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KINETIC AND VISCOUS BOUNDARY LAYERS
FOR BROADWELL EQUATIONS

Jian-Guo Liu Zhouping Xin

Dept of Mathematics Courant Institute

Temple University 251 Mercer Street

Philadelphia, PA 19122 New York, NY 10012
Abstract

In this paper, we investigate the boundary layer behavior of solutions to the one dimen-
sional Broadwell model of the nonlinear Boltzinann equation for small mean free path.
We consider the analogue of Maxwell’s diffusive and the reflexive boundary conditions.
It is found that even for such a simple model, there are boundary layers due to purely
kinetic effects which cannot be detected by the corresponding Navier-Stokes system. It
is also found numerically that a compressive boundary layer is not always stable in the
sense that jt may detach from the boundary and move into the interior of the gas as a
shock layer.

1. INTRODUCTION

We investigate the boundary layer behavior of the solutions to the one dimensional
Broadwell model [1] of the nonlinear Boltzmann equation with analogue of Maxwell’s
diffusive and diffusive-reflexive boundary conditions at small mean free path. The
general Boltzmann equation of kinetic theory gives a statistical description of a gas
of interacting particles. An important property of this equation is its asymptotic
equivalence to the Euler or Navier-Stokes equations of the compressible fluid dy-
namics, in the limit of small mean free path. One expects that away from initial,
boundary, and shock layers, the Boltzmann solution should relax to its equilibrium
state (local Maxwellian state} in the limit of small mean free path, and the gas
should be governed by the macroscopic fluid equations as suggested by Hilbert and
the Chapman-Enskog expansions [2]. Both the formal and rigorous mathematical
justification of the fluid-dynamic approximations of Boltzmann solutions pose chal-
lenging open problems in most physically interesting cases. Most of the work in
the literature concentrate on the initial layer problems for some models and general
Boltzmann equation {3,4,5,6] with notable exceptions [7,8,9]. The asymptotic behav-
ior at small mean free path of solutions to the Boltzmann equation in the presence of
shocks or boundaries remains far from being well-understood (not even formally),
but see ([10,11]). In particular, for the boundary layer problem, a qualitative theory
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exists for some models of steady Boltzmann equations [2], but very little is known
for the unsteady problems. Since boundary layers are important due to the fact that
they describe the interactions of the gas molecules with the molecules of the solid
body, to which one can trace the origin of the drag exerted by the gas on the body
and the heat transfer between the gas and the solid boundaries, it is very important
to understand the asymptotic behavior of the microscopic quantities when there are
interactions of the gas with solid boundaries. It is expected that the fluid approx-
imation is still valid away from the boundary. One of the difficulties in analyzing
this problem is due to the complexity of the nonlocal collision operator in the Boltz-
mann equation which makes it difficult to study the structures of the Jayer problems
associated with the formal matched asymptotic analysis. Furthermore, even in the
case that the structures of these layers are relatively easy to study as for the Broad-
well model, the fluid dynamic approximation cannot be obtained easily due to the
stiffness of the limit and weaker dissipation mechanism.

In this paper, we address the boundary layer problem for the much simpler one
dimensional Broadwell model of the nonlinear Boltzmann equation. We will consider
the analogue of the Maxwell’s diffusive and diffusive-reflexive boundary conditions.
As a continuation of [12] in which we have classified the boundary layers as ei-
ther expansive or compressive (see also §2.3), and shown that the boundary layers
are nonlinearly stable and the layer effects are localized so that the fluid-dynamics
approximation is valid away from the boundary provided that the boundary layer
exists, here first we report some numerical experiments which show surprisingly
that for both diffusive and diffusive-reflexive boundary conditions, a compressible
boundary layer is not always stable in the sense that it may detach from the bound-
ary and move into the interior of the gas as a shock layer, which we call boundary
induced shocks (see §3). We will also show rigorously that even for such a simple
model, there exist boundary layers due to purely kinetic effects which can not be
detected by the Chapman-Enskog expansion on the viscous level. This phenomena
was observed previously in the steady problets for the GBK model {2]. We should
remark that the phenomena of detachment of a compressive boundary layer and the
resulting induced shock layer is very surprising to us. It will be interesting to find
out whether this happens for other more practical models of the Boltzmann equation
[6].

The rest of the paper runs as follows. In §2, the initial boundary valued prob-
lems for the Broadwell model and the corresponding model Euler equations are
formulated. We then solve the boundary layer equations and classify the boundary
layer in terms of the rate of change of the associated characteristic speeds. The
numerical experiments which show the detachment of a compressive boundary layer
is described in detail in §3. Finally, we show that there are Broadwell boundary
layers which cannot be detected by the model Navier-Stokes equations derived by
the Chapman-Enskog expansion. This is given in §4.

2. BOUNDARY LAYERS FOR THE BROADWELL MODEL

2.1. Initial-Boundary Value Problems for the Broadwell Model and the
Corresponding Fluid Equations

The Broadwell model describes a gas as composed of particles of only six speeds
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with a binary collision law and spatial variation in only one direction. In one space
dimension, the model takes the following form [1]

oSt + 0/ =X -1 1),
a.f° ==, (2.1)
8™ =S =S -f ),

where ¢ is the mean free path, f*,f% and f~ denote the mass densities of gas

particle with speed 1, 0 and —1, respectively. In what follows, we will use the vector
notation £ = (f¥, f°, f~). The fiuid moments are defined as:

p=SrHAP ST, m=frof, u=

> |3

(2.2)

which are hydrodynamical quantities; the inass density, momentum, and fluid ve-
locity respectively. The state f is said to be a local Maxwellian [13] if

p>0, lul <e, and f¥+ f7 =po(u), (2.3)

where

1
o(u) = %\/ 1+ 3u? - 3 (2.4)

By assuming the state is in equilibrium, one has

dhp+ Oupu) = 0, 25)

d(pu) + 9:(po(u)) =0, :
which is called the model Euler equation that shares many properties of the isentropic
gas dynamics when the macroscopic speed of the gas is relatively small compared
with the microscopic speed of the gas particles {13]. The system (2.5) is strictly

hyperbolic and genuinely nonlinear with characteristic speeds,

u—+/o(u) u++/o(u)

= Ay = ¢ .6
M 23a(u) : and A 23 Wil (2.6)
satisfying
—1 <A (u) <0< Ay(u) <1, if |yl <1, (2.7)
and Ir
) S0, i=12. (2.8)

du

Using the Chapman-Enskog expansion [13], one can derive that the first order ap-
proximation of the Broadwell equations is the following model Navier-Stokes equa-

tions
Op+ 0u(pu) =0,
a

o) + 02 (por(w) = £, (u(w)dau) (29)



Downloaded by [Duke University Libraries] at 11:00 11 February 2014

450 LIU AND XIN

here
plu) = % (2.10)
We will consider the Broadwell equations on the region
Qr = {(a,t), s(t) <z <400, 0<t<TY, (2.11)
with the moving boundary given by
z=—al=s(). (2.12)

To simplify the presentation, we assume 0 < o < 1. We remark here that the cases
« =90 and o = 1 correspond to the uniform characteristic boundary conditions for
the Broadwell equations, in which there are no strong boundary layers so that the
fluid dynamic approximation can be easily justified.

The initial data for (2.1) is
UF O )t =0) = (f, £ fi) (@) (2.13)

Two types of boundary conditions will be considered. One is a purely diffusive
boundary condition

st = fF 1y, st = ). (2.14)

The other type is a diffusive-reflexive boundary condition

FHs,8) = ) (s),0),  45°(s(),1) = b(t) S (s(t), ) (2.15)

where a and b are positive functions. In particular, the purely reflexive boundary
condition corresponds to taking @ and b in (2.15) such that

ato(l+a+d)=1.

In this case, the mass fiux is conserved on the boundary.

The gas near the boundary in general is not in equilibrium state. In order to
understand the leading order behavior of the kinetic boundary layer, one can use the
stretched variable & = —lis"—t and look for the solution to (2.1) of the form f(§,t) =
f(Zt2t t). Simple calculations show that up to the leading order, the solution is
governed by the following system of ordinary differential equations regarding ¢ as
parameter,

Diag (@ +1, -2a, a ~ 1)3—2‘ =(f°f° - a1, 1). (2.16)

Corresponding to (2.14), the boundary data for (2.16) at £ = 0 is given by
fFoy= £ 0 =1, (2.17)
while for (2.15), the boundary condition for (2.16) takes the form

FrO —af~(0)=0, 4f°(0) - bf7(0)=0. (2.18)
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The state at £ = 400 is in the fluid region hence taken to be a local Maxwellian in
both cases,

foo = (5. 0%, 02),  fHfo=(%)". (2.19)

(2.16) is an integrable system, and the solutions can be found explicitly. As a
consequence, one can obtain the appropriate boundary condition for the model Euler
equation (2.5) as follows.

We start with the case associated with the diffusive boundary condition (2.14).
It follows from (2.16) that there exist two functions ¢;(¢) and c»(t) independent of
& such that

e+ D)fY +2af0 =ci{t), (o—-1)f" +20f° = a(t). (2.20)
Using the boundary condition (2.17) leads to
alt) = (a+ 1) fF +2af2. (2.21)
On the other hand, the boundary condition (2.19) yields

e1(®) = 2 ((a+ ) + o(w)) + a1 - o(w))), (2.22)

where we have rewritten {2.19) in terms of the fluid moments. Setting

Blp,u)(t) = 3p(0(u) + (a+ Du+a) | (2.23)

s(t),t) !

we arrive at the desirable boundary condition for the Euler equations (2.5) as

Blp,u)(t) = (o + 1) (1) + 2a2(0). (2.24)

Similarly, in the case with diffusive-reflexive boundary condition (2.15), one can
obtains the boundary condition for (2.5) as

u(s(t),t) = up(t). (2.25)
where u;, solves

(a+u)(l+a-a(l-a)) = (o(uw)+auw)(l—a—al(l +a+bd)). (2.26)

In particular, for the purely reflexive boundary condition, one has that

The initial data for the Euler equations (2.5) is given by

(prm)(@,0) = (fin +4fin + fias fif - f2) (@) (2.27)
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It can be shown easily that the initial-boundary value problems (2.5), (2.27) and
(2.24) or (2.25) are well posed at least locally in time. To see this, we first rewrite
the fluid equations (2.5) in the characteristic form:

{ 01p+ + Ay 0,04 =0,
at¢— + /\—a$¢— = Oy

in which the functions ¢4 are the Riemann invariants of the form

¢i(p,u)=p2(a(u)—u?)exv{ﬂ/ou< e )ma( = }

1+ 3w? w) ~ w?

Setting ¢4 (x,t) = ¢+ (p(z,t), w(2,1)), one obtains from direct computation that

E
04

Thus the implicit function theorem implies that the inflow ¢4 can be represented
in terms of a smooth function of the outflow ¢. and the given boundary values.
Consequently, the initial value problems (2.5), (2.27) and (2.24) or (2.25) are well-
posed. Furthermore, the unique solution is physical in the sense that the macroscopic
density, p(z,t), is positive at least locally in time. This follows from the positivity
of p(z,0) and the contraction argument.

>0. (2.28)

2.2. Classifications of the Boundary Layers

To determine the structure of the boundary layer, we now solve explicitly the system
of first order ordinary differential equations (2.16) with boundary condition (2.17)
and (2.19) or (2.18) and (2.19). Substitute (2.20) into the second equation in (2.16)
to get

dfo _ "'(302 + 1) ( 012 '2&/(6] +C‘_1) 0 €102 )
—d? - '20/(1 — a? (f ) - 3a2 +1 f + 3?41/ (229)
Define
L= =%+ 2% (uy+a) (2.30)
-0 = oo 302 +1 b Phb s

where (pu, up) = (p, u){s(t),t). Direct calculation shows that

_ 2a(c1 + &) €16y

ot = S00T0 Sele =30 (2.31)
and so, (2.29) becomes
%:—Mﬁ—&W“Jh) (2.32)
where ¢, = ﬁ"‘li_‘%ln Solving above equation, we obtain that
) - [0, = U= SE)US = foo)em et Fu)t (2.33)

= ikl
= P = (fS = fo)emmolUmlm0t
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(2.33) and (2.20) give the corresponding formulas for f* and f~. Our next lemma
shows that the boundary layers approach the Maxwellian states exponentially fast
as the fast variable goes to infinity.

Lemma. If A\j(uy) < ~a, then f°., < fO. Furthermore, if fO > f°_ , then we
>3] o b

have

[£(6) — | < CIf2 = & e U= 20 (2.34)

The proof follows direct computation.

We remark here that for a given boundary data, the condition that f2 > fO_ is
automatically satisfied if « is suitably small.

We now turn to the classification of boundary layers. Even though the gas near
boundary is not in equilibrium in general, it is appropriate to use the monotonicity
of A\;(u) to describe the kinetic boundary layers. We will say that a boundary layers
is compressive if %J» < 0; and it is expansive if %’35-1 > 0.

Since the characteristic speeds are monotone functions of the macroscopic veloc-
ity u (c.f. (2.8)), it is clear that the classification of the boundary layer depends
on the monotonicity of u along the boundary layer profile. Direct calculation using
{2.16) shows that

du _ dpy(aup) df°
&~ & (239

It follows from this that there are four different cases depending on the speeds of
the wall and the fluid:

0 0
4 <0 >0
compressive layer (%3‘—)- < 0) up < ~Q Up > —Q
expansive layer (5"\—&%&1 >0) Up 2~ up € —a

Similarly one can study the boundary layers for the Navier-Stokes equations (2.9).
Viscous boundary layers can also be classified as either compressive or expansive.
However, one can prove that viscous boundary layers exist only when u, > —a, see
§4. It is very interesting to note that boundary layers, corresponding to up, < —a, are
purely due to the kinetic effects, which cannot be detected by the Chapman-Enskog
expansions. This phenomena was observed previously in the steady problems for
the GBK model (cf. {2]).

3. BOUNDARY INDUCED SHOCKS

Now we describe an interesting observation on the bifurcation of boundary layers
for the Broadwell model. By numerical experiments, we show that the compressive
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microscopic distribution

0.15

0 0.2
time 0.25
space

Figure 1. Compressive Boundary Layer.  The evolution of the microscopic distribution
of O from time t = 0 to ¢ = 0.6. The mean-free-path and the wall speed are taken to
be .002 and -0.2, respectively. The boundary data is given by {3.1).

boundary layers may detach from the boundary wall at some time and move into the
gas as fluid shocks, which we will call boundary induced shocks. This demonstrates
that the compressive boundary layers may not be stable and furthermore they may
affect the gas flow through compressive shocks. On the formal level, the bifurcation
time is when the boundary data f2 approaches f®_ defined in (2.30).

In the following we explam the set up for the numerical experiments to demon-
strate the formation of the compressive boundary layers and their bifurcation into
shocks moving into the fluid region. The program can be easily reproduced on a
small PC.

Our first numerical experiment is the detachment of the compressible boundary
layer with the purely diffusive boundary conditions. To avoid the complications
due to interactions among initial, boundary, and shock layers, and concentrate on
the effects of boundary layers, we will use the Maxwellian state f¥(z,0) = 0.95,
f°(z,0) = 0.2, f~(z,0) = f%(z,0)%/f*(2,0), for 0 < 2 < 1 as initial microscopic
distributions. The mean-free-path is taken to be 0.002 and the wall speed is taken
to be @ = 0.2. The boundary data f;7 and f are taken to be
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Figure 3. Compressive Boundary Layer with diffusive-reflexive boundary condition.

The evolution of the microscopic distribution of f° from time ¢ = 0.3 10 ¢ = 0.4.
The mean-free-path and the wall speed are taken to be .001 and -0.3, respectively. The
boundary data is given by (3.2).

£ () = 0988 —0.038¢7° | f9(t) = 0.01 + 0.19¢7" | (3.1)

for the diffusive boundary condition. We note that the boundary data in (3.1) is
chosen to be compatible with the initial data up to first order derivatives, so that
there is no singularity formation at the corner.

The evolution from time t = 0 to t = 0.6 of the microscopic distribulation of f* is
displayed in Figure 1. The formulation of the boundary layer and the detachment of
the boundary layer can be seen clearly. The approximate solution to the Broadwell
model is computed by a upwind scheme with space grid-size = 0.0005 and CFL
number 0.7. The numerical boundary conditions at the right end are implemented
by depleting the end values at every time step. The plots is in the moving coordinate.

To see this more clearly, we take two snapshots at time ¢t = 0.16 and ¢ = 0.6 and
plot the distributions f9, f*, and f~ in Figure 2{a-b), respectively. These figures
show that the compressible boundary layer has formed at time 0.16 (see Figure 2(b))
It is seen from Figure 2(d) that at the time = 0.6 the boundary layer has become a
well resolved entropy shock and propagated into the fluids.

These phenomena also occur in the diffusive-reflexive boundary condition. Figure
3 displays the evolution the distribution f* from time ¢ = 0 to t = 0.7 with the a(t)
and b(t) in (2.15) taken as
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Figure 4. Expansive Boundary Layer.  The solid, dashed, and dashdot lines represent
the microscopic distributions, f O, f + and [, respectively. Figure 4(a)-4(d) correspond
to time t = (), 0.16, 0.28, 0.6, respectively.

at) = a = 45018+ 200(1 — ™), b(t) = 0.4357 + 0.1, (3.2)
The initial data is taken to a Maxwellian state f(z,0) = (0.75,0.35,0.1633), for
0 < z < 1, the mean-free-path is taken to be 0.0001, and a = 0.3, the space grid-

size = 0.0001, and CFL number 0.7.

In Figure 4, we demonstrate the formation and stability of the expansive bound-
ary layer through an example. In the numerical calculation, the mean-free path and
the wall speed are taken to be 0.002 and -0.2, respectively, the initial data are
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FH{z,0) = 0.55 + 0.035 cos(100z) — 0.2z,
f2(z,0) = 0.45 — 0.02 cos(100z) + 0.04z,
f(2,0) = f2(2,0)°/1*(2,0),
and the boundary data are given by
FE() = 0.25+0.33e719C | 04y = 0.86 — 0.43¢~ 1907

Then Figure 4(a)-4(d) show the development of the boundary layer at the time
sequence: t = 0,0.16,0.28 and 0.6, respectively. It should be clear that the boundary
layer is attached to the boundary at all the time.

4. THE NAVIER-STOKES BOUNDARY LAYERS

In this section we will show that the boundary layers of Broadwell equations with
property u, < —a are due to the kinetic effects only, which can not be detected by
the first order viscous systems (2.9). Consider the Cauchy problem for (2.9) with
initial data

pe(2,0) = p"(z),  me(z,0) = m"(2), (4.1)

and boundary conditions
pe(—at,t) = p"(t),  me(—at,t) = m>(t). (4.2)

Here the boundary data can be given explicitly in terms of those of the Broadwell
equations and the solution to the initial-boundary value problem for the model Euler
equations (2.5), (2.24). However, the specific form of the boundary data is irrelevant
to our following analysis.

To study the boundary layer behavior of the solutions to the above viscous prob-
lem, we use the same stretched variable as before, i.e., § = ﬂ;"—t, and look for the
solutions to (4.1) of the form (p, u){z,t) = (p,u}{&,t). Then up to the leading or-
der, the boundary layer solutions should satisfy the following system of ordinary
differential equations:

Oe{ap+m) =0, 43)
O¢(am + po(u)) = B¢ (11{u)deu) .

The initial value of the boundary layer solution at & = 0 is given in (4.2), and its
value at £ = oo is

(g, u}(00,t) = (pr, up}(t) s (4.4)

where (pp,up) is the boundary value of the solution to the model Euler equations
(2.5).

Theorem. There is no solution to the above problem (4.2), (4.3) and (4.4), if
Uy < —o.
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Proof. Otherwise, one can integrate (4.3) to get that for some functions c3(t) and

¢4(t) independent of £ such that

pluta)=cs,
plou+o(u)) = p(u)deu — ¢4 .
or,
u::j&(cvu +0(u)) + cq = p(u)deu.
Set

h{u) = cs(au+o(u)) + cs(u+a).

One then integrates (4.5) to obtain that

Y uuta)
Lbd—-T(u-)————du—E>0

(4.5)

(4.6)

(4.7)

(4.8)

It thus suffices to show that in the case uy, + o < 0, there exists no solution to the

integral equation (4.8) such that

u—+u,, as €00,
To this end, one notes that

R"(u) = c30”(u) < 0,

and
h(~a) = cz(a(a) - a*) < 0,

{4.9)
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since c¢3 is negative. It is then clear that h(u) has at most two roots. Now if we
assume that there exist solutions to (4.8) with property (4.9), then both of the roots
of h(u) must lie on the left of —«. Now we claim that

h(=1) = (1= a)(cs — cq) > 0 (4.10)

so that there exists only one simple root in (—1, —a). In fact, if (4.10) fails, then
h(—1) < 0. This implies that ¢3 < ¢y, i.e.,

< (cuy, + o (up))
T (ot w)

where one has used (4.6). Due to ¢35 < 0, the above inequality is equivalent to
au, +o(up) +a+u, <0. (4.11)

Set
flu)=oau+ou)+a+u.

Easy computation shows that
f-1=0, f(-)=a>0, f'u)=0"(u)>0.

It follows that
f(u) >0, for —1<u< ~c,

which contradicts to (4.11). Finally, we show that the fact that there is one simple
root in (—1,~a) gives the desired contradiction. Note that in our case that the
simple root must be u,. Then if u"! < w),, the integral on the left hand side of (4.8)
is negative due to the fact that A{u) must be positive in (—1, up) which contradicts
(4.8). Similarly one treats the case that u®® > u,. This completes the argument.
We remark here that it is easy to check that our analysis also works for the case
up + @ = 0. The proof of the Theorem is complete.
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