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Abstract
In this paper, we provide an alternative proof for the classical Sz. Nagy 
inequality in one dimension by a variational method and generalize it to 
higher dimensions ⩾d 1
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where m  >  0 for d  =  1, 2, < < +
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m0 d
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2
 for ⩾d 3, and ( )= + +a d m

md

2 1 . The 

Euler–Lagrange equation for critical points of ( )J h  in the non-negative radial 
decreasing function space is given by a free boundary problem for a generalized 
Lane–Emden equation, which has a unique solution (denoted by hc) and the 
solution determines the best constant for the above generalized Sz. Nagy 

inequality. The connection between the critical mass 
R∫= = πM h xdc c

2 2

3
 

for the thin-film equation and the best constant of the Sz. Nagy inequality in 
one dimension was first noted by Witelski et al (2004 Eur. J. Appl. Math. 15 
223–56). For the following critical thin film equation in multi-dimension ⩾d 2

( ) ( ) R+∇ ⋅ ∇∆ +∇ ⋅ ∇ = ∈h h h h h x0, ,t
m d
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where m  =  1  +  2/d, the critical mass is also given by 
R∫=M h x: dc cd . A finite 

time blow-up occurs for solutions with the initial mass larger than Mc. On 
the other hand, if the initial mass is less than Mc and a global non-negative 
entropy weak solution exists, then the second moment goes to infinity as 
→∞t  or ( )⋅ ⇀h t, 0k  in ( )RL d1  for some subsequence →∞tk . This shows that 

a part of the mass spreads to infinity.

Keywords: long-wave instability, free-surface evolution, critical mass, 
free boundary problem
Mathematics Subject Classification numbers: 35K65, 35K25, 39B62

1.  Introduction

In many models of physical and biological systems, coherent system states are formed and 
maintained by a balance of competing influences. There are processes that disperse, defocus, 
fragment, or spread things out in some ways, while aggregation, focusing, or concentration 
effects are generated by nonlinear mechanisms. For physical systems that can be described 
by a gradient flow driven by a free energy, these competing effects are usually represented by 
terms with different signs in the free energy. Some functional inequalities have been exten-
sively investigated to determine the domination among these competing effects in the free 
energy (see [5, 10, 12, 13, 15, 16, 18, 33, 34]).

There are rich phenomena when competition is dynamically balanced in some invariant 
scalings such as the mass invariant scaling which leads to a critical exponent. We refer a physi-
cal system with such critical exponents to as a critical system. Sometimes, equilibrium solu-
tions in a critical system are also solutions to the Euler–Lagrange equation for an associated 
functional inequality. In other words, equilibrium solutions achieve the equality in the func-
tional inequality and determine the best constant of the functional inequality. Consequently, 
the best constant provides sharp conditions on initial data to distinguish between global exist-
ence and finite time blow-up.

This paper focuses on the following critical-case long-wave unstable thin film equa-

tion with = +m 1
d

2

( ) ( ( ))  R+∇ ⋅ ∇∆ +∇ ⋅ ∇ = ∈ >h h h h h x t0, , 0,t
n n m d� (1.1)

which has been derived from a lubrication approximation to model the surface tension 
dominated motion of viscous liquid films and spreading droplets over a solid substrate. The 
unknown function h(x, t) represents the height of the evolving free-surface. The parameter n is 
usually referred to as a mobility exponent. The case n  =  3 corresponds to films with constant 
interfacial shear stress and constant surface tension [29], and the case n  =  1 corresponds to  
the lubrication approximation of the Hele-Shaw flow [21]. The details can be found in a 
review [29].

We rewrite (1.1) in a variational form

( )µ µ
δ
δ

−∇ ⋅ ∇ = =
F

h h
h

0, ,t
n� (1.2)

where μ is a chemical potential. It is given by the variation of a free energy functional:

( )
R R∫ ∫= |∇ | −

+
+F h h x

m
h x:

1

2
d

1

1
d .m2 1

d d
� (1.3)
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In the thin film equation (1.2), the negative chemical potential is referred to as the dynamic 
pressure, µ= − = ∆ +p h hm. From the variational form in (1.2), we have the following 
entropy-dissipation relation for ⩾h 0:

( ( )) ( ) ⩽∫⋅ =− |∇ +∆ |F
Rt

h t h h h x
d

d
, d 0.n m 2

d
� (1.4)

Notice that the second term in (1.1) involves the fourth order derivative and is a stabilizing 
term, while the third term is a destabilizing second order derivative term. For short-wave solu-
tions, the stabilizing term dominates the destabilizing one so that the linearized equation of 
(1.1) is well-possed. However, for long-wave solutions, the destabilizing term sometimes 
dominates the stabilizing term such that the long-wave instability may occur. The competition 
between the stabilizing term and the destabilizing term is represented by different signs for the 
corresponding terms in the free energy (1.3).

If h(x, t) is a solution to (1.1), then the mass invariant re-scaled profile ( )α α α +h x t,d d 4  
is also a solution to (1.1). This scaling invariant property indicates a balance between the 
stabilizing and destabilizing terms in the mass invariant scaling, and hence m  =  1  +  2/d is 
a critical exponent. This is the reason why we call the equation (1.1) a critical case model. 
Notice that m  =  1  +  2/d coincides with the Fujita exponent for the associated Allen–Cahn 

equation  = − = ∆ +δ
δ
Fu u ut u

m.

For some critical models, there is a critical mass Mc that can be used to distinguish between 
global existence and finite time blow-up, and the critical mass is usually given by the mass 
of equilibrium solutions. For an equilibrium solution heq, the dissipation term is zero, and the 
equilibrium chemical potential is given by

( ) ¯

( ) ⩾ ¯⎪

⎪
⎧
⎨
⎩

µ

µ

= ∈x C x h

x C

, supp ,

, otherwise

eq eq

eq
� (1.5)

for some constant C̄. In other words, the equilibrium solution is a Nash equilibrium [9].
Witelski et al in [34] found that the best constant of the Sz. Nagy inequality [27] is closely 

connected to the critical mass Mc in the one-dimensional thin film equation. In this paper, we 
provide an alternative proof for the classic Sz. Nagy inequality (1941) based on a variational 
method and extend this inequality to any dimension ⩾d 1.

Define a space

{ ( ) ( )}= ∈ ∇ ∈R RX h L h L: , ,d d1 2

and a functional
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where m  >  0 for d  =  1, 2, < < +
−

m0 d

d

2

2
 for ⩾d 3, ( )= + +a d m

md

2 1 . A generalized Sz. Nagy 

inequality can be formulated as the following minimizing problem

( )β =
∈
J hinf .

h X
0� (1.7)

Thanks to the rearrangement technique, the infimum β0 can be achieved in the following non-
negative radial symmetric decreasing function space
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{ ⩾   ( ) ( ) ( ) ⩽ ( ) ( )}R R= = | | ∈ ∇ ∈′∗X h h x h x h r h L h L: 0 , 0, , .d d
rad

1 2� (1.8)

In section 3, we will show that the Euler–Lagrange equation for critical points of ( )J h  in ∗X rad 
is given by the following free boundary problem for a generalized Lane–Emden equation up 
to a re-scaling

 ″ +
−

+ = < <′h
d

r
h h r R

1
1 for 0 ,m� (1.9)

= = =′ ′h h R h R0 0, 0,( ) ( ) ( )� (1.10)

and ( )α = >h: 0 1. We will show that this free boundary problem (1.9) and (1.10) has a unique 
solution hc which gives the best constant

( ) ( )( ) ( )β = − ++ − − +a a M2 1 1 ,m d m d c
d

0
1 1 2 1 1 1 2 2

� (1.11)

where 
R∫=M h xdc cd . In one dimension, we have an explicit value

( ) ⎜ ⎟
⎛
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⎟β = ⋅ +− − + Bm m

m
4 3 3

3

2
,

3

2
.m m0

3 3 1 3
2

Theorem 1.1.  Suppose ( )R∈f L d1 , ( )R∇ ∈f L d2 . Then ( )R∈ +f Lm d1  and satisfies the follow-
ing generalized Sz. Nagy inequality

⩽ ( )
R R R
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(1.12)

where m  >  0 for d  =  1, 2, < < +
−

m0 d

d

2

2
 for ⩾d 3, ( )= + +a d m

md

2 1 , and 
R∫=M h xdc cd , hc is the 

unique solution to the free boundary problem (1.9) and (1.10) in ∗X rad and satisfies that

	 (i)	the equality holds in (1.12) if ( )λ= | − |f A h x xc 0  for any real numbers A  >  0, λ> 0, 
R∈x d

0 .
	(ii)	hc(0)  >  1, hc(r)  >  0, ( )<′h r 0c  for 0  <  r  <  R, and ( )≡h r 0c  for ⩾r R.

In particular, for d  =  1 there is a unique closed form solution to (1.9) and (1.10)
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where ( )B a b,  is the Beta function and B−1 is the inverse function of the incomplete Beta func-
tion B(x; a, b).
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Remark 1.1.  The derivation of ( ) =′h R 0c  in the free boundary problem (1.9) and (1.10) 
comes from (i) a Pohozaev type identity between the free energy and the contact angle 
¯ ( ) ( )= ′F h Ch Rc c

2 in lemma 3.1; (ii) ¯ ( ) =F h 0c  in proposition 3.1.

The idea of using a functional inequality to determine a sharp condition on initial data to 
distinguish global existence from finite time blow-up goes back to the work of Weinstein [33], 
where a sharp condition for a critical focusing nonlinear Schrödinger equation is established 
by using the best constant of a Gagliardo–Nirenberg inequality. Although the system stud-
ied there is a Hamiltonian system instead of a gradient flow system, the mathematical tools 
involved are very similar.

More recently it has been shown that the best constant in the logarithmic Hardy–Littlewood–
Sobolev inequality [1] determines the critical mass π8  for the two-dimensional (2D) para-
bolic–elliptic Keller–Segel model [10, 12]. While using the Onofri inequality, Calvez and 
Corrias [15] showed that π8  is also the critical mass for the 2D parabolic–parabolic Keller–
Segel model.

The Hardy–Littlewood–Sobolev inequality was used to study the degenerate Keller–
Segel model in higher dimensions ⩾d 3 under the critical exponent =

+
me

d

d

2

2
, see [16]. The 

equilibrium equation  is given by the Lane–Emden equation −∆ =u up (see [9]) with the 

critical exponent = +
−

p d

d

2

2
, and its solution achieves the equality for the Hardy–Littlewood–

Sobolev inequality. Notice that the critical exponent for the mass invariant scaling is given 

by = −m 2c d

2, see [11]. For the diffusion exponent between these two critical exponents, 

< <m m me c, there is a constant s* depending only on the initial mass and the best constant 
of the Hardy–Littlewood–Sobolev inequality [17], such that for ( ) ( )R Rρ ∈ ∩ ∞L Ld d

0
1  there is 

a unique global weak solution if ∥ ∥ρ
+L0 d

d
2

2
 is less than s*, and a finite time blow-up occurs if 

∥ ∥ρ
+L0 d

d
2

2
 is larger than s*. We refer to Dolbeault et al [18] for recent developments on functional 

inequalities and applications to global existence for nonlinear partial differential equations.
For the one-dimensional thin film equation, from the pioneering work of Bernis and 

Friedman [4], global existence of weak solutions, non-negativity, Hölder regularities, finite 
speed of propagation of the solution support have been elaborated by Bernis [3], Beretta 
et al [2], Bertozzi and Pugh [5–8], Witelski et al [34], Giacomelli et al [19–21] etc. In 2014, 
Taranets and King [32] proved local existence of nonnegative weak and strong solutions to the 
following equation in a bounded domain Ω with smooth boundary in Rd

( ) ( )  +∇ ⋅ ∇∆ +∇ ⋅ ∇ = ∈Ω >h h h h h x t0, , 0t
n m

subjecting to the boundary conditions

    ( )→ →∇ ⋅ = ∇∆ ⋅ = ∂Ω×h n h n T0, on 0, ,� (1.13)

where →n is the unit outward normal vector, and the initial condition

( ) ( ) ⩾   ( )= ∈ Ωh x h x h H, 0 0, .0 0
1

Moreover, they also obtained global existence of solutions to the above problem under a 

more restrictive threshold ¯<m Md0 . For d  =  1, their threshold is ¯ /= < = πM M1 12 c1
2 2

3
. 

Uniqueness of solutions to the thin film equation with the unstable term has not been exten-
sively studied in multi-dimension. The only result known to our knowledge is that Taranets 
and King [32, theorem 3] proved uniqueness of initially constant solutions in a special sub-
critical case.
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The organization of the paper is given as follows. In section 2, existence of a minimizer for 
( )J h  is proved by using the Strauss inequality. In section 3, we show that any critical points 

of ( )J h  in ∗X rad satisfy the free boundary problem (1.9) and (1.10) up to a re-scaling. And we 
prove existence and uniqueness of solutions to (1.9) and (1.10). In section 4, we prove the 
main theorem. In section 5, we show an important application of the generalized Sz. Nagy 
inequality (1.12) to the critical thin film equation (1.1), ⩾d 2: (i) a finite time blow-up occurs 
for solutions with the initial mass larger than the critical mass Mc; (ii) if the initial mass is less 
than the critical mass Mc and a global non-negative entropy weak solution exists, then the sec-
ond moment goes to infinity as →∞t  or ( )⋅ ⇀h t, 0k  in ( )RL d1  for some subsequence →∞tk .

2.  Existence of a minimizer for (h)J

In this section we prove a slight more general result on existence of a minimizer for a general-
ized functional (see (2.2) below). The case of q  =  0 and p  =  2 is what we need for the gen-
eralized Sz. Nagy inequality (1.12). First, we consider the following generalized minimizing 
problem

( )β =
∈

J hinf ,
h X� (2.1)

( )
( )

( )

/

/
R R

R

∫ ∫

∫

=
| | |∇ |

| |

+
−
+

+
+
+

J h
h x h x

h x

:
d d

d

,

q
a p
q p

m
a p
m

1
2

1

1
2

1

d d

d

� (2.2)

{  ( ) ( )}R R= ∈ ∇ ∈+X h L h L: , .q d p d1

Here ⩾d 1 and the parameters p, q, m, a are given by the following ranges:

( )  

  ⩾
σ>

+
=

− +
−

<

∞

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪
p

d

d

p d p

d p
p d

p d
max 1,

2

2
,

1
if ,

if ,
� (2.3)

⩽ { }σ σ< − − < <q p q m0 min 1, 1 , ,� (2.4)

( )( ) ( / ) ( ) ( )
( )

=
+ + + − + − + −

−
a

p m q p d m q dqm p d

d m q

1 1 2 1 1
.� (2.5)

Remark 2.1.  When q  =  0, p  =  2, the minimizing problem (2.1) and (2.2) becomes the min-
imizing problem (1.6) and (1.7), and β β= 0.

Existence of the positive lower bound of J(h) can be directly obtained from the Gagliardo–
Nirenberg–Sobolev inequality [26, p 176, formula (2.3.50)]. In other words, the minimizing 
problem (2.1) is well-defined, i.e. there exists β> 0 such that (2.1) holds.

Denote ∗X rad as a function space of non-negative radial symmetric decreasing functions

{ ⩾   ( ) ( ) ( ) ⩽ ( ) ( )}R R= = | | ∈ ∇ ∈′∗ +X h h x h x h r h L h L: 0 , 0, , .q d p d
rad

1� (2.6)

Lemma 2.1.  The minimizing problem (2.1) is equivalent to the following minimizing problem
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( )β =
∈ ∗

J hinf ,
h X rad

� (2.7)

where ∗X rad is given by (2.6).

Proof.  First from the book [22, lemma 7.6], we know that if ( )R∇ ∈h Lp d , then ∇| |h  is also 
in ( )RLp d  and

     
R R∫ ∫|∇ | = |∇| || >h x h x pd d , for any 1.p p

d d
� (2.8)

Hence ( ) ( )| | =J h J h . As a result we can find a minimizer in { ( ) ⩾ }= ∩ |+X X h h x t, 0 .
Next, we use the classical rearrangement technique to further reduce the range for finding 

a minimizer to ∗X rad.
Let → [ )R +∞∗h : 0,d  be the radial decreasing rearrangement of ∈ +h X  (see [23, chapter 3]).  

Then the rearrangement function satisfies

( ) ( )
R R∫ ∫= < <∞∗h x x h x x pd d , 0 .p p

d d
� (2.9)

Moreover, from the classical Pólya–Szegő inequality [14], we know

⩽ ⩽ ⩽
R R∫ ∫|∇ | |∇ | ∞∗h x h x pd d , 1 .p p

d d
� (2.10)

Using (2.9) and (2.10), it holds that

( )
( )

( )
( )

( )
( )

( )
⩽ ( )

/

/

/

/
R R

R

R R

R

∫ ∫

∫

∫ ∫

∫

=
|∇ | |∇ |

=∗

∗ +
−
+ ∗

∗ +
+
+

+
−
+

+
+
+

J h
h x h x

h x

h x h x

h x

J h
d d

d

d d

d

.

q
a p
q p

m
a p
m

q
a p
q p

m
a p
m

1
2

1

1
2

1

1
2

1

1
2

1

d d

d

d d

d

Hence (2.7) holds.� □

Next we will use the compactness argument and the Strauss inequality for the radial func-
tion in ( )RW p d1,  space [24, lemma II.1] to prove existence of a minimizer of J(h) in ∗X rad. The 
proof is indeed rather standard and we provide a proof below for completeness.

Lemma 2.2 (Strauss’ inequality).  Assume that ⩾d 2, ⩽ <∞p1  and u is a radial func-
tion in ( )RW p d1,  space. Then for a.e. \ { }R∈x 0d , the following inequality holds

( ) ⩽ ( ) ∥ ∥ ( )R| | | |
−

u x C d p x u, .
d

p W
1

p d1,� (2.11)

Proposition 2.1.  There exists a minimizer h0 of J(h) in ∗X rad such that

( ) ( ) ∥ ∥ ∥ ∥ ∥ ∥β β= = = = ∇ =
∈ ∗

+ +J h J h h h hinf , 1, .
h X

L L L
p

0 0 0 0q m p

rad

1 1� (2.12)

Proof.  First, we know that J(h) has the following scaling invariance:

( ) ( ) ( )  µ λ µ λ= = ∀ >µ λ µ λJ h J h h h x, , , 0., ,� (2.13)
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In fact, it is a direct consequence of the following equalities with a given by (2.5)

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥

∥ ∥ ∥ ∥

/ /
( / )

/

/ /
( / )

/

µ λ µ λ

µ λ

= ∇ = ∇

=

µ λ µ λ

µ λ

− − −
−
+ − −

+ + −
+
+ +

+ +

+ +

h h h h

h h

, ,

.

L
a p a p

d a p
q

L
a p

L
p p p d

L
p

L
a p a p

d a p
m

L
a p

,
2 2

2
1 2

,

,
2 2

2
1 2

q q p p

m m

1 1

1 1

By (2.7) and (2.13), there exists a minimizing sequence { }∈ ∗h Xk rad satisfying 

R R∫ ∫= =+ +h x h xd d 1k
q

k
m1 1

d d  such that

( ) ( )
→ → R∫ β= |∇ | = =
∞ ∞ ∈ ∗

J h h x J hlim lim d inf .
k

k
k

k
p

h Xd
rad

� (2.14)

For ⩾d 2, there exist a subsequence (still denoted by hk) and ( ) ( )R R∈ ∩ +h W Lp d m d
0

1, 1  
such that as →∞k

∩+ +R Rh h L L, in ,k
q d m d

0
1 1⇀   ( ) ( )� (2.15)

⇀   ( )∇ ∇ Rh h L, in .k
p d

0� (2.16)

Hence by the Fatou lemma, we have

∥ ∥ ⩽ ∥ ∥
→

/β∇ ∇ =
∞

h hlim inf ,L
k

k L
p

0
1p p� (2.17)

=
∞

+ +h hlim inf 1.L
k

k L0 q q1 1∥ ∥ ⩽ ∥ ∥
→� (2.18)

On the other hand, the formula (2.11) indicates that for any radial function ( )R∈h Wk
p d1, , it 

holds that

⩽ ∥ ∥     ⩾( )R| | | | | | >
−

h C x h x d, for 0, 2,k
d

p k W
1

p d1,� (2.19)

where the constant C is only dependent of d and p. By (2.19), we know that for >
−

s pd

d 1
,  

it holds that

⩽
( ) ( ) ( ) ( )

∫ ∫ ∫| | = =
| |> | |>

− − +∞
− − + − − −

h x C x x C r r CRd d d .
x R

k
s

x R

s d
p

R

s d
p d d

s d
p

1 1
1

1

Since ( )− <−d 0s d

p

1 , for any ε> 0, there is εR1 such that

⩽∫ ε
| |> ε

h xd .
x R

k
s

1

If ⩽+ <
−

q s1 pd

d 1
, using the interpolation inequality, it holds that

∥ ∥ ⩽ ∥ ∥ ∥ ∥  ( ( )) ( ( ))
( )

( ( )) γ>
−

θ θ−
γ+h h h

pd

d
, for

1
.k L B R

s
k L B R

s
k L B R

s
0, 0,

1
0,s c q c c1
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So, there exists a εR2 such that

∥ ∥ ⩽( ( )) ε
ε

h .k L B R
s

0,s c 2

Taking { }= ε εR R R2 max ,1 2 , one has

∥ ∥ ⩽( ( )) εh .k L B R
s

0,s c� (2.20)

The Sobolev embedding theorem gives

( ( )) ↪↪ ( ( ))+ +W B R L B R0, 1 0, 1 ,p s1,

provided that < < =∗
−

s p1 pd

d p
 if p  <  d, and ⩾s 1 for ⩾p d. Together with (2.20) implies that 

there is a strong convergence subsequence of hk (still denoted by hk)

→   ( )   →R ∞h h L k, in , as .k
s d

0� (2.21)

Since < + <
−

m1 1 pd

d p
 for p  <  d, and < + <∞m1 1  for ⩾p d, we know from (2.21) that

→     →∫ | − | ∞+

R
h h x kd 0, as ,k

m
0

1
d

� (2.22)

= =
∞

+ +h hlim 1.L
k

k L0 m m1 1∥ ∥ ∥ ∥
→� (2.23)

From (2.17), (2.18) and (2.23), we deduce

( )
( )

( ) ⩽

/

/
R R

R

∫ ∫

∫

β=
|∇ |+

−
+

+
+
+

J h
h x h x

h x

d d

d

.

q
a p
q p

m
a p
m

0
0

1
2

1
0

0
1

2
1

d d

d

Noticing that ( ) ⩾ βJ h0  by the definition of β, one knows that

β β= = = ∇ =+ +J h h h h, 1, .L L L
p

0 0 0 0q m p1 1( ) ∥ ∥ ∥ ∥ ∥ ∥� (2.24)

For d  =  1, Sz. Nagy [27] proved existence of a minimizer of J(h) that can be represented 
in terms of an incomplete Beta function and obtained the celebrated Sz. Nagy inequalities. 
Hence for ⩾d 1, there exists an optimal radial decreasing function h0 such that

( ) ( )β = =
∈ ∗

J h J hinf .
h X

0
rad� □

3.  Euler–Lagrange equation, contact angle, and free boundary problem

First, using a variational method, we show that any critical points of ( )J h  in the non-negative 
radial decreasing function space ∗X rad defined by (1.8) satisfy the free boundary problem (1.9) 
and (1.10) up to a re-scaling. Next, we use a well known result on uniqueness given by Pucci 
and Serrin [31] to prove uniqueness of solutions to the free boundary problem (1.9) and (1.10).

J-G Liu and J Wang﻿Nonlinearity 30 (2017) 35



44

Proposition 3.1.  Let ∈ ∗h X rad be a critical point of ( )J h . Then there exist µ λ>, 0 such that 

=
µ λ

h x h x1 1( )¯( )  satisfies that

	 (i)	h̄ is a solution to the initial value problem, for some α> 1

¯ ¯ ¯       ¯ { }″ +
−

+ = ∩ >′h
d

r
h h h r

1
1, in supp 0 ,m� (3.1)

α= =′h h0 , 0 0.¯( ) ¯ ( )� (3.2)

	(ii)	h̄ satisfies that

¯ ¯
R R∫ ∫|∇ | =

+
+h x

a
h x

1

2
d

1

1
d ,m2 1

d d
� (3.3)

		 where ( )= + +a d m

md

2 1 . Denote

¯ ( ¯) ¯ ¯
R R∫ ∫= |∇ | −

+
+F h h x

a
h x:

1

2
d

1

1
d .m2 1

d d
� (3.4)

		 Hence ¯ ( ¯) =F h 0.
	(iii)	there is a finite point ( )∈ ∞R 0,  such that ¯( ) =h R 0.

Proof.  	

Step 1.	 Re-scaling, admissible variation and the proof of (i).

		 Let λ µ >, 01 1  be two re-scaling parameters, to be determined in (3.5). Since h is a critical 

point, ( ) ( )=
µ λ

h y h y:1
1 1

1 1
, ( ) ( )=J Jh h1  due to (2.13), hence h1 is also a critical point 

( ( ) =δ
δ
J 0h

h
1 ). Choose µ1 and λ1 such that the following two equalities hold

= = = ∇+h h a h1, and denote : .L L L1 1 1 1
2m1 1 2∥ ∥ ∥ ∥     ∥ ∥� (3.5)

		 Since ∈h H1 rad
1 , it is observed that h1(r) is continuous in ( )∞0, . Denote the support of h1 

as { }RΩ = ∈ | >x h: 0d
1 . Since h1(r) is a radial decreasing function, one knows that ∈Ω0  

and Ω is an open ball B(0, R) for some ⩽< ∞R0 . For any ( )φ∈ Ω∞C0 , we can show that 
φ is an admissible variation at h1, i.e. there is an ε > 00  such that for any ε ε< | | <0 0 one 
has ⩾εφ+h 01 . Then from a direct computation and using (3.5), we have

( ) ( ( ) ( ) ) ( )
R∫ε

εφ φ φ+ = − ∆ + − − + = ∀ ∈ Ω
ε=

∞J h h a a a a h x C
d

d
2 1 1 d 0, .m

0
1 1 1 1 1 0d

		 This implies that h1 satisfies the following generalized Lane–Emden equation

  ( ( ))∆ −
−

+
+

= ′Dh
a

a
a

a h B R
1

2

1

2
0, in 0, .m

1 1 1 1� (3.6)

		 Again re-scale function h1 as ¯( ) ( )=
µ λ

h y h y1
1 , where λ µ>, 0 are given by (3.8) below. 

Similar to h1, we know that h̄ is also a critical point of ( )J h  in ∗X rad. Moreover, (3.6) 

implies that h̄ satisfies the following equation

¯ ¯   ( ( ))µλ µ λ∆ −
−

+
+

= ′Dh
a

a
a

a h B R
1

2

1

2
0, in 0, .m m2

1 1� (3.7)
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		 Taking

/ /
/⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟µ λ

µ
=

−
+

=
−a

a

a
a

1

1
,

1

2
,

m
d

d
d

1 2

1
2� (3.8)

		 one has

µλ µ=
−

=
+a

a
a

a
1

2

1

2
.m2

1 1� (3.9)

		 Then above equation (3.7) becomes

¯ ¯   ( ( ))λ∆ − + = ′Dh h B R1 0, in 0, .m� (3.10)

		 Using the elliptic regularity iteratively and ¯ ( ( ))− ∈
+

h L B R1 0,m m
m

1
0  with λ< <R R0 0 , it 

holds that

¯ ( ( ))      ( ) ∈ > − >h W B R q k q d0, for some 1, 1 .k q,
0

		 Hence h̄ is C1- function in B(0,R0). Thus we denote the peak value as ¯( )α = h 0 , and we 
have ¯ ( ) =′h 0 0.

		 Now we prove that ¯( )>h 0 1 by using a contradiction method. We assume that ¯( ) ⩽h 0 1. 
Decreasing property of ¯( )h r  in r implies that for any fixed R  >  0, ( )∈x B R0, , ¯( ) ⩽h x 1. 
Thus we have

¯ ¯ ⩾   ( )∆ = −h h B R1 0, in 0, .m� (3.11)

		 From the maximum principle, we know that the maximum of h̄ is reached at | | =x R. 
Since h̄ is a radial decreasing continuous function, it holds that ¯( ) ¯( )≡h x h R  in B(0,R) for 
any R  >  0. Plugging this constant solution into (3.11), one knows that ¯( )≡h x 1 in B(0,R) 
for any R  >  0. Hence ¯( )≡h x 1 in Rd. It is contradictory to the integrability of h̄. Hence h̄ 
satisfies (3.1) and (3.2). This completes the proof of (i).

	Step 2.	 The proof of (ii): ¯ ( ¯) =F h 0.
		 From (3.5) and the definition of h̄, we know that

∫ ∫

∫ ∫

∫ ∫

µ
λ
µ
λ
µ λ
λ

= =

= =

= |∇ | = |∇ |

+
+

+

R R

R R

R R

h x h x

h x h x

a h x h x

1 d d ,

1 d d ,

d d .

d

m
m

d
m

d

1

1
1

1
1

1 1
2

2 2
2

d d

d d

d d

¯

¯

¯

		 Hence (3.9) gives

¯ ¯ ¯
R R R∫ ∫ ∫

λ
µ

λ
µ

λ
µ

= =
+
−

|∇ | =
−

+h x h x
a

a
h x

a
d , d

1

1
, d

2

1
.

d
m

d d
1 2

d d d

		 Together with (3.8), a simple computation gives

¯ ( ) ( )( ) ( )∫ = − +− − + +

R
h x a a ad 2 1 1 ,

d d
m

d
m

d d

2 2
1

2
1 1

2
1

1
2

d
� (3.12)
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∫ = − ++ − − − + + +

R
h x a a ad 2 1 1 ,m d d

m
d

m
d d

1
2 2

1 1
2

1 1 1
2

1
1
2

d

¯ ( ) ( )( ) ( )� (3.13)

∫ |∇ | = − +− − − + +

R
h x a a ad 2 1 1 .

d d
m

d
m

d d
2 1

2 2
1 1

2
1 1

2
1

1
2

d

¯ ( ) ( )( ) ( )� (3.14)

Thus (3.13) and (3.14) imply (3.3). This completes the proof of (ii).
	Step 3.	 The proof of (iii): there exists a finite R such that ¯( ) =h R 0.
		 For a radial decreasing non-negative H1-function, there only exist two cases: (a) there 

exists a finite R such that ¯( ) =h R 0; (b) ¯( )>h r 0 for all ⩾r 0, and hence ¯( ) →h r 0, ¯ ( ) →′h r 0 
as →∞r .

		 Now we show that the second case can not happen. In fact, if (b) holds, then for any r  >  1, 
integrating (3.1) from 0 to r and using ¯ ( ) =′h 0 0, we get

¯ ( ) ¯ ( ) ¯( ) ¯( )
   

∫ ∫ ∫+
−

+ + =′ ′h r
d

s
h s s h s s h s s r

1
d d d .

r
m

r
m

0 0

1

1

		 Noticing that ¯ ( ) ⩽′h s 0 for ( )∈ ∞s 0, , we have

¯( )
→

 

∫ = ∞
∞

h s slim d .
r

r
m

1

		 Therefore

¯( ) ⩾ ¯( )∫ ∫ = ∞
∞

−
∞

h s s s h s sd d ,m d m

1

1

1

		 which is contradictory to boundedness of the Lm-norm of h̄ due to ¯ ( ) ( )R R∈ ∩ +h L Ld m d1 1 . 
Hence there exists a finite R such that ¯( ) =h R 0. This completes the proof of (iii) and 
hence proposition 3.1 is proved.� □

Lemma 3.1.  Let h be a solution to the initial value problem (3.1) and (3.2) with a contact 
point R (h(R)  =  0). Then the following Pohozaev type identity between the free energy and the 
contact angle holds

¯ ( )
( )

( )
( )=

| |
+

′F h
d B R

d
h R

0,

2 2
.2� (3.15)

Proof.  We can view (3.1) as an equation for a nonlinear oscillator with damping in (0, R), 
and introduce the energy function

( ) ( ( )) ( ) ( )= +
+

−′ +H r h r
m

h r h r:
1

2

1

1
.m2 1� (3.16)

Then by multiplying ′h  to (3.1), we have the following energy-dissipation relation

( ) ( )+
−

=′
H r

r

d

r
h

d

d

1
0.2� (3.17)
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Multiplying rd to (3.17) and integrating from 0 to R, one has

( ) ( ( ))⎜ ⎟
⎛
⎝

⎞
⎠∫ +

−
=′r

H r

r

d

r
h r r

d

d

1
d 0,

R
d

0

2

i.e.

( ) ( ) ( ) ( ( ))∫ ∫− + − =′− −R H R d r H r r d h r r rd 1 d 0.d
R

d
R

d

0

1

0

2 1

Notice that ( ) ( )= ′H R h R1

2
2 from (3.16). Then with some simple computations, it holds that

( ) ( ) ( ) ( ( ))

( / ) ( ( ))
( )

( / )
( )( ) ( ) ( )

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

= − −

= − +
+

−

= − |∇ | +
+

−

′ ′

′

− −

− − + −

+

R h R d r H r r d h r r r

d r h r r
d

m
r h r d r h r

d
S

h x
d

m S
h x d

S
h x

1

2
d 1 d

1 2 d
1

d d

1 2
1

d
1

1
d

1
d ,

d
R

d
R

d

R
d

R
d m

R
d

d B R d B R

m

d B R

2

0

1

0

2 1

0

1 2

0

1 1

0

1

0,

2

0,

1

0,

where Sd is the surface area of the unit ball in Rd.
On the other hand, multiplying h to (3.1) and integrating in B(0, R), we obtain

( ) ( ) ( )∫ ∫ ∫= − |∇ | + +h x h x h xd d d .
B R B R B R

m

0, 0,

2

0,

1
� (3.18)

Hence, using ( )= + +a d m

md

2 1 , we have

( ) ( / )
( )

( ) ¯ ( )
( ) ( )∫ ∫| | = + |∇ | −

+
= +′ + FS R h R d h

dm

m
h d h

1

2
1 2

1
2 .d

d

B R B R

m2

0,

2

0,

1

This gives (3.15).� □

Corollary 3.1.  Let ∈ ∗h X rad be a critical point of ( )J h . Then there exist re-scaling param

eters λ µ>, 0 such that ¯ ( )=
µ λ

h h x1 1  satisfies the free boundary problem (1.9) and (1.10).

Proof.  As a direct consequence of (3.15) and ¯ ( ¯) =F h 0, one knows that ¯ ( ) =′h R 0. In other 
words, the contact angle is zero. This case is the so-called complete wetting regime in Young’s 
law [20].� □

Remark 3.1.  A simple computation gives that h̄ satisfies

¯ ( ) ¯ ( )″ ″= = −
−′− −h R h R

d

R
1,

1
.� (3.19)

Uniqueness of solutions to the free boundary problem (1.9) and (1.10) can be proved by 
a direct verification for conditions in a uniqueness theorem of Pucci-Serrin [31]. We recall it 
below.
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Lemma 3.2 ([31, theorem 3]).  The free boundary problem

″ +
−

+ = < <

= = =

′

′ ′

h
d

r
h f h r R

h h R h R

1
0, in 0 ,

0 0, 0

( )  

( ) ( ) ( )

has a unique radial solution if f(h) satisfies the following conditions

	 (i)	f is locally integrable on [ )∞0, . In particular, the integral ( ) ( )∫ τ τ=F h f d
h

0
 exists, and 

( ) →F h 0 as →h 0;
	(ii)	f is continuously differentiable on ( )∞0, ;
	(iii)	there exists a  >  0 such that f(a)  =  0 and

< < <
> < <∞

f h for h a
f h for a h

0 0 ,
0 ;

( )  
( )  

	(iv)	F(h) and f(h) satisfy the following relation

( )
( )

⩾
⎡
⎣⎢

⎤
⎦⎥

−
h

F h

f h

d

d

d

d

2

2
.� (3.20)

Proposition 3.2.  Assume m  >  0 for d  =  1,2, < < +
−

m0 d

d

2

2
 for ⩾d 3. Then there is a unique 

solution h(r) to the free boundary problem (1.9) and (1.10) in ∗X rad and it satisfies ( )α = >h 0 1, 
( )<′h r 0 for 0  <  r  <  R.

Proof.  By proposition 2.1, we know that there is a minimizer h of the functional ( )J h  in 
∗X rad, and hence h is a critical point of the functional ( )J h . From corollary 3.1, we know that 

the minimizer h of the functional ( )J h  in ∗X rad is a solution to the free boundary problem (1.9) 
and (1.10). Hence existence was proved.

To prove uniqueness, we only need to verify that f (h):  =  hm  −  1 satisfies the conditions 
(i)–(iv) in lemma 3.2. The conditions (i)–(iii) are obvious for f (h) with m  >  0.

Now we verify the condition (iv) for f(h) with m  >  0 for d  =  1, 2, < < +
−

m0 d

d

2

2
 for ⩾d 3. 

Notice that

( )( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥
−
−
= −

−

−
−
−

−
+

+

h

F h

f h

d

d

mh h

h

d

d

d

d

2

2
1

1

2

2
.

m h

m

m

1
1

2

m 1

Obviously, if d  =  1, 2, then ⩾( )
( )

⎡
⎣

⎤
⎦−

− 0
h

F h

f h

d

d

d

d

2

2
 for ⩾h 0 and m  >  0. For the case < < +

−
m0 d

d

2

2
 

with ⩾d 3, a simple computation gives

( ) ( ) ( )( )
( ) ( )

( )( )
( )

⎡
⎣⎢

⎤
⎦⎥
−
−
=
− − + + + −

−
+ −

−
− −

h

F h

f h

d

d

d

d

h h

h

d

d

2

2

2

2

1 2 1

1
.

d

m d
m d m

d
m d

d

m

2

1 2
2 2 2

2

2

2

2

Denote v:  =  hm, 
( )( )

ξ = −
+ −

: 1d

m d

2

1 2
, ( )ζ = +−

−
: 2d m

d

2 2

2
, and γ = −

−
: 1d

d

2

2
. To verify 

(3.20), it is equivalent to prove
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⩾ξ ζ γ+ +v v 0.2

Since < < +
−

m0 d

d

2

2
, we have ξ> 0. Thus if ⩾ζ 0, i.e. ⩾ +m d

d

2, then (iv) holds. If < +m d

d

2, we 

only need to prove ⩽ζ ξγ− 4 02 . So, we compute

( )( )
( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠ζ ξγ− = −

+ −
−

+
−
− +

dm

m d
m m

d

d
m m4

2

1 2
3

2

2
1 .2 2� (3.21)

Due to < +m d

d

2, we deduce ⩽ζ ξγ− 4 02 , i.e. (iv) of lemma 3.2 holds.
From Step 1 in the proof of proposition 3.1, we have α> 1.
Finally, we use a contradiction method to prove ( )<′h r 0 for 0  <  r  <  R. If it is not true, 

then there exists (choice to be the first one) ( )∈r R0,0  such that ( ) =′h r 00 .
Since ∈ ∗h X rad and h(R)  =  0 for a finite R  >  0, we can show that extremum points are never 

reached in the set { ( ) }| =r h r 1 . Therefore all extremum points must be either local minimum 
points ( ( )″ >h r 0) or local maximum points ( ( )″ <h r 0). From the equation (1.9), at extremum 
points it holds that

( ) ( )″ = −h r h r1 ,m

which implies that h(r)  >  1 for maximum points, h(r)  <  1 for minimum points.
Solving (1.9) and (1.10), we have

( ) ( ( ) )       ( )∫= − − ∈′
−

−h r
r

s h s s r R
1

1 d , for any 0, .
d

r
d m

1 0

1� (3.22)

Thus for any r satisfying ( ) ⩾h r 1, (3.22) implies ( )<′h r 0. The first extremum point r0 must 
be a local minimum point, and it satisfies h(r0)  <  1.

Since extremum points must be either local minimum points or local maximum points, the 
next extremum point after r0 must be a local maximum point, denoted by r1, which satisfies 
h(r1)  >  1. Inductively, we order all extremum points as a sequence     �r r r, , ,0 1 2 , and at these 
points h(r) satisfies

( )    ( ) < =− �h r k1, for 1, 2, ,k2 1� (3.23)

> =− �h r k1, for 1, 2, .k2 1( )    � (3.24)

Now we claim that the sequence { ( )}( )− =
∞h r k k2 1 1 of local minimum is increasing and the 

sequence { ( )}− =
∞h r k k2 1 1 of local maximum is decreasing.

From (3.17), we deduce

( ) ( )( ) >−H r H r ,k k2 1 2

i.e.

( ) ( ) ( ) ( )( ) ( )
+

− >
+

−−
+

−
+

m
h r h r

m
h r h r

1

1

1

1
.k

m
k k

m
k2 1

1
2 1 2

1
2
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Notice that ( ) = −
+

+f s s s
m

m1

1
1  is decreasing for ( )∈s 0, 1 , and is increasing for ( )∈ ∞s 1, . 

Hence (3.23) indicates that ( ) ( )( ) <−h r h rk k2 1 2 . In a similar way, we have ( ) ( )<+ −h r h rk k2 1 2 1  
by (3.24). In other words, the solution is oscillatory around the value h  =  1 and has decreasing 
amplitude, and hence it will never touchdown. This is a contradiction to h(R)  =  0 for a finite 
R  >  0. Hence   ( )> <′h h r0, 0 before touching down at r  =  R.� □

As an additional result, all critical points of ( )J h  in non-radial case also satisfy a free 
boundary problem.

Proposition 3.3.  Let a non-negative function ( )R∈h C d  be a critical point of ( )J h  with 
support set  Ω = h: supp . Assume Ω is a bounded open star domain with the vantage point 0 
and Γ = ∂Ω:  is its smooth boundary. Then h satisfies the following free boundary problem up 
to a re-scaling

 ∆ + = Ωh h 1, in ,m� (3.25)

=∂ = Γh h 0, on .n    →� (3.26)

Proof.  Similar to Step 1 and Step 2 in the proof of proposition 3.1, there exist λ µ>, 0 such 

that ¯( ) ( )=
µ λ

h x h x1 ,   ¯Ω = hsupp0 , and h̄ satisfies

¯ ¯    ∆ + = Ωh h 1, in ,m
0� (3.27)

¯ ( ¯)=F h 0.� (3.28)

We also know that Ω0 is a bounded open star domain with the vantage point 0. Let →n be out 
normal of ∂Ω0 so that →⋅ >x n 0 on ∂Ω0.

Noticing that ¯ =h 0 on ∂Ω0, ¯>h 0 in Ω0, one has

¯ ¯ →∇ = −|∇ |h h n.� (3.29)

Below we show a Pohozaev type identity connecting the free energy to the contact angle

¯ ( ¯)
( )

( ) ¯→∫=
+

⋅ |∇ |
∂Ω

F h
d

x n h s
1

2 2
d .2

0
� (3.30)

Indeed, multiplying ( ¯)∇ ⋅ xh  to (3.27), one has

( ¯) ¯ ( ¯)( ¯ )∫ ∫∇ ⋅ ∆ = ∇ ⋅ −
Ω Ω

xh h x xh h xd 1 d .m

0 0
� (3.31)

Notice that

( ¯)( ¯ ) ( ¯) ( ¯ ) ¯∫ ∫ ∫∇ ⋅ − = − ∇ − = −
+Ω Ω Ω

+xh h x xh h x
dm

m
h x1 d 1 d

1
d .m m m 1

0 0 0

�

(3.32)

Using (3.29), we have

( ¯) ¯ ( ( ¯)) ¯ ( ¯) ¯

¯ ( ) ¯

→

→

∫ ∫ ∫

∫ ∫

∇ ⋅ ∆ = ∇ ∇ ⋅ ⋅ ∇ + ∇ ⋅ ∂

= −
+

|∇ | + ⋅ |∇ |

Ω Ω ∂Ω

Ω ∂Ω

xh h x xh h x xh h s

d
h x x n h s

d d d

2

2
d

1

2
d .

n

2 2

0 0 0

0 0

�
(3.33)
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Hence from (3.31)–(3.33), we have

( ) ( ¯) ( ) ¯→∫+ = ⋅ |∇ |
∂Ω

d F h n x h s2
1

2
d ,2

0

i.e. (3.30) holds true.
Since ¯ ( ¯) =F h 0 and → ⋅ >n x 0, we know that

¯ ¯      → →∂ = ∇ ⋅ = ∂Ωh h n 0 a.e. on .n 0� (3.34)

Summarizing above process, h̄ satisfies the free boundary problem

∆ + = Ωh h 1 in ,m
0¯ ¯    � (3.35)

=∂ = ∂Ωh h 0 on .n 0¯ ¯    →� (3.36)

Hence we complete the proof of proposition 3.3.� □

Proposition 3.4.  Let h be a solution to the free boundary problem (3.25) and (3.26). De-
note { ( ) }Ω = | >x h x: 0 . Assume that Ω is a bounded open domain with C2 boundary (not be 
assumed simply connected) and ( ¯ )∈ Ωh C2 . Then Ω is a ball and h is radial symmetric.

Proof.  The proof of proposition 3.4 is a direct application of [30, theorem 8.3.2] with 
A(z, s)  =  1, f(z, s)  =  zm  −  1 (here we use the same notations as these used in [30]), because 
A(z, s) and f(z, s) satisfy all the conditions in theorem 8.3.2.� □

4.  Proof of theorem 1.1

Existence of a minimizer hc for the functional ( )J h  was given in proposition 2.1 with q  =  0 
and p  =  2, i.e.

( ) ( ) β= =
∈

J Jh hinf .c
h X

0

The minimizer hc is also a critical point of ( )J h , hence corollary 3.1, proposition 3.2 tell us 
that hc is a unique solution to the free boundary problem (1.9) and (1.10) and satisfies ( )<′h r 0c  
for ( )∈r R0, . Similar to Step 1 and Step 2 in the proof of proposition 3.1, we can deduce that 
hc satisfies

( ) ( )( ) ( )∫ β= − +− − + +

R
h x a ad 2 1 1 ,c

d d
m

d
m

d d

2 2
1

2
1 1

2
1

0
2

d
� (4.1)

( ) ( )( ) ( )∫ β= − ++ − − − + + +

R
h x a ad 2 1 1 ,c

m d d
m

d
m

d d
1

2 2
1 1

2
1 1 1

2
1

0
2

d
� (4.2)

∫ β|∇ | = − +− − − + +

R
h x a ad 2 1 1 .c

d d
m

d
m

d d
2 1

2 2
1 1

2
1 1

2
1

0
2

d
( ) ( )( ) ( )� (4.3)

Define 
R∫=M h xdc cd . From (4.1), one has

( ) ( )( ) ( )β = − ++ − − +a a M2 1 1 .m d m d c
d

0
1 1 2 1 1 1 2 2

� (4.4)

J-G Liu and J Wang﻿Nonlinearity 30 (2017) 35



52

Hence for any ∈h X the following inequality holds

⩽
( )

R R R
⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ ∫ ∫β

| | | | |∇ |+

+
+

−

f x f x f xd
1

d d .m

a
m

a

1

1
1

0

1

2
d d d

� (4.5)

Moreover from (2.13), the invariance of ( )J h  under a re-scaling ( ) ( )µ λ=µ λh x h x,  implies 
that the above equality holds if ( ( ))λ= −h Ah x xc 0  for any  λ> >A 0, 0, R∈x d

0 .
Finally, we derive the closed-form solution hc for (1.9) and (1.10) for d  =  1. We recall (1.9) 

and (1.10) for d  =  1 as

    { }″ + = ∩ >h h h r1, in supp 0 ,m� (4.6)

= = =′ ′h h R h R0 0, 0.( ) ( ) ( )� (4.7)

By the energy functional (3.16) and the energy-dissipation relation (3.17), we know that the 
following equality holds

( )
+

+
− =

′ +h h

m
h C

2 1
.

m2 1

� (4.8)

Since ( ) ( )= =′h R h R 0, we have C  =  0. Hence the conditions ( ) α=h 0  and ( ) =′h 0 0 imply 

α− =α
+

+

0
m 1

m 1

, i.e. ( )α = + >m 1 1m
1

. Solving (4.8), one has

( )
⎛
⎝
⎜

⎞
⎠
⎟= − −

+
′

+
h r h

h

m
2

1
.

m 1

� (4.9)

Integrating (4.9) with respect to r in (0, R), a series of computations give

( )/ ⎜ ⎟
⎛
⎝

⎞
⎠= +− − BR m m

m
2 1

1

2
,

1

2
.m1 2 1 1

2

Moreover, integrating (4.9) with respect to r from r to R for any ( )∈r R0, , we deduce

)( ) ( ) ( ) ( )⎜ ⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠= + + −− −h r m B m m R r

m
1 2 1 ;

1

2
,

1

2
,c m

m
1 1

2

1

where B−1 is the inverse of the incomplete Beta function B(x; a ,b), which is defined as

( ) ( )∫= −− −B x a b t t x; , : 1 d .
x

a b

0

1 1

Now we compute the minimum β0 of the functional ( )J h . By (4.3) and ( )= + +a d m

md

2 1 ,  

we know that

( )
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ∫ ∫β

+ +
= ⋅ = ⋅′ ′ ′ ′−

− −

−

m

m

m

m
h h x h h x2

3 3 1 1

2
d d .

m m

R

R

c c

R

c c
1
2

1
2

3
2

3
2

0

1
2

0

�

(4.10)

On the other hand, we compute the right hand side of the above equality

( )

( ) ⎜ ⎟
⎛
⎝

⎞
⎠

∫ ∫ ∫⋅ = = −
+

= +

′ ′ ′
α α +

− B

h h x h h h
h

m
h

m m
m

d d 2
1

d

2 1
3

2
,

3

2
.

R

c c c c

m

m

0 0 0

1

1 3
2

1
2

�

(4.11)
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Then (4.10) and (4.11) imply

( ) ⎜ ⎟
⎛
⎝
⎜

⎛
⎝

⎞
⎠
⎞
⎠
⎟β = ⋅ +− − + Bm m

m
4 3 3

3

2
,

3

2
.m m0

3 3 1 3
2

� (4.12)

Furthermore, from (4.4) we obtain

∥ ∥ ( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠= = + +− BM h m m m

m
2 1 3

3

2
,

3

2
.c c L m

1
2 2 3

21

Therefore we have finished all the proofs of theorem 1.1.

Remark 4.1.  The results in theorem 1.1 agree with the following classical results for some 
special cases:

	 •	In 1941, Sz. Nagy [27] obtained the best constant β = π
0

4

9

2

 for m  =  3 in (4.12) (this case 

is known as the Sz. Nagy inequality).

	 •	In 1958, Nash deduced the best constant β = π
0

16

27

2

 for m  =  1 in (4.12) (this case is known 

as the Nash inequality [28]).

5.  Finite time blow-up and spreading phenomenon for thin film equation

In this section, we show that Mc is the critical mass to the following higher dimensional thin 
film equation

( ) ( ) R+∇ ⋅ ∇∆ +∇ ⋅ ∇ = ∈h h h h h x0,t
m d

with ⩾d 2 and the critical exponent = +m 1
d

2. We impose the following initial condition

( ) ( )   R= ∈h x h x x, 0 , .d
0� (5.1)

Here we consider the following initial data:

∈ > ∈ Rh h B a a h x L0, supp 0, for some 0, .d
0 0 0

1⩾   ( )      ( ) ( )� (5.2)

Notice that non-negative solutions h(x, t) to (1.1) satisfy conservation of mass, i.e. formula

( ) ( )
R R∫ ∫≡ =h x t x h x x m, d d : .0 0

d d

Following Bernis and Friedman [4], we define an entropy weak solution.

Definition 5.1.  We say that a non-negative function

∈ ∆ ∈
∂ ∈ ∇∆ ∈
=Ω× | =

∞

−

R R
R

h L T H h L T L

h L T H h h L P

P T x t h x t

0, ; , 0, ; ,

0, ; , ,
: 0, , , 0

d d

t
d

T

T

1 2 2

2 1 1 2 2
( ( ))   ( ( ))
( ( ))   ( )

( ] \ {( ) ( ) }

/

is an entropy weak solution to (1.1) and (5.1) in [0, T ) provided that

	 •	The weak form holds for any function ( [ ])Rφ∈ ×∞C T0,d
0 ,

   
R R∫ ∫ ∫∫ ∫ ∫φ φ φ= ∇ ⋅ ∇∆ + ∇ ⋅ ∇h x t h h x t h h x td d d d d d .

T

t
P

T
m

0 0d
T

d
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	 •	 ( ( ))⋅F h t,  is a non-increasing function in t and satisfies the following entropy-dissipation 
inequality

h t h h h x t h t T, d d , for any 0 .
P

m 2
0

T
∫∫⋅ + |∇ ∆ + | <F F( ( )) ( ) ⩽ ( )     ⩽� (5.3)

Definition 5.2.  We say that a non-negative solution h(x, t) to the model (1.1) blows up at 
Tr

max in ( )RLr d , r  >  1, if it satisfies

∥ ( )∥       ∥ ( )∥
→

⋅ <∞ < < ⋅ = ∞h t t T h t, , for all 0 , lim sup , .L
r

t T
Lmaxr

r

r

max

Tr
max is called the blow-up time of ∥ ( )∥⋅h t, Lr.

Theorem 5.1.  For any >m Mc0 , there exists h0 satisfying ( )
R∫ =h x x md0 0d  and 

( )
R∫ | | <∞x h x xd2

0d  such that any weak solution to (1.1) with the initial datum h0 has a finite 

time blow-up in ( )R+Lm d1 .

Proof.  Recall that the critical mass =M h:c c L1∥ ∥  for ⩾d 2. We construct an initial datum

( ) ( ) ( )ε ε= + =
−

>h x h x
m M

M
: 1 , 0.c

c

c
0

0
� (5.4)

It satisfies ( )
R∫ = >h x x m Md c0 0d , and ( )

R∫ | | <∞x h x xd2
0d  because hc has a compact  

support. Moreover, a simple computation gives

∫ ∫

∫ ∫

∫ ∫

ε ε

ε ε
ε

ε

=
+

|∇ | −
+
+

=
+

|∇ | −
+

+ |∇ |

+ + |∇ | −
+

+
+

−

+ +⎜ ⎟
⎛
⎝

⎞
⎠

F
R R

R R

R R

h h x x
m

h x x

h x x h x x

h x x
m

h x x

1

2
d

1

1
d

1

2
d

1

2
1 d

1
1

2
d

1

1
d .

c

m

c
m

c
m

c

m
c c

m

0

2
2

1
1

2
2

2
1 2

1 2 1

d d

d d

d d

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

�

(5.5)

Since = +m 1
d

2 implies that ( )= =+ +a md m

md

2 1 , from the property (3.3) we easily obtain

( ) ( )
R R∫ ∫|∇ | =

+
+h x x

m
h x x

1

2
d

1

1
d .c c

m2 1
d d

Hence we have that

( ) ( ) ( ( ) ) ( )
R∫

ε
ε=

+
− + |∇ | <−F h h x x

1

2
1 1 d 0.m

c0

2
1 2

d
� (5.6)

Now we need to prove that the Lm+1-norm of solutions blows up in finite time +T m
max

1. If not, 
then for any t  >  0, an entropy solution exists in ( )R+Lm d1 . So, we compute the second moment 
(see [34] given by Witelski et al for the one-dimensional case)
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∫
∫ ∫

∫ ∫ ∫ ∫

∫ ∫

∑

= ⋅ ∇ ∆ +

= − ∆ + − ⋅ ∇ ∆ +

= |∇ | − + ∇ ⋅ ∇ −
⋅ ∇
+

= + |∇ | −
+

+

=

∞ +

+

⎛

⎝
⎜

⎞

⎠
⎟

R

R R

R R R R

R R

t
m t hx h h x

dh h h x x h h h x

d h x d h x x h h x
x h

m
x

d h x
dm

m
h x

d

d
2 d

2 d 2 d

2 d 2 d 2 d 2
1

d

2 d
2

1
d .

m

m m

m

i
i x

m

m

2

2 1

1

1

2 1

d

d d

d d d i d

d d

( ) ( )

( ) ( )

( )

Noticing that = +m 1
d

2 and (5.6), we have

( ) ( ) ( ( )) ⩽ ( ) ( )= + ⋅ + <F F
t
m t d h t d h

d

d
2 2 , 2 2 0.2 0� (5.7)

Since the initial second moment is finite, then there exists a finite time t* such that ( ) =∗m t 02 .
On the other hand, a simple computation shows that

⩽ ∥ ∥ ( )

⩽ ∥ ∥ ( )

⩽R∫ ∫ ∫

∫α

α

= +

+ | |

+

| | | |>

+
| |>

+ +

+

+

h x h x h x

h R
R

x h x

h R
R

m t

d d d

1
d

1
.

x R x R

L d
d

m
m

x R

L d

m
m

dm
m

1
2

2

1 1
2 2

d

m

m

1

1

�

(5.8)

Taking

( )
∥ ∥

( ) ( )⎛

⎝
⎜

⎞

⎠
⎟α=

−
+ +

+
+ +

+

R
m t

h
,d

m
dm m

L

m
dm m

2 1 2

1
2 1

m 1

we have ∥ ∥ ( )α =+ ++h R m tL d

m
m

dm
m

R
1 1

1
2m 1 2 . Hence we obtain from (5.8)

⩽ ∥ ∥ (∥ ∥ ) ( ( ))( )
( )

( ) ( )
R∫ α α=+ + + +

+
+ + + ++ +h x h R h m td 2 2 ,L d

m
m

dm
m d

m
dm m

L

m
dm m

dm
dm m1 1

2
2 1

2 1
2 1 2 2 1

d
m m1 1

which implies

∥ ( )∥ ⩾ ( ( ))
( )

( )
( )⎜ ⎟

⎛
⎝

⎞
⎠ α⋅

+ +
+ −

+ −
++h t

m
m t,

2
.L

dm m
m

d

m
m

dm
m0

2 1
2 1 1

2 2 1m 1� (5.9)

Hence from (5.9) and the fact ( ) =∗m t 02 , we know that there is ⩽+ ∗T tm
max

1  such that

∥ ( )∥
→

⋅ = ∞
+

+h tlim sup , ,
t T

L
m

m

max
1

1

which is a contradiction to global existence of entropy weak solutions in ( )R+Lm d1 . Hence 
solutions blow up in finite time in ( )R+Lm d1 .� □
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Remark 5.1.  Using the interpolation inequality ∥ ∥ ⩽ ∥ ∥ ∥ ∥+
+

∞h h hm
m

L L
m

1
1

1 , we know that there 
is ⩽ +T T m

max max
1 such that

∥ ( )∥
→

⋅ = ∞∞h tlim sup , .
t T

L
max

Furthermore, if the initial mass is less than Mc, an entropy weak solution exists globally 
[25] for the one-dimensional case. For a multi-dimensional thin film equation with an unstable 
diffusion term, Taranets and King [32] showed short-time existence of solutions for the prob-
lem (1.1) and (5.1) with d  =  2, 3 in a bounded domain with the boundary condition (1.13). 
Moreover, they proved global existence of weak solutions to (1.1) and (5.1) for all initial con-
ditions with sufficiently small mass, refer to [32, theorem 4]. For the whole space, existence 
of weak solutions in multi-dimension is still an open problem. However, if an entropy weak 
solution to (1.1) and (5.1) exists globally, then the second moment goes to infinity as →∞t  or 
( )⋅ ⇀h t, 0k  in ( )RL d1  for some subsequence →∞tk  if <m Mc0  as stated in theorem 5.2 below. 

This shows that a part of the mass spreads to infinity as →∞t .

Lemma 5.1.  Assume ( ) ( )R R∈ ∩+h L Hd d1 1 . Denoting 
R∫=m h x: d0 d , we have

( ) ⩾
/

R

⎛

⎝
⎜⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟⎟ ∫− |∇ |F h

m

M
h x

1

2
1 d

c

d
0

2
2

d
� (5.10)

⩾
R

⎛

⎝
⎜
⎜
⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟
⎟ ∫+

− +

m

M

m
h x

1

1
1 d .c d

m

0

2

1
d

� (5.11)

Proof.  From the generalized Sz. Nagy inequality (1.12) with = +m 1
d

2, one easily gets

⩽
R R

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫+

| | |∇ |+ −

m
h x

m

M
h x

1

1
d 2 d ,m

c

d1 1 0

2

2
d d

� (5.12)

which implies

( ) ⩾
/

R R R

⎛

⎝
⎜⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟⎟∫ ∫ ∫= |∇ | −
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− |∇ |+F h h x
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M
h x

1

2
d

1

1
d

1

2
1 d .m

c

d
2 1 0

2
2

d d d

�

(5.13)

Hence (5.10) holds. So, (5.12) and (5.10) imply (5.11).� □

Theorem 5.2.  Assume that initial data h0 satisfy (5.2), <m Mc0  and ( )<∞F h0 . Let h(x, t) 
be a global non-negative entropy weak solution of (1.1) with the initial condition (5.1) given 
by definition 5.1. Then

⋅ + ⋅
< <∞

+ Fh t h t C h hsup , , , ,
t

L H H
0

0 0m 1 1 1{∥ ( )∥ ∥ ( )∥ } ⩽ (∥ ∥ ( ))� (5.14)

and at least one of the following results holds
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=∞∞a m tlim ,t 2( ) → ( )� (5.15)

( )  ( ) ⇀     ( )        →⋅ ∞Rb h t L for some subsequence t, 0 in .k
d

k
1� (5.16)

Proof.  Since <m Mc0 , the inequality (5.10) and ( ( )) ⩽ ( )⋅F Fh t h, 0  indicate that

( )
( ( )) ⩾ ( ) ⩽ ( )    /R∫⋅ |∇ ⋅ |

−
= >F

F
h t h t x

h
C t, 0, , d

2

1
: , for any 0.

m

M

d
2 0

2 0
d

c

0

�

(5.17)

Here we used the fact that the free energy is decreasing in time t. So, (5.17) implies that (5.14) 
holds. And from ( ( )) ⩾⋅F h t, 0, we know that there is a ∞F  such that

( ( )) ⩾
→

⋅ =
∞

∞F Fh tlim , 0.
t

On the other hand, a simple computation gives

( ) ( ) ( ( )) ⩾ ( ) ⩾= + ⋅ + ∞F F
t
m t d h t d

d

d
2 2 , 2 2 0,2� (5.18)

which says that the second moment is increasing in t.
Now we prove that (a) or (b) holds. Suppose that

(     →→+∞ ∞̸m t t) , as .2� (5.19)

By (5.18), we have that there exists a constant ˜ >C 0 such that ( ) ⩽ ˜m t C2  for any ( )∈ ∞t 0, . 
In this case, we claim that there is a sequence tk and ∞h  such that as →∞tk , it holds that

( ) →       ( )R∞
+h t h L, strongly in .k

m d1� (5.20)

In fact, from (5.12) and (5.17), we have ( ( ) ( ))R R R∈ ∩∞
+h L L H, d d1 1 . Noticing that the second 

moment is finite, we deduce that

	(1)	∀ ε> 0, there exists a >εR 0 such that
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Hence taking

⩾ ( ) ˜
⩾ ( ) ( )/ /⎛

⎝
⎜
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⎝
⎜
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1 2
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� (5.21)

we obtain
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     ∫ ε< >
| |>

+

ε

h x td , for any 0.
x R

m 1
� (5.22)

Then there is a subsequence tk (without relabel) and ∞h1,  such that

( )   →   ( ⩾ )⋅ ∞ | | ε∞
+⇀h t h t L x R, , as ink k

m
1,

1
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⩽ ( ) ⩽
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∞
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∞ | |>
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ε ε
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x R
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k x R
k

m
1,

1 1
� (5.23)

	(2)	For a fixed εR  satisfying (5.21), we know that ( ) ( ( ( )))R∈ ε
∞

+h x t L H B R, ; 0,k
1  by (5.12) 

and (5.17). Thus by the Sobolev embedding theorem, one obtains that there is a strong 
convergent subsequence, still denoted by h(x, tk), and ∞h2,  such that

( ) →       ( ( ))⋅ ε∞
+h t h L B R, , strongly in 0, .k

m
2,

1� (5.24)

Let ∞h  be the combination of ∞h1,  and ∞h2,  defined in Rd. Hence, from (5.22)–(5.24), there is 
a K such that if ⩾k K, then
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which proves our claim (5.20). Thus we have
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d d

� (5.25)

On the other hand, by Fatou’s lemma with (5.17), we know that

( )     ( )R∇ ∇ ∞⇀h x t h L, , ink
d2

implies
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→R R∫ ∫|∇ | |∇ |∞
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d d
� (5.26)

The formulas (5.25) and (5.26) give

( )

⩽ ( ) ( )

( ( ))
→ →

→

R R

R R

∫ ∫

∫ ∫

= |∇ | −
+

|∇ | −
+

= ⋅ =

∞ ∞ ∞
+

∞ ∞

+

∞
∞

F

F F

h h x
m

h x

h x t x
m

h x t x

h t

1

2
d

1

1
d

lim inf
1

2
, d lim

1

1
, d

lim inf , .

m

k
k

k

m
k

k
k

2 1

2 1

d d

d d

�

(5.27)
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Finally, noticing that ⋅ =h t m, k L 01∥ ( )∥ , ∥ ( )∥ ⩽⋅ +h t C, k Lm 1  and the second moment is finite, 
we have by the Dunford–Pettis theorem that as →∞k

( )     ( )R⋅ ∞⇀h t h L, , in .k
d1� (5.28)

Hence Fatou’s lemma implies

⩽ ( )
→R R∫ ∫ = <∞
∞

h x h x t x m Md lim inf , d .
k

k c0
d d

� (5.29)

We have two cases: (i) =∞h 0, (ii) ≠∞h 0. In the case (i), by (5.28) there exists a subsequence 
tk such that ( )⋅ ⇀h t, 0k  as →∞tk . Thus (5.16) holds. In the case (ii), by the inequality (5.12), 
we know ( )>∞F h 0. Hence (5.27) gives >∞F 0. Notice that

( ) ⩾ ( ) ( ) →     →+ + +∞ ∞∞Fm t m d t t0 2 2 , as ,2 2

which contradicts with (5.19). That implies (5.15). This finishes the proof of theorem 5.2.� □
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