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JIAN-GUO LIU

Department of Physics and Department of Mathematics,
Duke University, 120 Science Drive, Durham, NC 27707, USA

E-mail: jian-guo.liu@duke.edu

ROBERT M. STRAIN

Department of Mathematics, University of Pennsylvania,
David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA

E-mail: strain@math.upenn.edu

[Received 5 May 2018 and in revised form 8 February 2019]

In this paper we prove the global existence, uniqueness, optimal large time decay rates, and uniform
gain of analyticity for the exponential PDE ht D �e��h in the whole space Rdx . We assume the
initial data is of medium size in the Wiener algebra A.Rd /; we use the initial condition �h0 2
A.Rd / which is scale-invariant with respect to the invariant scaling of the exponential PDE. This
exponential PDE was derived in [18] and more recently in [22].
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1. Introduction and main results

Epitaxial growth is an important physical process for forming solid films or other nano-structures.
Indeed it is the only affordable method of high quality crystal growth for many semiconductor
materials. It is also an important tool to produce some single-layer films to perform experimental
research, highlighted by the recent breakthrough experiments on the quantum anomalous Hall effect
and superconductivity above 100 K lead by Qikun Xue [3, 12].

This subject has been the focus of research from both physics and mathematics since the classic
description of step dynamics in the work of Burton, Cabrera, and Frank in 1951 [2], Weeks [30] in
the 1970’s, the KPZ stochastic partial differential equation description beyond roughness transition
in 1986 [16], and the mathematical analysis of Spohn in 1993 [29]. We refer to the books [26, 33]
for a physical explanation of epitaxial growth. For more recent modeling and analysis, we refer to
in particular to [6, 8, 13, 14, 21] and the references therein.

Epitaxy growth occurs as atoms, deposited from above, adsorb and diffuse on a crystal surface.
Modeling the rates that the atoms hop and break bonds leads in the continuum limit to the degenerate
4th-order PDE ht D �e��ph, which involves the exponential nonlinearity and the p-Laplacian�p ,
with p D 1, for example. This equation was first derived in [18] and more recently in [22]. In
this paper, we will focus on this class of exponential PDE for the case p D 2 and we give a short
derivation of the model below.
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Let h.x; t/ be the height of a thin film. We consider the dynamics of atom deposition,
evaporation, detachment and diffusion on a crystal surface in the epitaxial growth process. In
absence of atom deposition and evaporation1 and in the continuum limit, the above process can
be well described by Fick’s law:

ht Cr � J D 0; J D �Dsr�s :

Here Ds is the surface diffusion constant and �s is the equilibrium density of adatoms on a
substrate of the thin film. �s is described by the grand canonical ensemble e�.Es��s/=kBT up
to a normalization constant, where Es is the energy of pre adatom, �s is the chemical potential
pre adatom, kB is the Boltzmann constant and T is the temperature. We lump e�Es=kBT and the
normalization constant into a reference density �0 and then we arrive at the Gibbs–Thomson relation
�s D �

0e�s=kBT which is connected to the theory of molecular capillarity [27].
In the continuum limit, the chemical potential �s is computed by the variation of free energy

of the thin film. A simple broken-bond model for crystals consists of height columns described by
h D .hi /iD1;:::N with screw-periodic boundary conditions in the form

hiCN D hi C ˛aN 8i ;

where ˛ is the average slope and a is the side length. The column hi is derived into hi=a square
boxes where an atom is placed to the center of each box. The atoms then connect to the nearest
neighbor atoms with a bond from up, down, left and right. These bonds contain almost all the
energy of the system. Hence we set the total energy of the system equal to

E.h/ D �
 � .# of bonds/;

where 
 is the energy per bond. The negative sign represents that the atoms prefer to stay together.
It requests an amount of 
 energy to brake the bond and separate two atoms. With the identity
x C jxj D 2xC and some elementary computations, we can decompose the total energy E.h/ into
the bulk contribution Eb and the surface contribution Es . The bulk contribution is given by

Eb D �
2


a

NX
jD1

hi C

˛

2
N:

Due to the conservation of mass
PN
jD1 hi , we know that Eb is independent of time and we can drop

it from the energy computation. The surface contribution Es is given by

Es D



2a

NX
iD1

jhi � hi�1j :

This free energy agrees with the computation in [30]. In general the free energy takes the form

E.h/ D
1

p

Z
jrhjpdx;

1 In the case of atom deposition and evaporation with a constant rate a, we need to normalize the height by subtracting
out h.x; t/� at . After doing that however we obtain the same equation.
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or some linear combinations of those [23].
Now we can compute the chemical potential: �s D ıE

ıh
D ��ph and the PDE becomes

ht D �e
��ph (1.1)

where, for simplicity, we have taken the constant coefficientsDs�0 D 1, kBT D 1. We refer to [22]
and [18, 19] for a more physical derivation.

A linearized Gibbs–Thomson relation �s D �0e�s=kBT � �0.1C �s=kBT / is usually used in
the physical modeling and it results the following PDE

ht D
Ds�

0

kBT
��ph: (1.2)

Giga–Kohn [14] proved that there is a finite time extinction for (1.2). For the difficult case of p D 1,
Giga–Giga [13] developed a H�1 total variation gradient flow to analyze this equation and they
showed that the solution may instantaneously develop a jump discontinuity in the explicit example
of crystal facet dynamics. This explicit construction of the jump discontinuity solution for facet
dynamics was extended to the exponential PDE (1.1) in [19].

The exponential PDE (1.1) exhibits many distinguished behaviors in both the physical and the
mathematical senses. The most important one is the asymmetry in the diffusivity for the convex
and concave parts of height surface profiles. This can be seen directly if we recast (1.1) into the
following weighted H�1 gradient flow with curvature-dependent mobility [14, 20]:

ht D r �Mr
ıE

ıh
; M D e��ph :

The exponential nonlinearity drastically distinguishes the diffusivity for the convex and concave
surface and leads to the singular behavior of the solution.

In [20], a steady solution where �h contains a delta function was constructed and the global
existence of weak solutions with �h as a Radon measure was proved for the case p D 2. In [11],
a gradient flow method in a metric space was studied together with global existence and a free
energy-dissipation inequality was obtained.

In the present paper, we will study the case p D 2 in the exponential PDE (1.1):

ht D �e
��h in Rdx : (1.3)

We will consider initial data h0.x/. We will take advantage of the Wiener algebra A.Rd /; A.Rd /
is the space PF0;1 as defined in (1.5) in the next section. In particular in Section 1.2 our main results
show that if �h0 2 A.Rd / with explicit norm size less than 52

500
, assuming additional conditions,

then we can prove the global existence, uniqueness, uniform gain of analyticity, and the optimal
large time decay rates (in the sense of Remark 1.5). We note that for � > 0 the invariant scaling of
(1.3) is

h�.t; x/ D ��2h.�4t; �x/; (1.4)

and the condition �h0 2 A.Rd / is scale invariant (the exact condition we use is h0 2 PF2;1 which
is scale invariant).

In the next section we will introduce the necessary notation.
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1.1 Notation

We introduce the following useful norms:

kf k
p

PFs;p
.t/

def
D

Z
Rd
j�jspj Of .�; t/jpd�; s > �d=p; 1 6 p 6 2: (1.5)

We note that the Wiener algebra A.Rd / is PF0;1, and the condition �h0 2 A.Rd / is given by
h0 2 PF2;1. Here Of is the standard Fourier transform of f :

Of .�/
def
D F Œf �.�/ D

1

.2�/d=2

Z
Rd
f .x/e�ix��dx: (1.6)

When p D 1 we denote the norm by

kf ks
def
D

Z
Rd
j�jsj Of .�/j d�: (1.7)

We will use this norm generally for s > �d and we refer to it as the s-norm. To further study the
case s D �d , then for s > �d we define the Besov-type s-norm:

kf ks;1
def
D




 Z
Ck

j�jsj Of .�/j d�




`1
k

D sup
k2Z

Z
Ck

j�jsj Of .�/j d�; (1.8)

where for k 2 Z we have
Ck D f� 2 Rd W 2k�1 6 j�j < 2kg : (1.9)

Note that we have the inequality

kf ks;1 6
Z
Rd
j�jsj Of .�/j d� D kf ks : (1.10)

We note that
kf k�d=p;1 . kf kLp.Rd /

for p 2 Œ1; 2� as is shown in [25, Lemma 5].
Further, when p D 2 we denote the norm (for s > �d=2) by

kf k2
PFs;2

def
D

Z
Rd
j�j2sj Of .�/j2d� D kf k2

PH s
D k.��/s=2f k2

L2.Rd /: (1.11)

We also introduce following norms with analytic weights:

kf k
p

PFs;p�
.t/

def
D

Z
Rd
j�jspep�.t/j�jj Of .�; t/jpd�; s > 0; p 2 Œ1; 2�; (1.12)

for a positive function �.t/.
We also introduce the following notation for an iterated convolution

f �2.x/ D .f � f /.x/ D

Z
Rd
f .x � y/f .y/dy;
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where � denotes the standard convolution in Rd . Furthermore in general

f �j .x/ D .f � � � � � f /.x/;

where the above contains j � 1 convolutions of j copies of f . Then by convention when j D 1 we
have f �1 D f , and further we use the convention f �0 D 1.

We additionally use the notation A . B to mean that there exists a positive inessential constant
C > 0 such that A 6 CB . The notation� used as A � B means that both A . B and B . A hold.

1.2 Main results

In this section we present our main results. Our Theorem 1.1 below shows the global existence of
solutions under a medium sized condition on the initial data as in Remark 1.2.

Theorem 1.1 Consider initial data h0 2 PF0;2 \ PF2;1 further satisfying kh0k2 < y� where y� > 0
is given explicitly in Remark 1.2. Then there exists a global in time unique solution to (1.3) given by
h.t/ 2 C 0t .

PF0;2 \ PF2;1/ and we have that

khk2.t/C �2;1

Z t

0

khk6.�/d� 6 kh0k2 (1.13)

with �2;1 > 0 defined by (2.11).

In the next remark we explain the size of the constant.

REMARK 1.2 We can compute precisely the size of the constant y� from Theorem 1.1. In particular
the condition that it should satisfy is that

f2.y�/ D .y
3
� C 6y

2
� C 7y� C 1/e

y� � 1 D

1X
jD1

.j C 1/3

j Š
yj� < 1

Such a y� can be taken to be y� 2 .0; 52=500�. For this reason we call the initial data “medium
size”. However y� > 105=1000 is too big in our framework.

Now in the next theorem we prove the large time decay rates, and the propagation of additional
regularity, for the solutions above.

Theorem 1.3 We assume all the conditions in Theorem 1.1. We also assume that kh0k�d;1 < 1

but not necessarily small.
In particular for any maxf�2;�dg < s 6 2 we have that

khks.t/ . kh0ks; (1.14)

assuming additionally that kh0ks <1 but not necessarily small.
In particular if h0 2 PF s;1 and h0 2 PF2;2 (these norms are not assumed to be small) then we

conclude the large time decay rate

kh.t/ks . .1C t /�.sCd/=4; (1.15)

where d is the spatial dimension in (1.3).
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Then in the next theorem we explain the instant gain of uniform analyticity, at the optimal linear
temporal growth rate of t1=4, and the uniform large time decay rate of the analytic norms.

Theorem 1.4 We assume all the conditions in Theorem 1.1. Additionally suppose that kh0k�d;1 <

1, h0 2 PF s;1 for some fixed 0 6 s 6 2 and h0 2 PF2;2 (these norms are not assumed to be small).
Then there exists a positive increasing function �.t/ > 0 such that �.t/ � t1=4 for large t & 1.

For this �.t/, the solution h.t; x/ from Theorem 1.1 further gains instant analyticity: h.t/ 2 C 0t PF
s;1
� .

And the analytic norm decays at the same rate:

kh.t/k PFs;1�
. .1C t /�.sCd/=4: (1.16)

The function �.t/ is defined precisely in (8.7).

In the remarks below we further explain the optimal linear uniform time decay rates and the
optimal linear gain of analyticity with radius �.t/ � t1=4.

REMARK 1.5 We point out that the large time decay rates which we obtain in (1.15) and (1.16) (and
also in (3.1) below) are the same as the optimal large time decay rates for the linearization of (1.3),
which is given by

gt C�
2g D 0; (1.17)

obtained by removing the non-linear terms in the expansion of the nonlinearity as in (2.1) below.
In particular it can be shown by standard methods that if g0.x/ is a tempered distribution

vanishing at infinity and satisfying kg0k�;1 <1, then one further has

kg0k�;1 �



t .s��/=
 


e�t.��/
=2g0




s





L1t ..0;1//

; for any s > �, 
 > 0.

It then follows from this equivalence that the optimal large time decay rate for the norm

e�t.��/
=2g0

s is t�.s��/=
 . In particular the optimal decay rates for solutions of the linear
equation (1.17) in the norm (1.7) are t�.s��/=4. These optimal linear large time decay rates are
the same as the non-linear time decay rates in (1.15) and (3.1). These large time decay rates even
hold for solutions to the equation (1.3) in the analytic norm as in (1.16).

When we say in this paper that the large time decay rates are optimal, we mean that we obtain
the optimal linear decay rate as just described in Remark 1.5.

REMARK 1.6 Regarding the rate of growth of the radius of analyticity, we look at solutions to the
following linear equation:

gt C .��/

=2g D 0; 
 > 0: (1.18)

If this equation has initial initial data g0 then it’s solution is g D e�t.��/

=2
g0. We now take a look

at the following quantity


et˛.��/1=2e�t.��/
=2g0



s
D

Z
Rd
j�jset

˛ j�j�t j�j

j Og0.�/j d�:

One may try to take ˛ > 0 as large as possible to increase the temporal rate of growth of the radius
of analyticity of solutions to (1.18). A larger ˛ > 0 gives a stronger estimate if the norm above is
finite. In the whole space Rd , it can be shown for ˛ D 1



that t˛j�j � t j�j
 6 1 holds uniformly for

0 6 j�j 6 1 and t > 0. If ˛ > 1



then it can be shown that t˛j�j � t j�j
 is unbounded and goes
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to infinity as t ! 1 along a large range of j�j directions. By this reasoning, in the whole space
Rd , the optimal rate of growth of the temporal radius of analyticity for the linear equation (1.18) is
˛ D 1



in the analytic weight term et

˛ j�j in the above norm.
In this paper the relevant linearized equation is (1.17) (linearized from (2.1) below) for which

the optimal linear temporal growth rate of analyticity as above is et
1=4j�j with ˛ D 1

4
. We prove

in Theorem 1.4 that the non-linear equation (1.3) also enjoys the uniform global in time gain of
analyticity as in (1.16) with rate �.t/ � t1=4, and in addition the analytic norm satisfies the global
in time uniform optimal linear large time decay rates.

Alternatively in the torus Td , by a similar analysis one can see that the optimal rate of growth
of the radius of analyticity for the linear equation (1.18) when 
 > 1 is ˛ D 1 in the analytic weight
term et

˛ j�j. This improvement can be shown directly because the Fourier modes are discrete and one
does not have to handle the situation where the modes are becoming arbitrarily small as j�j ! 0.

1.3 Related results, and methods used in the proof

A key point in our paper is to do a Taylor expansion of the exponential non-linearity as in (2.1)
below. Then one can take advantage of the fact that after taking the Fourier transform, then the
products in the expansion are transformed into convolutions. Therefore one can use the structure of
spaces such as PF2;1 to get useful global in time estimates like (2.10) without experiencing significant
loss. Here we mention previous work such as [4, 5] where a related strategy was employed for the
Muskat problem. Then we can obtain the optimal large time decay rates in the whole space using
the global in time bounds that we obtain such as in (2.10) in combination with Fourier splitting
techniques. The techniques to obtain the decay rates in the whole space have a long history, and
we just briefly refer to the methods in [25, 28] and the discussion therein. To prove the uniform
gain of analyticity, we perform a different splitting involving derivatives of the radius of analyticity
�0.t/ from (8.7), and we acknowledge the methods from [7, 24] and [9] that are used for different
equations.

We also mention that, after the mathematics in this paper had been completed, the paper [15]
was posted showing the global existence of at least one weak solution to the exponential PDE (1.3)
and the exponential large time decay, working on the torus Tdx . The paper [15] also uses the Taylor
expansion of the exponential nonlinearity, and the condition �h0 2 A.Td / with an equivalent size
condition.

We further mention the recent subsequent paper of Ambrose [1] who works on the same equation
(1.3) again in the torus Tdx in the related scale invariant norm

khkBs˛
def
D

X
k2Zn
jkjs sup

t2Œ0;1/

e˛t jkjj Oh.t; k/j:

Compared to the norms in this paper and in [15], then [1] moves the supt inside. Then, using the
notation in this paper, if initially kh0kB2

0
D kh0k PF2;1.Td / < 1=4, then [1] obtains global existence

and gain of analyticity in B2˛.Td /. In the whole space case, in the analogous space B2˛.Rd /, [1]
obtains a local in time existence theorem of analytic solutions for initial data that is small in
PF2;1.Rd /. The smallness constant on the initial data for the local existence theorem is not carefully

tracked in the whole space case.
We would also like to mention [17] which studies the existence and uniqueness of fourth order

equations using different methods.
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1.4 Self-similar solutions

In this section we briefly mention the self-similar form of solutions to (1.3). We recall the scale
invariance (1.4). We suppose that h is of the self-similar form

h.x; t/ D t1=2H.x=t1=4/: (1.19)

Then h is invariant with respect to the scaling (1.4), and satisfies jjh.�; t /jj2 D jjH jj2 in the norm
(1.7). Here we let y D x=t1=4 be the self-similar variable. Further if the profile H.y/ satisfies the
following equation

1

2
H.y/ �

1

4
y � ryH.y/ D e

��yH
�
j�yryH.y/j

2
��2yH.y/

�
;

then h.x; t/ D t1=2H.x=t1=4/ is a self-similar solution to (1.3). Here ry and �y are the gradient
and the Laplacian in the variable y.

Note that the equation above can be equivalently written as

1

2
H.y/ �

1

4
y � ryH.y/ D �ye

��yH ;

or alternatively after a Taylor expansion of the exponential it can be written as

2C d

4
H.y/C�2yH D

1

4
ry � .yH.y//C�y

1X
jD2

.��yH/
j

j Š
: (1.20)

Theorem 1.7 Any self-similar solution of the form (1.19) to the equation (1.3) for which kHk2 <
y�, for the constant y� as in Remark 1.2, must satisfy kHk2 D 0.

Theorem 1.7 will be proven in Section 2.4.

1.5 Outline of the paper

The rest of the paper is organized as follows. In Section 2 we prove the a priori estimates for the
exponential PDE (1.3) in the spaces PF s;p . Then in Section 3 we prove the large time decay rates in
the whole space for a solution. After that in Section 4 we prove the uniform bounds in the Besov-
type s-norms with negative indices including the critical index khk�d;1 where d is the dimension of
Rdx . In Section 5 we prove the uniqueness of solutions. Then in Section 6 we sketch a proof of local
existence and local gain of analyticity using an approximate regularized equation. And in Section 7
we explain how the results from the previous sections grant directly the proofs of Theorem 1.1 and
Theorem 1.3. Lastly in Section 8 we explain how to obtain Theorem 1.4. This in particular uses
the previous decay results (1.15) as well as previous results such as [7, 24]. In the Appendix A we
present some plots of a few numerical simulations that were carried out for the exponential PDE
(1.3) by Tom Witelski [31, 32].

2. A priori estimates

In this section we prove the apriori estimates for the exponential PDE in (1.3) and (2.1) in the spaces
PF s;p for p 2 Œ1; 2�. The key point is that we can prove a global in time Lyapunov inequality such as

(2.10) below under an O.1/ medium size smallness condition on the initial data.
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2.1 A priori estimate in PF2;1

We first establish the case of PF2;1 in order to explain the main idea in the simplest way. The equation
(1.3) can be recast by Taylor expansion as

ht C�
2h D �

1X
jD2

.��h/j

j Š
(2.1)

We look at this equation (2.1) using the Fourier transform (1.6) so that equation (1.3) is expressed
as

@t Oh.�; t/C j�j
4 Oh.�; t/ D �j�j2

1X
jD2

1

j Š
.j � j2 Oh/�j .�; t/ : (2.2)

We multiply the above by j�j2 to obtain

@t j�j
2 Oh.�; t/C j�j6 Oh.�; t/ D �j�j4

1X
jD2

1

j Š
.j � j2 Oh/�j .�; t/ (2.3)

We will estimate this equation on the Fourier side in the following.
Our first step will be to estimate the infinite sum in (2.3). To this end notice that for any real

number s > 0 the following triangle inequality holds:

j�js 6 j .s�1/
C

.j� � �1j
s
C � � � C j�j�2 � �j�1j

s
C j�j�1j

s/; (2.4)

where .s�1/C D s�1 if s > 1 and .s�1/C D 0 if 0 6 s 6 1. We have further using the inequality
(2.4) when s > 1 thatZ

Rd
j�jsj.j � j2 Oh/�j .�/j d� 6 j s

Z
Rd
j.j � jsC2 Oh/ � .j � j2 Oh/�.j�1/j d� 6 j skhksC2khk

j�1
2 : (2.5)

Above we used Young’s inequality repeatedly with 1C 1 D 1C 1.

Observe that generally @t j Ohj D 1
2

�
@t Oh OhC Oh@t Oh

�
j Ohj�1. Now we multiply (2.3) by Ohj Ohj�1.�; t/,

add the complex conjugate of the result, then integrate, and use (2.5) for s D 4 to obtain the
following differential inequality

d

dt
khk2 C khk6 6 khk6

1X
jD2

j 4

j Š
khk

j�1
2 : (2.6)

Now we denote the function

f2.y/ D

1X
jD2

j 4

j Š
yj�1 D

1X
jD1

.j C 1/3

j Š
yj (2.7)

Then (2.7) defines an entire function which is strictly increasing for y > 0 with f2.0/ D 0. In
particular we choose the value y� such that f2.y�/ D 1.
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Then (2.6) can be recast as

d

dt
khk2 C khk6 6 khk6f2

�
khk2

�
(2.8)

If the initial data satisfies
kh0k2 < y�; (2.9)

then we can show that khk2.t/ is a decreasing function of t . Note that y� D y2� in the notation
from (2.18) below. In particular

f2
�
khk2.t/

�
6 f2

�
kh0k2

�
< 1:

Using this calculation then (2.8) becomes

d

dt
khk2 C �2;1khk6 6 0; (2.10)

where
�2;1

def
D 1 � f2.kh0k2/ > 0: (2.11)

In particular if (2.9) holds, then khk2.t/ < y� will continue to hold for a short time, which allows
us to establish (2.10). The inequality (2.10) then defines a free energy and shows the dissipation
production.

At the end of this section we look closer at the function f2.y/:

f2.y/ D

1X
jD1

.j C 1/3yj

j Š
D

1X
jD1

.j.j � 1/.j � 2/C 6j.j � 1/C 7j C 1/yj

j Š
;

which gives
f2.y/ D .y

3
C 6y2 C 7y C 1/ey � 1 : (2.12)

We know that f2.0/ D 0 and f2.y/ is strictly increasing. Let y� satisfy

.y3� C 6y
2
� C 7y� C 1/e

y� � 1 D 1 (2.13)

Then f2.y�/ D 1 as above.
To extend this analysis to the case where s ¤ 2 we consider infinite series:

fs.y/ D

1X
jD2

j sC2

j Š
yj�1 D

1X
jD1

.j C 1/sC1

j Š
yj (2.14)

Again fs.0/ D 0 and fs.y/ is a strictly increasing entire function for any real s. We further remark
that for r > s we have the inequality

fs.y/ 6 fr .y/; s 6 r; 8y > 0: (2.15)

We further have a simple recursive relation

fs.y/ D
d

dy

�
yfs�1.y/

�
; f�1.y/ D e

y
� 1:

This allows us to compute fs.y/ for any s a non-negative integer as in (2.12).
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2.2 A priori estimate in the high order s-norm

In this section we prove a high order estimate for any real number s > �1:

@t j�j
s Oh.�; t/C j�jsC4 Oh.�; t/ D �j�jsC2

1X
jD2

1

j Š
.j�j2 Oh/�j .�; t/ (2.16)

Using (2.5) and (2.16), one has

d

dt
khks C khksC4 6 khksC4

1X
jD2

j sC2

j Š
khk

j�1
2 (2.17)

Now we recast (2.17) as
d

dt
khks C khksC4 6 khksC4fs

�
khk2

�
Let ys� satisfy fs.ys�/ D 1. If

kh0k2 < min.ys�; y�/: (2.18)

Note that by (2.15) we have that ys� 6 yr� for s 6 r . In particular we are using y2� D y� in (2.9)
and therefore ys� 6 y� whenever s 6 2.

Then by (2.10) we have
fs
�
kh.�; t /k2

�
6 fs

�
kh0k2

�
< 1 :

Hence we conclude the energy-dissipation relation

d

dt
kh.�; t /ks C �s;1kh.�; t /ksC4 6 0; : (2.19)

when (2.18) holds. Here we define �s;1
def
D
�
1 � fs.kh0k2

�
> 0.

Alternatively if s > �d and �2 < s 6 �1 then we by a similar procedure we use (2.4) to obtain
that

d

dt
khks C khksC4 6 khksC4f�1

�
khk2

�
:

And for kh0k2 < y� we similarly obtain d
dt
kh.�; t /ks C ��1;1kh.�; t /ksC4 6 0:

2.3 A priori estimate in PF s;p

In this section we prove a general PF s;p for 1 < p 6 2. We multiply the equation (2.2) by

pj�jsp Ohj Ohjp�2.�; t/ and add the complex conjugate equation to obtain

@t

�
j�jspj Ohjp.�; t/

�
C pj�jspC4j Ohjp.�; t/

D �
p

2

1X
jD2

1

j Š
j�jspC2 Ohj Ohjp�2.�; t/.j�j2 Oh/�j .�; t/

�
p

2

1X
jD2

1

j Š
j�jspC2 Ohj Ohjp�2.�; t/.j�j2 Oh/�j .�; t/: (2.20)



72 J.-G. LIU AND R. M. STRAIN

We will estimate this equation when p 2 .1; 2�. To this end, we split ps D .p � 1/s C s, and we
split 2 D .p�1/

p
4C

�
4
p
� 2

�
. We will do a Hölder inequality with p�1

p
C

1
p
D 1, then use (2.4), and

then Young’s inequality repeatedly with 1C 1
p
D

1
p
C 1 to obtainZ

Rd
j�jpsC2j Oh.�/j Ohjp�2.�/.j � j2 Oh.�//�j .�/j d�

6 kj�jsC4=p Ohkp�1Lp kj�j
sC 4p�2.j�j2 Oh/�j kLp

6 kj�jsC4=p Ohkp�1Lp j
sC 4p�2k.j�jsC4=p Oh/ � .j�j2 Oh/�.j�1/kLp

6 j sC
4
p�2khk

p

PFsC4=p;p
khk

j�1
2 : (2.21)

Above we have used that s C 4
p
� 2 > 1 to use the first inequality in (2.5), or s C 4

p
D 2.

We now use (2.20) and (2.21) to obtain

d

dt
khk

p

PFs;p
C pkhk

p

PFsC4=p;p
6 pkhk

p

PFsC4=p;p

1X
jD2

j sC4=p�2

j Š
khk

j�1
2 (2.22)

The sum in the upper bound is fsC4=p�4.khk2/ from (2.14). Similar to the previous discussions, we
choose the positive real number ysp� to satisfy fsC4=p�4.ysp�/ D 1.

Then if
kh0k2 < min.ysp�; y�/; (2.23)

it further holds that fsC4=p�4
�
kh.�; t /k2

�
6 fsC4=p�4

�
kh0k2

�
< 1: Hence we again have the

energy-dissipation relation

d

dt
kh.�; t /k

p

PFs;p
C p�s;pkh.�; t /k

p

PFsC4=p;p
6 0 : (2.24)

when (2.23) holds. Here �s;p
def
D
�
1 � fsC4=p�4.kh0k2/

�
> 0.

Thus we have proven the general PF s;p estimate for 1 < p 6 2 and sC 4
p
�2 > 1 or sC 4

p
D 2.

For instance for p D 2 then we have shown (2.24) for s > 1 and s D 0. The estimate (2.24) for the
remaining range of s > 0 and 1 < p 6 2 can be handled by an analogous procedure using (2.4) and
a slight modification of (2.21).

In particular (2.24) holds for s D 0 and p D 2 under only the assumption (2.9) because by
(2.15) we have that y02� 6 y�. Similarly y22� 6 y� and (2.24) holds for s D 2 and p D 2 under
only the assumption (2.9). These are the main two additional estimates that we will use in this paper.

2.4 Proof of Theorem 1.7 regarding self-similar solutions

In this section we will prove Theorem 1.7 using the estimates from the previous sub-sections.
We recall the dynamic equation (2.1) and apply the the Fourier transform (1.6) as in (2.2), then

the self-similar equation (1.20) after Fourier transform is

2C d

4
OH.�/C j�j4 OH.�/ D

1

4
� � r� OH � j�j

2

1X
jD2

1

j Š
.j � j2 OH/�j .�; t/ : (2.25)
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We multiply the above by j�j2 OH j OH j�1.�/ and perform the estimate exactly the same as in (2.6) to
obtain that

2C d

2
kHk2 C kHk6 6 kHk6f2.kHk2/ :

We therefore conclude as in (2.8)–(2.13) that if kHk2 ¤ 0 then we must have that kHk2 > y�

since f2.y�/ D 1: This completes the proof of Theorem 1.7.

3. Large time decay

In this section we prove the following large time decay rates in the whole space.

Proposition 3.1 Given the solution to (1.3) from Theorem 1.1. Suppose additionally that kh0ks <
1 for some maxf�2;�dg < s 6 2. Further suppose kh0k�d;1 < 1. Assume that kh0k2PF2;2 and
kh0k

2
PF0;2

are both initially finite. Then we have the following uniform decay estimate for t > 0:

khks . .1C t /�.sCd/=4: (3.1)

The implicit constant in the inequality above depends on kh0k2, kh0ks , kh0k�d;1, kh0k2PF2;2 , and
kh0k

2
PF0;2

.

Notice that this decay only depends on the smallness of the kh0k2 norm. No other norm is
required to be small. Further notice that Proposition 3.1 directly implies (1.15) in Theorem 1.3

A key step in proving (3.1) is to prove the following uniform estimate:

Proposition 3.2 Given the solution from Theorem 1.1. Suppose additionally that kh0k�d;1 < 1,
kh0k

2
PF2;2

<1, and kh0k2PF0;2 <1. Then we have

khk�d;1 . 1: (3.2)

The proof of Proposition 3.2 will be given in Section 4. The goal of this section is to establish
(3.1) by assuming (3.2).

We will use the following decay lemma from Patel–Strain [25]:

Lemma 3.3 Suppose g D g.t; x/ is a smooth function with g.0; x/ D g0.x/ and assume that for
some � 2 R, kg0k� <1 and

kg.t/k�;1 6 C0

for some � > �d satisfying � < �. Let the following differential inequality hold for 
 > 0 and for
some C > 0:

d

dt
kgk� 6 �Ckgk�C
 :

Then we have the uniform in time estimate

kgk�.t/ .
�
kg0k� C C0

�
.1C t /�.���/=
 :

This lemma is stated in the paper [25] with 
 D 1, however the similar proof below assumes
only that 
 > 0. We include the proof for completeness.
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Proof. For some ı; � > 0 to be chosen, and s 2 R, we initially observe that

kgk� D

Z
Rd
j�j� j Og.�/jd�

>
Z
j�j>.1Cıt/s

j�j� j Og.�/jd�

> .1C ıt/sˇ
Z
j�j>.1Cıt/s

j�j��ˇ j Og.�/jd�

D .1C ıt/sˇ
�
kgk��ˇ �

Z
j�j6.1Cıt/s

j�j��ˇ j Og.�/jd�
�
:

Using this inequality with � D �C 
 and ˇ D 
 , we obtain that

d

dt
kgk� C C.1C ıt/

s

kgk� 6 �Ckgk�C
 C C.1C ıt/s
kgk�

6 C.1C ıt/s

Z
j�j6.1Cıt/s

j�j�j Og.�/jd�:

Then, using the sets Ck as in (1.9) and defining �S to be the characteristic function on a set S , the
upper bound in the last inequality can be bounded as followsZ

j�j6.1Cıt/s
j�j�j Og.�/jd� D

X
k2Z

Z
Ck

�fj�j6.1Cıt/sgj�j
�
j Ogj d�

�

X
2k6.1Cıt/s

Z
Ck

j�j�j Ogj d�

. kgk�;1
X

2k6.1Cıt/s

2k.���/

. kgk�;1.1C ıt/s.���/
X

2k.1Cıt/�s61

2k.���/.1C ıt/�s.���/

. kgk�;1.1C ıt/s.���/

. C0.1C ıt/
s.���/;

where the implicit constant in the inequalities does not depend on t . In particular we have used that
the following uniform in time estimate holdsX

2k.1Cıt/�s61

2k.���/.1C ıt/�s.���/ . 1:

Combining the above inequalities, we obtain that

d

dt
kgk� C C.1C ıt/

s

kgk� . C0.1C ıt/

s
 .1C ıt/s.���/: (3.3)
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In the following estimate will use (3.3) with s D �1=
 , we suppose a > .� � �/=
 > 0, and we
choose ı > 0 such that aı D C . We then obtain that

d

dt
..1C ıt/akgk�/ D .1C ıt/

a d

dt
kgk� C aıkgk�.1C ıt/

a�1

D .1C ıt/a
d

dt
kgk� C Ckgk�.1C ıt/

a�1

D .1C ıt/a
� d
dt
kgk� C C.1C ıt/

�1
kgk�

�
. C0.1C ıt/

a�1�.���/=
 :

Since a > .� � �/=
 , we integrate in time to obtain that

.1C ıt/akg.t/k� . kg0k� C
C0

ı
.1C ıt/a�.���/=
 :

We conclude our proof by dividing both sides of the inequality by .1C ıt/a.

We have established the differential energy inequalities (2.10) and (2.19) for the equation (1.3).
Thus to prove the time decay in (3.1) it remains only to establish (3.2).

4. Proof of the uniform bound khk�d;1.t/ . 1

In this section we will prove the uniform bound in (3.2).

Proof of Proposition 3.2. We recall (2.2), and we uniformly bound the integral over Ck for each
j 2 Z as in (1.8) and (1.9). We obtain the following differential inequality

d

dt

Z
Ck

j�j�d j Oh.�; t/jd� C

Z
Ck

d� j�j�dC4j Oh.�; t/j 6
1X
jD2

1

j Š

Z
Ck

d� j�j�dC2.j�j2j Ohj/�j .�; t/:

(4.1)
We will estimate the upper bound. We can estimate the integral asZ

Ck

d� j�j�dC2.j�j2 Oh/�j .�; t/ . 2�d.k�1/
Z
Ck

d� j�j2.j�j2 Oh/�j .�; t/

. kj � j2.j � j2 Oh/�j .�; t/kL1
�

(4.2)

The last inequality holds because the integral over Ck is of size 2dk .
We will use (2.4). We also use Young’s inequality, first with 1C 1

1
D

1
2
C

1
2

, and again with
1C 1

2
D 1C 1

2
repeatedly to obtain:

kj � j
2.j � j2 Oh/�j .�/kL1

�
. j 2kj � j4 Oh.�/kL2

�
k.j � j2 Oh/�.j�1/.�/kL2

�

. j 2khk PF4;2kj � j
2 Oh.�/kL2

�
kj � j

2 Oh.�/k
j�2

L1
�

. j 2khk PF4;2khk PF2;2khk
j�2
2 : (4.3)
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Now we plug (4.2) into (4.1) to obtain

d

dt

Z
Ck

j�j�d j Oh.�; t/jd� C

Z
Ck

d� j�j�dC4j Oh.�; t/j 6
1X
jD2

1

j Š
kj � j

2.j � j2 Oh/�j .�/kL1
�
: (4.4)

We further estimate the upper bound using (4.3) to obtain

1X
jD2

1

j Š
kj � j

2.j � j2 Oh/�j .�; t /kL1
�

. kh.t/k PF4;2kh.t/k PF2;2
1X
jD2

j 2

j Š
kh.t/k

j�2
2

. kh.t/k PF4;2kh.t/k PF2;2 :

In the above we have used that
1X
jD2

j 2

j Š
kh.t/k

j�2
2 . 1:

The above holds because the sum initially
P1
jD2

j2

j Š
kh0k

j�2
2 . 1 converges generally. Then we

further use the estimate (2.10) to see that kh.t/k2 6 kh0k2.
We conclude from integrating (4.4) and using the above estimates thatZ
Ck

j�j�d j Oh.�; t/jd� C

Z t

0

ds

Z
Ck

d� j�j�dC4j Oh.�; s/j

6
Z
Ck

j�j�d j Oh0.�/jd� C

Z t

0

dskh.t/k PF4;2kh.t/k PF2;2 : (4.5)

Thus as long as we make the proper assumptions to boundZ t

0

dskh.t/k PF4;2kh.t/k PF2;2 6

sZ t

0

dskh.t/k2
PF4;2

dt

sZ t

0

kh.t/k2
PF2;2

dt . 1; (4.6)

then the bound (4.5) with (4.6) implies Proposition 3.2.
However when kh0k PF2;2 and kh0k PF0;2 are both initially finite then (2.24) implies that (4.6)

holds. Here we have used (2.24) with p D 2, s D 2 and s D 0, respectively. Then we obtain the
bound (3.2).

5. Uniqueness

In this section we prove the uniqueness of solutions to (1.3) which satisfy (2.9).

Proposition 5.1 Given two solutions h1 and h2 to (1.3) with the same initial data h0 satisfying
(2.9). Then kh1 � h2k2 D 0. If we further assume that the initial data satisfies kh0k0 < 1, then
kh1 � h2k0 D 0. In particular kh1 � h2kL1x D 0.

Proof of Proposition 5.1. We consider the equation (2.1) satisfied by both h1 and h2. Then we have
that

.h1 � h2/t C�
2.h1 � h2/ D �

1X
jD2

.��h1/
j � .��h2/

j

j Š
:
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We further have the algebraic identity

.��h1/
j
� .��h2/

j
D � .�h1 ��h2/

 
j�1X
mD0

.��h1/
j�1�m.��h2/

m

!
:

We take the Fourier transform to obtain

@t

�
Oh1.�; t/ � Oh2.�; t/

�
C j�j4

�
Oh1.�; t/ � Oh2.�; t/

�
D �j�j2

�
j � j

2
�
Oh1 � Oh2

��
�

1X
jD2

1

j Š

 
j�1X
mD0

.j � j2 Oh1/
�.j�1�m/

� .j � j2 Oh2/
�m

!
: (5.1)

Then we obtain that
d

dt
kh1 � h2ks C kh1 � h2ksC4 D Us : (5.2)

Above Us is the integral of the right side of (5.1) multiplied by j�js:

Us
def
D �

Z
Rd

d� j�j2Cs
1X
jD2

1

j Š

 
j�1X
mD0

�
j � j

2
�
Oh1 � Oh2

��
� .j � j2 Oh1/

�.j�1�m/
� .j � j2 Oh2/

�m

!
:

We will consider the cases s D 2 and then s D 0.
When s D 2 above, we use (2.4) and Young’s inequality to obtain

U2 6 kh1 � h2k6
1X
jD2

j 4

j Š
maxfkh1k2; kh2k2gj�1

C kh1 � h2k2 maxfkh1k6; kh2k6g
1X
jD2

j 5

j Š
maxfkh1k2; kh2k2gj�2:

Above we use maxfkh1k2; kh2k2g only to reduce the number of terms that we need to write down.
Now since the initial data satisfies (2.9) then we have

1X
jD2

j 4

j Š
maxfkh1k2; kh2k2gj�1 6

1X
jD2

j 4

j Š
kh0k

j�1
2 < 1:

Also
P1
jD2

j5

j Š
maxfkh1k2; kh2k2gj�2 6

P1
jD2

j5

j Š
kh0k

j�2
2 . 1: Then after integrating (5.2) with

s D 2 in time, we obtain that

kh1 � h2k2.t/C �

Z t

0

kh1 � h2k6.s/ ds .
Z t

0

kh1 � h2k2.s/maxfkh1k6; kh2k6g.s/ ds:

Here we use � D �2;1 > 0 from (2.11). Notice that
R t
0

maxfkh1k6; kh2k6g.s/ ds < 1 by (2.10).
Now the Gronwall inequality implies that kh1 � h2k2 D 0.
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We turn to the case s D 0 in (5.2). We will obtain an upper bound for U0. We will use (2.4)
(with s D 2 in (2.4)). Then with Young’s inequality we obtain

U0 6 kh1 � h2k4
1X
jD2

j 2

j Š
maxfkh1k2; kh2k2gj�1

C kh1 � h2k2 maxfkh1k4; kh2k4g
1X
jD2

j 3

j Š
maxfkh1k2; kh2k2gj�2:

However we know from the previous case that kh1 � h2k2 D 0 therefore the second term above is
zero. Then similar to the previous case, for a ı > 0 we obtain

kh1 � h2k0.t/C ı

Z t

0

kh1 � h2k4.s/ ds 6 0:

We conclude that kh1 � h2k0 D 0.

We remark that the same methods can be used to prove that kh1 � h2k PF0;2 D 0.

6. Local existence and approximation

In this section we prove the local existence theorem using a suitable approximation scheme. Since
the methods in this section are rather standard, therefore we provide a sketch of the key ideas.

Proposition 6.1 Consider initial data h0 2 PF0;2 further satisfying kh0k2 < y� where y� > 0 is
given explicitly in Remark 1.2.

Then there exists a time T > 0 and an interval Œ0; T � upon which we have a local in time unique
solution to (1.3) given by h.t/ 2 C 0.Œ0; T �I PF0;2\ PF2;1/. This solution also gains instant analyticity
on Œ0; T � as

khk PF2;1�
.t/ 6 kh0k2ebT ;

where �.t/ D bt for some fixed b 2 .0; 1/ with b D b.kh0k2/.

To prove this we perform a regularization of (2.1) as follows. Let �t be the heat kernel in Rd for
t > 0. We will consider �� with � > 0 so that �� is an approximation to the identity as � ! 0. We
define the regularized equation as:

@th
�
C�2.�� � �� � h

�/ D �

1X
jD2

.��.�� � �� � h
�//j

j Š
; h�0 D �� � h0: (6.1)

This regularized system (6.1) can be directly estimated using all of the apriori estimates from
the previous sections. In particular all the previous estimates for (1.3) in this paper continue to
straightforwardly apply to the approximate problem (6.1).

These estimates allow us to prove a local existence theorem for the regularized system (6.1)
using the Picard theorem on a Banach space C 0.Œ0; T��I PF4;2\ PF0;2/. We find the abstract evolution
system given by @th� D F.h�/ where F is Lipschitz on the open set ff .x/ 2 PF4;2 \ PF0;2 W
kf k PF2;1 < y�g. Observe that h�0 2 PF4;2 since h0 2 PF0;2. Further, since the convolutions are taken
with the heat kernel, we can prove analyticity for h� .
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In particular directly following (2.19) we obtain for some ı1 > 0 that

d

dt
kh�.t/k2 C ı1k�� � �� � h

�
k6 6 0:

Similarly following following (2.24) we obtain for some ı2 > 0 that

d

dt
kh�.t/k2

PF0;2 C ı2k�� � �� � h
�
k
2
PF2;2 6 0 :

From these estimates, we can obtain the convergence needed to take a limit as � ! 0 in (6.1) and
obtain the unique solution from Proposition 6.1 on the uniform time interval Œ0; T � for some T > 0.

In the following we show how to to reach analyticity in short time as in Proposition 6.1. The
approximation scheme in (6.1) is well designed to reach the analytic regime in short time, and
maintain the analyticity in the limit as � ! 0. Below, we explain the gain of analyticity with the a
priori estimate.

6.1 Reach analyticity in a short time

We use �.t/ D bt (for some b > 0 to be determined) in the analytic space (1.12) with s D 2 and
p D 1. Note that j�j3 6 j�j6 C j�j2. From (2.3) we obtain the following differential inequality:

d

dt
khk PF2;1�

C .1 � �0.t//khk PF6;1�
6 �0.t/khk PF2;1�

C khk PF6;1�

1X
jD2

j 4

j Š
khk

j�1

PF2;1�
(6.2)

We recall f2 in (2.7) and (2.14). We have the estimate

d

dt
khk PF2;1�

C .1 � b/khk PF6;1�
6 bkhk PF2;1�

C khk PF6;1�
f2.khk PF2;1�

/ (6.3)

Recalling (2.9), we can choose a small T > 0 such that

kh0k2e
bT < y�:

Then by choosing T smaller if necessary, on 0 6 t 6 T by continuity we have

f2.kh.t/k PF2;1�
/ 6 b1 < 1;

where b1 D b1.kh0k2; T /. We choose b > 0 small enough so that ı D 1� b� b1 > 0, and then we
have

d

dt
khk PF2;1�

C ıkhk PF6;1�
6 bkhk PF2;1�

: (6.4)

Then we apply the Grönwall inequality to (6.4) to obtain

khk PF2;1�
.t/ 6 kh0k2ebT 6 y�:

This completes the proof of the gain of analyticity, and Proposition 6.1.
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7. Global existence

In this section we briefly collect our previous estimates and explain the proofs of Theorem 1.1 and
Theorem 1.3. Note that if (2.9) holds then (2.10) also holds. Also (2.24) holds for s D 0 and p D 2
under only the assumption (2.9) because by (2.15) we have that y02� 6 y�. These global in time
bounds combined with Proposition 5.1 and Proposition 6.1 yield directly the proof of Theorem 1.1.

We now explain the proof of Theorem 1.3. Notice that the analysis in Section 2.2 directly yields
(1.14). And the fast large time decay rates (1.15) follow from Proposition 3.1 and Proposition 3.2
under the assumptions used in the statement of (1.15).

8. Long time existence and decay in the analytic norms

In this section we will present finally the proof of Theorem 1.4. This will show the global in time
uniform gain of analyticity with radius of analyticity that grows like t1=4 for large t & 1. This will
also show the uniform large time decay rates of the analytic norms with the optimal linear decay
rate as in Remark 1.5.

8.1 Gevrey estimates and the radius of analyticity

We consider �.t/ > 0, and now we look at estimates for (2.1) in the PF s;1� space with 0 6 s 6 2. We
will show that the radius of analyticity grows like �.t/ � t1=4 which is the optimal linear growth
rate as in Remark 1.6.

We multiply (2.2) by j�jse�.t/j�j Ohj Ohj�1.�; t/ and then we obtain

@t

�
j�jse�.t/j�jj Ohj.�; t/

�
� �0.t/j�jsC1e�.t/j�jj Ohj.�; t/C j�jsC4e�.t/j�jj Ohj.�; t/

D �
1

2

1X
jD2

1

j Š
j�jsC2e�.t/j�j Ohj Ohj�1.�; t/.j�j2 Oh/�j .�; t/

�
1

2

1X
jD2

1

j Š
j�jsC2e�.t/j�j Ohj Ohj�1.�; t/.j�j2 Oh/�j .�; t/: (8.1)

To estimate the nonlinear term on the right side we use Young’s inequality asZ
Rd
j�jsC2e�.t/j�jj Oh.�/j Ohj�1.�/.j � j2 Oh.�//�j .�/j d�

6 kj�jsC2e�.t/j�j.j�j2 Oh/�j kL1
�

6 j sC2k.j�jsC4e�.t/j�j Oh/ � .j�j2e�.t/j�j Oh/�.j�1/kL1
�

6 j sC2kf k PFsC4;1�
.t/khk

j�1

PF2;1�
: (8.2)

Now we use (8.2) to obtain the following estimate

d

dt
khk PFs;1�

6 �0.t/khk PFsC1;1�
� khk PFsC4;1�

C khk PFsC4;1�

1X
jD2

j sC2

j Š
khk

j�1

PF2;1�
: (8.3)
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We will use (8.3) to simultaneously prove a global bound and large time decay rates.
For now we will focus on the second two terms on the left side of (8.3). We use Hölder’s

inequality with sC 1 D 3
4
sC 1

4
.sC 4/, then Young’s inequality with 3

4
C

1
4
D 1, and multiply and

divide by �.t/3=4 and then we have that

khk PFsC1;1�
6 khk3=4

PFs;1�
khk

1=4

PFsC4;1�

6
3

4
�.t/�1khk PFs;1�

C
1

4
�.t/3khk PFsC4;1�

: (8.4)

Further, since ex 6 1C xex for x > 0, using also (8.4) we also have that

khk PFs;1�
D

Z
Rd
j�jse�.t/j�jj Oh.�; t/jd�

6
Z
Rd
j�jsj Oh.�; t/jd� C �.t/

Z
Rd
j�jsC1e�.t/j�jj Oh.�; t/jd�

6 khk PFs;1 C
3

4
khk PFs;1�

C
�.t/4

4
khk PFsC4;1�

:

We conclude that
khk PFs;1�

6 4khk PFs;1 C �.t/
4
khk PFsC4;1�

: (8.5)

This is one estimate that we will use just below.
Looking at (8.3), now we estimate the following difference using (8.4) and (8.5)

�0.t/khk PFsC1;1�
� khk PFsC4;1�

6
3

4
�0.t/�.t/�1khk PFs;1�

C
1

4
�0.t/�.t/3khk PFsC4;1�

� khk PFsC4;1�

6 3�0.t/�.t/�1khk PFs;1 C
3

4
�0.t/�.t/�1�.t/4khk PFsC4;1�

C
1

4
�0.t/�.t/3khk PFsC4;1�

� khk PFsC4;1�
: (8.6)

We will also use this estimate momentarily.
First with b > 0 from Proposition 6.1, for t > 0, we choose

�.t/ D ..bt0/
4
C at/1=4; (8.7)

for some t0 > 0 and a > 0 to be determined. Then �0.t/ D a
4
..bt0/

4Cat/�3=4 and �0.t/ D a
4
�.t/�3.

Further then
�0.t/�.t/�1�.t/4 D

a

4
;

and �0.t/�.t/�1 D a
4
�.t/�4:

And then from (8.6) we have

�0.t/khk PFsC1;1�
� khk PFsC4;1�

6
3a

4
�.t/�4khk PFs;1 �

�
1 �

a

4

�
khk PFsC4;1�

:

Later we will choose 0 < a < 4 small.
Now from (8.5) we have

�khk PFsC4;1�
6 ��.t/�4khk PFs;1� C 4�.t/

�4
khk PFs;1 :
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We choose ˛; ˇ > 0 such that ˛ C ˇ D 1. Then we have

�0.t/khk PFsC1;1�
� khk PFsC4;1�

6
�
3a

4
C 4˛

�
1 �

a

4

��
�.t/�4khk PFs;1 � ˛

�
1 �

a

4

�
�.t/�4khk PFs;1�

� ˇ
�
1 �

a

4

�
khk PFsC4;1�

:

These are the main upper bounds that we will use next.
Now returning to (8.3), we obtain the following differential inequality

d

dt
khk PFs;1�

C ı�.t/�4khk PFs;1�
6 ��.t/�4khk PFs;1 � �khk PFsC4;1�

C khk PFsC4;1�

1X
jD2

j sC2

j Š
khk

j�1

PF2;1�
:

(8.8)
In the above ı D ˛

�
1 � a

4

�
> 0 is a small constant and 0 < �

def
D ˇ

�
1 � a

4

�
< 1 can be chosen

arbitrarily close to 1. Further � def
D
�
3a
4
C 4˛

�
1 � a

4

��
> 0 can be chosen to be small.

We will use the estimate (8.8), combined with the following procedure to obtain the global
decay of the analytic norm with radius (8.7). For now we restrict to the case s D 2. We start with the
solution from Theorem 1.1 with initial data satisfying (2.9). Further as in Theorem 1.3 we assume
that h0 2 PF2;2, h0 2 PF0;2, and kh0k�d;1 < 1. Then from (1.15) we can choose a large time
T1 D T1.�

0/ > 0 such that for t > 0 we have

kh.T1 C t /k2 6 �0�.t/�.2Cd/; (8.9)

where we will choose �0 > 0 small in a moment.
From the local existence result in Proposition 6.1, we know that equation (2.1) has a gain of

analyticity on a local time interval starting with the initial data described in the previous paragraph.
We take initial data that for the gain of analyticity as kh.T1/k2 < � where � D �.�0; t0/ > 0 is small
and � ! 0 as �0 ! 0. Then for a short time interval ŒT1; T1 C 2t0� from Proposition 6.1 we still
have

kh.T1 C t /k PF2;1�
< �

for all t 2 ŒT1; T1 C 2t0� where as in Proposition 6.1 we use �.t/ D bt .
This is how we choose t0 > 0 small from (8.7) to guarantee the above based upon our choice

of �. We use estimate (8.8) with s D 2 starting at time T1 C t0 with �.t/ D ..bt0/
4 C at/1=4 as

in (8.7). To ease the notation, in the rest of this paragraph we write Qh.t/ D h.T1 C t0 C t / and
Qh0 D h.T1 C t0/. Now following arguments analogous to below (2.8) using (8.8) with s D 2 we
have

d

dt
k Qhk PF2;1�

C ı�.t/�4k Qhk PF2;1�
6 ��.t/�4k Qhk PF2;1 � �k

Qhk PF6;1�
C k Qhk PF6;1�

1X
jD2

j 4

j Š
k Qhk

j�1

PF2;1�

6 ���.t/�.2Cd/�4 � C1k Qhk PF6;1�
6 C��.t/�.2Cd/�4: (8.10)

Here we used that k Qhk PF2;1 . �.t/�.2Cd/. Above we can take C > 0 and C1 > 0 since, as above,
we can choose k Qhk PF2;1� to be arbitrarily small. We multiply by �.t/4ı=a to obtain

d

dt

�
�.t/4ı=ak Qh.t/k PF2;1�

�
6 C��.t/4ı=a�.2Cd/�4:
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Note that d
dt
�.t/4ı=a D ı�.t/4ı=a�4: Then we integrate to obtain

k Qh.t/k PF2;1�
6

C�

ı � a.2C d/=4

a

4
�.t/�.2Cd/ C k Qh0k PF2;1�

�.0/4ı=a�.t/�4ı=a: (8.11)

This concludes the main estimates of this paragraph.
Now choosing a > 0 sufficiently small, depending upon the other parameters in (8.11), allows

us to propagate the assumption that kh.T1 C t0 C t /k PF2;1� < � for all t > 0. Therefore (8.10) and
(8.11) hold for all times t > 0. We conclude that

kh.T C t /k PF2;1�
D

Z
Rd
j�j2e�.t/j�jj Oh.�; T C t /jd� . .1C t /�.2Cd/=4; (8.12)

which holds uniformly for some fixed T > 0 and all t > 0.
We can also prove (8.12) for any 0 6 s 6 2 by using the same technique, and obtain the decay

rate in (1.16). These estimates now grant Theorem 1.4. Q.E.D.

We remark that one can also control the exponential PDE (1.3) globally in time in the norms of PF s;1
for s > 2 and in PF s;p for general s > 0 and p 2 .1; 2� using only the smallness assumption from
(2.9) that is used in Theorem 1.1. The idea is to use the large time decay in (1.15) for s D 2 to show
that after a time T > 0 the norm kh.T /k2 can be as small as we need in order to control the sums
such as in the upper bounds of (2.17) and (2.22). In a similar way one can also obtain control of the
analytic norms such as PF s;p� .

Appendix

A. Numerical simulations

Here we present some numerical simulations of (3) to illustrate some aspects of the main results.
The computations were contributed by Thomas Witelski [31, 32] and carried out specifically for this
paper.

The equation (1.3) was simulated in one spatial dimension with periodic boundary conditions
on 0 6 x 6 2� . Computations were done using a fully-implicit backward Euler time-stepping
scheme with a second-order accurate finite-difference discretization in space with 214 D 16; 384

grid points (results were also validated against a Fourier pseudo-spectral code). Initial conditions
for each simulation were taken to be h0.x/ D A sin.x/ with A > 0, which gives jjh0jj2 D A using
the norm (1.7).

Results for three different values for A are shown to illustrate behaviors starting from initial data
below or above the critical value y� � 0:104835667. Figure 1 shows that below y�, for A D 0:1,
the PF2;1 norm is monotone decreasing in time, as expected from Theorem 1. In this particular case,
the evolution of the PW2;1 norm (here, also starting from value A) is almost indistinguishable from
the PF2;1, but it is always a lower bound for that norm. The decay of profiles of hxx.x; t/ are also
shown. Note that here PW2;1 denotes the standard homogeneous Sobolev norm with two derivatives
in the L1 space.

Further analysis is needed to better understand the behaviors for A > y�, but numerical
simulations can be suggestive of the dynamics that can occur. Figure 2 shows results starting from
A D 0:3. The value of the PW2;1 is still monotone decreasing, but now the evolution of the PF2;1
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Ẇ2,∞ norm

Ḟ2,1 norm

A = 0.1

t

10

0.1

0.05

0

A = 0.1

x

h
x
x

2ππ0

0.1

0

-0.1

FIG. 1. Numerical simulation of evolution from initial data h0 D A sin.x/ with 1
10
D A < y� showing monotone decay

of the PF2;1 norm

Ẇ2,∞ norm

Ḟ2,1 norm
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FIG. 2. Numerical simulation of evolution from initial data h0 D A sin.x/ with 3
10
D A > y� showing that PF2;1 norm

is no longer monotone decreasing when the conditions of Theorem 1 are violated

Ẇ2,∞ norm
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FIG. 3. Numerical simulation of evolution from significantly larger initial data h0 D A sin.x/ with 3 D A > y� having
both norms being non-monotone in time and suggesting finite-time blow-up

norm is not monotone. For larger initial data, Figure 3 shows results starting from A D 3. Here both
norms are non-monotone in time and seem to suggest formation of a finite-time singularity as hxx
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blows-up. Numerical evidence for finite-time blow was given in an earlier 2013 paper by Marzuola
and Weare [22].

The ebook version of this paper contains full color images of the plots in of Fig. 1–3.
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