1
2∫Rd

ρ∣(−Δ)
n
2 ρ∣2 dx ≤ 0.

When ℓ ≥ 1, by the singular integral theory, we have

J. Math. Phys. 60, 111501 (2019); doi: 10.1063/1.5114854 60, 111501-27

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

∥Dℓ
∇(g ∗ ρ)∥Lpℓ = ∥D∇(g ∗D

ℓ−1ρ)∥Lpℓ ≤ ∥D
ℓ−1ρ∥Lpℓ , 1 < pℓ <∞. (A23)

Due to this reason, we find that when ℓ = 1, the pairing is controlled by

⟨(∇Dn−ℓρ)Dℓ
∇(g ∗ ρ), (−Δ)

n
2 ρ⟩ ≤ ∥∇Dn−1ρ∥2+δ∥D∇(g ∗ ρ)∥2(2+δ)/δ∥ρ∥Ḣn

≤ C∥∇Dn−1ρ∥2+δ∥ρ∥Ḣn

.

By the Galiardo-Nirenberg inequality again, ∥∇Dn−1ρ∥2+δ ≤ C∥ρ∥αḢn+1∥ρ∥1−αḢn , where α = dδ
2(2+δ) . For ℓ > 1, using (A23), the pairing

⟨(∇Dn−ℓρ)Dℓ
∇(g ∗ ρ), (−Δ)

n
2 ρ⟩ is similarly controlled as in (A21). Hence, we finally have, for t > t1,

1
2
∂t∥ρ∥2Ḣn ≤ −∥ρ∥2Ḣn+1 + C∥ρ∥2−αḢn ∥ρ∥αḢn+1 + C∥ρ∥Ḣn∥ρ∥νḢn+1 , (A24)

where α ∈ (0, 1) and ν ∈ (0, 1). This gives that ∥ρ∥Ḣn never blows up in finite time for t > t1, which further implies that ∥ρ∥Hm does not
blow up.

APPENDIX B: THE MISSING PROOFS

Proof of Proposition 2.2. Note that for any N, 0 ≤ s < t ≤ T, one has

X1,N
t − X

1,N
s =

1
N∫

t

s

N

∑
j≠1

F(X1,N
r − X

j,N
r ) dr +

√
2(B1

t − B
1
s ).

This then motivates us to define

ZN ∶= sup
s,t:s<t

√
2∣B1

t − B1
s ∣

(t − s)1/2
, UN ∶=

1
N
(∫

T

0
(∑

N
j≠1 F(X

1
t − X

j
t))

2
dt)

1/2

.

Clearly,

∣X1,N
t − X

1,N
s ∣ ≤ (t − s)

1/2(ZN +UN).

Moreover, ZN ’s have the same distribution for all N, and

ZN <∞, a.s.

Consequently,

lim
R1→∞

sup
N≥2

P(∣ZN ∣ > R1) = 0.

Using the energy estimate (2.49), we have

EU2
N ≤ E(ρ0).

Moreover, E∣X1,N
0 ∣

2
<∞.

We define

K ∶= {X ∈ C([0,T];Rd), ∣X0∣ ≤ A, ∣Xt − Xs∣ ≤ R(t − s)1/2,∀0 ≤ s < t ≤ T}.

Clearly, K is a compact set in C([0,T],Rd) by the Arzela-Ascoli theorem.
Moreover,

sup
N≥2

P(X1,N
t ∉ K) ≤ sup

N≥2
P(∣X1,N

0 ∣ > A) + sup
N≥2

P(ZN +UN > R)

≤ sup
N≥2

P(∣X1,N
0 ∣ > A) + sup

N≥2
(P(ZN > R/2) + P(UN > R/2)).

Using the uniform bound on the moments of X1,N
0 , UN , we find that for any ε > 0, there exist A > 0,R > 0 such that
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sup
N≥2

P(X1,N
t ∉ K) < ε,

which concludes the tightness of the law of X1,N .
The tightness of L(μN) follows from (i) and the exchangeability of the system. See Ref. 15, Proposition 2.2.

Proof of Proposition 3.3. Recall that h = g ∗ ρ. By the assumption, one has

ρ ∈ L∞((0,T);H−1), ∇h ∈ L∞((0,T);L2).

Since ∫R3ρ3/2 dx ≤ ∥ρ∥H−1∥
√ρ∥Ḣ1 , we thus have

∥ρ∥L3((0,T);L3/2) ≤ C∫
T

0
∥∇
√
ρ∥2L2 dt = C∫

T

0
I(ρ) dt.

Interpolating this with ρ ∈ L1(0,T;L3), we have ρ ∈ L3r/(5r−6)(0,T;Lr) for r ∈ [3/2, 3].
Moreover, ∇2h ∈ L1(0,T;L3) since ρ ∈ L1(0,T;L3); interpolating with ∇h ∈ L∞(0,T;L2) by the Gagliardo-Nirenberg inequality, we find

that

∇h ∈ Lq/(q−2)((0,T);Lq), q ≥ 2.

Hence, ρ∇h ∈ L3p/(8p−6)(0,T;Lp) for p ∈ [1, 6/5]. In particular, we have

ρ∇h ∈ L6/5((0,T),L12/11).

Since Δ is bounded fromW1,q toW−1,q, by Lemma 3.1, we have Δρ ∈ L8/5((0,T),W−1,12/11).
Recall that

⟨ρt ,ϕ⟩ − ⟨ρ0,ϕ⟩ − ∫
t

0
∫R3
∇ϕ(x) ⋅ ∇h(x)ρs(x) dxds − ∫

t

0
⟨ρs,Δϕ⟩ds = 0 (B1)

for any ϕ ∈ C2
c (R3) and t ∈ (0,T]. Using the regularity, we find that this holds for all ϕ ∈ C2

b(R
3). In fact, we can take smooth truncation of

ϕn = ϕχn, where χn = χ(x/n) and χ = 1 in B(0, 1). Then, ∇(ϕχn) ⋅ ∇h→ ∇ϕ ⋅ ∇h in L2(0,T;L4) and ⟨ρs,Dα(ϕn)⟩→ ⟨ρs,Dαϕ⟩, where ∣α∣ ≤ 2.
The latter holds because ρs ∈ L1 and Dα(ϕ − ϕn) is bounded and nonzero only outside B(0,n). That ∫

t
0 ⟨ρs,Δϕn⟩ ds→ ∫

t
0 ⟨ρs,Δϕ⟩ ds holds by

the dominate convergence theorem.
Then, we claim that for any ϕ ∈ C1([0,T],C2

b(R
3)) and t ∈ (0,T], it holds that

⟨ρt ,ϕ(x, t)⟩ − ⟨ρ0,ϕ(x, 0)⟩ − ∫
t

0
∫R3

ρ(x, s)∂tϕ dxds

+ ∫
t

0
∫R3
∇ϕ(x, s) ⋅ ∇h(x)ρ(x, s) dxds − ∫

t

0
⟨ρ(x, s),Δϕ(⋅, s)⟩ds = 0. (B2)

In fact, we can take t = t1 and t = t2 in (B1) and take the difference to obtain ⟨ρt2 ,φ⟩ − ⟨ρt1 ,φ⟩ − ∫
t2
t1 ∫

. . . − ∫
t2
t1
. . . = 0, where the omitted

content is clear. Then, we can take φ = ϕ(., tn) so that we have kind of Riemann sum. The regularity ensures that the Riemann sum converges
to the desired integral form.

For ϕ ∈ C1([0,T];C2
c (R3)), we then have

∫

t

0
⟨∂tρ,ϕ⟩ = ∫

t

0
∫R3
∇ϕ(x, s) ⋅ ∇h(x)ρ(x, s) dxds + ∫

t

0
⟨∇ρ,∇ϕ⟩ ds,

where ∂tρ is the distributional derivative of ρ. Clearly, the right hand side is a bounded functional for ϕ ∈ L6(0,T;W1,12). By a possible
mollification procedure, we find

∂tρ = ∇ ⋅ (ρ∇h) + Δρ, in L6/5((0,T),W−1,12/11). (B3)

In fact, this weak solution is also a mild solution. To see this, we mollify ρ as

ρε,δ = Jδ1 (t) ∗ ρ ∗ J
ε
2(x).

Here, J1 is the mollification in time, while J2 is in space. Then, on t ∈ (δ,T − δ), we have

∂tρε,δ = Jδ1 ∗ J
ε
2 ∗ ∂tρ = ∇ ⋅ (J

δ
1 ∗ ρ∇h ∗ J

ε
2) + Δρε,δ .
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Since all functions are smooth and bounded, with derivatives bounded, we have for δ < t1 < t < T − δ that

ρε,δ(t) = e(t−t1)Δρε,δ(t1) + ∫
t

t1
e(t−s)Δ∇ ⋅ (Jδ1 ∗ ρ∇h ∗ J

ε
2) ds.

Now, we claim that

ρε(t) ∶= Jε2 ∗ ρ(t)

is a bounded continuous function on [0,T] ×R3. In fact, we let ϕx(y) = Jε2(x − y) ∈ Cb. Then, we can define

px,t(X) = ϕx(X(t)).

This is a continuous bounded functional on C([0,T];R3). Then, px,t → p(x,t0) pointwise as t → t0 and are bounded functionals. Hence, we have
by the dominate convergence theorem

∫
C([0,T];R3)

p(x,t)(X)dμ→ ∫
C([0,T];R3)

p(x,t0)(X)dμ.

This means

ρε(x, t)→ ρε(x, t0), ∀x ∈ R3.

Hence, ρε(x, t) is continuous and bounded. Since ρε ∈ L1 ∩L∞, then taking δ → 0, we find

ρε,δ(t)→ ρε(t), in L1 ∩ L3/2, t ∈ (0,T).

Note that

∥∇P∥r ≤ Crt3/(2r)−2, r ∈ [1,∞].

Picking r = 4/3, applying Ref. 41, Theorem 4 with ρ∇h ∈ L6/5(0,T;L12/11), we find that ∫
t
t1
∇e(t−s)Δ ⋅ (ρ∇h) ds ∈ L4/3((0,T);L3/2). Taking δ → 0,

we have in L4/3((0,T);L3/2) that

∫

t

t1
e(t−s)Δ∇ ⋅ (Jδ1 ∗ ρ∇h ∗ J

ε
2) ds→ ∫

t

t1
e(t−s)Δ∇ ⋅ (Jε2 ∗ (ρ∇h)) ds.

Then, we have in L4/3((0,T);L3/2) that

ρε(t) = e(t−t1)Δρε(t1) + ∫
t

t1
e(t−s)Δ∇ ⋅ (Jε2 ∗ (ρ∇h)) ds.

Now, for any t > 0, we take t1 → 0. By dominate convergence, we have

ρε(t) = etΔρε(0) + ∫
t

0
e(t−s)Δ∇ ⋅ (Jε2 ∗ (ρ∇h)) ds.

Eventually, we take ε→ 0 and we have in L4/3((0,T);L3/2) that

ρ(t) = etΔρ0 + ∫
t

0
e(t−s)Δ∇ ⋅ (ρ∇h) ds. (B4)

Proof of Proposition 4.1. Step 1 The Lp bound for t > 0.
We fix δ > 0 and then

ρ ∈ L2([δ,T],L2(R3)).

Mollifying the equation for ρ in Proposition 3.3, we have

∂tρε −∇h ⋅ ∇ρε − Δρε = Jε ∗ (∇ ⋅ (ρ∇h)) −∇h ⋅ ∇ρε =: rε. (B5)

Note that we do not have ∇ρ ⋅ ∇h ∈ L1(δ,T;L1), so ∇ρ ⋅ ∇h may not be a distribution. This is why we cannot have such a term in the
equation. Recall that ρ ∈ L2(δ,T;L2(R3)) and ∇2h ∈ L2(δ,T;L2(R3)) by singular integral theory. We then use the proof of Lemma II.1 in
Ref. 42 and conclude
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rε → −ρ2, in L1(δ,T;L1loc(R
3)).

(There is a small typo in the Proof of Lemma II.1 in Ref. 42, where ε−N is lost in the expressions on p. 517.) In fact,

Jε ∗ (∇ ⋅ (ρ∇h)) −∇h ⋅ ∇ρε = −∫R3
∇y(Jε(x − y)) ⋅ ρ(y)∇h(y) dy −∇h ⋅ ∇ρε

= ∫R3
(∇Jε)(x − y) ⋅ (∇h(y) −∇h(x))ρ(y) dy.

By our construction, ∥∇Jε∥∞ ≤ Cε−4. Consequently,

∥∫R3
(∇Jε)(x − y) ⋅ (∇h(y) −∇h(x))ρ(y) dy∥

L1(B(0,R))
≤ C∫

B(0,R)
dx∫

∣y−x∣≤Cε
ε−3ρ(y)

∣∇h(y) −∇h(x)∣
ε

dy.

Let D1 = {(x, y) : x ∈ B(0,R), ∣y − x∣ ≤ Cε}. We then have the above controlled by

(∬
D1

ρ2(y)dxdy)
1/2
ε−3(∬

D1

(
∣∇h(y) −∇h(x)∣

ε
)
2
dxdy)

1/2

.

The first term is controlled by Cε3/2∥ρ∥L2(B(0,R+1)). The second term is controlled by

ε−3(∫
B(0,R)

dx∫
∣y−x∣≤Cε

dy(
∣∇h(y) −∇h(x)∣

ε
)
2
)

1/2

≤ ε−3/2(∫
B(0,R)

dx∫
∣z∣≤C

dz(∫
1

0
∣∇

2h(x + tεz)∣)
2
)

1/2

.

Since

[∫
B(0,R)

dx(∫
1

0
∣∇

2h(x + tεz)∣)2]
1/2
≤ ∫

1

0
∥∇

2h(⋅ + tεz)∥L2(B(0,R)) dt ≤ ∥∇
2h∥L2(B(0,R+1)),

we have the second term controlled by ε−3/2C∥∇2h∥L2(B(0,R+1)). Hence,

∥rε(t)∥L1(B(0,R)) ≤ C∥ρ(t)∥L2(B(0,R+1))∥∇
2h(t)∥L2(B(0,R+1)).

This bound is uniform in ε. With the time dimension added in, the corresponding norms are similarly controlled. By a density argument, we
can then approximate ρ and∇2h with smooth functions in their respective spaces. For smooth functions, the limit is clearly ρΔh = −ρ2.

Recall that ρ dx ∈ C([0,T];Cb(R3)′); we have ρε ∈ C([0,T];L1(R3)). Using basically the same argument as in Step 1 of the Proof of
Lemma 2.5 in Ref. 43, we obtain that ρε is a Cauchy sequence in L1(δ,T;L1loc) as ε→ 0. In fact, for convex function β ∈ C1(R3), we have
the following chain rule:

∂tβ(ρε) = ∇β(ρε) ⋅ ∇h + β′(ρε)rε + Δβ(ρε) − β″(ρε)∣∇ρε∣2. (B6)

Equations (B5) and (B6) will hold if we replace ρε with ρε1 − ρε2 and rε with rε1 − rε2 since (B5) is linear. In particular, we choose β(s) = s2/2
for ∣s∣ ≤ A and β(s) = A∣s∣ − A2

/2 for ∣s∣ ≥ A. This will give limε1→0,ε2→0sup0≤t≤T∫R3β(ρε1 − ρε2 )χ(x) dx = 0 for any χ ∈ C∞c . [There is only one
difference from Ref. 43: to justify ∫R3β(ρε1 − ρε2 )∇h ⋅ ∇χ → 0, we use∇h ∈ L∞(L2) and ρε1 − ρε2 → 0 in L2(δ,T;L2).]

Consequently, we have ρ ∈ C([δ,T];L1loc(R
3)). Moreover, using the uniform of estimates ∫R3ρ∣x∣2 dx so that {ρ(t)}t∈[δ,T] is tight, we have

ρ ∈ C([δ,T];L1(R3)). (B7)

Next, following the proof of Lemma 2.5 in Ref. 43, taking some non-negative test function χ ∈ C∞c (R3) and integrating (B6) over [δ1, t1]
where δ ≤ δ1 ≤ t1, we find

∫R3
β(ρεt1 )χdx + ∫

t1

δ1
∫R3

β″(ρεs)∣∇ρ
ε
s ∣
2χdxds = ∫R3

β(ρεδ1 )χdx

+∫
t1

δ1
∫R3
{β(ρεs)Δχ + (β′(ρεs)r

ε + ρsβ(ρεs))χ − β(ρ
ε
s)∇h ⋅ ∇χ}dxds. (B8)
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We first consider a function β ∈ C2(0,∞) that satisfies (i) convex, linear outside a compact set (i.e., β″ is continuous with compact
support); (ii) for any ∣u∣ ≤ L, there is C(L) such that ∣β(u)∣ ≤ C(L)∣u∣. Taking the limit ε→ 0 first and then χR(x) = χ( xR ) with R→∞, we obtain
that

∫R3
β(ρt1 )dx + ∫

t1

δ1
∫R3

β″(ρs)∣∇ρs∣2dxds ≤ ∫R3
β(ρδ1 )dx + ∫

t1

δ1
∫R3

(−β′(ρs)ρ2s + ρsβ(ρs))
+dxds. (B9)

The left hand side is obtained by Fatou’s lemma since β″(s) ≥ 0. The convergence of the first term on the right can be obtained by decom-
posing β(u) = (β(u) − A∣s∣) + A∣s∣. (β(u) − A∣s∣) is treated by the dominate convergence theorem, while A∣s∣ is treated by the L1 convergence of
mollification. Other terms are dealt with by the regularity and the convergence of rε → −ρ2 in L1(δ,T;L1loc(R

3)).
For general convex function β ∈ C2(0,∞) satisfying (i) 0 ≤ β(u) ≤ C(1 + u∣ log(u)∣), uβ(u) − u2β′(u) ≤ C(1 + u2); (ii) for any ∣u∣ ≤ L, there

is C(L) such that ∣β(u)∣ ≤ C(L)∣u∣, we may choose a sequence of smooth convex functions βR with linear growth at infinity to approximate β
and obtain (B9). In fact, for such β, ∫

t1
δ1 ∫R3 (−β′(ρs)ρ2s + ρsβ(ρs))+dxds is integrable by decomposing the integrals into domains for ρ ≤ 1 and

ρ ≥ 1.
Now, mimicking the Proof of Lemma 2.7 in Ref. 43, we take for p ≥ 2

β(u) ∶=
up

p
1u≤K + (

Kp−1

log K
(u log u − u) −

1
q
Kp +

Kp

log K
)1u≥K ,

where 1
p +

1
q = 1. Then, β is convex, non-negative, and β

′(x) ≥ 0. Moreover, uβ(u) − u2β′(u) ≤ 0 if K is large enough. By plugging β into (B9)
and sending K →∞, we find that

1
p
∥ρt1∥

p
p +

4(p − 1)
p2 ∫

t1

δ1
∫R3
∣∇ρp/2s ∣

2dxds ≤
1
p
∥ρδ1∥

p
p.

Note that we know ρ ∈ L1(0,T;L3(R3)) and that 0 < δ ≤ δ1 are arbitrary, and we then find that

ρ ∈ L∞loc((0,T);L
p(R3)), p ∈ (1, 3].

Remark B.1. If we instead have ρ ∈ L2(0,T;L2(R3)), we will have ρ ∈ L∞(0,T;Lp) for any p ∈ [1,∞).

Step 2Weak–strong uniqueness.
For t > 0, we have d

dt ∥ρ∥
2
2 + 2∥∇ρ∥22 ≤ 0. Since we do not have ρ ∈ L∞(0,T;L3/2), it is very hard to obtain the usual hypercontractivity,

sup
0<t≤T

tp−
3
2 ∥ρ∥pp ≤ C.

Using ρ ∈ L∞(0,T;L1(Rd)), we only have

d
dt
∥ρ∥22 + ∥ρ∥

10/3
2 ≤ 0,

which yields sup0<t≤T t
3/2
∥ρ∥22 ≤ C. This is not enough to prove the uniqueness as in the standard Keller-Segel equations (see Ref. 37). Hence,

we must use other methods to prove the uniqueness. Here, we use the strategy in Ref. 12, where weak–strong uniqueness was shown by using
the Coulomb energy. (If we know ρ ∈ L2(0,T;L2), then ρ ∈ L∞(0,T;Lp) for any p ∈ [1,∞), and the usual method will work.)

Using ρ ∈ L∞loc((0,T);L
p(R3)), p ∈ (1, 3] and converting the semigroup equation for ρ into the semigroup form for ∇h, we see ∇h

∈ AC(t0,T;L2) for any t0 > 0. Here, “AC” means absolutely continuous. It is then clear that

∂t∇h = ∇g ∗ ∇(ρ∇h) + Δ∇h. (B10)

Consider the strong solution ρ2.∇h2 ∈ C∞ is clear,

∇h2 = ∇g ∗ ρ2 = ∇g∣∣x∣≤1 ∗ ρ2 +∇g∣∣x∣≥1 ∗ ρ2.

We have

∣∇h2∣ ≤ ∥∇g∣∣x∣≤1∥1∥ρ2∥∞ + ∥∇g∣x∣≥1∥∞∥ρ2∥1.
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Hence, ∇h2 is bounded. The derivatives of ∇h2 are clearly bounded. Moreover, by the Hardy-Littlewood-Sobolev inequality,
∇h2 ∈ L∞(0,T;Lq(R3)) for all q > 3/2. Hence, ρ2∇h2 ∈ L∞(Lp) for any p ≥ 1. We also have the equation

∂t∇h2 = ∇g ∗ ∇(ρ2∇h2) + Δ∇h2.

Note that the singular integral theory tells us that∇g ∗ ∇(ρ2∇h2) ∈ L∞(0,T;Lq), q > 1.
For t > 0, we have

∂t(∇h −∇h2) = ∇g ∗ ∇(ρ(∇h −∇h2)) +∇g ∗ ∇((ρ − ρ2)∇h2) + Δ(∇h −∇h2).

For t > t0 > 0,∇h −∇h2 ∈ L∞[t0,T,L6], and then, we can pair the equation with∇h −∇h2.
Then,

1
2
∂t∥∇h −∇h2∥22 = −⟨∇h −∇h2, ρ(∇h −∇h2)⟩ − ⟨∇h −∇h2, (ρ − ρ2)∇h2⟩ + ⟨∇h −∇h2,Δ(∇h −∇h2)⟩ =: I1 + I2 + I3.

Here, we have used the fact

⟨∇ϕ,∇g ∗ ∇ ⋅ v⟩ = −⟨g ∗ Δϕ,∇ ⋅ v⟩ = ⟨∇(g ∗ Δϕ), v⟩ = −⟨∇ϕ, v⟩.

Clearly, I1 ≤ 0 and I3 ≤ 0,

I2 = −∫R3
div(∇(h − h2)⊗∇(h − h2) −

1
2
∣∇(h − h2)∣2I)∇h2 dx

= ∫R3
(∇(h − h2)⊗∇(h − h2) −

1
2
∣∇(h − h2)∣2I)∇2h2 dx ≤ C∫R3

∣∇(h − h2)∣2 dx.

Note that it is exactly at this point we need ρ2 to be the strong solution.
Using Grönwall, we have, for t ∈ [t0,T],

∥∇h(t) −∇h2(t)∥22 ≤ C(T)∥∇h(t0) −∇h2(t0)∥
2
2.

Finally,

∥∇h(t0) −∇h2(t0)∥22 = 2E (t0) − 2∫R3
∇h(t0) ⋅ ∇h2(t0) dx+2E 2(t0),

where

E (t) ∶=
1
2∬R3×R3

g(x − y)ρ(x, t)ρ(y, t) dxdy =
1
2 ∫R3

∣∇h(x, t)∣2 dx,

and E 2 is similarly defined for ρ2 and h2. The second term is equal to 2∫R3h2(t0)ρ(t0) dx, which is continuous in t0. E 2(t) is also continuous.
Hence, we then have

lim
t0→0

1
2
∥∇h(t0) −∇h2(t0)∥22 = lim

t0→0
E (t) − 2E(ρ0) + E(ρ0) ≤ E(ρ0) − 2E(ρ0) + E(ρ0)

by the condition. This means ρ − ρ2 = 0 in L∞(0,T;H−1). Since they are both in L∞(0,T;L1), they must be equal almost everywhere.
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