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Abstract 

We prove the convergence of vortex blob methods to classical weak solutions for the two- 
dimensional incompressible Euler equations with initial data satisfying the conditions that the vor- 
ticity is a finite Radon measure of distinguished sign and the kinetic energy is locally bounded. This 
includes the important example of vortex sheets. The result is valid as long as the computational grid 
size h does not exceed the smoothing blob size E, i.e., h / ~  5 C. 0 1995 John Wiley & Sons, Inc. 

1. Introduction and Main Results 

Computational vortex methods approximate the vorticity by a finite sum of 
“blobs,” or cores of prescribed shape, which are advected according to the corre- 
sponding desingularized velocity field. One important application of these meth- 
ods is in the numerical simulations of singular flows such as vortex sheets. In 
particular, Krasny applied such a method in his calculations of the evolution of 
vortex sheets even past the time when the sheet develops singularities; see [ 16land 
[17]. Even though the convergence of vortex methods is now well documented 
for smooth solutions to the Euler equations (see [3], [14], [15], and the references 
therein), there is yet much to be done for the analysis of vortex methods for non- 
smooth flows. This is particularly so in the case of the vortex sheet problem, in 
which the vorticity is a measure concentrated on a curve or surface which is ini- 
tially smooth. This defines a classical Hadamard ill-posed initial value problem. 
At later time, a singularity in the sheet may develop and the nature of solutions 
past the singularity formation is unknown; see [7] and [19]. The subtle structure 
of the singularity has been revealed in several numerical simulations; see Krasny, 
[16] and [17], and Baker and Shelley, [l]. It is thus important to analyze the 
structure of the approximate solutions generated by vortex methods. 

The aim of this paper is to prove the convergence to a classical weak solution 
of the vortex methods for the 2-D incompressible Euler equations with a class of 
“rough’ initial data including vortex sheet initial data, in the limit as the grid size 
and the regularization parameter tend to zero, provided that the initial vorticity 
has a distinguished sign. Here, vortex sheet initial data is defined to be one for 
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which the vorticity is a finite Radon measure and the corresponding velocity field 
has locally finite kinetic energy; see [lo]. This is strongly motivated by the recent 
result of Delort on the existence of weak solutions to the 2-D incompressible 
Euler equation with vortex sheet initial data of vorticity with distinguished sign 
(see [91), the work of DiPerna and Majda on the structure of weak solutions to 
the 2-D Euler equations (see [ 101 and [ 1 l]), and the numerical demonstration of 
convergence for small but fixed blob size by Krasny (see [16] and [17]). Our 
analysis is closely related to that of [9], [lo], and [18], and based on a simple 
analysis and application of the vorticity maximal function introduced by DiPerna 
and Majda in I101 and [ 111. 

In the vorticity stream formulation, the incompressible 2-D Euler equations 
can be expressed in the form (see [lo]): 

(1.1) a,w + O . ( U W )  = 0 ,  

with initial data 

where the vorticity w = ax, u2 - dr2u1 is the curl of the velocity field u(x, t )  and 

(1.3) u(x, t )  = (K  * w)(x, t )  

with the kernel K given by 

For simplicity in presentation, we will assume in the following that wo has compact 
support. The vortex method, introduced by Chorin in [8], consists of approximat- 
ing the vorticity field at each time by a sum of approximate Dirac delta functions 
centered at particle positions x;(t), which are advected according to the regular- 
ized velocity field determined by the approximate vorticity. To describe this more 
precisely, we choose a vortex blob function # with the following properties: 

We shall assume also that 4 is C2 and decays at infinity at least as fast as IxI-~.  
Let E be the smoothing blob size, and set +Jx) = E - ~ ~ ( x / E ) .  We cover the 
support of the initial vorticity by non-overlapping squares, R j ,  with side length 
h and centered at a; = j h  with j E 2 x Z. Denote by <; the initial circulation 
strength in R,,, i.e., 
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The vortex method is 

(1.7) 

(1.8) 

(1.9) w,(x, t )  C E j  6 ( X  - x, j ( t ) )  . 
j 

Here 6 ( . )  is the Dirac delta function, and K, = K * 4, which can be written 
explicitly as 

where f ( r )  is the cut-off function given by f ( r )  = 2a si s4(s)ds. It is easy to 
show that the finite system of ordinary differential equations (1.7) has a unique 
solution globally in time under the assumptions (1.5) on the blob function (6. Let 

(1.12) WYX, t )  = curl UYX, t )  , w,(x, t )  = curl UJX, t)  . 

Note that (uE, w,)(x, t )  satisfies the following equation 

(1.13) a, w, + V.(u"w,) = 0 

in the sense of distribution. 
We shall recall the definition (see [ 101) that a vector function u(x, t )  E Lc" ([0, T ) ,  

L k ( R 2 ) )  is a classical weak solution of the 2-D Euler equations on [O,T] with 
initial velocity ug if: 

(i) for all test function ~ ( x ,  t )  E c," (R2 x (0, T ) ) ,  

//( VLO,.u + (V' 8 0 0 )  : (u @ u) dxdt = 0 ; ) (1.14) 

(ii) div u = 0 in the sense of distribution; and 
(iii) u(x, t )  E Lip ([O, T),H,F(R2)) for some m > 0 and u(x, 0) = udx). 

In (1.14), VL = (-dxz,dx,),  and A : B denote the matrix product. 
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We can now state our main result on the convergence of the vortex blob method 
to a classical weak solution of the 2-D Euler equations. 

THEOREM 1.1. Suppose that the initial vorticity wo is a Radon measure on R2 
with jinite total mass, i.e., wo E M(R2), and wg has a distinguished sign. Assume 
further that W(J E H,L(R2).  Let u' be the approximate solution generated by 
the vortex method as described above. Then there is a subsequence of uE  which 
converges as E - 0 to a classical weak solution of the 2 - 0  Euler equations with 
the given initial data uo(x), provided that we choose grid size h so that h I CE 
.for any given positive constant C. The convergence is strong in L/:),(R2 X R+) for 

I I p < 2, and weak in L" ([0,  T ) ,  Li)c(R2)) .  

Remarks 

(i) The vortex methods associated with the class of blob functions satisfying 
(1.5) include, in particular, the one used by Krasny; see [16] and [17]. In his 
simulation, 

1 X I  
K , ( x )  = - 

27r 1x12 + E2 ' 

I ?  with the corresponding blob function $ 4 ~ )  = (m)-. It also should be empha- 
sized that in our theorem, there is no initialization procedure required (see (1.6)), 
in contrast to the previous studies in [ 2 ]  and [lo]. 

(ii) It is remarkable that the only requirement on the ratio of the grid size h 
to the blob size E is that h/E is bounded. This is mainly due to the distinguished 
sign of the initial vorticity. 

(iii) The analysis in this paper is elementary and essentially self-contained. 

(iv) Following DiPerna and Majda (see [lo]), one can define the maximal vor- 
ticity function for a discrete vorticity field w,(x, t )  as 

One of the key ingredients in our analysis of convergence is the following estimate 
on the maximal vorticity function: 

(1.16) 

with a positive constant C independent of E.  It is the derivation of estimate (1,16) 
that we use the assumption that the vorticity field has a distinguished sign. In 
fact, as follows from our later analysis, we have 

~ , ( w , )  I C(ln A) ~ 
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COROLLARY 1.1. Under the same hypothesis as in Theorem 1.1 except that 
the initial vorticity may change sign, the same conclusions hold provided that the 
estimate (1.16) is true. 

We hope that this corollary may provide a useful criterion to test the con- 
vergence of a numerical method for the vortex sheet problem when the initial 
vorticity has both signs. 

We note that the similar approach of using vorticity maximal function has been 
employed by Majda in his recent simplified proof of Delort’s result; see [ 181. 

(v) It should be noted here that in both theoretical and numerical analysis 
and engineering applications (see [4], [7], and [19]), the evolution of the vortex 
sheets is studied through the well-known Birkhoff-Rott integro-differential equa- 
tion whose validity after the formation of a singularity is not well understood. 
Our convergence to a classical weak solution for Krasny’s desingularization pro- 
cedure of the Birkhoff-Rott equation gives an appropriate interpretation of this 
integro-differential equation even past the formation of a singularity. 

(vi) Thus far we have assumed that the initial vorticity field wg has compact 
support. This is unnecessary. In fact, using an elementary cutoff argument, we 
have verified that all the conclusions above hold provided that Ix12wo(x) E M(R2) 
and wo(x) is bounded for large 1x1. 

There is a large amount of literature on the convergence of vortex methods; see 
[2], [3], [5], [61, [lo], [12], [14], [15], and the references therein. The formulation 
of the problem and the analysis in this paper are closely related to those of DiPerna 
and Majda in [lo] in which they proved the convergence of the vortex methods 
with a special initializations to a measure-valued solution of the Euler equations 
under the assumption that initial energy is finite. For vortex sheet initial data, 
Beale obtained convergence of a vortex method with a special initialization in the 
context of measure-valued solutions provided that the grid size h is exponentially 
smaller than the blob size E;  see [2]. Assuming the sheet is analytic and close to 
horizontal, Caflisch and Lowengrub show in [6] that the vortex blob approximation 
to the sheet converges strongly for a time interval before the singularity formation. 

We conclude this introduction by outlining the remainder of this paper. In 
Section 2, we derive the main stability estimate by showing that the approximate 
velocity field has locally finite energy uniformly with respect to the grid size h 
and blob size E ,  provided that the ratio h/E is bounded from above. It should be 
noted that in contrast to the continuous case (see [ lo] and [ 1811, a simple energy 
estimate is not available for the velocity field us in (1.8) due to the consistency 
error. We will take a direct approach to overcome this difficulty. First, we use 
the Biot-Savart law to express the local kinetic energy as a quadratic form for the 
vorticity field (1.9) with a singular kernel. This singular kernel is unbounded in 
general. The key observation is that this kernel has only a logarithmic singularity, 
which can be verified by a careful potential estimate. This, combined with the 
estimate (1.16) on the maximal vorticity function, leads to the desired stability 
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bounds. The weak consistency of the vortex method is given in Section 3. The 
consistency error is analyzed by exploiting the symmetry properties of the kernel 
(1.4) and the vortex blob function ( I  .5) ,  and by using decay estimate (1.16) for the 
maximal vorticity function. Finally, based on the mentioned stability and weak 
consistency estimate, we can obtain the convergence of the vortex method easily 
by following Delort's basic idea in [9]. This is given in Section 4. 

2. Stability Analysis 

We start with the derivation of the estimate (1.16) on the maximal vorticity 
function M,(w,) defined in (1.15). To this end, we set 

It is evident that 

We also define 

This is a conserved quantity, i.e., 

LEMMA 2.1. 

(i) Z ( t )  = I(0)for all t > 0. 
(ii) If h 5 CE for any given positive constant C ,  then I(0) is bounded inde- 

pendent of E and h. 

Proof: Direct computation using (1.7) yields 

d 
; l ( t )  = - 
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where we have used the symmetry properties of VG, and K , ,  formula (2.2), and 
the trivial identity that Va.V'b = -V'a.Vb for any smooth scalar functions a 
and b. This proves (i). To prove (ii), we first bound the following related integral 
over R* x R', 

Since the initial vorticity is assumed to have compact support and wg E Hi , : ,  one 
has 

In the last step above, we have used the following simple estimates 

where and from now on, we use C to denote any generic positive constant inde- 
pendent of E and h. 

Next, note that for any (x,y) E Rj x Rt, it holds that 

where we have used the bound (VG,(x)( = (K,(x) (  S C / E  which can be checked 
directly. It follows that 

- - 

I 

Consequently 

I 

IZ(0)l s cs 
which proves (ii). The proof of Lemma 2.1 is complete. 
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As a consequence of Lemma 2.1, one has 

This implies that 

Here we have used the conservation of the second moment for the discrete vorticity 
field, i.e., c, lx,(t)I2 = c, E ,  lal 1 2 ,  which can be verified directly. Using the 
properties of the vortex blob functions, one can derive the following estimate by 
a simple calculation 

(2.7) 

Noting that In l / ( l x (  + E )  5 CIn l / ( l x l  + 
to obtain 

one can combine (2.7) with (2.6) 

(2 .8)  

which implies the desired decay estimate ( I .  16) on the maximal vorticity function. 
With this preparation, we now turn to the main stability analysis. The main 

result of this section is the following proposition. 

PROPOSITION 2.1. Let ul.’(x, t )  be the approximate velocity j iefd given in (1  3). 
Then for  any given R > 0, there exists a positive constant C = C(R) independent 
of E and h such that 

(2.9) 

Proof First, choosing a nonnegative function x E CF(R2) which is equal to 
one on the ball { x  : 1x1 5 R) ,  we may bound the local kinetic energy as 
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The key step in deriving the stability estimate (2.9) is the following lemma. 

LEMMA 2.2. Assume 6(x)  E Cp(R2).  Let the matrix-valued function x" 
(y, z; 6) be dejined as 

(2.11) 

Then the following estimates hold for  Iy - z J  5 1/2, 

x"(y, z; 6) = 1 6(x)  K,(x - y) 8 K,(x  - z) d x  . 

(2.12) 

(2.13) 

where C depends only on 6. 

Assuming Lemma 2.2 for a moment, we now complete the proof of Proposi- 
tion 2.1. Using (2.12) in (2.10), one obtains that 

For 1 2 ,  since there is no singularity in the kernel for Ix,, - xy  [ 2 1/2, it is evident 
that 1 2  S C. As for I I ,  we may use Lemma 2.2 to obtain 

where the last step follows from (2.8). This proves Proposition 2.1. 

The remainder of this section is devoted to the proof of Lemma 2.2. It should 
be noted that the boundness of the inequality (2.13) in the case E = 0 is one of 
the key observations of Delort (see [9]), in which case a simplified proof is given 
in [13]. 
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Proof of Lemma 2.2: We first derive (2.12). Set a = a Iy - 21. Since O(x) has 
compact support, it suffices to bound the integral 

(2.15) C 

for any given constant R > 0. We decompose the integral (2.15) over three regions 

and denote the integrals as J I  , J2, and J3, respectively. We first estimate J I  , while 
J2 can be estimated in a similar way. For J I ,  it follows that 

d x S C .  

dx 
1 idSR l x - y l  + E  ( x - Z I  + E  

a + ' J  E B A Y )  Ix - YI + E 

B,,(y) {X : I X  - Y I  S a} ,  B,,(z), and R = {X : I X  - Y I  > a, I X  - Z I  > a, 1x1 5 R}, 

1 
J1 S - 

Note that for J 3 ,  one has I x - y I 5 5 I x - z 1, choosing b 2 a so that R is contained 
in the annulus {x : b S Ix - yI S b + 2R). We then obtain 

1 
S C l n - .  

J3 5 5 

b + E  U + E  

Collecting these estimates proves (2.12). The inequality (2.13) can be derived as 
follows. Consider the integral 

which may be rewritten as 

J4 + J s  . 

We now estimate J4 and JS separately. We begin with J4. Assume supp O C BR(O). 
If IyI 2 R, then O(y) = 0, and so 
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For ( y (  5 R, one has 

62 1 

To estimate J s ,  we decompose the integral over three regions B,(y), B,(z), and 
fl = {x : ( x  - yI 2 a, ( x  - z( Z a, 1x1 d R }  as for (2.12). The integrals over the 
two balls are estimated as for J I  and J z  before. To estimate the integral on fl, we 
note that for x E fl, it can be computed easily that 

In a similar way, one proves (2.14). This completes the proof of Lemma 2.2. 

3. Weak Consistency 

In order to check the weak consistency of the approximation generated by the 
vortex method with the Euler equations as the blob size E tends to zero, we rewrite 
the equation (1.13) for (uE, w,) as 

(3.1) (e,, + (ve, uEWE) = (ve, uE(wE - w,)) 

for any given test function 6 E c,"(R2 x R+). Setting 

(3.2) EH = (VO, uE(wE - w E ) )  , 

we need to show that 

(3.3) E H - 0 ,  a s & - 0 ' .  
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Using (1.8), (1.9), (1.12), and the properties of the blob function, we have from 
(3.2) that 

For J g ,  one has 

which can be decomposed as 

Using the properties that I&KE(x)I d C, and I&KE(x)J 5 C,/E for 1x1 2 @, we 
can bound the above integrals by 
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which can be further estimated as follows, thanks to the decay properties of the 
blob function 

The last term goes to zero as E - 0 due to the estimate (1.16) on the maximal 
vorticity function. Thus J g  tends to zero as E - 0. We now turn to J 7 .  Employing 
the symmetry properties of the blob function and the kernel K, we have 

To apply the estimate (1.16), we decompose the above sum as follows 

We first estimate 1 8 .  By (l.lO), one has 

where 
g(r)  = 2111's [(4 * 4Ns) - 4(s ) ]  ds  

satisfying Ig(r)l d C/(1 + r), which follows from s3(4 * +)(s) 5 C ,  as easily 
checked by using the decay assumption on +(s). It follows that 
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Applying this in Jx, we obtain 

5 C&‘I3 . & 1 
Ixj - xtl  + E Ixj - xtl  

J 8  5 c E j < t  

l x , - x v l z & ” ~  

Finally, (3.4) implies that the summand in J 9  is bounded uniformly, and so 

which converges to zero as E - 0 by (1.16). Collecting all the estimates we have 
obtained thus far and noting that 

(VO, u E w E )  = JJ’v’ 8 VB : uE 8 u“dxdt  , 

we arrive at 

PROPOSITION 3.1. The vortex blob approximation (1.7)-( 1.1 1 )  is weakly con- 
sistent with the 2 - 0  Euler equations in the sense that for any 0 E Ci(R2 X R,), 

Proof Note that equation (3.1) can be rewritten as 

(3.6) / / (VO,.uE + 0’ 8 VB : uE 8 u”) dxdt  = Eo + J’J’VB,-(UE - u,)dxdt  . 

From the preceding discussion, we need only show that the last integral in (3.6) 
goes to zero as E - 0. This will be a consequence of the following estimate 

(3.7) 

To prove (3.71, one checks easily by using (1.5) and (1.10) that 

It follows that 
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which verifies (3.7). Thus Proposition 3.1 is proved. 

625 

4. Convergence 

With the weak consistency and stability estimates at hand, it is easy to obtain 
our convergence theorem. For completeness, we will sketch the proof here. We 
shall show that the sequence {u"} contains a subsequence converging to a Lk 
function which is a weak solution to the 2-D Euler equations. Since U" and 
W" = curl U" admit the uniform bounds 

thus there exist a w E L" ([0, T ] , M ( R 2 )  rl H z ( R 2 ) )  and u E L" ( [0,  T ] , L k ( R 2 ) )  
such that passing to a subsequence which we still denote as {wE,uE}, one has 

uE - u in L ~ ( R '  x R,) , 
wE - w in M ( R ~  x R,) , 

furthermore. 

(4.3) w = curl u , div u = 0 , 

in the sense of distribution. A simple compactness argument (see [lo], [20]) shows 

(4.4) uE - u in LP,(R' x R,) , 1 s p < 2 .  

To show the function u is a desired weak solution, we first verify (1.13) by fol- 
lowing Delort's basic idea. From (3.6), one needs to show that 

lim JJv' Q VO: uE Q u"dxdt = V' Q 00 : u B udxdt 
&-Of JJ (4.5) 

for any given test function o E Cr(R2 x R+). Since 

J/v' Q VO: uE Q u"dxdt 

it suffices to show that 

(4.6) 
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and 

We now sketch the proof of (4.6); similar analysis applies to (4.7). Denoting 8,,,,B 
by v, one has 

where 

For any given 0 < r 5 1/2, X7(y,z) is a continuous bounded function on the 
region Iy - zI 2 r ,  as can be checked easily. X,(y,z) is bounded for Iy - zI 5 r ,  
which follows from (2.14) in Lemma 2.2 with E = 0. This and (4.2) imply that 

lim//v ( ( ~ 7 ) ~  - (u;I2) dxdt  
e-O 

(4.10) 

The last term on the right-hand side of (4.10) can be estimated as follows. One 
has 

which goes to zero due to the estimate (1.16) on the maximal vorticity function. 
This proves (4.6), and the identity (1.14) is verified. 

It remains to prove that u(x, t) E Lip ([0, T ) ,  HG:(R2)). It suffices to show that 
u,(x,t) E Lip ([o,T),H;~(R~)) uniformly; see [lo]. Let 6 = e(x) E c,"(R~). One 
then has 

/V'Ba,u,dx = - V' o VB : ue o usdx + VB.ue(we - w,)dx . J J 
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It follows from the proof of Proposition 3. I and Sobolev's embedding lemma that 

(4.1 1) 

Since u, is divergence free, (4.11) implies that 

which yields immediately 

Consequently, one has u(x, t )  E Lip ([O, T ) ,  H$(W2)) ,  and so u(x, t )  is a desired 
classical weak solution. The proof of Theorem 1.1 is completed. 
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