
253

0885-7474/03/0400-0253/0 © 2003 Plenum Publishing Corporation

Journal of Scientific Computing, Vol. 18, No. 2, April 2003 (© 2003)

A Fourth Order Scheme for Incompressible Boussinesq
Equations

Jian-Guo Liu,1 Cheng Wang,2 and Hans Johnston3

1 Institute for Physical Science and Technology and Department of Mathematics, University
of Maryland, College Park, Maryland 20742.
2 Institute for Scientific Computing and Applied Mathematics and Department of Mathema-

tics, Indiana University, Bloomington, Indiana 47405. E-mail: cwang@indiana.edu
3 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109.

Received February 15, 2001; accepted (in revised form) April 4, 2002

A fourth order finite difference method is presented for the 2D unsteady viscous
incompressible Boussinesq equations in vorticity-stream function formulation.
The method is especially suitable for moderate to large Reynolds number flows.
The momentum equation is discretized by a compact fourth order scheme with
the no-slip boundary condition enforced using a local vorticity boundary con-
dition. Fourth order long-stencil discretizations are used for the temperature
transport equation with one-sided extrapolation applied near the boundary. The
time stepping scheme for both equations is classical fourth order Runge–Kutta.
The method is highly efficient. The main computation consists of the solution of
two Poisson-like equations at each Runge–Kutta time stage for which standard
FFT based fast Poisson solvers are used. An example of Lorenz flow is pre-
sented, in which the full fourth order accuracy is checked. The numerical simu-
lation of a strong shear flow induced by a temperature jump, is resolved by two
perfectly matching resolutions. Additionally, we present benchmark quality
simulations of a differentially-heated cavity problem. This flow was the focus of
a special session at the first MIT conference on Computational Fluid and Solid
Mechanics in June 2001.

KEY WORDS: Boussinesq equations; incompressible flow; compact scheme;
long-stencil approximation; one-sided extrapolation; vorticity boundary condi-
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1. INTRODUCTION

The dimensionless form of the Boussinesq approximation for the 2D
incompressible Navier–Stokes equations on a domain W is given by

˛“th+(u ·N) h=
1

Re ·Pr
Dh,

“tu+(u ·N) u+Np=
1
Re
Du+Ri ·h ·10

1
2 ,

N ·u=0,

(1.1)

where u=(u, v) t is the velocity, p the pressure, h the temperature, and Re
the Reynolds number. Pr is the Prandtl number, the ratio of the kinematic
viscosity to the heat conductivity. The Richardson number Ri accounts for
the gravitational force and the thermal expansion of the fluid. One may
introduce other physically relevant dimensionless quantities, such as the
Rayleigh number Ra=Ri ·Re2 ·Pr, and the Grashof number Gr=Ra/Pr=
Ri ·Re2. For brevity of presentation we denote n=1/Re and o=1/(Re ·Pr).

We consider the simplest boundary conditions for u, the no-penetra-
tion, no-slip conditions u|C=0. For the temperature h we can impose either
the Dirichlet boundary condition

h|C=hb, (1.2)

where hb is a given temperature distribution on the boundary C of W, or a
Neumann boundary condition

“h

“n
:
C

=hf, (1.3)

where hf is a given heat flux. For example, hf=0 corresponds to an adia-
batic boundary condition.

In 2D the vorticity formulation of (1.1) is computationally advan-
tageous for it eliminates the pressure variable and automatically enforces
incompressibility. Introducing the vorticity w=N×u and the stream func-
tion k, (1.1) is equivalent to

˛
“th+(u ·N) h=o Dh,

“tw+(u ·N) w=n Dw+Ri “xh,

Dk=w,

u=−“yk, v=“xk.

(1.4)
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For a simply-connected domain, the case considered here, the no penetra-
tion, no-slip boundary conditions u|C=0 are recast in terms of k as

k=0,
“k

“n
=0. (1.5)

The boundary conditions (1.5) for the stream function have been extensi-
vely studied in the context of numerical solutions of the Navier–Stokes
equations, cf. [9, 14, 8, 15, 10]. Most noteworthy of the previous work in
the numerical simulation of incompressible Boussinesq equations (1.4) can
be found in [1, 10, 6].

In this paper a fourth order numerical method based on the vorticity
formulation (1.2)–(1.5) is presented. A compact discretization, proposed by
E and Liu [5] for the 2D Navier–Stokes equations (NSE), is used to solve
the momentum equation in (1.4), with the gravity term treated explicitly in
time. A compact approach provides high order accuracy while avoiding
extrapolation in order to prescribe ‘‘ghost’’ computational grid points for
the vorticity along the boundary. This is important for large Reynolds
number flows where, in general, the viscous boundary layer is highly sin-
gular. Moreover, a detailed stability and convergence analysis of the fourth
order compact approach [21, 22] shows it to introduce less numerical dis-
sipation than standard high order centered difference schemes. In contrast,
a compact approach is not indicated for the temperature transport equa-
tion. Indeed, the prescribed boundary condition for temperature, (1.2)
or (1.3), allows the solution of the temperature equation to fourth order
using long-stencil approximations. This avoids the computational cost of
solving a Poisson-like equation involving an auxiliary temperature variable
required of a compact approach. This necessitates temperature data at
‘‘ghost’’ points outside of the computational domain, which is prescribed
using one-sided extrapolation. The number of interior points in these for-
mulas is reduced by applying information obtained from the temperature
equation at the boundary. Similar ideas can be found in [9]. We note that
this approach for the temperature transport equation can be applied to any
type of passive scalar equation. The stability of the high order long-stencil
approximation with one-sided extrapolation is demonstrated numerically in
Secs. 3 and 4, and theoretically in a forthcoming article [23].

The time discretization scheme for both the momentum and tempera-
ture equations is classical fourth order Runge–Kutta (RK4). In conjunction
with the fourth order spatial discretization, the resulting multi-stage explicit
time stepping procedure is simple to implement and highly efficient. The
main computation is the solution of two Poisson-like equations per stage,
which are solved using FFT based schemes. Additionally, the choice of
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RK4 avoids stability restrictions in the form of cell-Reynolds number con-
straints. The numerical scheme, including the implementation of the time-
stepping procedure, is described in Sec. 2.

The paper is organized as follows. In Sec. 3 a well known model of
Rayleigh–Bénard type convection is used to verify the accuracy of our
numerical scheme. The stream function and temperature in the 2D flow are
represented by three parameters with the help of single and double mode
analyses. The evolution of these parameters is described by a nonlinear
system of ODEs, the Lorenz system. An accuracy check is carried out for
our computational method applied to the Boussinesq equations (with a
single source term) based on the Lorenz system, demonstrating fourth
order accuracy of the method.

In Sec. 4.1 we demonstrate the robustness of our numerical method by
simulating an example of strong shear flow induced by a temperature jump,
with ratio 1.5:1, in an insulated box. (Similar experimental work on stra-
tified shear flow has been carried out by Thorpe [18, 19]). The resulting
roll-up structure, triggered by a Kelvin–Helmholtz instability of the vortex
sheet, is completely resolved. The accuracy of our computation is verified
by the excellent agreement between the two grid resolutions, 2049×257
and 4097×513.

As further evidence of the accuracy and efficiency of our method we
present in Sec. 4.2 benchmark quality simulations for a differentially-
heated cavity problem. The computation of this flow was the focus of a
special session at the first MIT conference on Computational Fluid and
Solid Mechanics in June 2001. Submissions to the session included simula-
tions computed using finite difference, finite element, finite volume, and
spectral methods. The reference benchmark simulation was computed using
a spectral code [20], which was used to rank the submissions to the special
session. In all there were six composite metrics on which submissions were
judged. The simulation computed by our method received three first place
rankings and one second place ranking. In particular, with respect to
numerical accuracy and efficiency our method performed extremely well.

2. DESCRIPTION OF THE SCHEME

For simplicity of presentation the computational domain is taken
as W=[0, 1]×[0, 1] with grid size Dx=Dy=h. The boundary C is
composed of Cx: {y=0, 1} and Cy: {x=0, 1}. The numerical grid is
denoted by Wh={xi=i/N, yj=j/N, i, j=0, 1,..., N}. The spatial discre-
tizations for (1.4) are first outlined, with the complete time stepping of the
system (1.4) described in Sec. 2.5.
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2.1. Temperature Transport Equation

The temperature transport equation is treated as a standard convec-
tion-diffusion equation. It is discretized using fourth order long-stencil
difference operators, which requires temperature values to be defined at
‘‘ghost’’ grid points outside of the computational domain. They are
prescribed using one-sided extrapolation. To reduce the number of interior
points required in the extrapolation, for both computational convenience
and better stability, we apply information obtained from the temperature
equation on the boundary. Similar ideas can be found in [9].

To begin, standard fourth order centered long-stencil approximations
of “x and “y are given by, respectively,

“x=D2x 11−
h2

6
D2x 2+O(h4), “y=D2y 11−

h2

6
D2y 2+O(h4), (2.1)

where D2x and D2x are standard second order centered difference approxi-
mations to “x and “2x, respectively. To approximate D in the diffusion term,
note that

D=Dh−
h2

12
(D4x+D

4
y)+O(h

4), (2.2)

where Dh=D
2
x+D

2
y. The temperature equation is then discretized using

“th+uD2x 11−
h2

6
D2x 2 h+vD2y 11−

h2

6
D2y 2 h=o 1Dh−

h2

12
(D4x+D

4
y)2 h.

(2.3)

2.2. Temperature at Ghost Point(s)

Determination of h at ‘‘ghost’’ points is needed at each boundary to
implement (2.3), one point in the case of Dirichlet boundary conditions
(1.2) and two points in the case of the Neumann boundary condition (1.3).
Improved stability generally results by using as few interior points, for
a given order approximation, as possible in the one-sided stencils. For
brevity of the presentation we concentrate on the boundary section Cx
where j=0.

2.2.1. Dirichlet Boundary Condition for Temperature

In the case of a Dirichlet boundary condition (1.2) for the tempera-
ture, hi, 0 is given on the boundary by hb(xi, 0). The temperature in (2.3)
is then updated at interior points (xi, yj), 1 [ i, j [N−1, requiring the
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prescription of the ‘‘ghost’’ value hi, −1 due to the stencil of the discretiza-
tion (2.3). Local Taylor expansion near the boundary gives

hi, −1=2hi, 0−hi, 1+h2 “
2
yhi, 0+O(h

4). (2.4)

To apply (2.4) the term “2yh for j=0 is prescribed by considering the tem-
perature transport equation at the boundary:

“th|Cx=o Dh|Cx=o(“
2
x+“

2
y) h|Cx=o(“

2
xhb+“

2
yh|Cx ). (2.5)

The first equality follows from the convection term being identically zero
along C due to the boundary condition u|C=0, and we have

“
2
yh|Cx=

1
o
“thb−“

2
xhb, (2.6)

where the right hand side is a known since h=hb is given on C. Substitut-
ing (2.6) into (2.4), we have

hi, −1=2hi, 0−hi, 1+h2 1
1
o
“thb−“

2
xhb 2+O(h4), (2.7)

Analogous derivations apply on the other three boundary sections. It can
be shown that this formula gives full fourth order accuracy. See the results
in Table I.

Remark 2.1. In (2.4) we used a fourth order one-sided approxima-
tion for the temperature near the boundary. In fact, a fifth order Taylor
expansion near the boundary can also be used, which gives

hi, −1=
20
11
hi, 0−

6
11
hi, 1−

4
11
hi, 2+

1
11
hi, 3+

12
11
h2 “2yhi, 0+O(h

5). (2.8)

The derivation of “2yhi, 0 on Cx, (2.5) and (2.6), is unchanged. The combina-
tion of (2.8) and (2.6) results in

hi, −1=
20
11
hi, 0−

6
11
hi, 1−

4
11
hi, 2+

1
11
hi, 3+

12
11
h2 1 1
o
“thb−“

2
xhb 2+O(h5).

(2.9)

which is a O(h5) formula analogous to (2.7). Our computation shows that
both (2.7) and (2.9) provide stability and full accuracy, as explained in
Sec. 3. Since the formula (2.7) requires only one interior point, we suggest
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using (2.7) in practical computation for convenience. However, for techni-
cal considerations [23] in the stability analysis of the overall scheme, the
fifth order approximation is preferred.

2.2.2. Neumann Boundary Condition for Temperature

In the case of the Neumann boundary condition (1.3) the temperature
on the boundary is not known explicitly, only its normal derivative. Thus,
(2.3) is applied at every computational point (xi, yj), 0 [ i, j [N requiring
us to determine two ‘‘ghost’’ point values, hi, −1 and hi, −2, to carry out (2.3).
As in the Dirichlet case above we begin by deriving one-sided approxima-
tions. Local Taylor expansion near the boundary gives

hi, −1=hi, 1−2h “yhi, 0−
h3

3
“
3
yhi, 0+O(h

5), (2.10)

and

hi, −2=hi, 2−4h “yhi, 0−
8h3

3
“
3
yhi, 0+O(h

5). (2.11)

The term “yhi, 0 in (2.10) and (2.11) is known from the flux boundary con-
dition (1.3). It remains to determine “3yhi, 0, for which we use information
from the PDE and its derivatives. Applying “y to the temperature equation
along Cx gives

hyt+uyhx+uhxy+vyhy+vhyy=o(hyxx+“
3
yh), on Cx. (2.12)

The first term on the left-hand side as well as the first term on the right-
hand side of (2.12) are known functions, hft and hfxx, respectively. The
third and fifth terms on the left-hand side are zero since u|C=0. The fourth
term on the left-hand side is also zero because of the no-slip boundary
condition and incompressibility, i.e., vy=−ux=0 on Cx. It remains to
determine the second term on the left-hand side. Since vx=0 along Cx
it follows that uy=−(vx−uy)=−w along Cx. Moreover, since (2.3) is
updated at all grid points, including the boundary points, hx on Cx can be
calculated by the standard fourth order long-stencil formula (2.1). Com-
bining all these arguments and substituting them back into (2.12), “3yh is
approximated along Cx by

“
3
yhi, 0=

1
o
1hft−wi, 0D2x 11−

h2

6
D2x 2 hi, 0 2−hfxx. (2.13)
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Plugging (2.13) back into (2.10) and (2.11), we have

hi, −1=hi, 1−2hhf−
h3

3
1 1
o
hft−

1
o
wi, 0D2x 11−

h2

6
D2x 2 hi, 0−hfxx 2 , (2.14)

hi, −2=hi, 2−4hhf−
8h3

3
1 1
o
hft−

1
o
wi, 0D2x 11−

h2

6
D2x 2 hi, 0−hfxx 2 . (2.15)

In the no-flux (or fixed-flux) case we have hft=hfxx=0, and the formulae
reduce to

hi, −1=hi, 1+
h3

3
wi, 0

o
D2x 11−

h2

6
D2x 2 hi, 0, (2.16)

hi, −2=hi, 2+
8h3

3
wi, 0

o
D2x 11−

h2

6
D2x 2 hi, 0. (2.17)

Analogous formulas follow for the remaining three boundaries.
The above one-sided approximations of the temperature near the

boundary is can be shown to be stable, the analysis of which will appear in
a forthcoming article [23].

2.3. Momentum Equation

The momentum equation in (1.4) is discretized using the Essentially
Compact Fourth Order Scheme (EC4) approach proposed by E and Liu in
[5]. By the introduction of an auxiliary vorticity variable the momentum
equation is updated by a compact scheme. The kinematic equation between
stream function and vorticity is also discretized by fourth-order compact
differencing, giving rise to a discrete Poisson-like equation for the stream
function. This is solved using the Dirichlet no-penetration boundary con-
dition k|C=0. The no-slip boundary condition “k

“n |C=0, along with a one-
sided approximation of w=Dk, is converted into a local vorticity bound-
ary condition such as Briley’s formula or a new fourth order vorticity
boundary formula proposed in [22]. The vorticity field is then recovered
by solving a Poisson-like equation. Moreover, the main difference between
the momentum equation in Boussinesq equations and the usual fluid equa-
tions is the addition of the gravity term, which is also treated with a fourth
order discretization and explicitly in the time stepping procedure.

The starting point of the scheme is a fourth order compact discretiza-
tion of the Laplacian operator D given by

D=
Dh+

h2

6 D
2
xD

2
y

1+h2

12Dh
+O(h4). (2.18)
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Substituting (2.18) into the momentum equation, and then multiplying the
result by the denominator of the operator in (2.18), namely 1+h2

12 Dh, gives

11+h
2

12
Dh 2 “tw+11+

h2

12
Dh 2 N · (uw)−Ri 11+

h2

12
Dh 2 “xh

=n 1Dh+
h2

6
D2xD

2
y
2 w+O(h4). (2.19)

Applying the same procedure to the kinematic equation leads to

1Dh+
h2

6
D2xD

2
y
2 k=11+h

2

12
Dh 2 w+O(h4). (2.20)

Incompressibility implies that N · (uw)=(u ·Nw), and the nonlinear
convection is estimated as

11+h
2

12
Dh 2 (u ·Nw)=D2x 11+

h2

6
D2y 2 (uw)+D2y 11+

h2

6
D2x 2 (vw)

−
h2

12
Dh(uD2xw+vD2yw)+O(h4). (2.21)

The first and the second terms in (2.21) are compact. The third term is not,
but this does not cause any difficulties computationally since the boundary
condition u|C=0 implies that uD2xw+vD2yw can be taken as 0 on C. The
gravity term is dealt with similarly, and a formal Taylor expansion gives

11+h
2

12
Dh 2 “x=D2x 11+

h2

12
D2y−

h2

12
D2x 2+O(h4)

=D2x+
h2

12
D2xD

2
y−
h2

12
D2xD

2
x+O(h

4). (2.22)

Note that the third term requires ‘‘ghost’’ point values for h, whose
prescription was discussed in the last subsection. Then introducing the
auxiliary variable w̄ defined by

w̄=11+h
2

12
Dh 2 w, (2.23)
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and combining (2.19)–(2.22), the momentum equation is discretized by

“tw̄+D2x 11+
h2

6
D2y 2 (uw)+D2y 11+

h2

6
D2x 2 (vw)

−
h2

12
Dh(uD2xw+vD2yw)−Ri D2x 11+

h2

12
(D2y−D

2
x)2 h

=n 1Dh+
h2

6
D2xD

2
y
2 w. (2.24)

The stream function is recovered to fourth order given w̄ by solving
(2.20) with the Dirichlet boundary condition k|C=0. The velocity u=N 2k

=(−“yk, “xk) is recovered using (2.1), long-stencil approximations to “x
and “y, respectively,

u=−D2y 11−
h2

6
D2y 2 k, v=D2x 11−

h2

6
D2x 2 k, (2.25)

along with the enforcement of u|C=0. However, note that (2.25) requires
value of k at one ‘‘ghost’’ point to compute a derivative normal to a given
boundary at the first interior point, e.g., u with j=1 along Cx. This
prescription is discussed in the next subsection in conjunction with the
derivation of a local vorticity boundary condition for w required to
determined w from w̄ via (2.23).

Local Vorticity Boundary Conditions

The subject of the vorticity boundary condition in the context of finite
difference schemes has a long history, going back at least to the 1930s when
Thom’s formula was derived [17]. Physically the vorticity boundary con-
dition enforces the no-slip boundary condition for the velocity, which
in turn determines the structure of the viscous boundary layer. Thus, it is
essential that the boundary layer is resolved for it eventually separates and
the vortical structures generated from the separation drastically influence
the overall flow.

Local vorticity boundary conditions are derived from discretizations of
the the kinematic relation w=Dk at the boundary, requiring numerical
values of k at ‘‘ghost’’ points outside of the computational domain, which
are derived from discretizations of “k

“n=0. It is in this way that the bound-
ary condition for vorticity enforces the no-slip boundary condition for the
velocity. A detailed discussion of the derivation and use of local vorticity
boundary conditions can be found in [5].
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On the boundary section Cx, where j=0, Briley’s formula reads

wi, 0=
1
18h2

(108ki, 1−27ki, 2+4ki, 3). (2.26)

The corresponding ‘‘ghost’’ point values for stream function are given by

ki, −1=6ki, 1−2ki, 2+
1
3
ki, 3−4h 1

“k

“y
2
i, 0
+O(h5), (2.27)

ki, −2=40ki, 1−15ki, 2+
8
3
ki, 3−12h 1

“k

“y
2
i, 0
+O(h5). (2.28)

One-sided approximation and high order Taylor expansion for stream
function around the boundary was used in the derivation of these local
formulae. Briley’s formula was initially proposed in [2] and its use in the
EC4 scheme was analyzed in [5, 21].

A new fourth order formula for the vorticity on the boundary, which
was proposed in [22], gives

wi, 0=
1
h2
18ki, 1−3ki, 2+

8
9
ki, 3−

1
8
ki, 4 2 , (2.29)

along with the corresponding one-sided approximation for stream function
at ‘‘ghost’’ points

ki, −1=10ki, 1−5ki, 2+
5
3
ki, 3−

1
4
ki, 4−5h 1

“k

“y
2
i, 0
+O(h6), (2.30)

ki, −2=80ki, 1−45ki, 2+16ki, 3−
5
2
ki, 4−30h 1

“k

“y
2
i, 0
+O(h6). (2.31)

It was shown in [21, 22] that the above one-sided vorticity boundary
condition preserves stability and is consistent with the centered difference
applied at interior points. Both formulae give us fourth order accuracy for
2-D Navier–Stokes equations. For computational convenience, we suggest
using Briley’s formula along with (2.27), (2.28) in the calculation.
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2.4. Motivation for Using Different Solvers for the Momentum and
Temperature Equations

Let us review our scheme for the Boussinesq equations. Due to the
singular behavior of vorticity near the boundary at high Reynolds numbers
a compact approach is necessary for the momentum equation in order to
achieve fourth order accuracy while at the same time avoiding possible
stability issues arising from the use of long-stencil approximations near
the boundary. The price paid is the introduction of an auxiliary vorticity
variable. However, it only requires updating in time at the interior grid
points. Accordingly, the stream function can be solved by the Poisson-like
equation (2.20) using Dirichlet boundary condition. Then given the
stream function we can calculate the vorticity on the boundary by a local
formula, either (2.26) or (2.29), which enforces the no-slip boundary
condition. Consequently, the vorticity field is obtained by solving the
linear system (2.23), which is also a Poisson-like equation. The velocity
field is determined by the long-stencil formula (2.25). Finally, we update
the auxiliary vorticity at the next time stage, using finite differencing in
(2.24).

In contrast, a compact approach is not indicated for the computation
of the temperature transport equation. Alternatively, long-stencil centered
fourth-order approximation of the spatial derivatives can be used due the
fact that temperature variable, a passive scalar, is much smoother than the
vorticity variable in the boundary layer. The well-defined boundary condi-
tion for temperature, either (1.2) or (1.3), along with the technique of using
information from the original PDE on the boundary, helps us to formulate
a stable one-sided approximation. This approach does not require any
linear system solvers, unlike the two Poisson solvers for the momentum
equation. Therefore, it simplifies the computation without any loss of
accuracy in the temperature.

Physically, the vorticity profile near the boundary for large Reynolds
number flow is generally structurally complicated, with a thickness of
d=O(1/`Re) and amplitude O(`Re) in vorticity, by formal asymptotic
expansion, with possibly a non-monotone profile. In contrast, the magni-
tude of the temperature near the boundary is O(1). Thus, the primary
numerical challenge lies in capturing the detailed structures of the vorticity
in the boundary layer. The vorticity boundary condition and the one-sided
extrapolation for the temperature in our scheme, both of which are local
formulae near the boundary, result in a methodology capable of resolving
such complex flows. Moreover, the stability and accuracy of the formulae
make them very robust in practical calculations, especially at high Reynolds
numbers.
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2.5. Time Discretization

The classical fourth order Runge–Kutta method is used for the time
discretization of both the momentum equation and the temperature equa-
tion. The multi-stage explicit time stepping procedure makes the fourth
order spatial discretization very easy to implement.

The convection, diffusion terms and the gravity term appearing in the
Boussinesq equations, together with the fourth order spatial discretizations
discussed above, are updated explicitly. Such explicit treatment avoids any
stability concern caused by the cell-Reynolds number constraint if a high
order Runge–Kutta method, such as classical RK3 or RK4, is applied. This
observation was first made in [4] and its extension to EC4 scheme was
documented in [5]. For the sake of fourth order accuracy, RK4 is used
in our method to update both the momentum and temperature equations.
The multi-stage explicit scheme circumvents the long-standing difficulty of
the coupling among the momentum equation, kinematic equation, and the
vorticity boundary condition.

Only two standard Poisson-like equations, in Steps 3 and 6 described
later, are required to be solved at each Runge–Kutta time stage, for which
fast FFT-based methods are used. Our numerical experiments show that
approximately 90 percent of the CPU is spent in the two Poisson solvers.
That makes the method extremely efficient.

For simplicity we only present the forward Euler time-discretization.
The extension to Runge–Kutta method is straightforward.

Initialization. Given {w0ij}, compute

11+h
2

12
Dh 2 w0=w̄0. (2.32)

Time-Stepping. Given the vorticitywn and the temperature hn at time tn,
we compute all the profiles at the time step tn+1 via the following steps.

Step 1. Update {w̄n+1i, j }, at interior points (xi, yj), for 1 [ i,
j [N−1, using

w̄n+1− w̄n

Dt
+D2x 11+

h2

6
D2y 2 (unwn)+D2y 11+

h2

6
D2x 2 (vnwn)

−
h2

12
Dh(unD2xwn+vnD2ywn)−Ri D2x 11+

h2

12
(D2y−D

2
x)2 hn

=n 1Dh+
h2

6
D2xD

2
y
2 wn. (2.33)
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Step 2. Obtain hn+1i, j using

hn+1−hn

Dt
+unD2x 11−

h2

6
D2x 2 hn+vnD2y 11−

h2

6
D2y 2 hn

=o 1Dh−
h2

12
(D4x+D

4
y)2 hn. (2.34)

If the Dirichlet boundary condition is imposed for the temperature, (2.34)
is updated at interior points (xi, yj), 1 [ i, j [N−1, and the boundary
value of hn+1 is given by (1.2); if the Neumann boundary condition is
imposed for the temperature, (2.34) is updated at all computational points
(xi, yj), 0 [ i, j [N.
Step 3. Solve for {kn+1i, j }1 [ i, j [N−1 using

˛1Dh+h
2

6
D2xD

2
y
2 kn+1=w̄n+1,

kn+1|C=0,
(2.35)

where only Sine transformations are needed. Compute kn+1 at the ‘‘ghost’’
points using (2.27), (2.28) (together with Briley’s vorticity boundary condi-
tion (2.26)), or using (2.30), (2.31) (together with the new vorticity bound-
ary condition (2.29)). We note that solving (2.35) only requires w̄n+1 at
interior points (xi, yj), 1 [ i, j [N−1, which has been computed in Step 1.
Step 4. If the Dirichlet boundary condition is imposed for the tem-

perature, calculate ‘‘ghost’’ point value hi, −1 by the formula (2.7) or (2.9);
if the Neumann boundary condition is imposed for the temperature, use
(2.14), (2.15) to calculate h at ‘‘ghost’’ points.
Step 5. Since kn+1 (including the ‘‘ghost’’ point value) has been com-

puted in Step 3, we are able to obtain the boundary value for wn+1 by
either Briley’s formula (2.26) or the new fourth order formula (2.29).
Step 6. Now we use the boundary values for wn+1 updated in Step 5

to solve for {wn+1i, j }i \ 1, j \ 1 using

11+h
2

12
Dh 2 wn+1=w̄n+1. (2.35)

Step 7. Update the velocity un+1i, j , v
n+1
i, j using the fourth order differ-

ence scheme

un+1=−D2y 11−
h2

6
D2y 2 kn+1, vn+1=D2x 11−

h2

6
D2x 2 kn+1, (2.36)

for i, j \ 1, and un+1|C=0, vn+1|C=0.

266 Liu, Wang, and Johnston



As for the time step constraint, the overall scheme is stable as long as
Dt satisfies

||u||. Dt
h
=CFL [ 1.0 and

a Dt
h2

[ 11
4
2 , (2.37)

where h=min{Dx, Dy}, and a=max{n, o}. See [5, 21] for a further dis-
cussion of issues concerning the choice of the time stepping scheme and
stability conditions.

3. ACCURACY CHECK USING THE LORENZ SYSTEM

We consider a well-known model dealing with Rayleigh–Bénard con-
vection, which was proposed by Lorenz (1963). He expanded the equations
describing two-dimensional nonlinear convection on a uniformly heated
plane with stress-free boundaries in a double Fourier series. The resulting
system of equations was then truncated radically, so that only three ODEs
remained. These are the so-called Lorenz system

˛
dX
dT
=−sX+sY,

dY
dT
=rX−Y−ZX,

dZ
dT
=−bZ+XY,

(3.1)

in which X is proportional to the amplitude of the convection motions,
Y is proportional to the temperature difference between the ascending and
descending motions (i.e., the horizontal temperature difference across a
roll), and Z is proportional to the deviation of the vertical temperature
profile from the linear profile. The parameter s stands for Prandtl number;
while r is the ratio of the Rayleigh number to the critical Rayleigh number,
i.e., r=Ra

Rc
, and b is a parameter related to the wavenumber which will be

shown later.
Now we fit the Lorenz system to the Boussinesq equations. A single-

mode stream function can be chosen as

ke(x, t)=P(t) sin(kx) sin(y), (3.2)

and the temperature can be chosen as

he(x, t)=A(t) cos(kx) sin(y)+B(t) sin(2y)+(p−y), (3.3)
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where k is the wavenumber. It shall be noted that two different modes were
used in the temperature profile. The interaction between these two modes
reveal a rich nonlinear dynamics phenomenon. The term p−y in the tem-
perature stands for the linear profile. Accordingly, the corresponding
velocity ue=(−“yke, “xke) and the vorticity we=Dke are computed to be

ue(x, t)=−P(t) sin(kx) cos(y),

ve(x, t)=k P(t) cos(kx) sin(y),

we(x, t)=lkP(t) sin(kx) sin(y),

(3.4)

where lk=−(k2+1). Plugging (3.2)–(3.4) into the momentum equation,

“twe+(ue ·N) we−Ri “xhe=n Dwe, (3.5)

we obtain the following nonlinear ODE:

dP
dt
=nlkP−Ri

k
lk
A. (3.6)

However, these profiles do not satisfy the temperature transport equation
exactly. In the original derivation of the Lorenz equation, the high order
production term was truncated, which leads to the Lorenz system (3.1).
This can be reformulated by adding a force term, which represents the
truncated term, to the heat transport equation, so that the profiles satisfy

“the+ue ·Nhe=o Dhe+f, (3.7)

where

f=2PB cos(kx) sin(y)(cos(2y)−1). (3.8)

The combination of (3.7) and (3.8) result in the following ODEs:

˛ dAdt=k P+olkA−2kBP,
dB
dt
=−4oB−

k
2
PA.

(3.9)

We can see that (3.6), (3.9) form a closed system of ODEs for the
parameters P(t), A(t), B(t). The equivalence between them and the
parameters X, Y, Z appearing in the Lorenz system (3.1) can be derived by
the following scaling transformations: denoting X=aP, Y=bA, Z=cB,
t=− T

olk
and substituting into (3.1), we get

s=
n

o
, r=−

Ri ·k2

nol3k
, b=−

4
lk
, (3.10)

268 Liu, Wang, and Johnston



and

a=
k
olk
, b=

Ri·k2

nol3k
, c=−

2 Ri k2

nol3k
, (3.11)

from which it can be seen that s is the Prandtl number, b is one parameter
related to the wavenumber, and r is the ratio of the Rayleigh number to the
critical Rayleigh number.

Accuracy Check

We use our fourth order method proposed in Sec. 2 to solve the
Boussinesq flow with force term (3.5), (3.7), (3.8). The initial data are taken
as the profiles (3.2)–(3.4) when t=0, and A(0), B(0), C(0) are chosen to
be 1. The vorticity boundary condition is taken to be the new fourth order
formula (2.29). The application of Briley’s formula (2.26) leads to a similar
accuracy result. Both the Dirichlet and Neumann boundary condition for
the temperature can be imposed in this example. In the case of the Dirichlet
boundary condition, the fifth order formula (2.9) is used as our extrapola-
tion for the temperature near the boundary, while the fourth order formula
(2.7) leads to almost the same result in our computation. In the case of the
Neumann boundary condition, the two formulae (2.14) and (2.15) are used
as our extrapolation for the temperature near the boundary, while the force

Table I. Errors and Orders of Accuracy for Boussinesq Equation at t=2 when the Fourth
Order Method Is Used and the Dirichlet Boundary Condition for the Temperature

Is Imposed. CFL=1
2 , Where CFL=Dt

Dx

N L. error L. order L1 error L1 order L2 error L2 order

h 32 1.25e − 04 4.82e − 04 2.00e − 04
64 7.85e − 06 3.99 3.11e − 05 3.96 1.27e − 05 3.98

128 4.89e − 07 4.00 1.96e − 06 3.99 7.95e − 07 4.00
256 3.07e − 08 4.00 1.23e − 07 4.00 4.99e − 08 4.00

k 32 4.97e − 05 1.46e − 04 6.50e − 05
64 3.21e − 06 3.95 9.45e − 06 3.95 4.21e − 06 3.95

128 2.01e − 07 4.00 5.94e − 07 3.99 2.64e − 07 4.00
256 1.27e − 08 3.99 3.74e − 08 3.99 1.66e − 08 3.99

w 32 6.38e − 04 8.50e − 04 3.93e − 04
64 4.46e − 05 3.84 4.88e − 05 4.12 2.33e − 05 4.07

128 4.31e − 06 3.37 3.07e − 06 3.99 1.57e − 06 3.90
256 4.69e − 07 3.20 2.07e − 07 3.89 1.15e − 07 3.77
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Table II. Errors and Orders of Accuracy for Boussinesq Equation at t=2 when the Fourth
Order Method Is Used and the Neumann Boundary Condition for the Temperature Is

Imposed. CFL=1
2 , Where CFL=Dt

Dx

N L. error L. order L1 error L1 order L2 error L2 order

h 32 1.23e − 04 4.92e − 04 2.01e − 04
64 7.78e − 06 3.98 3.16e − 05 3.96 1.28e − 05 3.97

128 4.86e − 07 4.00 1.99e − 06 3.99 8.01e − 07 4.00
256 3.05e − 08 4.00 1.25e − 07 3.99 5.03e − 08 3.99

k 32 5.04e − 05 1.49e − 04 6.63e − 05
64 3.23e − 06 3.96 9.57e − 06 3.96 4.26e − 06 3.96

128 2.02e − 07 4.00 6.00e − 07 4.00 2.67e − 07 4.00
256 1.27e − 08 3.99 3.78e − 08 3.99 1.68e − 08 3.99

w 32 4.01e − 04 6.69e − 04 2.79e − 04
64 3.44e − 05 3.54 4.07e − 05 4.04 1.72e − 05 4.02

128 3.55e − 06 3.28 2.69e − 06 3.92 1.27e − 06 3.76
256 2.85e − 07 3.64 1.83e − 07 3.88 9.33e − 08 3.77

term has to be added and the slip velocity on the boundary, which can be
seen from (3.4), will be taken into consideration when we derive “3yh on Cx.

We choose the wave number k=1. The final time is taken to be
t=2.0. The other physical parameters are chosen as: Ri=1, n=o=0.001.
Accordingly, r=1.25×105, s=1 and b=2. The computational domain is
chosen as [0, p]2 with uniform spatial grids Dx=Dy=h, and the time step
Dt=1

2 Dx.
The exact solutions of stream function and temperature are given by

(3.2), (3.3), where the coefficients P(t), A(t) and B(t) are computed by the
fourth order Runge–Kutta method applied to the system (3.6), (3.9).

The computations are performed on a sequence of grids: 322, 642,
1282, 2562. The absolute errors of the stream function, vorticity and tempera-
ture are listed in Tables I and II, with Dirichlet and Neumann boundary con-
ditions for the temperature imposed, respectively. We see that the temperature
and the stream function achieve fourth order accuracy in L1, L2 and L.

norms. The vorticity achieves almost fourth order accuracy in L1, L2 norms
and a little less than fourth order accuracy inL. norms.

4. COMPUTATIONAL EXAMPLES

4.1. Marsigli Flow

To illustrate the performance of the fourth order method, we compute
an example of the Marsigli flow which has been known since the 17th century.
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This example can be found in the work of Marsigli (1681). The detailed
story is described in Gill’s book ‘‘Atmosphere-Ocean Dynamics’’ [7]:

It seems that when Marsigli went to Constantinople in 1679 he was told about a
well-known undercurrent in the Bosphorous: ‘‘... for the fisherman of the towns
on the Bosphorous say that the whole stream does not flow in the direction of
Byzantium, but while the upper current which we can see plainly does flow in this
direction, the deep water of the abyss, as it is called, moves in a direction exactly
opposite to that of the upper current and so flows continuously against the current
which is seen.’’ That is, the undercurrent water flows toward the Black Sea from the
Mediterranean. Marsigli reasoned that the effect was due to density differences:
water from the Black Sea is lighter than water from the Mediterranean. The lower
density of the Black Sea can be attributed to lower salinity resulting from river
runoff. He then performed a laboratory experiment: A container is initially divided
in two by a partition. The left side contained water taken from the undercurrent in
the Bosphorous, while the right side contained dyed water having the density of
surface water in the Black Sea. The experiment was to put two holes in the partition
to observe the resulting flow. The flow through the lower hole was in the direction
of the undercurrent in the Bosphorous, while the flow through the upper hole was
in the direction of the surface flow.

We simulated the above physical process in a simple setup: Boussinesq
flow with two initially piecewise constant temperatures in an insulated box
W=[0, 8]×[0, 1]. The partition was located at x=4. The temperature
was chosen to be 1.5 at the left half, which indicated the lower density, 1 at
the right half, which indicated the higher density. (By Boussinesq assump-
tion, the density difference can be converted into temperature difference
with the reverse ratio.) The whole flow was at rest at t=0. A no-slip
boundary condition was imposed for the velocity and adiabatic boundary
condition was imposed for the temperature. The computational method
was based on the fourth order scheme discussed above, coupled with fourth
order Runge–Kutta time stepping, as described in Sec. 2.5. Briley’s formula
(2.26) was used as the boundary condition for the vorticity. The adiabatic
boundary condition imposed for the temperature indicated the use of
(2.16), (2.17) to evaluate the temperature at ‘‘ghost’’ points. In our compu-
tation, the Reynolds number was chosen to be Re=5000, the Prandtl
number was chosen to be 1, and the Richardson number Ri, which corre-
sponds to the gravity effect, was chosen to be 4. We repeated the computa-
tions using two resolutions: 2049×257, 4097×513.

Figures 1 and 2 show the computation results on the resolution of
2049×257 of temperature and vorticity at a sequence of times: t1=2,
t2=4, t3=6, t4=8, respectively. To save space we only plot the
vorticity on the left-half domain [0, 4]×[0, 1]. The vorticity on the right-
half domain [4, 8]×[0, 1] is axis-symmetric to that of the left-half
domain. Once the partition is removed, the flow is driven by the gravity
force. The results indicate clearly the appearance of an upper current
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Fig. 1. Temperature plots (a)–(d) of the interaction between two flows with different densi-
ties 32 :1 in an insulated box W=[0, 8]×[0, 1], at a sequence of times: t1=2, t2=4, t3=6,
t4=8. Initially, the two flows are partitioned at x=4. Other physical parameters: Re=5000,
Pr=1, Ri=4. The computation is based on the fourth order method with 2049×257 resolution.

flow, which moves from the left side to the right side, and an undercurrent
flow, which moves in the opposite direction. It coincides with the pheno-
menon observed by Marsigli. Consequently, a sharp interface is formed
between the two currents. In other words, two currents with different
moving directions are separated by an interface. A strong shear flow and
vortex sheet form along the interface. This vortex sheet exhibits the
Kelvin–Helmholtz instability. As a result, at t1=2, two symmetric vortices
and the rolling up structures are formed. As the time goes on, more and
more rolling-up structures are generated and swell. To see the details, we
plotted the temperature and vorticity in a zooming region of [2.5, 3.5]×[0, 1]
at t3=6, on the resolution of 4097×513, in Figs. 3 and 4, respectively.
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Fig. 2. Vorticity plots (a)–(d) of the left half domain [0, 4]×[0, 1], at the same times, phy-
sical parameters and resolution as in Fig. 1. Forty equally spaced contours from − 21 to 31 are
used. We omit the vorticity plots on the right half domain [4, 8]×[0, 1], which is axis-sym-
metric to the left half domain.

The numerical simulation for this type of Kelvin–Helmholtz instability
is quite challenging. To verify the accuracy of our method, we compared
the temperature and the vorticity at time t=6 on a y=1

2 cut between
two resolutions: 2049×257, 4097×513 in Figs. 5 and 6, respectively. It
is evident that even though there are many vortical structures and
sharp transitional areas for temperature and vorticity profiles, the results
using two resolutions match perfectly well. The detailed structures of both
kinematic and thermal boundary layers are clearly shown in the plots as
well.

4.2. Differentially Heated Cavity: A Benchmark Problem

In this section we present benchmark quality simulations for a dif-
ferentially-heated cavity problem as further evidence of the accuracy and
efficiency of our method. The computation of this flow was the focus of a
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Fig. 3. Zoom plot of temperature in Fig. 1(c) of region [2.5, 3.5]×[0, 1] with 40 equally
spaced contours from 1.001 to 1.499.

special session at the first MIT conference on Computational Fluid and
Solid Mechanics in June 2001. Submissions to the session included simula-
tions computed using finite difference, finite element, finite volume, and
spectral methods. A detailed description of the problem setup, as well as
a summary of the overall results can be found at [3]. Additionally, an
upcoming special issue of the International Journal for Numerical Methods
in Fluids will be devoted to the results of the session [12].

The setup of the problem is a buoyancy driven flow enclosed in a dif-
ferentially-heated tall rectangular cavity of height H and width W, and
aspect ratio 8=H/W. The flow is driven by an imposed constant temper-
ature difference along the two vertical walls. This in turn defines the non-
dimensional temperature in terms of the wall temperature difference and a
reference temperature as

h=
T−Tr
Th−Tc

,
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Fig. 4. Zoom plot of vorticity in Fig. 2(c) of region [2.5, 3.5]×[0, 1] with 40 equally spaced
contours from − 16.6 to 5.4.

where

Tr=
Th+Tc
2
,

and Th and Tc denote the temperature of the hot and cold wall, respectively.
The non-dimensionalized temperature at the left wall (x=0) is then fixed
at h=0.5, and the right wall (x=W) at h=−0.5. The top and bottom of
the cavity (y=0, H) are perfectly insulated, i.e., “h/“y|y=0, H=0.

For our simulation a Boussinesq fluid with Prandtl number Pr=0.71
is initially at rest in a [0, 1]×[0, 8] enclosure. The Rayleigh number for
the benchmark problem was chosen to be a supercritical value of Ra=
3.4×105. The Richardson number is Ri=1, giving a Reynolds number of
Re=`Pr/Ra % 692. For this parameter set and geometry, after an initial
transient period, the flow exhibits time-periodic behavior. We found a final
time of T=1,000 sufficient for the flow settle into the periodic regime.
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Fig. 5. Comparison of the temperature profile cut along y=1/2 at time t=6 for two grid
resolutions. The solid line is from a 4097×513 resolution computation and the star line
2049×257. For clarity only the even points in the star line are plotted, i.e., the graph of the
star line only shows 1025 points.

The accuracy of each submission was determined by comparing sub-
mitted results with a benchmark simulation computed using a spectral
method [20]. In Table III is shown the five points (dimensional) in the
flow domain at which the time history of the physical data was collected.
In our discretization these points did not correspond to grid points, thus

Table III. Dimensional Coordinates of Time-History
Points for the Differentially-Heated Cavity Problem

point x y

1 0.181 7.370
2 0.819 0.630
3 0.181 0.630
4 0.819 7.370
5 0.181 4.000

276 Liu, Wang, and Johnston



Fig. 6. Comparison of the vorticity profile along y=1/2 at time t=6 with the same two
resolutions as in Fig. 5.

our measurements of the flow variables at the data points were obtained
using cubic interpolation. The derivatives required in the interpolation
procedure were approximated by fourth order finite differences. Time
history of the following data was collected: the velocity u, vorticity w,
stream function k, temperature h, pressure p, and the skewness eij and DPij
defined by, respectively,

eij=hi−hj, DPij=pi−pj.

The subscripts denote the data point number. Additionally, wall and global
measurements were also collected and tabulated. The wall metric consisted
of the Nusselt number, computed along each vertical wall via

Nu(t)=
1
H

F
H

0

“h

“x
:
x=0, W

dy,
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where H=8 and W=1. Finally, two global metrics were collected in the
form of the square-root of the kinetic energy and the entropy,

u1(t)== 1
2A

F
A

u ·u dA, ŵ(t)== 1
2A

F
A
w2 dA,

where A=8, the area of the enclosure.
The period of each measurement was computed by finding the zero

crossings of mean adjusted data taken over 10 periods starting at approx-
imately T=950. Simpson’s rule was used to approximate all integrals, and
the derivative in the evaluation of Nu was approximated to fourth order
via finite differences. The stencil, e.g., along x=0, included the points
{hi, j: i=−1,..., 4} with the h−1, j ghost point defined as discussed in
Sec. 2.2.1.

Our numerical scheme is based on the (w, k) formulation, thus for the
pressure measurements we solve the derived pressure Poisson equation

gp=(N ·u)2−(Nu) : (Nu)T+Ri hy, (4.1)

using a second order finite difference scheme for non-staggered grids based
on local pressure boundary conditions. The scheme was proposed in [13],
and here we briefly explain the key aspect of the method. Note that (4.1)
follows by taking the divergence of the momentum equation in (1.1) and
using N ·u=0 to simplify the result. One can then view (4.1) as a replace-
ment for the incompressibility condition, but with the additional require-
ment that

N ·u|C=0. (4.2)

A natural boundary condition for (4.1) is

“p
“n
=(ng u+Ri [̂h) ·n, (4.3)

a Neumann boundary condition derived by dotting the momentum equa-
tion in (1.1) with the unit normal n at the boundary. Here [̂ is the unit
vector in the y direction. The difficulty numerically in applying (4.3) is that
it requires an approximation of the Laplacian at the boundary. Specifically,
the stencil of the second order centered approximation of g along
the boundary C requires an undefined ‘‘ghost point’’ lying outside of the
computational domain. We remedy the situation as follows: Consider the
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horizontal boundary segment Cx along y=0. A second order centered
approximation of (ng u) ·n at the (i, 0) grid point is given by

(ng u) ·n=n(vxx+vyy)

=n(vi+1, 0+vi−1, 0+vi, 1+vi, −1−4vi, 0)/h2+O(h2)

=n(vi, 1+vi, −1)/h2+O(h2), (4.4)

where we have used u|C=0, which requires the value vi, −1. Discretizing the
boundary condition N ·u=0 in (4.2) as

0=N ·u=ux+vy=0+vy=
(vi, 1−vi, −1)
2h

+O(h2),

where again we have used u|C=0, giving vi, −1=vi, 1+O(h3), implying in
(4.4) that one should take vi, −1=vi, 1. The result is the following approxi-
mation for the Neumann boundary condition (4.3):

“p
“y
:
(xi, 0)
=
2n
h2
vi, 1+Ri hi, 0.

We note the similarly in philosophy between the derivation of local pres-
sure boundary conditions and local vorticity boundary conditions. With
the discrete Neumann boundary condition a second order centered discre-
tization of (4.1) is efficiently solved using FFT methods, resulting in a glo-
bally second order accurate solution; see [13].

Two grid resolutions (Nx+1)×(Ny+1), equally-spaced in each coor-
dinate direction, were computed: 97×769, and 129×1025. In each case
Dx=Dy. The simulations were run until a final non-dimensional time of
T=1000. A fixed Dt was used for each simulation as determined by (2.37)
with CFL=0.75 and ||u||.=1.0. The CFL number was chosen to be less
than 1 in order to avoid instability due to the time step during the initial
transient where the velocity exceeds ||u||.=1.0.

In Tables IV and V are shown tabulated results at the two grid resolu-
tions. Point metrics without subscripts are for the data point 1, (x, y)=
(0.181, 7.370). This data was used for comparison of submissions to the
special session. Overall the results at the two resolutions are in good
agreement. The largest discrepancies are seen in the DP pressure measure-
ments. This is attributable to the fact that the pressure is only recovered to
second order accuracy. However, we emphasize that the pressure compu-
tation does not affect the overall accuracy of the numerical scheme since it
is performed only to collect the pressure point data.
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Table IV. Point and Global Metrics for the Differentially-Heated Cavity Problem
Using a 97×769 Grid

Grid resolution: 97×769
Duration: [950, 984.11], steps per period: 438

Quantity Average Amplitude Period

Point Metrics
U 5.6395438e − 02 2.7623066e − 02 3.4111534e+00
V 4.6183149e − 01 3.8842483e − 02 3.4111601e+00
h 2.6548480e − 01 2.1525621e − 02 3.4111579e+00
e12 0.0000000e+00 0.0000000e+00
k − 7.3688018e − 02 3.5338156e − 03 3.4111682e+00
w − 2.3687941e+00 5.4377394e − 01 3.4111443e+00
DP14 − 1.3921419e − 03 1.0191256e − 02 3.4111650e+00
DP51 − 5.3076112e − 01 1.1234816e − 02 3.4111632e+00
DP35 5.3215326e − 01 5.0527695e − 03 3.4111605e+00

Global Metrics
Nu: x=0 − 4.5791427e+00 3.5675550e − 03 3.4111610e+00
Nu: x=W − 4.5791427e+00 3.5675550e − 03 3.4111610e+00

û 2.3951401e − 01 1.6869000e − 05 3.4112994e+00
ŵ 3.0170593e+00 1.6070450e − 03 3.4111571e+00

Table V. Point and Global Metrics for the Differentially-Heated Cavity Problem
Using a 129×1025 Grid

Grid resolution: 129×1025
Duration: [950, 984.11], steps per period: 582

Quantity Average Amplitude Period

Point Metrics
U 5.6362400e − 02 2.7466010e − 02 3.4114069e+00
V 4.6186152e − 01 3.8658700e − 02 3.4114072e+00
h 2.6547916e − 01 2.1406913e − 02 3.4114065e+00
e12 0.0000000e+00 0.0000000e+00
k − 7.3704567e − 02 3.5142367e − 03 3.4113987e+00
w − 2.3709233e+00 5.4053272e − 01 3.4114080e+00
DP14 − 1.5092478e − 03 1.0162467e − 02 3.4113997e+00
DP51 − 5.3185368e − 01 1.1202529e − 02 3.4114100e+00
DP35 5.3336293e − 01 5.0273980e − 03 3.4114043e+00

Global Metrics
Nu: x=0 − 4.5792112e+00 3.5527550e − 03 3.4114053e+00
Nu: x=W − 4.5792112e+00 3.5527550e − 03 3.4114053e+00

û 2.3951080e − 01 1.6805000e − 05 3.4115615e+00
ŵ 3.0170787e+00 1.6003350e − 03 3.4114035e+00
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Fig. 7. Contour plot of h at time T=1,000 for the differentially-heated cavity problem for
the 129×1025 grid. The levels are (0.5:0.025:− 0.5).

Note that in each computation the skewness e12 was identically zero,
indicating that the skew-symmetry of the physical flow is captured in our
simulation. This feature is evident in the Fig. 7, a contour plot of the tem-
perature at T=1000 for the 129×1025 grid. In Fig. 8 is shown a time
history of the temperature h1 at (x, y)=(0.181, 7.370) for the 129×1025
grid. Note the initial transient, which settles into a time-periodic behavior
as evidenced in the zoom plot.

Submissions were also judge on their computational efficiency. The
computations presented here were carried out on a single processor DEC
Alpha 500au Personal Workstation with 1028 MB of memory and a 2MB
cache. The CPU is an Alpha 21164 500 MHz chip with a SPECfp95 rating
of 19.5 (18.0 base). All computations were performed in double precision
(64 bits) and the Fortran code was compiled using the -fast optimization
option. Performance data and timings for each grid based on a final simu-
lation time of T=1,000 are shown in Table VII.
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Fig. 8. Time history of h at (x, y)=(0.181, 7.370) for the differentially-heated cavity
problem for the 129×1025 grid.
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Table VI. Reference Benchmark Data for the Differentially-Heated Cavity [20]

Quantity Average Amplitude

Point Metrics
U 5.63560e − 02 2.7414e − 02
h 2.65480e − 01 2.1370e − 02
DP14 − 1.85000e − 03 1.0190e − 02

Global Metric
Nu − 4.57946e+00 3.5500e − 03

The results of our simulation on the 97×769 grid was submitted to the
special session at the first MIT conference on Computational Fluid and
Solid Mechanics. As noted above, the methodology used to compute the
reference benchmark was a spectral code [20, 3, 16] with 48×180 modes.
In Table VI is shown flow measurements from the reference benchmark,
with the period of each reported as 3.41150 [20]. Information concerning
all submissions including the reference benchmark simulation, in particular
timings and memory usage, can be found at [20, 3]. Additionally, all
results will appear in an upcoming special issue of the International Journal
for Numerical Methods in Fluids.

The reference benchmark results were used to rank the session sub-
missions. In all there were fifteen basic metrics, with six composite metrics
used for the overall rankings. Our simulation with the 97×769 grid
received five first place rankings and one second place ranking among
the fifteen basic metrics. Moreover, our results received three first place
rankings and one second place ranking of the six composite metrics. In
particular, with respect to numerical accuracy and efficiency our method
performed extremely well.

Finally, recall that our simulations were performed using a fixed Dt.
This was done in order to collect flow data at a precise fixed time interval.
This allowed FFT techniques to be used to compute the metrics. These
results are presented in the conference proceedings [11]. The results pre-
sented here compute the metrics by determining the zero crossings of mean

Table VII. Timings and Performance Data for Computation of the Differentially-Heated
Cavity

Grid size Dt Steps CPU (sec) Memory (MB) CPU (msec)/point/step

(97, 769) 7.812500e − 03 128,000 121,161 11.41 12.69
(129, 1025) 5.859375e − 03 170,600 335,917 18.62 14.89
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adjusted data as describe above, which we found to be more accurate.
Thus, a fixed Dt is not necessary and in fact adds significantly to the total
computational time. This was determined by performing a simulation and
allowing for a variable time step with the 97×769 grid and CFL=1.0.
Allowing for a variable time step by monitoring ||u||. during the run to
determine Dt resulted in a one-third reduction in the total runtime.

ACKNOWLEDGMENTS

The work of J.-G. Liu was supported by NSF Grant DMS-0107218.

REFERENCES

1. Bell, J. B., and Marcus, D. L. (1992). A Second-order projection method for variable-
density flows. J. Comput. Phys. 101, 334–348.

2. Briley, W. R. (1971). A numerical study of laminar separation bubbles using the
Navier–Stokes equations. J. Fluid Mech. 47, 713–736.

3. Christon, M. (2001). Results Summary: Special session on computational predictability of
natural convection flows in enclosures, http://wotan.me.unm.edu/’christon/mit_convec-
tion/summary/

4. E, Weinan, and Liu, J.-G. (1996). Vorticity boundary condition for finite difference
schemes. J. Comput. Phys. 124, 368–382.

5. E, Weinan, and Liu, J.-G. (1996). Essentially compact schemes for unsteady viscous
incompressible flows. J. Comput. Phys. 126, 122–138.

6. E, Weinan, and Shu, Chi-Wang (1994). Small-scale structures in Boussinesq convection.
Phys. Fluids 6 (1), 49–58.

7. Gill, A. E. (1982). Atmosphere-Ocean Dynamics, Academic Press.
8. Glowinski, R., and Pironneau, O. (1979). Numerical methods for the first biharmonic

equation and for the two-dimensional Stokes problem. SIAM Rev. 21, 167–212.
9. Henshaw, W. D., Kreiss, H. O., and Reyna, L. G. M. (1994). A fourth-order accurate

difference approximation for the incompressible Navier–Stokes equations. Comput. and
Fluids 23, 575–593.

10. Hou, T. Y., and Wetton, B., Stable fourth order stream-function methods for incom-
pressible flows with boundaries, unpublished.

11. Johnston, H., and Krasny, R. (2001). Computational predictability of natural convection
flows in enclosures: A benchmark problem. In Bathe, K. J. (ed.), Computational Fluids and
Solid Mechanics (Conference Proceedings), Elsevier Science.

12. Johnston, H., and Krasny, R. (2002). Fourth order finite difference simulation of a dif-
ferentially-heated cavity. To appear in Int. J. Num. Meth. Fluids.

13. Johnston, H., and Liu J.-G. (2002). Finite difference schemes for incompressible flow
based on local pressure boundary conditions. J. Comput. Phys. 180, 120–154.

14. Orszag, S. A., and Israeli, M. (1974). Numerical simulation of viscous incompressible
flows. Ann. Rev. Fluid Mech. 6, 281–318.

15. Quartapelle, L. (1983). Numerical Solution of the Incompressible Navier–Stokes Equations,
Birkhauser, Berlin.

16. Quéré, P. L., and Behnia, M. (1998). From onset of unsteadiness to chaos in a differen-
tially heated cavity. J. Fluid Mech. 359, 81–107.

284 Liu, Wang, and Johnston



17. Thom, A. (1933). The flow past circular cylinders at low speeds, Proc. Roy. Soc. A 141,
651–669.

18. Thorpe, S. A. (1968). On standing internal gravity waves of finite amplitude. J. Fluid
Mech. 32, 489–528.

19. Thorpe, S. A. (1969). Experiments on the instability of stratified shear flows: Immiscible
fluids. J. Fluid Mech. 39, 25–48.

20. Xin, S., and Le Quéré, P. L. (2001). In Bathe, K. J. (ed.), Computational Fluids and Solid
Mechanics (Conference Proceedings), Elsevier Science.

21. Wang, C., and Liu, J.-G. (2002). Analysis of finite difference schemes for unsteady
Navier–Stokes equations in vorticity formulation. Numer. Math. 91, 543–576.

22. Wang, C., and Liu, J.-G., Fourth order convergence of compact finite difference solvers
for 2D incompressible flow. Accepted for publication in Comm. in Appl. Anal.

23. Wang, C., Liu, J.-G., and Johnston, H. Analysis of a fourth order finite difference method
for incompressible Boussinesq equations. Submitted to Numer. Math.

A Fourth Order Scheme for Incompressible Boussinesq Equations 285


	1. INTRODUCTION
	2. DESCRIPTION OF THE SCHEME
	3. ACCURACY CHECK USING THE LORENZ SYSTEM
	4. COMPUTATIONAL EXAMPLES
	ACKNOWLEDGMENTS

