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ON GENERATING FUNCTIONS

OF HAUSDORFF MOMENT SEQUENCES

JIAN-GUO LIU AND ROBERT L. PEGO

Abstract. The class of generating functions for completely monotone se-
quences (moments of finite positive measures on [0, 1]) has an elegant char-
acterization as the class of Pick functions analytic and positive on (−∞, 1).
We establish this and another such characterization and develop a variety of
consequences. In particular, we characterize generating functions for moments
of convex and concave probability distribution functions on [0, 1]. Also we
provide a simple analytic proof that for any real p and r with p > 0, the

Fuss-Catalan or Raney numbers r
pn+r

(pn+r
n

)
, n = 0, 1, . . ., are the moments

of a probability distribution on some interval [0, τ ] if and only if p ≥ 1 and

p ≥ r ≥ 0. The same statement holds for the binomial coefficients
(pn+r−1

n

)
,

n = 0, 1, . . . .

1. Introduction

Given a finite positive (Borel) measure μ on [0, 1], its sequence of moments

(1) cj =

∫ 1

0

tj dμ(t) , j = 0, 1, . . . ,

is completely monotone. This means that

(I − S)kcj ≥ 0 for all j, k ≥ 0,

where S denotes the backshift operator given by Scj = cj+1 for j ≥ 0, so that

(I − S)kcj =

k∑
n=0

(−1)n
(
k

n

)
cn+j .

A classical theorem of Hausdorff states that complete monotonicity characterizes
such moment sequences: A sequence c = (cj)j≥0 is the moment sequence of a finite
positive measure on [0, 1] if and only if it is completely monotone [23, p. 115].
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It is well recognized [17, 18] that the generating function of a completely mono-
tone sequence,

(2) F (z) =

∞∑
j=0

cjz
j =

∫ 1

0

1

1− zt
dμ(t) ,

belongs to the set P (−∞, 1), consisting of all Pick functions analytic on (−∞, 1).
Recall what this means [4]: A function f is a Pick function if f is analytic in the
upper half plane H = {z ∈ C : Im z > 0} and leaves it invariant, satisfying

(3) (Im z) Im f(z) ≥ 0

for all z in the domain of f . If (a, b) is an open interval in the real line, P (a, b)
denotes the set of Pick functions that are analytic on (a, b). This means they take
real values on (a, b) and admit an analytic continuation by reflection from the upper
half plane across the interval (a, b).

Conditions on F which are equivalent to complete monotonicity of (cj) have
been provided by Ruscheweyh et al. [18] and are discussed below. Yet the following
simple and useful characterizations, though closely related to known results (see
especially Theorems 2.8-2.11 in [2]), appear to have escaped explicit attention in
the long literature on the subject.

Theorem 1. Let c = (cj)j≥0 be a real sequence with generating function F and
upshifted generating function

(4) F1(z) = zF (z) =
∞∑
j=0

cjz
j+1 .

Then the following are equivalent.

(i) c is completely monotone.
(ii) F is a Pick function that is analytic and nonnegative on (−∞, 1).
(iii) F1 is a Pick function that is analytic on (−∞, 1), with F1(0) = 0.

To explain the terminology, we remark that F1 is the generating function of the
upshifted sequence S†c given by S†cj = cj−1 for j ≥ 1 and S†c0 = 0. The Pick
function conditions on F and F1 in (ii) and (iii) mean that F and F1 belong to
P (−∞, 1), so their domain contains C \ [1,∞). Whether it is more convenient to
verify the Pick property for F1 or the Pick property and the positivity condition
for F seems likely to depend on the context or the application.

It is convenient here to summarize explicit criteria for (cj)j≥0 to be the moment
sequence for a probability distribution supported on an interval of the form [0, τ ].
This is equivalent to saying the generating function satisfies

(5) F (z) =

∫ τ

0

1

1− tz
dμ(t) .

Corollary 1. Let τ > 0, and let c = (cj)j≥0 be a real sequence with c0 = 1 and
generating function F . Then the following are equivalent.

(i) c is the moment sequence of a probability measure μ on [0, τ ].
(ii) F is a Pick function analytic and nonnegative on (−∞, 1/τ ) with F (0) = 1.
(iii) F1(z) = zF (z) is a Pick function analytic on (−∞, 1/τ ) with F ′

1(0) = 1.
(iv) The sequence (cjτ

−j)j≥0 is completely monotone.
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We shall omit the simple proof by dilation from Theorem 1. Due to (5), we will
call sequences that satisfy the conditions of Corollary 1 dilated Hausdorff moment
sequences. We note that when t < 0, 1/(1− tz) is not a Pick function. This has the
consequence that the moment generating function F for a probability distribution
with nontrivial support in (−∞, 0) is not a Pick function.

The proof of Theorem 1 is provided in section 2 below. As shown there, the
equivalence of (i) and (ii) may be inferred from the proof of Lemma 2.1 of [18].
In section 3 we will describe a number of direct consequences of Theorem 1, in-
cluding criteria for complete monotonicity of probability distributions obtained by
randomization from exchangable trials, and a simple proof of infinite divisibility
of completely monotone probability distributions on N0 = {0, 1, . . .}. In section 4,
building on work of Diaconis and Freedman [3] and Gnedin and Pitman [7], we char-
acterize generating functions of moments of distribution functions on [0, 1] that are
either convex or concave.

Finally, in section 5 we use Corollary 1 to provide simple analytic proofs that
for any real p and r with p > 0, the Fuss-Catalan numbers (or Raney numbers)

r

pn+ r

(
pn+ r

n

)
, n = 0, 1, . . . ,

form a dilated Hausdorff moment sequence if and only if p ≥ 1 and p ≥ r ≥ 0, and
the same holds for the binomial sequence(

pn+ r − 1

n

)
, n = 0, 1, . . . .

These results were proved previously by M�lotkowski [11] and M�lotkowski and Pen-
son [12] using free probability theory and monotonic convolution arguments. In
section 5 we also use the results of section 4 to prove the existence of nonincreasing
“canonical densities” associated with Fuss-Catalan sequences. The moments of cor-
responding canonical distributions turn out to be a binomial sequence with r = 1.
Moreover, an explicit formula for the inverse of the canonical distribution can be
derived from the following integral representation formula for binomial coefficients:
For any integer k > 0 and real r ≥ k,

(6)

(
r

k

)
=

1

π

∫ π

0

(
sinx

sinθ θx sin1−θ(1− θ)x

)r

dx , θ =
k

r
.

This formula follows from a statement in the proof of Proposition 2 in [20].

2. Characterization

The purpose of this section is to prove Theorem 1. First we establish the equiv-
alence of (i) and (iii). Supposing F1 ∈ P (−∞, 1) as stated in (iii), our goal is to
prove that (1) holds. We observe that since F1 is a Pick function, so also is the
function defined by

(7) F∗(z) = −F1(1/z).

This function is analytic on the cut plane C \ [0, 1], with F∗(z) → 0 as |z| → ∞.
The main representation theorems for Pick functions [4, pp. 20 and 24] imply there
are real numbers α∗ ≥ 0 and β∗, and a locally finite measure μ on R with increasing
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distribution function (denoted the same as is conventional) μ : R → R, such that

(8) F∗(z) = α∗z + β∗ +

∫
R

(
1

t− z
− t

t2 + 1

)
dμ(t).

Moreover, μ is characterized by the limits

(9) μ(b)− μ(a) = μ(a, b] = lim
h→0+

1

π

∫ b

a

ImF∗(t+ ih) dt, a, b ∈ R.

Because ImF∗(t) = 0 for t ∈ R \ [0, 1], the measure μ has support only on the
cut [0, 1], and it is a finite measure with total mass μR = μ[0, 1]. The fact that
F∗(z) → 0 as z → −∞ forces α∗ = 0 and the cancellation of constant terms, whence

(10) F∗(z) =

∫ 1

0

1

t− z
dμ(t).

For |z| < 1, then, geometric series expansion and use of Fubini’s theorem yield

(11) F1(z) = −F∗(1/z) =

∫ 1

0

z

1− zt
dμ(t) =

∞∑
j=0

zj+1

∫ 1

0

tj dμ(t).

Then (1) follows immediately upon comparison with the definition of F1.
For the converse, given (cj)j≥0 completely monotonic, let μ satisfy (1) and define

F∗ by (7). Then (11) holds for |z| < 1, and (10) follows for |z| > 1. But this shows
that F∗ is Pick and analytic on C\[0, 1], whence F1 is Pick and analytic on C\[1,∞),
which means F1 ∈ P (−∞, 1). Hence (iii) and (i) are equivalent.

Next we show that (i) and (ii) are equivalent. We know that (i) implies (ii) due

to (2). Conversely, suppose (ii), and define F̂ (z) = −F (1/z). Then F̂ is a Pick
function analytic on C \ [0, 1], thus has a representation analogous to (8) as

(12) F̂ (z) = α̂z + β̂ +

∫
R

(
1

t− z
− t

t2 + 1

)
dμ̂(t).

As before, μ̂ is a finite measure with support in [0, 1], and the fact that F̂ (z) →
−F (0) as z → −∞ forces α̂ = 0 and

(13) F̂ (z) = −F (0) +

∫ 1

0

1

t− z
dμ̂(t).

Since F is a Pick function analytic and nonnegative on (−∞, 1), necessarily F ′(z) ≥
0 there, and λ = limz→−∞ F (z) exists and is nonnegative. Therefore taking z → 0
from the left in (13) implies

−λ = −F (0) +

∫ 1

0

dμ̂(t)

t
.

In particular this is finite; hence

(14) F̂ (z) = −λ+

∫ 1

0

(
1

t− z
− 1

t

)
dμ̂ =

∫ 1

0

z

t− z
dμ(t),

where μ = λδ0+ μ̂/t is a finite measure on [0, 1]. By consequence, F (z) = −F̂ (1/z)
has an integral representation as in (2), and (i) follows. This finishes the proof of
Theorem 1.
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Remark 1. The mass that the measure μ assigns to the left end of its support is

(15) μ{0} = λ = lim
x→−∞

F (x) = lim
x→−∞

F1(x)

x
.

As is classically known [23, p. 164], one has cj = f(j) for some completely monotonic
f defined on [0,∞) if and only if the term c0 is minimal, and this is the case if and
only if the measure μ has no atom at 0.

The mass that the measure μ assigns to the right end of its support is determined
in a similar way. In the scaled expression (5), one has

(16) μ{τ} = lim
x↑1/τ

(1− τx)F (x) .

Remark 2. Our proof of the equivalence of (i) and (ii) of Theorem 1 basically
follows arguments from [18] in a slightly different order. To compare, note that
after a trivial normalization to make c0 = 1, Lemma 2.1 of [18] shows that (cj)j≥0

is completely monotone if and only if F ∈ P (−∞, 1) and satisfies the additional
conditions:

(a) limn→∞ F (zn)/zn = 0 for some sequence zn ∈ C with Im zn → +∞, and
Im zn ≥ δRe zn for some positive constant δ,

(b) lim supx→−∞ F (x) ≥ 0.

If F ∈ P (−∞, 1), then due to the Pick property (3), F is increasing in the real
interval (−∞, 1). Consequently, condition (b) is equivalent to nonnegativity of F
on (−∞, 1). Moreover, the additional condition (a) is superfluous, by the lemma
below. Thus equivalence of (i) and (ii) follows from the proof of Lemma 2.1 in [18].

Lemma 1. Suppose F ∈ P (−∞, 1) and (b) holds. Then (a) holds.

Proof. As noted in [18], F has a representation analogous to (8), of the form

(17) F (z) = a+ bz +

∫ ∞

1

1 + tz

t− z
dσ(t) ,

where a ∈ R, b ≥ 0, and σ is a finite measure on [1,∞). Note that as z → −∞
along the real axis, we have

(18)
1

z

∫ ∞

1

1 + tz

t− z
dσ(t) → 0

by the dominated convergence theorem. Consequently, if b > 0, then F (z) → −∞
as z → −∞. Thus, if (b) holds, then b = 0. Then it follows that (a) holds with
zn = in, since with z = zn, (18) holds again. �

3. Consequences

We next develop a few straightforward consequences of Theorem 1. Recall that
a composition of Pick functions is a Pick function. Using this and related facts, we
get ways of constructing and transforming completely monotone sequences through
Taylor expansion of compositions.
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3.1. Dilation. Suppose (cj)j≥0 is completely monotone and p > 0. Let

G(z) = F (pz + 1− p) =
∞∑
j=0

cj

j∑
k=0

(
j

k

)
(1− p)j−kpkzk.

Then by Theorem 1, G is a Pick function analytic and nonnegative on (−∞, 1), as
a consequence of the same properties for F . Provided 0 < p < 2 so that |1−p| < 1,
for |z| small we can write

G(z) =

∞∑
k=0

bkz
k, bk =

∞∑
j=k

cj

(
j

k

)
(1− p)j−kpk.

Then it follows that (bk)k≥0 is completely monotone.
This application has a familiar interpretation in terms of compound probability

distributions [5, §XII.1]: Let the random variable SN be the number of successes in
N independent Bernoulli trials, each successful with probability p ∈ (0, 1). Suppose
N is itself random, independent of the Bernoulli trials, with

(19) P{N = j} = cj , j ≥ 0.

Then the compound probability of having exactly k successes is

P{SN = k} =
∞∑
j=k

P{N = j}P{Sj = k} = bk , k ≥ 0,

with bk as above. Thus, if (cj) is completely monotone, then so is (bk).
By averaging over p, we can also treat the case when independent trials are

replaced by exchangeable ones, due to a well-known theorem of B. de Finetti. Let
Sn denote the number of successes in the first n trials of an infinite exchangeable
sequence of successes and failures. Then by de Finetti’s theorem [6, VII.4], there is
a probability distribution ν on [0, 1] such that

(20) P{Sn = k} =

(
n

k

) ∫ 1

0

tk(1− t)n−k dν(t).

If N is selected randomly as before, the probability of k successes becomes

(21) b̂k := P{SN = k} =

∞∑
j=k

cj

(
j

k

) ∫ 1

0

(1− t)j−ktk dν(t).

By approximating ν using discrete measures and using the fact that convex com-
binations and pointwise limits of completely monotone sequences are completely

monotone, it follows that (b̂k)k≥0 is completely monotone if (cj)j≥0 is.

We remark that one can show that complete monotonicity of (b̂k)k≥0 persists
(though with loss of the probabilistic interpretation) if the averaging in (21) over
[0, 1] is replaced by one over a compact interval [0, τ ] ⊂ [0, 2):

(22) b̂k =
∞∑
j=k

cj

(
j

k

) ∫ τ

0

(1− t)j−ktk dν(t).
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3.2. Reflection. Let U be any Pick function analytic on (0,∞). If U has the
additional property that the right limit U(0+) exists, then it is a complete Bernstein
function. (The theory of these functions, including an extensive table of examples, is
developed in [19]. Our Theorem 1 may be regarded as a discrete analog of Theorem
6.2 in [19], which is the main characterization theorem for complete Bernstein
functions.) Now, fix r > 0 and let

(23) F1(z) = U(r)− U(r(1− z)).

Then for |z| < 1 we may write

(24) F1(z) =
∞∑

n=1

cn−1z
n, cn−1 = (−1)n−1U (n)(r)

rn

n!
, n ≥ 1.

Then F1 is in P (−∞, 1); hence the sequence (cn)n≥0 is completely monotone by
Theorem 1. Conversely, if (cn)n≥0 is completely monotone and U(rz) = −F1(1−z),
then U is a Pick function analytic on (0,∞), and U is completely Bernstein if the
left limit F1(1

−) < ∞.

3.3. Composition I. Next, consider more general types of compositions. Let c∗jk
denote the k-th term of the standard j-fold convolution of the sequence c = (cn)n≥0

with itself, which we can write in terms of the Kronecker delta function δnk and
N0 = N ∪ {0} as

c∗jk =
∑
n∈N

j
0

δ
n1+...+nj

k cn1
. . . cnj

.

Recall that if b = (bj)j≥0 is a sequence with generating function G, then A = G◦F
is the generating function for the sequence a = (ak)k≥0 defined by

(25) ak =

∞∑
j=0

bjc
∗j
k , k ≥ 0.

By Theorem 1, a is completely monotone if and only if G ◦ F is a Pick function
analytic and nonnegative on (−∞, 1), or equivalently zG ◦ F (z) is a Pick function
analytic on (−∞, 1).

If b and c are probability distributions on N0, then a is a compound b distribution
with compounding distribution c. In this case we have the following.

Proposition 1. Suppose that b and c are probability distributions on N0 and that c
and Sb = (bj+1)j≥0 are completely monotone, with b0 ≥ 0. Then a, given by (25),
is completely monotone.

Proof. By Theorem 1, F is a Pick function analytic and nonnegative on (−∞, 1)
with F (1) = 1, and G is a Pick function analytic and nonnegative on [0, 1) with
G(1) = 1. Then G ◦ F is a Pick function analytic and nonnegative on (−∞, 1);
hence a is completely monotone. �

3.4. Infinite divisibility. The concept of infinite divisibility has been called “the
core of the now classical limit theorems of probability theory — the reservoir created
by the contributions of innumerably many individual streams and developments” [6,
Chap. XVII]. Recall, for example, that a probability distribution μ on R is infinitely
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divisible if and only if it can arise as the weak limit of the law of the sum of n
independent random variables with common distribution νn (see [6, Thm. XVII.1.1]
or [22, Thm. 5.2]). This means that the distribution function μ is the pointwise
limit of n-fold convolutions: At each point of continuity of μ,

(26) μ(x) = lim
n→∞

ν∗nn (x) .

Theorem 1 provides an alternative route to the following long-known result for
distributions supported on N0 (see [21] and Theorem 10.4 of [22]).

Proposition 2. If (cj) is a probability distribution on N0 and (cj) is completely
monotone, then it is infinitely divisible.

Proof. For 0 < r < 1 the function G(z) = zr is a Pick function, positive for z > 0. If
c = (cj)j≥0 is completely monotone, then Fr(z) = F (z)r is a Pick function analytic
and nonnegative on (−∞, 1); hence Fr is the generating function for a completely
monotone sequence (ak)k≥0 by Theorem 1. For r = 1/n we have a∗nk = ck, because
(F1/n)

n = F . It follows that (cj) is infinitely divisible. �

3.5. Convolution groups and canonical sequences. It is interesting to note
that for any nontrivial completely monotone c and any real r, there is a simple
algorithm for computing the sequence a(r) with generating function F (z)r, arising
from the characterization theorems of Hansen and Steutel [10] (see [22, Thm. 10.5]).
Suppose c0 = 1 for convenience. First compute the canonical sequence (bk)k≥0 so
that

(27) (n+ 1)cn+1 =
n∑

k=0

cn−kbk , n = 0, 1, . . . ;

then determine a(r) by setting a
(r)
0 = cr0 = 1 and requiring

(28) (n+ 1)a
(r)
n+1 = r

n∑
k=0

a
(r)
n−kbk , n = 0, 1, . . . .

The generating functions F , G, and Ar, for c, b, and a(r) respectively, satisfy

(29) F ′(z) = F (z)G(z), F (0) = 1 ,

(30) A′
r(z) = rAr(z)G(z), Ar(0) = 1 ,

whence it follows Ar(z) = F (z)r, with

(31) F (z) = exp G̃1(z), G̃1(z) =

∫ z

0

G(t) dt =

∞∑
n=0

bnz
n+1

n+ 1
.

The resulting set {a(r) : r ∈ R} forms a convolution group: a(r+s) = a(r) ∗ a(s).
By [10, Thm. 4], the sequence b̃ = (bn/(n+ 1))n≥0 is completely monotone and

has an interesting characterization in terms of moments of contractive distribution
functions: namely, G̃1 is the upshifted generating function for b̃, and there is a
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canonical density w : [0, 1] → [0, 1] (measurable) such that

(32) LogF (z) = G̃1(z) =

∫ 1

0

z

1− tz
w(t) dt .

(The distribution function ν(t) =
∫ t

0
w(s) ds is contractive: |ν(t+ s)− ν(t)| ≤ |s|.)

We note a curious formula for (bn). By Taylor expansion of Log,

G̃1(z) =

∞∑
j=1

(−1)j−1

j
(F (z)− 1)j ,

and the coefficient of zn in (F (z) − 1)j vanishes for j > n. Binomial expansion,
F (z)k = Ak(z), and use of a well-known identity [8, (5.10)] yield

(33)
bn−1

n
=

n∑
j=1

j∑
k=1

(−1)k−1

j

(
j

k

)
a(k)n =

n∑
k=1

(−1)k−1

k

(
n

k

)
a(k)n .

The algorithm above extends without change to the case of any dilated Haus-
dorff moment sequence (cj), i.e., a sequence satisfying the conditions of Corollary 1.

Since F r = (F s)r/s is a Pick function whenever F s is Pick and 0 ≤ r ≤ s and point-
wise limits of Pick functions are Pick, a(r) is guaranteed to be a dilated Hausdorff
moment sequence for r in some maximal interval, typically of the form [0, r∗]. We
may characterize this interval in terms of a canonical density as follows. Dilation
of (32) shows that the sequence c = a(1) has generating function F = A1 given by
a canonical density w : [0, τ ] → [0, 1] according to

(34) LogA1(z) =

∫ τ

0

z

1− tz
w(t) dt .

Proposition 3. Let c = (cn)n≥0 be a dilated Hausdorff sequence, satisfying the
conditions of Corollary 1. Let F be its generating function, and let Ar = F r be the
generating function of a(r) as above. Then a(r) is a dilated Hausdorff sequence if
and only if 0 ≤ r ess supw(t) ≤ 1.

Proof. By the corollary to Lemma 5 in [10], one has the following. Recall H = {z ∈
C : Im z > 0}.
Lemma 2. argA1(z) ∈ (0, πρ) for all z ∈ H if and only if |w(t)| ≤ ρ for a.e. t.

By consequence, we find that since argA1(z) = 0 for z < 1, the image

(35) argA1(H) = (0, πρ∗), ρ∗ = ess sup |w(t)|.
It follows that Ar = Ar

1 is a Pick function if and only if 0 ≤ rρ∗ ≤ 1. Then the
result follows from Corollary 1. �
3.6. Composition II. If instead of composing generating functions directly, we
compose their upshifted versions, we obtain the following.

Proposition 4. Let b and c be real sequences with upshifted generating functions
G1 and F1 respectively. Suppose G1 ◦ F1 is a Pick function analytic on (−∞, 1).
Then the sequence â defined by

âk−1 =
k∑

j=1

bj−1c
∗j
k−j , k ≥ 1,

has upshifted generating function Â1 = G ◦ F1 and is completely monotone.
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Proof. Compute G1 ◦ F1(z) =
∑∞

k=1 âk−1z
k via

G1 ◦ F1(z) =

∞∑
j=1

bj−1z
j

( ∞∑
n=0

cnz
n

)j

=

∞∑
j=1

bj−1z
j

∑
n∈N

j
0

cn1
· · · cnj

zn1+...+nj ,

collecting terms to obtain the coefficient of zk, k ≥ 1, which we label as ak−1. �

Example 1. Let c = (cj)j≥0 be any completely monotone sequence. Then the
sequence (ĉk)k≥0 of its leading differences, given by

(36) ĉk = (I − S)kc0 =

k∑
j=0

(
k

j

)
(−1)jcj , k ≥ 0,

is completely monotone. Actually, this is easiest to establish directly from the
Hausdorff representation (1), since binomial expansion yields

k∑
j=0

(
k

j

)
(−1)j

∫ 1

0

tj dμ(t) =

∫ 1

0

(1− t)k dμ(t) =

∫ 1

0

tk dμ̂(t),

where μ̂(t) = μ(1) − μ(1 − t) is obtained by reflection. It is a charming fact that
taking leading differences of leading differences gives back the original sequence.
(For a more general inversion formula see [6, VII.1].) Here, though, for later use in
section 4 we wish to point out how this is related to Theorem 1 and Proposition 4:
The sequence (ĉk)k≥0 in (36) has upshifted generating function given by

(37) F̂1(z) = −F1(H(z)), H(z) =
−z

1− z
= 1− 1

1− z
.

This is true because

(1− z)−j−1 =

∞∑
n=0

(
n+ j

n

)
zn ,

hence

−F1(H(z)) = −
∞∑
j=0

cj

(
−z

1− z

)j+1

=

∞∑
j=0

∞∑
n=0

(−1)jcj

(
n+ j

n

)
zn+j+1

=
∞∑
k=0

k∑
j=0

(
k

j

)
(−1)jcjz

k+1 =
∞∑
k=0

ĉkz
k+1 = F̂1(z) .

Because −H is a Pick function in P (−∞, 1) which maps (−∞, 1) onto (−1,∞),

and z �→ −F1(−z) is a Pick function analytic on C \ (−∞,−1], it follows that F̂1 is
in P (−∞, 1). Thus (ĉk)k≥0 is completely monotone by Theorem 1.

4. Moments of convex and concave distribution functions

Work of Diaconis and Freedman [3] included a characterization of moments of
probability distributions admitting monotone densities in terms of the triangular
array given by

cn,m =

(
n

m

)
(I − S)n−mcm , 0 ≤ m < n .

Subsequently, Gnedin and Pitman [7] established the following criterion that char-
acterizes moments of increasing densities in terms of complete monotonicity. Such
densities correspond to distribution functions μ that are convex. We will work with
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distribution functions that in general satisfy μ(0) = 0 ≤ μ(0+) and are right con-
tinuous on (0, 1]. If the distribution function μ is convex, necessarily μ(0+) = 0
and the measure μ has no atoms except possibly at t = 1.

Definition. A sequence a = (an)n≥0 is completely alternating if the sequence given
by (S − I)a = (an+1 − an)n≥0 is completely monotone.

Theorem 2 ([7]). A sequence (cn)n≥0 is the sequence of moments of a probability
distribution on [0, 1] having a convex distribution function μ if and only if c0 = 1
and the sequence (an)n≥0 defined by

(38) a0 = 0, an = ncn−1, n = 1, 2, . . . ,

is completely alternating.

From Theorem 1, we directly obtain the following characterizations of completely
alternating sequences, and moments of a convex distribution function, in terms of
the corresponding generating functions. We find it convenient to consider distri-
bution functions that are not necessarily normalized to be probability distribution
functions. Note that if the sequence a has generating function A, then â = (S−I)a
has upshifted generating function

(39) Â1(z) = (1− z)A(z)−A(0) .

Also, if a is determined as in Theorem 2, from c with upshifted generating function
F1, then A(z) = zF ′

1(z).

Proposition 5. A sequence (an)n≥0 is completely alternating if and only if its
generating function A has the property that the function (1 − z)A(z) is a Pick
function analytic on (−∞, 1).

Theorem 3. Let c = (cn)n≥0 be a real sequence with upshifted generating function
F1. Then the following are equivalent.

(i) c is the sequence of moments of a convex distribution function μ on [0, 1]
with μ(0) = 0.

(ii) The sequence a determined from c by (38) is completely alternating.

(iii) The function Â1(z) = (1−z)zF ′
1(z) is a Pick function analytic on (−∞, 1).

(iv) The function Â(z) = (1− z)F ′
1(z) is a Pick function analytic and nonneg-

ative on (−∞, 1).

Criteria for (cn)n≥0 to be the moments of a concave distribution function μ,
whose corresponding measure has a decreasing density on (0, 1] with possible atom
at 0, turn out to be slightly simpler.

Theorem 4. Let c = (cn)n≥0 be a real sequence with upshifted generating function
F1. Then the following are equivalent.

(i) c is the sequence of moments of a concave distribution function μ on [0, 1].
(ii) The sequence ((n+ 1)cn)n≥0 is completely monotone.
(iii) The function F2(z) = zF ′

1(z) is a Pick function analytic on (−∞, 1).
(iv) The function F ′

1 is a Pick function analytic and nonnegative on (−∞, 1).

Although this result can be derived from Theorem 3 by using reflection as in
Example 1 above, we prefer to illustrate the use of Theorem 1 by providing a self-
contained proof. Essentially the idea is to consider mixtures of uniform distributions
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on [0, s], similar to [7]. In particular we make use of the following identity valid for
0 < s ≤ 1 and z ∈ C \ [1,∞):

(40)
1

1− sz
=

d

dz

∫ 1

0

z

1− tz

(
1

s
�0<t<s

)
dt.

Proof. Since (ii), (iii) and (iv) are equivalent by Theorem 1, it remains to prove
(iv) is equivalent to (i). Assume (iv). Then by Theorem 1, there is a finite positive
measure ν on [0, 1] with ν{0} = 0, and a0 ≥ 0, such that

(41) F ′
1(z) = a0 +

∫ 1

0

1

1− sz
dν(s).

(Here we have separated out the mass a0 of any atom at s = 0.) Using (40),
integration, division by z, and Fubini’s theorem we obtain

(42) F (z)− a0 =

∫ 1

0

(∫ 1

0

1

1− tz

(
1

s
�0<t<s

)
dt

)
dν(s) =

∫ 1

0

1

1− tz
w(t) dt ,

where

(43) w(t) =

∫ 1

0

(
1

s
�0<t<s

)
dν(s) =

∫ 1

t

dν(s)

s
.

This function w is decreasing on (0, 1], and taking z = 0 in (42) shows that w is
integrable on (0, 1), with

F (0) = a0 +

∫ 1

0

w(t) dt .

Then the distribution function μ(t) = a0 +
∫ t

0
w(r) dr, t > 0, is concave, and (2)

holds as desired, proving (i).
For the converse, assume (i). Then (42) holds for some a0 ≥ 0 and w decreasing

and integrable on (0, 1]. Extend w by zero for t > 1 and define the measure ν such

that dν(s) = −s dw(s) on (0, 1]. Then (43) holds, and
∫ 1

0
w(t) dt =

∫ 1

0
dν(s) by

Fubini’s theorem, and one deduces (41) by reversing the steps above. Thus (iv)
follows. �

Finally, we derive Theorem 3 from Theorem 4, using reflection as in Example 1.

Proof of Theorem 3. Suppose (i) (cn)n≥0 has the moment representation (1) with
convex distribution function μ, corresponding to an increasing density (with a pos-
sible atom at 1). Then by Example 1, the sequence of leading differences (ĉk)k≥0

is represented by the reflected density (with possible atom at 0). This density is
decreasing, implying the leading differences are moments of a concave distribution
function. The upshifted generating function F̂1 = −F1 ◦H given by (37) therefore
has the property that

F̂2(z) = zF̂ ′
1(z) =

z

(1− z)2
F ′
1(H(z)) ,

and this is a Pick function analytic on (−∞, 1). But since H(H(z)) = z,

−F̂2(H(z)) = −H(z)(1− z)2F ′
1(z) = z(1− z)F ′

1(z) = Â1(z),

and this is a Pick function analytic on (−∞, 1). This yields (iii), and (ii) and (iv)
are equivalent by Theorem 1.
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In the converse direction, if we assume the sequence a derived from c in (38) is

completely alternating, then Â1 is Pick. After reversing the arguments we deduce
that the leading difference sequence ĉ = (ĉk)k≥0 is represented by a decreasing
density. By Example 1, c itself is represented by the reflected, increasing density,
hence by a convex distribution function. �

5. Fuss-Catalan and binomial sequences

For any real p and r, the general Fuss-Catalan numbers [8,11], also called Raney
numbers [13, 14], are defined by A0(p, r) = 1 and

(44) An(p, r) =
r

n!

n−1∏
j=1

(pn+ r − j) =
r

pn+ r

(
pn+ r

n

)
, n = 1, 2, . . . .

For r = 1 one has

An(p, 1) =
(pn)!

n!(pn+ 1− n)!
=

1

pn− n+ 1

(
pn

n

)
,

showing that in particular, An(2, 1) is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
. The

Fuss-Catalan numbers have a long history and a very large number of fascinating
interpretations and applications, of which we only mention a couple. For example,
An(m, 1) counts the number of m-ary trees with n nodes, and An(m, k) counts the
number of sequences of mn+k terms selected from {1, 1−m} which sum to 1 while
having partial sums that are all positive [8, eq. (7.70)].

5.1. Fuss-Catalan moments. Recently, Alexeev et al. [1] proved that An(m, 1)
arises in random matrix theory as the n-th moment of the limiting distribution
of scaled squared singular values of products of m complex matrices with random
i.i.d. entries having zero mean, unit variance, and bounded fourth moments. Here,
we make use of Corollary 1 to provide a simple analytic proof of the following
characterization of those real p and r with p > 0 for which (44) yields a dilated
Hausdorff moment sequence.

Theorem 5. Let p and r be real with p > 0. Then (An(p, r))n≥0 is the sequence
of moments of some probability distribution μp,r having compact support in [0,∞)
if and only if p ≥ 1 and p ≥ r ≥ 0. In this case, μp,r is supported in the minimal
interval [0, τp] with τp = pp/(p− 1)p−1 for p > 1, τ1 = 1.

M�lotkowski [11] proved the if part of this theorem using techniques from free
probability theory, and the only if part was subsequently established by M�lotkowski
and Penson [12] using arguments that involve monotonic convolution. Explicit rep-
resentations of densities Wp,r(t) for μp,r and more general probability distributions
have been provided by Penson and Zyczkowski [14] and M�lotkowski et al. [11]
in terms of the Meijer G function and hypergeometric functions. Haagerup and
Möller [9] have derived parametrized forms of the densities Wp,1(t) in terms of
trigonometric functions. These distributions provide generalizations of previously
known distributions such as the Marchenko-Pastur distribution

dμ2,1(t) =
1

2π

√
4− t

t
dt,

and dμ2,2(t) = t dμ2,1(t), given by the Wigner semi-circle law centered on t = 2.
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Due to Corollary 1, Theorem 5 is directly implied by the following.

Lemma 3. Let p and r be real with p > 0, and let Bp,r denote the generating
function for the sequence (An(p, r))n≥0. Then Bp,r is a Pick function analytic and
nonnegative on some interval (−∞, 1/τ ), 0 < τ < ∞, if and only if p ≥ 1 and
p ≥ r ≥ 0. If this is the case, the minimal τ is τp.

Proof. The proof breaks into various cases.
1. The case p = 1 = r. Since An(1, 1) = 1 for all n, B1,1(z) = 1/(1 − z), and

this is a Pick function analytic and positive on the maximal interval (−∞, 1).
2. The case p > 1 = r. Let Bp = Bp,1 denote the generating function for

(An(p, 1))n≥0. It is well known [8, 11] that Bp(z) satisfies the functional relation

(45) Bp(z) = 1 + zBp(z)
p ,

as can be checked using the Lagrange inversion formula. Note Bp(z) cannot vanish,
so (45) is equivalent to

(46) z = ψp(Bp(z)), ψp(c) =
c− 1

cp
= c1−p − c−p.

The function ψp is analytic and strictly increasing on the interval (0, p/(p − 1)),
rising from −∞ to the value

zp := 1/τp = (p− 1)p−1/pp .

By consequence Bp is analytic, positive, and strictly increasing on (−∞, 1), hence
satisfies the Pick property in a neighborhood of this interval.

We continue Bp analytically to the domain C \ [zp,∞) by using a differential
equation that Bp satisfies; namely, (46) implies

(47) B′
p(z) =

1

z

Bp(Bp − 1)

p− (p− 1)Bp
.

We integrate along rays t �→ teiθ from t = t0 near the origin, for fixed θ ∈ (0, 2π).
By continuation theory for ordinary differential equations, the solution exists for t
in some maximal interval [t0, T ) with the property that if T < ∞, then as t ↑ T ,
either |Bp| → ∞ or Bp → p/(p − 1). The first case is not possible since by (46),
|Bp| → ∞ implies teiθ → 0. And the second case is not possible since by (46),
Bp → p/(p− 1) implies teiθ → zp. Therefore T = ∞ for every θ.

This provides an analytic continuation of Bp to C\[z∗,∞). Necessarily ImBp > 0
everywhere in the upper half plane Im z > 0, since ImBp cannot vanish due to (46).
Hence Bp is a Pick function and is analytic and positive on the maximal interval
(−∞, zp). This finishes the proof for p > r = 1.

3. The case p ≥ 1, p ≥ r ≥ 0. For any real p and r, the generating function Bp,r

satisfies the Lambert equation

(48) Bp,r(z) = Bp(z)
r .

(See [8, eq. (5.60)] and [11, eq. (3.2)], which is based on [16, p. 148].) Since Bp is
analytic and never vanishes or takes negative values, Log ◦Bp is a Pick function,
and Bp(z)

r = exp(r LogBp(z)). Thus Bp(z)
r is analytic in the upper half plane,

and positive and increasing on the maximal interval (−∞, zp), with limit 0 at −∞
and value 1 at z = 0.

We claim Bp,r is a Pick function: note zBp
p(z) = Bp(z)−1, and this is a nontrivial

Pick function analytic on (−∞, zp) that vanishes at z = 0. By Corollary 1, then,
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Bp(z)
p itself must be a Pick function. Since z �→ zr/p is a Pick function, it follows

that (Bp(z)
p)r/p = Bp(z)

r is a Pick function.
4. The case r > p ≥ 1. Recall zBp(z)

p is a Pick function analytic on (−∞, 1).
This function is negative for z < 0, so necessarily

arg zBp(z)
p = π , z < 0.

Since 0 < arg z < π implies 0 < argBp(z) < π, it follows that by taking z = eiθ,
the quantity

arg zBp(z)
r = arg zBp(z)

p + (r − p) argBp(z)

takes values ranging from 0 to more than π as θ varies from 0 to π. Consequently
zBp(z)

r cannot be a Pick function.
5. The case 0 < p < 1, r > 0. In this case, ψp is globally strictly monotone on

(0,∞) and maps this interval analytically onto R. This means the inverse function
Bp is globally real analytic on R, and the same is true for Bp,r for any r > 0 by
(48). In this case, Bp,r cannot be a Pick function. Indeed, the only Pick functions
analytic and positive globally on R are constant. This is because they have a general
representation as in (8), with μ as in (9). Hence dμ = 0 for a Pick function globally
analytic on R.

6. The case p > 0 > r. Due to the Lambert equation (48), Bp,r is decreasing on
(−∞, zp) in this case; hence Bp,r cannot be a Pick function. �

We next apply Theorem 4 to deduce that the distribution functions μp,1 have
decreasing densities for p ≥ 2. Numerical plots in [13] indicate that this condition is
not sharp for noninteger values of p. See [13,14] for detailed information concerning
densities Wp,r for all p ≥ 1, 0 < r ≤ p. Note, however, that for r = p one has
An(p, p) = An+1(p, 1), whence follows the simple relation

(49) dμp,p(t) = t dμp,1(t) .

Proposition 6. If p ≥ 2, then the probability distribution function μp,1 is concave
and continuous at 0. We have

dμp,1(t) = Wp,1(t) dt, dμp,p(t) = tWp,1(t) dt,

where Wp,1 is a decreasing, integrable function on (0, 1].

Proof. The function F1 = zBp(z) satisfies

(50) F ′
1 =

p− 2

p− 1
Bp +

1

p− 1

(
p

p− (p− 1)Bp
− 1

)
,

and if p ≥ 2, this is a Pick function analytic and positive on (−∞, 1), fulfilling
condition (iv) of Theorem 4. By Remark 1, the measure μp,1 has no atom at 0,
since Bp(z) → 0 as z → −∞. �

5.2. Fuss-Catalan canonical sequences and densities. Next we study the
canonical sequences and densities that are associated with Fuss-Catalan sequences
according to Theorem 5 and Proposition 3.

Theorem 6. For every p ≥ 1, there are a canonical sequence (b
(p)
n ), given explicitly

by

(51) b
(p)
n−1 = n

n∑
k=1

(−1)k−1

k

(
n

k

)
An(p, k) =

(
pn− 1

n− 1

)
, n = 1, 2, . . . ,
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and a nonincreasing density wp : [0, τp] → [0, 1/p] satisfying pwp(0
+) = 1 and

wp(τ
−
p ) = 0 such that

(52)
1

r
LogBp,r(z) =

∞∑
n=0

b
(p)
n

n+ 1
zn+1 =

∫ τp

0

z

1− tz
wp(t) dt , 0 < r ≤ p.

Moreover, (b
(p)
n τ−n

p )n≥0 is a completely monotone sequence.

Proof. For r > 0, the sequence a(r) = (An(p, r))n≥0 is a dilated Hausdorff sequence
if and only if r ≤ p. By Proposition 3, we infer (52), with p ess supwp(t) = 1.
(Note: w1(t) ≡ 1.) To prove that wp is nonincreasing, observe that (47) implies

(53) (p− 1)
zB′

p(z)

Bp(z)
=

1

p− (p− 1)Bp(z)
− 1,

and this is a Pick function analytic on (−∞, 1/τp). Let

(54) G̃1(z) = LogBp(z/τp) =

∫ 1

0

z

1− sz
wp(τps) ds.

Then zG̃′
1(z) = ẑB′

p(ẑ)/Bp(ẑ) (ẑ = z/τp) is a Pick function analytic on (−∞, 1).
Theorem 4 implies the density s �→ wp(τps) is nonincreasing on (0, 1]. Therefore
pwp(0

+) = 1. (See (58) below for the proof that wp(τ
−
p ) = 0.)

The first expression in (51) follows from (33). Noticing that (53) implies

(55)

∞∑
n=0

b(p)n zn =
B′

p(z)

Bp(z)
=

Bp(z)
p−1

1− p+ pBp(z)−1
,

the second expression follows from identity (5.61) in [8] (setting r = p−1). Finally,
plugging ẑ = z/τp into the power series in (52) and using Theorem 4, part (ii), we

infer (b
(p)
n τ−n

p ) is completely monotone as claimed. �

5.3. Binomial sequences. In a recent paper, M�lotkowski and Penson [12] estab-
lished necessary and sufficient conditions for the binomial sequence

(56)

(
pn+ r − 1

n

)
, n = 0, 1, . . . ,

to be the moment sequence of some probability distribution on some interval [0, τ ].
In this subsection we will provide an alternative proof of this characterization based
on Corollary 1. First, however, we note that the case r = 1 is connected with the
canonical density wp described in Theorem 6.

Corollary 2. For every real p > 1, the binomial sequence
(
pn
n

)
, n = 0, 1, . . ., is

the moment sequence for the probability distribution function 1 − pwp(t) on [0, τp]
having generating function

(57)

∞∑
n=0

(
pn

n

)
zn =

∫ τp

0

1

1− tz
d(1− pwp(t)).
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Proof. Noting that
(
pn
n

)
= pb

(p)
n−1 for n ≥ 1, we use (52) to compute that

∞∑
n=0

(
pn

n

)
zn = 1 + pz

∫ τp

0

∂

∂z

(
z

1− tz

)
wp(t) dt

= 1 +

∫ τp

0

∂

∂t

(
1

1− tz

)
pwp(t) dt

=

∫ τp

0

1

1− tz
d(1− pwp(t)) +

pwp(τ
−
p )

1− τpz
.

Comparing the last line of this calculation to the first and using (52), (53), and
(46), we find that

wp(τ
−
p ) = lim

z↑1/τp
(1− τpz)zB

′
p(z)/Bp(z)

=
1

p− 1
lim

z↑1/τp

1− τpz

p− (p− 1)Bp(z)

=
τp

(p− 1)2
ψ′
p

(
p

p− 1

)
= 0.(58)

This finishes the proof. �

In the case p = 2 one can obtain an explicit formula for w2(t) by elementary
means. From the formula

(59)

(
2n

n

)
=

1

π

∫ π

0

(4 cos2(u/2))n du ,

we find

(60)
∞∑

n=0

(
2n

n

)
zn =

1

π

∫ π

0

1

1− 4z cos2(u/2)
du .

By comparing with (57), we deduce that

(61) w2(t) =
1

π
arccos

√
t

4
.

Remark 3. For an arbitrary p > 1, an explicit formula for the inverse of wp may be
obtained in a similar way, based upon the integral representation formula (6) for
binomial coefficients. Set k = n, r = pn and

fp(u) =
sinp πu

sin(πu/p) sinp−1((1− 1/p)πu)
.

Then fp(u) decreases from τp to 0 as u increases from 0 to 1, and we deduce that

(62)

∞∑
n=0

(
pn

n

)
zn =

∫ 1

0

1

1− fp(u)z
du =

∫ τp

0

1

1− tz
d(1− f−1

p (t)) .

By comparing with (57), it follows that

(63) pwp(t) = f−1
p (t), 0 < t < τp .

Theorem 7 ([12]). Let p and r be real with p > 0. The sequence (56) is the
sequence of moments of some probability distribution νp,r having compact support
in [0,∞) if and only if p ≥ 1 and p ≥ r ≥ 0. In this case, νp,r is supported in the
minimal interval [0, τp] with τp = pp/(p− 1)p−1 for p > 1, τ1 = 1.
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Proof. The generating function Ep,r(z) for the sequence (56) is known to satisfy
(see [12] and [8, eq. (5.61)])

(64) Ep,r(z) =
Bp(z)

r

p− (p− 1)Bp(z)
.

From what was proved before, Ep,r (likeBp) is analytic and nonnegative on (−∞, zp)
and analytic in the upper half plane. By Corollary 1, it suffices to show that Ep,r

is a Pick function if and only if p ≥ 1 and p ≥ r ≥ 0. Similarly to the proof of
Theorem 5, the proof breaks into several cases.

1. The case r < 0. In this case, Ep,r(z) is decreasing in z for large z < 0; hence
Ep,r cannot be a Pick function.

2. The case 0 < p < 1, r ≥ 0. As in case 5 of the proof of Theorem 5, Bp, and
hence Ep,r, is globally analytic and positive on R. The only Pick functions with
this property are constant, so Ep,r is not a Pick function.

3. The case p > 1, 0 ≤ r ≤ p. By (55), (p − 1)zEp,p(z) equals the right-hand
side of (53) and therefore is a Pick function. Now, for 0 < arg z < π we have, on
the one hand, that

(65) arg zEp,r(z) = arg z + argEp,0(z) + r argBp(z) > 0,

and, on the other hand, that

(66) arg zEp,r(z) = arg zEp,p(z) + (r − p) argBp(z) < π .

This shows zEp,r(z) is a Pick function; hence Ep,r is a Pick function by Corollary 1.
4. The case p > 1, r > p. In this case we claim zEp,r(z) is not a Pick function.

To see this, take z = eiθ for 0 ≤ θ ≤ π and note that in (66), the last term is positive
and the first term varies from 0 to (at least) π. Hence the sum is somewhere more
than π for some z in the upper half plane.

5. The case p = 1. In this case, E1,r(z) = (1− z)−r, and this is a Pick function
if and only if 0 ≤ r ≤ 1. �

Remark 4. For rational p ≥ 1, with p ≥ 1+ r > 0, explicit formulae in terms of the
Meijer G function have been derived by M�lotkowski and Penson [12] for a density
denoted Vp,r(t) with the property that

(67)

∞∑
n=0

(
pn+ r

n

)
zn =

∫ τp

0

1

1− tz
Vp,r(t) dt .

By comparing with the above, it follows that

(68) −pw′
p(t) = Vp,0(t).
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tributions, Doc. Math. 18 (2013), 1573–1596. MR3158243
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