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A CLASS OF FUNCTIONAL INEQUALITIES AND
THEIR APPLICATIONS TO FOURTH-ORDER NONLINEAR

PARABOLIC EQUATIONS∗

JIAN-GUO LIU† AND XIANGSHENG XU‡

Abstract. We study a class of fourth-order nonlinear parabolic equations which include the thin-
film equation and the quantum drift-diffusion model as special cases. We investigate these equations
by first developing functional inequalities of the type∫

Ω
u2γ−α−β∆uα∆uβdx≥ c

∫
Ω
|∆uγ |2dx,

which seem to be of interest in their own right.
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1. Introduction
Let T >0 and Ω be a domain in RN with boundary ∂Ω. We consider the existence

of a solution to the problem

∂tu+div[un∇(uα−1∆uα)] = 0 in ΩT , (1.1)

∇u ·ν=un∇(uα−1∆uα) ·ν= 0 on ΣT , (1.2)

u(x,0) =u0(x)≥0 on Ω, (1.3)

where ΩT = Ω×(0,T ], ΣT =∂Ω×(0,T ], ν is the unit outward normal to ∂Ω. Numbers
n,α∈ (0,∞) and the functions g=g(x,t), u0(x) are given data whose precise assump-
tions will be made later.

Fourth-order nonlinear parabolic equations arise in a variety of physical settings
[6, 9, 17, 24]. Two well-known examples are the thin film equation and the quantum
drift-diffusion model, both of which are special cases of (1.1). In a typical thin film
equation, we have that α= 1,n>0, while parameter values of n= 1,α= 1

2 give us the
quantum drift-diffusion equation without the drift term. See, e.g., [13, 30] for the
inclusion of this term. Note that the drift term is a lower order term, and dropping it
simply implies that we have assumed that it can be dominated by the principal term in
the equation. Nonetheless, extensive research work has been done on these two types
of problems. We refer the reader to [13, 20, 25, 28] and the references therein.

The objective of our work is to present a unified mathematical approach to these
two very different physical problems. This is done via functional inequalities of the type

I(u)≡
∫

Ω

u2γ−α−β∆uα∆uβdx≥ c
∫

Ω

(∆uγ)
2
dx for all u∈Wγ , (1.4)

where

Wγ ={u≥0 :uγ ∈W 2,2(Ω),∇uγ ·ν= 0 on ∂Ω}. (1.5)
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Obviously, the validity of the above inequality depends on Ω,α,β and γ. We will focus
on the case where Ω is bounded and convex. Then a result of [16] asserts that∫

Ω

(∆uγ)2dx≥
∫

Ω

|∇2uγ |2dx (1.6)

for all u∈Wγ , where ∇2uγ denotes the Hessian of uγ . Thus a slightly weaker version is
the inequality

I(u)≡
∫

Ω

u2γ−α−β∆uα∆uβdx≥ c
∫

Ω

(
∇2uγ

)2
dx for all u∈Wγ . (1.7)

Several known inequalities are special cases of this. If β= 1,α=γ= 1
2 , then (1.7) is

established for box domains with sides parallel to the coordinate planes in [4] (also see

[21]). It turns out [13, 25] that (1.7) is still valid if β= 1,γ=α∈
(

(N−1)2

2N2+1 ,
3
2

)
, and Ω

is a bounded convex domain. The inequalities in [13, 25] are formulated in a measure-
theoretic setting. See [29] for a more direct approach.

The significance of functional inequalities of the type (1.4) lies in the fact that the
integrand on the left-hand side of (1.4) can change signs. In essence, they are the
nonlinear version of the G̊arding inequality. To illustrate how they arise naturally in
the study of fourth-order nonlinear partial differential equations, we proceed to make
some formal analysis of (1.1)-(1.3). That is, we assume that u is a positive, smooth
solution of (1.1). Use uβ , where β>0, as a test function in (1.1) to derive

1

β+1

d

dt

∫
Ω

uβ+1dx+
β

n+β

∫
Ω

uα−1∆uα∆un+βdx= 0. (1.8)

By (1.4), we have ∫
Ω

uα−1∆uα∆un+βdx≥ c
∫

Ω

(
∆u

2α+n+β−1
2

)2

dx. (1.9)

For the moment, we ignore the restrictions under which the above inequality holds. We
will address this issue in Section 2. Integrate (1.8) to obtain

max
0≤t≤T

∫
Ω

uβ+1(x,t)dx+

∫
ΩT

(
∆u

2α+n+β−1
2

)2

dxds≤ c. (1.10)

Our study of (1.4) is inspired by the integration by parts rule proved by Gianazza
et al. [13] and by Jüngel and Mattes [21]. We also refer the reader to [22] for the
development of an algebraic technique for dealing with such formulas. The framework
we have developed here is also algebraic in nature, but it seems to be more direct and
easier to use. This can best be illustrated by the application of our method to the
standard thin film

∂tu+div(un∇∆u) = 0. (1.11)

In this case, the second integral in (1.8) becomes∫
Ω

∆u∆un+βdx.
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This immediately puts us in a position to apply Lemma 2.5 in Section 2, from whence
follows that for each β∈ ( 1

2−n,2−n) there is a positive number c such that∫
Ω

∆u∆un+βdx≥ c
∫

Ω

(
∆u

n+β+1
2

)2

dx.

Of course, this result is well-known, see, e.g., [22] and the references therein. Also
notice how easy it is for us to prove Lemma 2.5 in our framework. More importantly,
our method has led to the discovery of Corollary 2.2 in Section 2. It is this corollary
that enables us to solve a problem left open in [25].

We can easily foresee other potential applications for the functional inequalities
developed in this paper. An immediate example is the study of epitaxial growth of thin
films (see [1, 11]) and the references therein). A family of continuum models has been
established, one of which has the form

∂tu+u2∆2u3 = 0 in ΩT . (1.12)

Using uβ as a test function yields

1

β+1

d

dt

∫
Ω

uβ+1dx+

∫
Ω

∆u3∆uβ+2dx= 0, (1.13)

and Lemma 2.5 in Section 2 becomes applicable. Of course, the resulting inequality is
far from enough to obtain an existence assertion for (1.12). However, the idea behind the
derivation of the inequality can lead to the discovery of additional estimates. Since our
inequalities do not depend on the space dimension N , their applications will inevitably
lead to the relaxation of the restrictions on N in previous studies such as [11].

Theorem 1.1. Let Ω be a bounded convex domain in RN . Assume:

(H1) α∈ [1, 3
2 ),n∈ [1,1+ σ

4 ), where

σ=

1 if N <4,
4
N if N >4,
any number in (0,1) if N = 4;

(1.14)

(H2) u0∈L∞(Ω) with infΩu0>0.
Then there is a weak solution to (1.1)-(1.3) in the following sense:

(C1) u∈L2α+σ(ΩT ) with u≥0 on ΩT , uα∈L2(0,T ;W 2,2(Ω));

(C2) ∇uα ·ν= 0 a.e. on ΣT ;

(C3) For each ξ∈C∞(ΩT ) with ξ(x,T ) = 0 and ∇ξ ·ν= 0 on ΣT there holds

−
∫

ΩT

u∂tξdxdt−
∫

Ω

u0(x)ξ(x,0)dx

+

∫
ΩT

(
2n

α
un+α

2−1∇uα2 ∆uα∇ξ+uα+n−1∆uα∆ξ

)
dxdt= 0. (1.15)

We would like to make some remarks about Theorem 1.1. We can conclude from
Lemma 2.2 below that ∇uα2 ∈

(
L4(ΩT )

)N
. Thus each integral in (1.15) makes sense.

Assumption (H1) is largely due to the restrictions for (1.4) to hold.

Theorem 1.2. Let Ω be a bounded convex domain in RN and (H2) hold. Assume:

(H3) α= 1,n∈ ( 1
2 ,1+ σ

4 ), where σ is given as in (1.14).
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Then there is a weak solution to (1.1)-(1.3) in the sense of (C3).

In comparison with previous results on the thin-film equation (see, e.g., [5, 7, 17,
18]), this theorem has removed all the restrictions on space dimensions. Thus this is
truly a multi-dimensional result. The trade-off is that our assumption on n in the
theorem is weaker than those in [7, 18]. It is worth noting that most of the existing
results on non-linear fourth-order parabolic equations involve restrictions on the space
dimensions with the one-dimensional problems attracting the most attention. See ,e.g.,
([2, 3, 6, 8, 27]), where various properties of solutions are investigated. More recent
results of this nature on the thin-film equation can be found in [10, 12, 15].

Our approach to the question of existence is to construct a sequence of smooth,
positive approximate solutions such that the calculations similar to (1.8)-(1.10) can be
employed. A well-known difficulty in the study of fourth-order equations is that the
maximum principle is no longer true. In fact, the heat kernel for the heat biharmonic
equation changes signs. Thus arguments based upon the maximum principle for second-
order equations do not work here. We must rely on the nonlinear structure of our
equation to obtain non-negative solutions. It turns out that the term uα−1 = 1

u1−α

in (1.1) plays a key role in the existence of non-negative solutions. The case where
n= 1,α≤1 has already been considered in [25, 30], while the case where α>1 is left
open there. One contribution of this paper is that we have completely solved this
open problem (Theorem 1.1). Even though we have not been able to find a physical
application for this case, it is still very interesting from the point of view of mathematical
analysis because this is the case where the gradient flow theory fails [25]. The key to
our success seems to be that we have found a right way to approximate the term u1−α

with the exponent being negative.

The optimal transport theory has been successfully employed to treat many dif-
ferent types of parabolic equations as gradient flows of various “entropy functionals”
for various “transportation metrics”, the canonical example being the regular scalar
heat equation viewed by Jordan, Kinderlehrer and Otto [19] as the gradient flow of
the Boltzmann entropy for the quadratic Monge-Kantorovich MK2 (frequently named
Wasserstein metric). We have seen a very large body of work done on this subject in
the last 20 years (in the study of the heat equation in a very general framework, porous-
medium equations, thin-film flow equations, chemotaxis models, etc.. See [13, 25, 23]
and the references therein as examples). However, in the generality considered in The-
orems 1.1 and 1.2, the transport theory is no longer applicable [25]. We discretize the
time derivative in (1.1) and transform it into a system of two second-order elliptic equa-
tions. Our approximation scheme seems to be standard. However, the genius is in the
details, and we have to overcome numerous technical difficulties for it to work here. On
the one hand, we need to introduce new terms in our approximate problems in order to
ensure high regularity and positivity of our approximate solutions. On the other hand,
we have to make sure that these new terms do not destroy the essential a prior estimates
that hold for positive, smooth solutions of the original equations. Striking a suitable
balance between the two constitutes the core of our development.

This paper is organized as follows. In Section 2 we develop a class of functional
inequalities. Section 3 is devoted to the fabrication of our approximation schemes.
Here the key is how to handle the term uα−1. Then we proceed to obtain discretized
versions of the a priori estimates that hold for positive, smooth solutions of the original
equations, which eventually leads to the establishment of Theorems 1.1 and 1.2 in the
two subsequent sections.
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2. Functional inequalities
In this section we study the functional inequality (1.4). We will focus on the case

where Ω is a bounded convex domain in RN . Our method is algebraic in nature. In this
regard, it is similar to [22].

The key to our development is the following lemma, which is a substantial improve-
ment over Lemma 2.1 in [30].

Lemma 2.1. Let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω. Assume
that

α 6= 0. (2.1)

Then we have∫
Ω

u2α−2β |∇2uβ |2dx≥ 2β2

(2+N)α2

∫
Ω

|∇2uα|2dx

+
β2

(2+N)α2

∫
Ω

(∆uα)2dx+
16β2(α−β)(α−3β)

(2+N)α4

∫
Ω

|∇uα2 |4dx (2.2)

for all u∈Wα.

Proof. If β= 0, then the lemma is trivially true. Thus assume that β 6= 0. Note
that

(∆uβ)2≤N |∇2uβ |2. (2.3)

Thus if α=β, then (2.2) is still true. From here on, we let

β 6=α.

We can also assume that u∈Wα is bounded away from 0 below. If this is not the case,
we can always replace u by

(uα+ε)
1
α

and then let ε→0+. The same is understood in the subsequent calculations in this
section. We compute, for i,j= 1,·· · ,N , that

∂iu
β =∂i(u

α)
β
α =

β

α
uβ−α∂iu

α, (2.4)

∂2
iju

β =
β(β−α)

α2
uβ−2α∂iu

α∂ju
α+

β

α
uβ−α∂2

iju
α. (2.5)

First, we let i= j in the above equation and then sum up over i to derive

∆uβ =
β(β−α)

α2
uβ−2α|∇uα|2 +

β

α
uβ−α∆uα. (2.6)

Square both sides of this equation and multiply through the resulting equation by
α2

β2 u
2α−2β to arrive at

α2

β2
u2α−2β |∆uβ |2 = |∆uα|2 +2

β−α
α

1

uα
|∇uα|2∆uα+

(
β−α
α

)2
1

u2α
|∇uα|4. (2.7)
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Square both sides of (2.5), multiply through the resulting equation by α2

β2 u
2α−2β , and

then sum up i,j to obtain

α2

β2
u2α−2β |∇2uβ |2 = |∇2uα|2 +2

β−α
α

1

uα
∇uα ·∇2uα∇uα+

(
β−α
α

)2
1

u2α
|∇uα|4.

(2.8)
Note that ∇uα= 2u

α
2∇uα2 . Keeping this in mind, we can rewrite (2.8) and (2.7) as

2∇uα2 ·∇2uα∇uα2 =
α3

4(β−α)β2
u2α−2β |∇2uβ |2− α

4(β−α)
|∇2uα|2

−4(β−α)

α
|∇uα2 |4, (2.9)

|∇uα2 |2∆uα=
α3

8(β−α)β2
u2α−2β |∆uβ |2− α

8(β−α)
|∆uα|2

−2(β−α)

α
|∇uα2 |4. (2.10)

Note that

u−2α|∇uα|4 =u−2α|∇uα|2∇uα ·∇uα

= div
(
u−2α|∇uα|2∇uαuα

)
−div

(
u−2α|∇uα|2∇uα

)
uα

= div
(
u−2α|∇uα|2∇uαuα

)
−u−α|∇uα|2∆uα−2u−α∇2uα∇uα ·∇uα+2u−2α|∇uα|4. (2.11)

Integrating this equation over Ω, we obtain, with the aid of the fact that ∇uα ·ν= 0 on
∂Ω, that

4

∫
Ω

|∇uα2 |4dx= 2

∫
Ω

∇uα2 ·(∇2uα∇uα2 )dx+

∫
Ω

|∇uα2 |2∆uαdx. (2.12)

Integrate (2.9) and (2.10) over Ω, add the two resulting equations, then make use of
(2.12), thereby derive

α3

4(β−α)β2

∫
Ω

u2α−2β |∇2uβ |2dx+
α3

8(β−α)β2

∫
Ω

u2α−2β |∆uβ |2dx

=
α

4(β−α)

∫
Ω

|∇2uα|2dx+
α

8(β−α)

∫
Ω

|∆uα|2dx− 2(α−3β)

α

∫
Ω

|∇uα2 |4dx. (2.13)

Multiplying through this equation by 4(β−α)β2

α3 , we can conclude the lemma from the
inequality (2.3). The proof is complete.

Notice that the only inequality we have used in the proof of the above lemma is
(2.3). Thus (2.2) is just as sharp an inequality as (2.3). Obviously, the lemma has been
obtained by sharpening the proof of Lemma 2.1 in [30].

Lemma 2.2. Assume that Ω is bounded and convex. Then we have∫
Ω

|∇uα2 |4dx≤ 9

16

∫
Ω

(∆uα)2dx (2.14)

for all u∈Wα.
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Proof. This lemma is taken from [30]. The proof is rather simple. Thus we repeat
it here.

Remember that in this case (1.6) holds. Taking note of this, we calculate from
(2.12) that

4

∫
Ω

|∇uα2 |4dx≤2

(∫
Ω

|∇2uα|2dx
) 1

2
(∫

Ω

|∇uα2 |4dx
) 1

2

+

(∫
Ω

|∇uα2 |4x
) 1

2
(∫

Ω

|∆uα|2dx
) 1

2

≤3

(∫
Ω

|∆uα|2dx
) 1

2
(∫

Ω

|∇uα2 |4dx
) 1

2

(2.15)

from whence the lemma follows.

Now we are ready to study the functional

I(u) =

∫
Ω

u2γ−α−β∆uα∆uβdx. (2.16)

At this point, we only assume

αβ>0, γ 6= 0. (2.17)

Recall from (2.6) that

∆uα=
α(α−γ)

γ2
uα−2γ |∇uγ |2 +

α

γ
uα−γ∆uγ , (2.18)

∆uβ =
β(β−γ)

γ2
uβ−2γ |∇uγ |2 +

β

γ
uβ−γ∆uγ . (2.19)

Plugging these two into (2.16) yields

γ2

αβ
I(u) =

∫
Ω

(∆uγ)2dx+
16(α−γ)(β−γ)

γ2

∫
Ω

|∇u
γ
2 |4dx

+
4(α+β−2γ)

γ

∫
Ω

|∇u
γ
2 |2∆uγdx. (2.20)

Let us first consider the special case where N = 1. In this case, we have∫
Ω

∇u
γ
2∇2uγ∇u

γ
2 dx=

∫
Ω

|∇u
γ
2 |2∆uγdx.

Thus by (2.12), we obtain∫
Ω

|∇u
γ
2 |2∆uγdx=

4

3

∫
Ω

|∇u
γ
2 |4dx.

Use this in (2.20) to derive

γ2

αβ
I(u) =

∫
Ω

(∆uγ)2dx+
16(γ2−2(α+β)γ+3αβ)

3γ2

∫
Ω

|∇u
γ
2 |4dx. (2.21)
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If γ2−2(α+β)γ+3αβ≥0, we are done. If γ2−2(α+β)γ+3αβ<0, i.e.,

α+β−
√
α2 +β2−αβ<γ<α+β+

√
α2 +β2−αβ, (2.22)

then we apply (2.14) to (2.21) to get

γ2

αβ
I(u)≥ 4γ2−6(α+β)γ+9αβ

γ2

∫
Ω

(∆uγ)2dx. (2.23)

For the coefficient of the integral in the preceding inequality to be positive, we must
impose the conditions

γ>
3

2
α or γ<

3

2
β in the case where α≥β, or (2.24)

γ>
3

2
β or γ<

3

2
α in the case where α<β. (2.25)

In summary, we have

Lemma 2.3. If N = 1 and α≥β, then (1.4) holds whenever

γ>min

{
3

2
α,α+β+

√
α2 +β2−αβ,

}
or (2.26)

γ<max

{
3

2
β,α+β−

√
α2 +β2−αβ

}
. (2.27)

Now we deal with the more general case N >1. It turns out that the sign of the term
2γ−α−β plays a significant role.

Lemma 2.4. Let Ω be a bounded convex domain in RN and γ a number satisfying

2γ−α−β>0. (2.28)

Without loss of any generality, we assume

β≤α. (2.29)

If either

3

5
(α+β)>γ≥α, or (2.30)

γ<min

{
α,

3

2
β

}
, (2.31)

then there is a positive number c such that (1.4) holds.

Proof. Under (2.28)-(2.30), the coefficient of the second integral in (2.20) is non-
negative, while the coefficient of the third integral is negative. Thus we can deduce from
(2.20) and (2.14) that

γ2

αβ
I(u)≥

∫
Ω

(∆uγ)2dx+
4(α+β−2γ)

γ

∫
Ω

|∇u
γ
2 |2∆uγdx

≥
∫

Ω

(∆uγ)2dx+
4(α+β−2γ)

γ

(∫
Ω

|∇u
γ
2 |4dx

) 1
2
(∫

Ω

(∆uγ)2dx

) 1
2
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≥
∫

Ω

(∆uγ)2dx+
3(α+β−2γ)

γ

∫
Ω

(∆uγ)2dx

=
3(α+β)−5γ

γ

∫
Ω

(∆uγ)2dx. (2.32)

The coefficient of the last integral in the above inequality is positive by (2.30). This
completes the proof of the first part of the lemma.

If γ <α, then the coefficient of the second integral in (2.20) is negative. Then it
follows from (2.20) and (2.14) that

γ2

αβ
I(u)≥

∫
Ω

(∆uγ)2dx+
9(α−γ)(β−γ)

γ2

∫
Ω

(∆uγ)2dx

+
3(α+β−2γ)

γ

∫
Ω

(∆uγ)2dx

=
4γ2−6(α+β)γ+9αβ

γ2

∫
Ω

(∆uγ)2dx. (2.33)

Note that 4γ2−6(α+β)γ+9αβ= 4(γ− 3
2β)(γ− 3

2α). Thus it is positive if (2.31) holds.
The proof is complete.

Next we analyze the case where γ= α+β
2 . In this direction, we have the following

result.

Lemma 2.5. Let Ω be a bounded convex domain in RN . Then for each α∈ (β2 ,2β)
there is a positive number c= c(α,β) such that∫

Ω

∆uα∆uβdx≥ c
∫

Ω

(
∆u

α+β
2

)2

dx (2.34)

for all u∈Wα+β
2

.

Proof. Let γ= α+β
2 in (2.20) to obtain

(α+β)2

4αβ
I(u) =

∫
Ω

(∆u
α+β

2 )2dx− 16(α−β)2

(α+β)2

∫
Ω

|∇u
α+β

4 |4dx (2.35)

In view of (2.14), we have

(α+β)2

4αβ
I(u)≥

(
1− 9(α−β)2

(α+β)2

)∫
Ω

(∆u
α+β

2 )2dx. (2.36)

If α∈ (β2 ,2β), then the coefficient on the right-hand side of the preceding inequality is
positive. The proof is complete.

For the case where

2γ−α−β<0, (2.37)

we deduce from (2.12) that

γ2

αβ
I(u) =

∫
Ω

(∆uγ)2dx+
16(αβ−γ2)

γ2

∫
Ω

|∇u
γ
2 |4dx

−8(α+β−2γ)

γ

∫
Ω

∇u
γ
2∇2uγ∇u

γ
2 dx. (2.38)
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Hence the key is how to handle the term
∫

Ω
∇u

γ
2∇2uγ∇u

γ
2 dx. To this end, we infer

from (2.9) that

∇u
γ
2 ·∇2uγ∇u

γ
2 =

γ3

8(η−γ)η2
u2γ−2η|∇2uη|2− γ

8(η−γ)
|∇2uγ |2

−2(η−γ)

γ
|∇u

γ
2 |4, (2.39)

where η is a number to be determined later. Substituting this into (2.38) , we arrive at

γ2

αβ
I(u) =

∫
Ω

(∆uγ)2dx+
α+β−2γ

η−γ

∫
Ω

|∇2uγ |2dx

+
16[(α+β−2γ)(η−γ)+αβ−γ2]

γ2

∫
Ω

|∇u
γ
2 |4dx

+
(α+β−2γ)γ2

(γ−η)η2

∫
Ω

u2γ−2η|∇2uη|2dx. (2.40)

This puts us in position to apply (2.2). To do this, we need to suppose

γ−η>0 (2.41)

to ensure the coefficient of the last integral in (2.40) is positive. In our context, the
inequality (2.2) has the form∫

Ω

u2γ−2η|∇2uη|2dx≥ 2η2

(2+N)γ2

∫
Ω

|∇2uγ |2dx

+
η2

(2+N)γ2

∫
Ω

(∆uγ)2dx+
16η2(γ−η)(γ−3η)

(2+N)γ4

∫
Ω

|∇u
γ
2 |4dx. (2.42)

Use this in (2.40) to derive

γ2

αβ
I(u)

≥ α+β+Nγ−(2+N)η

(2+N)(γ−η)

∫
Ω

(∆uγ)2dx− (α+β−2γ)N

(γ−η)(N+2)

∫
Ω

|∇2uγ |2dx

+
16[((N−1)η−(N+1)γ)(α+β−2γ)+(2+N)(αβ−γ2)]

(2+N)γ2

∫
Ω

|∇u
γ
2 |4dx. (2.43)

We choose η so that the coefficient of the last integral in the above equation is 0. This
leads to

η=
(N+1)γ(α+β−2γ)−(2+N)(αβ−γ2)

(N−1)(α+β−2γ)
. (2.44)

The number η chosen above must satisfy (2.41). Plug the value of η into (2.43) and
take a note of (1.6) and the fact that the coefficient of the second integral in (2.43) is
negative to arrive at

(2+N)γ2

αβ
I(u)≥ (1−N)(α+β)+3Nγ−(2+N)η

γ−η

∫
Ω

(∆uγ)2dx.
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Thus our last hypothesis is that the coefficient of the above integral is positive, i.e.,

(1−N)(α+β)+3Nγ−(2+N)η>0. (2.45)

To summarize our results, we have

Lemma 2.6. Let Ω be a bounded convex domain in RN . Assume that (2.17) and
(2.37) hold. If η given by (2.44) satisfies (2.41), and (2.45), then there is a positive
number c= c(α,β,γ,N) such that (1.4) holds.

Corollary 2.1. Let Ω be a bounded convex domain in RN . Then for each α∈
( (N−1)2

2N2+1 ,
3
2 ) there is a positive number c= c(α,N) such that∫

Ω

uα−1∆u∆uαdx≥ c
∫

Ω

(∆uα)2dx (2.46)

for all u∈Wα.

Proof. This corollary is largely contained in [30]. A different version can be found
in [25]. It is also an easy consequence of our preceding development. To see this, note
that in this case we have

β= 1, γ=α, and 2γ−α−β=α−1. (2.47)

If α= 1, then (2.46) is trivially true. If α>1, we apply Lemma 2.4. The conditions
(2.28), (2.29), and (2.30) are equivalent to

1<α<
3

2
.

If α<1, we substitute (2.47) into (2.44) to obtain

η=− α

N−1
. (2.48)

Obviously, (2.17) is true. Since η<0, we see that (2.41) is also satisfied. Plugging (2.47)
and (2.48) into (2.45), we arrive at

(2N2 +1)α> (N−1)2. (2.49)

Thus (2.45) holds under our assumptions on α. We conclude (2.46) from Lemma 2.6.

Corollary 2.2. Let Ω be a bounded convex domain in RN . Then there is an
ε∈ [0, 4

5 ) such that to each α∈ ( 1
2 ,2) there corresponds a positive number c= c(ε,α) with

the property ∫
Ω

uε−1∆uα∆udx≥ c
∫

Ω

(∆u
α+ε
2 )2dx (2.50)

for all u∈Wα+ε
2

.

Proof. In this case, we have

β= 1, γ=
α+ε

2
. (2.51)

Thus α+β−2γ= 1−ε. Hence we need to show that there exists an ε∈ [0, 4
5 ) such that

γ >η, (2.52)



1922 FOURTH-ORDER NONLINEAR PARABOLIC EQUATIONS

−(N−1)(α+1)+
3N(α+ε)

2
−(2+N)η>0, (2.53)

where η is defined by (2.44). Plugging (2.51) into (2.44), we derive

η=
−Nε2 +2(N+1+α)ε+(N+2)α2−2(N+3)α

4(N−1)(1−ε)
. (2.54)

Using this value of η in (2.53), after some elementary calculations we arrive at

−4(N−1)2 +4(N+1)(N+2)α−(N+2)2α2

>N(5N−8)ε2 +[2N(N+2)α−4N(2N−5)]ε≡h(ε). (2.55)

The right-hand side is a quadratic function in ε, which achieves its minimum value at

ε=
−(N+2)α+2(2N−5)

5N−8
. (2.56)

But this number is not always non-negative. It becomes negative only when α> 2(2N−5)
N+2 .

Thus we take

ε=

{
0 if α> 2(2N−5)

N+2 ,
−(N+2)α+2(2N−5)

5N−8 otherwise.

Obviously, we have ε∈ [0, 4−α
5 ). Next we will show that ε selected above satisfies (2.52)-

(2.53). If ε= 0, then

η=
[(N+2)α−2(N+3)]α

4(N−1)
<0 (2.57)

for α<2. Thus (2.52) is trivially true. Set ε= 0 in (2.55) to obtain

−4(N−1)2 +4(N+1)(N+2)α−(N+2)2α2>0. (2.58)

Solutions to this inequality form the interval(
2(N+1)−4

√
N

N+2
,

2(N+1)+4
√
N

N+2

)
,

which contains the interval ( 1
2 ,2) if N ≤4. That is to say, if the space dimension does

not exceed 4, we can simply take ε= 0. We will have to do a little bit more work if we
want (2.50) to hold for all the space dimensions. To this end, we substitute (2.56) into
(2.55) to deduce

−(N−2)α2 +(3N−4)α+2−N >0.

Solutions to this inequality are the interval(
3N−4−

√
N(5N−8)

2(N−2)
,

3N−4+
√
N(5N−8)

2(N−2)

)
,

which contains the interval ( 1
2 ,2) if N >2. To see (2.52), we substitute (2.51) and (2.54)

into (2.52) to obtain

(N−2)ε2 +(2Nα+4)ε+(N+2)α2−4(N+1)α<0.
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Remember that ε lies in the interval (0, 4−α
5 ) and the function on the left-hand side of

the above inequality is an increasing function of ε over the interval. Thus it is sufficient
for us to prove

H(α)≡ (N−2)
(4−α)2

25
+(2Nα+4)

4−α
5

+(N+2)α2−4(N+1)α<0.

It is easy to see that H(α) is a convex quadratic function of α. An elementary calculation
shows that

H(
1

2
)<0, H(2)<0.

Thus H(α)<0 for each α∈ ( 1
2 ,2). The proof is complete.

From our proof we see that this lemma can hold for more general α.
Similarly, we can investigate the functional

J(u) =

∫
Ω

u2γ−α∆lnu∆uαdx.

A simple calculation shows

∆lnu=− 1

γ
u−2γ |∇uγ |2 +

1

γ
u−γ∆uγ . (2.59)

Plug this and (2.18) into J(u) to obtain

γ2

α
J(u) =

∫
Ω

(∆uγ)2dx+
4(α−2γ)

γ

∫
Ω

|∇u
γ
2 |2∆uγdx− 16(α−γ)

γ

∫
Ω

|∇u
γ
2 |4dx. (2.60)

It is interesting to note that the arguments of Lemmas 2.4 and 2.5 do not work here. If

α−2γ>0, (2.61)

we can still mimic the proof of Lemma 2.6 to obtain the following lemma.

Lemma 2.7. Let Ω be a bounded convex domain in RN and (2.61) be satisfied. Set

η=
(2+N)(γ−α)γ+(α−2γ)α

(N−1)(2γ−α)
. (2.62)

If η satisfies the inequalities

η−γ<0 and (2.63)

(2+N)(η−γ)+(N−1)(α−2γ)<0, (2.64)

then there is a positive number c= c(α,γ,N) such that

J(u)≥ c
∫

Ω

(∆uγ)2dx. (2.65)

Finally, we remark that it is possible to extend the inequality (1.4) to other types
of domains Ω. For example, if the boundary of Ω is C2, β= 1, and α=γ= 1

2 , a result
of [29] asserts that∫

Ω

∆u
∆
√
u√
u
dx≥ c0

(∫
Ω

|∇2
√
u|2dx+

∫
Ω

1

u
|∇
√
u|4dx

)
−c1

∫
Ω

udx (2.66)
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for u∈W 1
2
. Here the complication is largely due to the fact that (1.6) is no longer true

in this case. In its place, we have∫
Ω

(∆u)2dx+

∫
Ω

|∇u|2dx≥ c
∫

Ω

|∇2u|2dx. (2.67)

It is also interesting to pursue the case where the Neumann boundary condition is
replaced with the Dirichlet boundary condition.

3. The approximate problem
In this section we will show how to construct a sequence of positive, smooth approx-

imate solutions. Then we proceed to derive a priori estimates for the sequence that hold
under more general conditions than these in Theorems 1.1 and 1.2. Our approximation
scheme is based upon the following lemma.

Lemma 3.1. Let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω. Assume
that α≥1, ε∈ [0,1), n∈R, and

p>max

{
N

2
, 2

}
. (3.1)

Then for each 1>τ >0 and each f ∈L∞(Ω) there is a solution (ρ,F ) with ρ≥0 in the

space
(
W 1,2(Ω)∩L∞(Ω)

)2
to the problem

−div[(ρ+τ)n∇F ]+τF =
ρ−f
τ

in Ω, (3.2)

−∆ρα+τρp=− ρ1−ε

ρα−ε+τ
F +τ in Ω, (3.3)

∇ρα ·ν=∇F ·ν= 0 on ∂Ω. (3.4)

Furthermore, we have that ρ,F ∈C0,β(Ω) for some β∈ (0,1) and ρ≥ c0 in Ω for some
c0>0, where β,c0 depend on the given data.

Of course, the Equations (3.2)-(3.4) are satisfied in the sense of distributions. The
last term τ in (3.3) has been added to ensure that ρ cannot be identically 0. As we shall
see, it is also the main reason why ρ has a positive lower bound. This idea was first

employed in [28]. The real tricky part, though, is that we have used the term ρ1−ε

ρα−ε+τ

to approximate ρ1−α. That is, a term with a negative exponent is being approximated
by a term with two positive exponents. It serves two purposes: one is that we avoid
having to seek solutions in a function space whose functions must have positive lower
bounds; the other is that it ensures that solutions to (3.3) are non-negative. If our
solution is non-negative then the term τ in (3.3) guarantees that it is bounded away
from zero below. If we further assume that f is Hölder continuous on Ω, then the
classical Schauder theory [14] indicates that the pair (ρ,F ) is a classical solution. This,
together with the fact that ρ is bounded away from 0 below, enables us to achieve higher
regularity, thereby justifying all our calculations in the derivation of a priori estimates
for the sequence of approximate solutions to be constructed later.

Proof. We just need to modify the proof of Lemma 3.1 in [30]. We still apply
the Leray-Schauder fixed-point theorem (see Theorem 11.3 in [14]). For this purpose,
we define an operator B from L∞(Ω) into L∞(Ω) as follows. Given that ρ∈L∞(Ω), we
consider the problem

−div
[(
ρ+ +τ

)n∇F ]+τF =
ρ−f
τ

in Ω, (3.5)
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∇F ·ν= 0 on ∂Ω. (3.6)

Equation (3.5) is uniformly elliptic, and thus by (3.1) we can appeal to the results
in ([14], Chap. 8) and thereby conclude that this linear boundary value problem has a
unique solution F in the space W 1,2(Ω)∩L∞(Ω). For each q≥2, the function |F |q−2F ∈
W 1,2(Ω) and ∇

(
|F |q−2F

)
= (q−1)|F |q−2∇F . Upon using it as a test function in (3.5),

we arrive at

‖F‖q≤
1

τ2
‖ρ−f‖q . (3.7)

Now we use the function F so-obtained to form the problem

−∆ψ+τ |ψ|
p
α−1ψ=− (ρ+)1−ε

(ρ+)α−ε+τ
F +τ in Ω, (3.8)

∇ψ ·ν= 0 on ∂Ω. (3.9)

Obviously, this problem has a unique solution ψ in the space W 1,2(Ω)∩L∞(Ω). We
define

B(ρ) =θ(ψ), where θ(s) = |s| 1α−1s.

It is easy to see that B :L∞(Ω)→L∞(Ω) is well-defined. By Theorem 8.22 in [14]
and a boundary flattening argument [31] , we can conclude that there exists a number
β∈ (0,1), depending only on the given data, such that F,ψ∈C0,β(Ω). It is not difficult
to show that the Hölder continuity of ψ implies that B is continuous and maps bounded
sets into precompact ones.

Next, we show that

‖ρ‖∞≤ c (3.10)

for all σ∈ [0,1] and ρ such that σB(ρ) =ρ. Here and in the remaining proof, c is a generic
positive number which depends only on the given data. Without loss of generality,
assume σ>0. Then the equation σB(ρ) =ρ is equivalent to the problem

ρ−f
τ

=−div
[(
ρ+ +τ

)n∇F ]+τF in Ω, (3.11)

−∆θ−1(
ρ

σ
)+τ

∣∣∣θ−1(
ρ

σ
)
∣∣∣ pα−1

θ−1(
ρ

σ
) =− (ρ+)1−ε

(ρ+)α−ε+τ
F +τ in Ω, (3.12)

∇θ−1(
ρ

σ
) ·ν=∇F ·ν= 0 on ∂Ω. (3.13)

Remember that ε<1, and thus
(
θ−1( ρσ )

)−
(ρ+)1−ε= 0 on Ω. Upon using

(
θ−1( ρσ )

)−
as

a test function in (3.12), we deduce that ρ≥0 in Ω. Subsequently, we have

θ−1(
ρ

σ
) =

ρα

σα
.

We can rewrite (3.12) as

− 1

σα
∆ρα+

τ

σp
ρp=− ρ1−ε

ρα−ε+τ
F +τ in Ω. (3.14)
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Integrate this equation to obtain

τ

∫
Ω

ρpdx=−σp
∫

Ω

F
ρ1−ε

ρα−ε+τ
dx+τ |Ω|

≤ 1

τ

(
‖F‖ p

p+ε−1
+c
)
‖ρ‖1−εp +c

≤ c‖ρ‖2−εp +c‖ρ‖1−εp +c. (3.15)

The last step is due to the fact that p
p+ε−1 ≤p. A simple application of the interpolation

inequality

ab≤ηap+c(η)bq,
1

p
+

1

q
= 1

gives

‖ρ‖p≤ c.

In the sequel, we will not acknowledge this interpolation inequality again when it is
being used.

Obviously, ρ1−ε

ρα−ε+τ ≤
1
τ ρ

1−ε. Applying the proof of Theorem 8.15 in ([14], p.189),

we can derive from (3.11) and (3.14) that

‖F‖∞≤ c
∥∥∥∥ρ−fτ

∥∥∥∥
p

≤ c, (3.16)

‖ρα‖∞≤ c‖ρα‖2 +c‖ρ1−ε‖p≤ c. (3.17)

Note that the constant c here depends on τ , but not the upper bound of the elliptic
coefficient (ρ+τ)n in (3.11). This completes the proof of existence.

Next, we show

1

ρ
∈Ls(Ω) for each s≥1. (3.18)

To this end, we use 1
(ρ+δ)s , where δ>0, as a test function in (3.3) to obtain

−sα
∫

Ω

ρα−1|∇ρ|2

(ρ+δ)s+1
dx+τ

∫
Ω

ρp

(ρ+δ)s
dx=−

∫
Ω

ρ1−εF

(ρα−ε+τ)(ρ+δ)s
dx+τ

∫
Ω

1

(ρ+δ)s
dx.

Drop the first term and take a note of the fact that∣∣∣∣∫
Ω

ρ1−εF

(ρα−ε+τ)(ρ+δ)s
dx

∣∣∣∣≤ 1

τ

∫
Ω

ρ1−ε|F |
(ρ+δ)s

dx≤ c
∫

Ω

(ρ+δ)1−ε−sdx

to derive

τ

∫
Ω

1

(ρ+δ)s
dx≤ τ

∫
Ω

(ρ+δ)p−sdx+c

∫
Ω

(ρ+δ)1−ε−sdx.

Recall the interpretation inequality

c

∫
Ω

(ρ+δ)1−ε−sdx= c

∫
Ω

(
1

ρ+δ

)s−(1−ε)

dx≤ τ
2

∫
Ω

(
1

ρ+δ

)s
dx+c
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and thereby obtain ∫
Ω

1

(ρ+δ)s
dx≤ c

∫
Ω

(ρ+δ)p−sdx+c.

If s≤p, then we take δ→0 in the above inequality to obtain∫
Ω

1

ρs
dx≤ c

∫
Ω

ρp−sdx+c.

It is not difficult to see that these inequalities actually hold for each s>1, and thus
(3.18) follows.

Now we let v= 1
ρα+δ ,δ >0. Then we can easily show that v satisfies the boundary

value problem

−∆v+
2

v
|∇v|2 =

(
ρ1−ε

ρα−ε+τ
F −τ+τρp

)
v2≡G in Ω,

∇v ·ν= 0 on ∂Ω

in the sense of distributions. We can conclude from [14, 30] again that

‖v‖∞≤ c‖v‖2 +c‖G‖p≤ c.

The last step is due to (3.18). This completes the proof of Lemma 3.1.

If α<1, then our approximate problem can be made a little simpler. For the purpose
of comparison, we state the corresponding result in the following:

Lemma 3.2. Let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω. Assume
that α∈ (0,1), n∈R, and

p>max{N
2
, 2}. (3.19)

Then for each 1>τ >0 and each f ∈L∞(Ω) there is a solution (ρ,F ) with ρ≥0 in the

space
(
W 1,2(Ω)∩L∞(Ω)

)2
to the problem

−div[(ρ+τ)n∇F ]+τF =
ρ−f
τ

in Ω, (3.20)

−∆ρα+τρp=−Fρ1−α+τ in Ω, (3.21)

∇ρα ·ν=∇F ·ν= 0 on ∂Ω. (3.22)

Furthermore, we have that ρ,F ∈C0,β(Ω) for some β∈ (0,1) and ρ≥ c0 in Ω for some
c0>0, where β,c0 depend on the given data.

The proof is similar to that of the previous lemma.
We are ready to construct our approximate solutions. Let T >0 be given. We divide

the time interval [0,T ] into j equal subintervals, j∈{1,2, ·· ·}. Set

τ =
T

j
.

We discretize and regularize the system (1.1)-(1.3) as follows. For k= 1,·· · ,j, solve
recursively the systems

ρk−ρk−1

τ
=−div[(ρk+τ)n∇Fk]+τFk in Ω, (3.23)
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−∆ραk +τρpk =− (ρk)1−ε

(ρk)α−ε+τ
Fk+τ in Ω, (3.24)

∇ραk ·ν=∇Fk ·ν= 0 on ∂Ω, (3.25)

ρ0(x) =u0(x). (3.26)

Define the functions

ũj(x,t) = (t− tk−1)
ρk(x)−ρk−1(x)

τ
+ρk−1(x), x∈Ω, t∈ (tk−1,tk],

uj(x,t) =ρk(x), x∈Ω, t∈ (tk−1,tk],

F j(x,t) =Fk(x), x∈Ω, t∈ (tk−1,tk],

We can rewrite the system (3.23)-(3.26) as

∂ũj
∂t

=−div
[
(uj+τ)n∇F j

]
+τF j in ΩT , (3.27)

−∆uαj +τupj =− (uj)
1−ε

(uj)α−ε+τ
F j+τ in ΩT , (3.28)

∇uαj ·ν=∇F j ·ν= 0 on ΣT , (3.29)

uj(x,0) =u0(x) on Ω. (3.30)

Lemma 3.3. Let ε∈ [0, 4
5 ) be given as in Corollary 2.2. Assume that α∈ [1, 3

2 ),n∈
(0,2−ε), and p>max{N2 ,2}. Then there is a τ0∈ (0,1) such that∫

Ωt

(∆uαj )2dxds+τ

∫
Ωt

|∆u
α+ε
2

j |2dxds

+τ

∫
Ωt

up+α−2
j |∇uj |2dxds+τ2

∫
Ωt

up+ε−2
j |∇uj |2dxds

+τ

∫
Ωt

uα−2
j |∇uj |2dxds+τ2

∫
Ωt

uε−2
j |∇uj |2dxds

+ max
0≤t≤T

∫
Ω

G(uj(x,t))dx≤ c (3.31)

for all τ ∈ (0,τ0), where

G(s) =

 s if n>1,
s2−n if n<1,
s lns−s if n= 1.

(3.32)

Here and in what follows c denotes a positive constant independent of j.

By the proof of Corollary 2.2, we can take ε= 0 if N ≤4. Thus in this case n∈ (0,2).

Proof. For r∈ [0,∞) we define

K(r) =

∫ r

1

1

(s+τ)n
ds=

{
1

1−n
[
(r+τ)1−n−(1+τ)1−n] if n 6= 1,

ln(s+τ)− ln(1+τ) if n= 1.
(3.33)

We use K(ρk) as a test function in (3.23) to obtain∫
Ω

Fk∆ρkdx−τ
∫

Ω

FkK(ρk)dx+
1

τ

∫
Ω

(ρk−ρk−1)K(ρk)dx= 0. (3.34)
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We proceed to estimate each integral in the above equation. For this purpose, we solve
(3.24) for Fk to yield

Fk =ρα−1
k ∆ραk +τρε−1

k ∆ραk −τρ
p+α−1
k −τ2ρp+ε−1

k +τρα−1
k +τ2ρε−1

k . (3.35)

This can be done because ρk is bounded away from 0 below. Observe

1

τ

∫
Ω

(ρk−ρk−1)K(ρk)dx≥ 1

τ

∫
Ω

∫ ρk

ρk−1

K(r)drdx. (3.36)

This is due to the fact that K(r) is an increasing function on [0,∞). Substituting (3.35)
into the first integral in (3.34) gives∫

Ω

Fk∆ρkdx=

∫
Ω

∆ρkρ
α−1
k ∆ραkdx+τ

∫
Ω

∆ρkρ
ε−1
k ∆ραkdx

+(p+α−1)τ

∫
Ω

ρp+α−2
k |∇ρk|2dx+(p+ε−1)τ2

∫
Ω

ρp+ε−2
k |∇ρk|2dx

−(α−1)τ

∫
Ω

ρα−2
k |∇ρk|2dx−(ε−1)τ2

∫
Ω

ρε−2
k |∇ρk|2dx. (3.37)

By Corollaries 2.1 and 2.2, we have∫
Ω

ρα−1
k ∆ραk∆ρk≥ c

∫
Ω

(∆ραk )2dx, (3.38)∫
Ω

ρε−1
k ∆ραk∆ρk≥ c

∫
Ω

(∆ρ
α+ε
2

k )2dx. (3.39)

If α>1, then the coefficient of the sixth integral in (3.37) is negative. To address this
issue, we compute the integral as follows:∫

Ω

ρα−2
k |∇ρk|2dx=

∫
Ω

|ρ
α
2−1

k ∇ρk|2dx

=
4

α2

∫
Ω

|∇ρ
α
2

k |
2dx

≤ δ

τ

∫
Ω

|∇ρ
α
2

k |
4dx+τc(δ)

≤ 9δ

16τ

∫
Ω

|∆ραk |2dx+c(δ), (3.40)

where δ is a positive number. Using (3.38)-(3.40) in (3.37) and choosing δ suitably
small, we obtain∫

Ω

Fk∆ρkdx≥ c
∫

Ω

(∆ραk )2dx+cτ

∫
Ω

(∆ρ
α+ε
2

k )2dx

+(p+α−1)τ

∫
Ω

ρp+α−2
k |∇ρk|2dx+(p+ε−1)τ2

∫
Ω

ρp+ε−2
k |∇ρk|2dx

+(1−ε)τ2

∫
Ω

ρε−2
k |∇ρk|2dx−c. (3.41)

Plugging (3.35) into the second integral in (3.34) yields

−τ
∫

Ω

FkK(ρk)dx=−τ
∫

Ω

(ρα−1
k +τρε−1

k )K(ρk)∆ραkdx
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+τ2

∫
Ω

(ρp+α−1
k +τρp+ε−1

k −ρα−1
k −τρε−1

k )K(ρk)dx

≡ I1,k+I2,k. (3.42)

A simple integration by parts enables us to represent I1,k in the form

I1,k =ατ

∫
Ω

((α−1)ρα−εk −(1−ε)τ)K(ρk)ρα+ε−3
k |∇ρk|2dx

+ατ

∫
Ω

ρα−εk +τ

(ρk+τ)n
ρα+ε−2
k |∇ρk|2dx. (3.43)

We first consider the case where

α>1. (3.44)

Set

bτ ≡
(

1−ε
α−1

) 1
α−ε

τ
1

α−ε . (3.45)

Then we can choose τ0∈ (0,1) so that

bτ0 <1. (3.46)

From here on, we assume that

τ ≤ τ0. (3.47)

Recall from the definition of K(r) that

K(r)(r−1)≥0 on [0,∞). (3.48)

We can easily deduce that the integrand of the first integral in (3.43) is non-positive
only on the set

Ak ={x∈Ω : bτ ≤ρk(x)≤1}.

On this set, we have

−K(ρk) =

∫ 1

ρk

1

(s+τ)n
ds≤

∫ 1

ρk

1

sn
d≤


ρ1−nk

n−1 if n>1,

−lnρk if n= 1,
1

1−n if n<1.

Our assumptions on α,n,ε imply that

ρ2α−n−ε
k ≤1 on Ak, and (3.49)

τρ
−(α−ε)
k ≤ c on Ak (3.50)

Keeping these in mind, we calculate, for n>1, that

I1,k≥ατ
∫
Ak

((α−1)ρα−εk −(1−ε)τ)K(ρk)ρα+ε−3
k |∇ρk|2dx



JIAN-GUO LIU AND XIANGSHENG XU 1931

≥α(α−1)τ

∫
Ak

K(ρk)ρ2α−3
k |∇ρk|2dx

≥−cτ
∫
Ak

ρ2α−2−n
k |∇ρk|2dx

≥−c
∫
Ak

ρ3α−2−n−ε
k |∇ρk|2dx

≥−c
∫
Ak

ρ2α−n−ε
k |∇ρ

α
2

k |
2dx

≥−δ
∫

Ω

|∇ρ
α
2

k |
4dx−c(δ)

≥−δ
∫

Ω

(∆ραk )2dx−c(δ), (3.51)

where δ>0. The above inequality still holds if n≤1. Thus if δ is sufficiently small, this
term can be incorporated into the second integral in (3.41).

If α= 1, then we can express I1,k in the form

I1,k = τ

∫
Ω

[
−(1−ε)τK(ρk)+

ρk(ρ1−ε
k +τ)

(ρk+τ)n

]
ρε−2
k |∇ρk|2dx. (3.52)

Set

Bk ={x∈Ω :ρk(x)≥1}.

On the set Bk, we have

K(ρk)≤


1

n−1 if n>1,

lnρk if n= 1,
1

1−nρ
1−n
k if n<1.

Furthermore, there holds

ρε−n−1
k ≤ρp−1

k on Bk.

For n<1, we estimate

I1,k≥−(1−ε)τ2

∫
Ω

K(ρk)ρε−2
k |∇ρk|2dx

≥−cτ2

∫
Bk

ρε−1−n
k |∇ρk|2dx

≥−cτ2

∫
Ω

ρp−1
k |∇ρk|2dx. (3.53)

In view of the coefficient of the fourth integral in (3.41), we just need to impose a further
condition

cτ0<p, (3.54)

where c is the same as the one in the last line of (3.53). Then the fourth term in (3.41)
can absorb the term on the right-hand side of (3.53). The case where n≥1 can be
handled in a similar manner.
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We can express I2,k in the form

I2,k = τ2

∫
Ω

K(ρk)ρε−1
k (ρα−εk +τ)(ρpk−1)dx. (3.55)

The integrand in the above integral is always non-negative.
Summarizing our preceding estimates, we obtain∫

Ω

(∆ραk )2dx+τ

∫
Ω

(∆ρ
α
2

k )2dx

+τ

∫
Ω

ρp+α−2
k |∇ρk|2dx+τ2

∫
Ω

ρp+ε−2
k |∇ρk|2dx

+τ

∫
Ω

ρα−2
k |∇ρk|2dx+τ2

∫
Ω

ρε−2
k |∇ρk|2dx+

1

τ

∫
Ω

∫ ρk

ρk−1

K(r)drdx≤ c (3.56)

for τ ∈ (0,τ0). Multiplying through this inequality by τ and summing up over k, we
obtain ∫

Ωt

(∆uαj )2dxds+τ

∫
Ωt

(∆u
α
2
j )2dxds

+τ

∫
Ωt

up+α−2
j |∇uj |2dxds+τ2

∫
Ωt

up+ε−2
j |∇uj |2dxds

+τ

∫
Ωt

uα−2
j |∇uj |2dxds+τ2

∫
Ωt

uε−2
j |∇uj |2dxds+

∫
Ω

∫ uj

u0

K(r)drdx≤ c (3.57)

for τ ∈ (0,τ0). By the definition of K(r), we have∫ uj

u0

K(r)dr=

∫ 1

u0

K(r)dr+

∫ uj

1

K(r)dr

≥

{
(uj+τ)2−n

(1−n)(2−n)−
(1+τ)1−nuj

1−n −c if n 6= 1,

(uj+τ)ln(uj+τ)−(1+ln(1+τ))uj−c if n= 1.
(3.58)

Here the fact that the second integral in (3.58) is bounded is due to our assumptions
on u0. The rest is rather obvious. The proof is complete.

Lemma 3.4. Let the assumptions of Lemma 3.3 hold. Then we have∫
Ωt

uα−1
j (∆uαj )2dxds+τ

∫
Ωt

uε−1
j (∆uαj )2dxds

+τ

∫
Ωt

up+2α−3
j |∇ρk|2dxds+τ2

∫
Ωt

up+ε+α−3
j |∇uj |2dxds

+τ2

∫
Ωt

uα+ε−3
j |∇uj |2dxds+ max

0≤t≤T

∫
Ω

u
1+(α−n)+

j (x,t)dx≤ c. (3.59)

Proof. Here we use a different test function. Let

L(r) =

∫ r

1

αsα−1

(s+τ)n
ds. (3.60)

Then use L(ρk) as a test function in (3.23) to obtain

−
∫

Ω

∇Fk ·∇ραkdx−τ
∫

Ω

FkL(ρk)dx+
1

τ

∫
Ω

(ρk−ρk−1)L(ρk)dx= 0. (3.61)
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The first integral in the above equation is equal to∫
Ω

Fk∆ραkdx=

∫
Ω

ρα−1
k (∆ραk )2dx+τ

∫
Ω

ρε−1
k (∆ραk )2dx

+(p+α−1)ατ

∫
Ω

ρp+2α−3
k |∇ρk|2dx

+(p+ε−1)ατ2

∫
Ω

ρp+ε+α−3
k |∇ρk|2dx

−(α−1)ατ

∫
Ω

ρ2α−3
k |∇ρk|2dx−(ε−1)ατ2

∫
Ω

ρα+ε−3
k |∇ρk|2dx. (3.62)

Owing to Lemma 2.4, for each α∈ [1, 5
3 ) there is a positive number c with the property∫

Ω

ρα−1
k (∆ραk )2dx≥ c

∫
Ω

(∆ρ
3α−1

2

k )2dx. (3.63)

If α>1, then the coefficient of the sixth integral in (3.62) is negative. We will use (3.63)
to deal with the term. To do this, we estimate∫

Ω

ρ2α−3
k |∇ρk|2dx=

∫
Ω

ρ
α−1
2

k ρ
3α−5

2

k |∇ρk|2dx

≤ δ

τ

∫
Ω

ρ3α−5
k |∇ρk|4dx+τc(δ)

∫
Ω

ρα−1
k

=
44δ

(3α−1)4τ

∫
Ω

|∇ρ
3α−1

4

k |4dx+τc(δ)

∫
Ω

ρα−1
k dx

≤ 144δ

(3α−1)4τ

∫
Ω

|∆ρ
3α−1

2

k |2dx+c(δ)

∫
Ω

ρα−1
k dx

≤ cδ
τ

∫
Ω

ρα−1
k (∆ραk )2dx+c(δ)

∫
Ω

ρα−1
k dx, (3.64)

where δ is a positive number. Using (3.63)-(3.64) in (3.62) and choosing δ suitably
small, we obtain∫

Ω

Fk∆ραkdx≥ c
∫

Ω

ρα−1
k (∆ραk )2dx+cτ

∫
Ω

ρε−1
k (∆ραk )2dx

+(p+α−1)ατ

∫
Ω

ρp+2α−3
k |∇ρk|2dx

+(p+ε−1)ατ2

∫
Ω

ρp+ε+α−3
k |∇ρk|2dx

+(1−ε)ατ2

∫
Ω

ρα+ε−3
k |∇ρk|2dx−c

∫
Ω

ρα−1
k . (3.65)

Plugging (3.35) into the second integral in (3.61) yields

−τ
∫

Ω

FkL(ρk)dx=−τ
∫

Ω

(ρα−1
k +τρε−1

k )L(ρk)∆ραkdx

+τ2

∫
Ω

(ρp+α−1
k +τρp+ε−1

k −ρα−1
k −τρε−1

k )L(ρk)dx

≡J1,k+J2,k. (3.66)
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The term J1,k can be written in the form

J1,k =ατ

∫
Ω

((α−1)ρα−εk −(1−ε)τ)L(ρk)ρα+ε−3
k |∇ρk|2dx

+α2τ

∫
Ω

ρα−εk +τ

(ρk+τ)n
ρ2α+ε−3
k |∇ρk|2dx. (3.67)

If α>1, we can define Ak,bτ as before. Note that the integrand of the first integral in
(3.67) is non-positive only on the set Ak. For x∈Ak, we have

−L(ρk) =

∫ 1

ρk

αsα−1

(s+τ)n
ds≤

∫ 1

ρk

αsα−n−1ds≤


α

α−n if α>n,

−α lnρk if α=n,
α

α−nρ
α−n
k if α<n.

(3.68)

If α<n, we have

J1,k≥ατ
∫
Ak

((α−1)ρα−εk −(1−ε)τ)L(ρk)ρα+ε−3
k |∇ρk|2dx

≥α(α−1)τ

∫
Ak

L(ρk)ρ2α−3
k |∇ρk|2dx

≥−cτ
∫
Ak

ρ3α−3−n
k |∇ρk|2dx

≥−c
∫
Ak

ρ4α−3−n−ε
k |∇ρk|2dx

≥−c
∫
Ak

ρ
5α−1

2 −n−ε
k |∇ρ

3α−1
4

k |2dx

≥−δ
∫

Ω

|∇ρ
3α−1

4

k |4dx−c(δ)

≥−δ
∫

Ω

(∆ρ
3α−1

2

k )2dx−c(δ)

≥−δ
∫

Ω

ρα−1
k (∆ραk )2dx−c(δ), (3.69)

where δ>0. Thus J1,k can be absorbed into the second integral in (3.65) if δ is small.
If α≥n, a similar argument can be made.

If α= 1, then we can express J1,k in the form

J1,k = τ

∫
Ω

[
−(1−ε)τL(ρk)+

ρk(ρ1−ε
k +τ)

(ρk+τ)n

]
ρε−2
k |∇ρk|2dx. (3.70)

Let Bk ={x∈Ω :ρk(x)≥1} be given as before. On the set Bk, we have

L(ρk)≤


1

n−1 if n>1,

lnρk if n= 1,
1

1−nρ
1−n
k if n<1.

Furthermore, there holds

ρε−n−1
k ≤ρp−1

k on Bk.
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For n<1, we estimate

J1,k≥−(1−ε)τ2

∫
Ω

L(ρk)ρε−2
k |∇ρk|2dx

≥−cτ2

∫
Bk

ρε−1−n
k |∇ρk|2dx

≥−cτ2

∫
Ω

ρp−1
k |∇ρk|2dx. (3.71)

In view of the coefficient of the fourth integral in (3.65), we just need to impose a further
condition

cτ0<p, (3.72)

where c is the same as the one in the last line of (3.71). The case where n≥1 can be
handled in a similar manner.

We can express J2,k in the form

J2,k = τ2

∫
Ω

L(ρk)ρε−1
k (ρα−εk +τ)(ρpk−1)dx. (3.73)

The integrand in the above integral is always non-negative. If n>1 and α 6=n, we have

L(r) =

∫ r

1

αsα−1

(s+τ)n
ds

=

∫ r

1

αsα−1d
(s+τ)1−n

1−n

=
α(1+τ)1−n

n−1
− α

n−1
rα−1(r+τ)1−n+

α(α−1)

n−1

∫ r

1

sα−2

(s+τ)n−1
ds

≥

{
α

α−n (r+τ)α−n+ α(1+τ)1−n(α−n)−α(α−1)(1+τ)α−n

(n−1)(α−n) if r>1,
α

α−nr
α−n+ α(1+τ)1−n(α−n)−α(α−1)

(n−1)(α−n) if r≤1.
(3.74)

Similarly, if n>1 and α=n, we have

L(r)≥

{
n ln r+τ

1+τ + n((1+τ)1−n−1)
n−1 if r>1,

n lnr+ n((1+τ)1−n−1)
n−1 if r≤1.

(3.75)

Thus we always have ∫
Ω

∫ uj

u0

L(r)drdx≥ c
∫

Ω

u
1+(α−n)+

j dx−c,

where uj =uj(x,t), provided that n>1. It is not difficult to see the same inequality
holds for n≤1.

Collecting all the previous estimates in (3.61), we arrive at∫
Ω

(∆ρ
3α−1

2

k )2dx+τ

∫
Ω

ρε−1
k (∆ραk )2dx

+τ

∫
Ω

ρp+2α−3
k |∇ρk|2dx+τ2

∫
Ω

ρp+ε+α−3
k |∇ρk|2dx
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+τ2

∫
Ω

ρα+ε−3
k |∇ρk|2dx+

1

τ

∫
Ω

∫ ρk

ρk−1

L(r)drdx

≤ c
∫

Ω

ρα−1
k dx+c. (3.76)

Multiply through the inequality by τ , note that 0≤α−1<1, and sum up over k to
obtain the desired result. The proof is complete.

Lemma 3.5. Let the assumptions of Lemma 3.3 hold. Then the sequence {uαj } is
bounded in L2(0,T ;W 2,2(Ω)).

Proof. Note that

∇uj =
2

α
u

2−α
2

j ∇u
α
2
j .

We calculate∫
Ω

|∇uj |
αN
α+N dx=

(
2

α

) αN
α+N

∫
Ω

u
(2−α)αN
2(α+N)

j |∇u
α
2
j |

αN
α+N dx

≤ c
(∫

Ω

u
2(2−α)αN

4(α+N)−αN
j

)1− αN
4(α+N)

(∫
Ω

|∇u
α
2
j |

4dx

) αN
4(α+N)

≤ c
(∫

Ω

|∆uαj |2dx
) αN

4(α+N)

. (3.77)

The last step is due to the fact that

2(2−α)αN

4(α+N)−αN
≤1.

On account of the Sobolev embedding theorem, we have(∫
Ω

uαj dx

) 1
α

≤ c
(∫

Ω

|∇uj |
αN
α+N dx

)α+N
αN

+c

∫
Ω

ujdx

≤ c
(∫

Ω

|∆uαj |2dx
) 1

4

+c. (3.78)

Consequently, there holds ∫ T

0

(∫
Ω

uαj dx

) 4
α

dt≤ c. (3.79)

Recall the interpolation inequality∫
Ω

|∇uαj |2dx≤ c
∫

Ω

|∇2uαj |2dx+c

(∫
Ω

uαj dx

)2

.

This, together with the fact that α∈ [1, 3
2 ), implies the desired result.

Lemma 3.6. Let the assumptions of Lemma 3.3 hold. Then we have

τ

∫
ΩT

u
p+2α−1+((α−n)++1) 2

N
j dxdt≤ c.
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Proof. By the Sobolev inequality, we estimate, for α>n, that∫
ΩT

u
p+2α−1+(α−n+1) 2

N
j dxdt≤ c

∫ T

0

(∫
Ω

u
p+2α−1

2
2N
N−2

j dx

)N−2
N
(∫

Ω

uα−n+1
j dx

) 2
N

dt

≤ c
(∫

ΩT

|∇u
p+2α−1

2
j |2dxdt+

∫
ΩT

up+2α−1
j dxdt

)
·
(

sup
0≤t≤T

∫
Ω

uα−n+1
j dx

) 2
N

≤ c
(∫

ΩT

up+2α−3
j |∇uj |2dxdt+

∫
ΩT

up+2α−1
j dxdt

)
≤ c
∫

ΩT

up+2α−3
j |∇uj |2dxdt

+δ

∫
ΩT

u
p+2α−1+(α−n+1) 2

N
j dxdt+c.

Choosing δ suitably small yields∫
ΩT

u
p+2α−1+(α−n+1) 2

N
j dxdt≤ c

∫
ΩT

up+2α−3
j |∇uj |2dxdt+c.

If α≤n, we have ∫
ΩT

u
p+2α−1+ 2

N
j dxdt≤ c

∫
ΩT

up+2α−3
j |∇uj |2dxdt+c. (3.80)

Multiplying through the inequality by τ and taking a note of Lemma 3.3 give the desired
result.

4. Proof of Theorem 1.1
The proof is divided into several lemmas.

Lemma 4.1. Let the assumptions of Lemma 3.3 hold. If n≥1, then τF j→0 strongly
in L1(ΩT ).

Proof. Recall that

τF j = τuα−1
j ∆uαj +τ2uε−1

j ∆uαj −τ2up+α−1
j −τ3up+ε−1

j +τ2uα−1
j +τ3uε−1

j . (4.1)

We will show that each term on the right-hand side of the above equation tends to 0
strongly in L1(ΩT ) as τ→0. We begin with the last term. For this purpose, assume
τ ≤ τ0, where τ0 is given as in Lemma 3.3. Set

I2,j = τ2

∫
ΩT

K(uj)u
ε−1
j (uα−εj +τ)(upj −1)dxdt.

By the proof of Lemma 3.3, we have

I2,j≤ c. (4.2)

Let

Aj ={(x,t)∈ΩT :uj(x,t)≤1}, Bj = ΩT \Aj .
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Then we can rewrite (4.2) as

τ2

∫
Bj

K(uj)u
p+α−1
j dxdt+τ3

∫
Bj

K(uj)u
p+ε−1
j dxdt

−τ2

∫
Aj

K(uj)u
α−1
j dxdt−τ3

∫
Aj

K(uj)u
ε−1
j dxdt

≤−τ2

∫
Aj

K(uj)u
p+α−1
j dxdt−τ3

∫
Aj

K(uj)u
p+ε−1
j dxdt

+τ2

∫
Bj

K(uj)u
α−1
j dxdt+τ3

∫
Bj

K(uj)u
ε−1
j dxdt+c. (4.3)

On the set Bj , we have

K(uj)≤
{

1
n−1 if n>1,

lnuj if n= 1,
(4.4)

while on the set Aj , there holds

−K(uj)≤
{

1
n−1u

1−n
j if n>1,

−lnuj if n= 1.
(4.5)

We wish to show that the right-hand side of (4.3) is bounded. If n>1, we have

−τ2

∫
Aj

K(uj)u
p+α−1
j dxdt≤ τ2

n−1

∫
Aj

up+α−nj dxdt≤ cτ2. (4.6)

The last step is due to the fact that p+α−n≥0. The second integral on the right-hand
side of (4.3) can be handled in an entirely similar way. The third one there can be
estimated as follows:

τ2

∫
Bj

K(uj)u
α−1
j dxdt≤ cτ2

∫
Bj

uαj dxdt≤ cτ2. (4.7)

Here we have used Lemma 3.5 and the fact that lnuj≤uj on the set Bj . As for the last
integral, remember that ε−1<0. Hence uε−1

j ≤1 on Bj . Subsequently, we have

τ3

∫
Bj

K(uj)u
ε−1
j dxdt≤ cτ3

∫
Bj

ujdxdt≤ cτ3. (4.8)

Now we can conclude that

−τ3

∫
Aj

K(uj)u
ε−1
j dxdt≤ c. (4.9)

This implies

τ3

∫
ΩT

uε−1
j dxdt→0 as τ→0. (4.10)

To see this, we calculate

τ3

∫
ΩT

uε−1
j dxdt= τ3

∫
{uj≤τ}

uε−1
j dxdt+τ3

∫
{uj>τ}

uε−1
j dxdt (4.11)



JIAN-GUO LIU AND XIANGSHENG XU 1939

≤ 1

|K(τ)|
τ3

∫
{uj≤τ}

|K(ρk)|uε−1
j dxdt+cτ2+ε (4.12)

≤ c

|K(τ)|
+cτ2+ε→0 as τ→0. (4.13)

Our assumption that n≥1 is made just to ensure that |K(τ)|→∞ as τ→0.
We can derive from Lemma 3.3 that∫

ΩT

τuα−1
j |∆uαj |dxdt≤

(∫
ΩT

τ2u2α−2
j dxdt

) 1
2
(∫

ΩT

(∆uαj )2dxdt

) 1
2

≤ cτ (4.14)

because 2α−2<1. With the aid of Lemma 3.4, we obtain∫
ΩT

τ2uε−1
j |∆uαj |dxdt ≤

(∫
ΩT

τ3uε−1
j dxdt

) 1
2
(
τ

∫
ΩT

uε−1
j (∆uαj )2dxdt

) 1
2

≤ c
(∫

ΩT

τ3uε−1
j dxdt

) 1
2

→0. (4.15)

We deduce from Lemma 3.5 that∫
ΩT

τ2up+α−1
j dxdt=

∫
{uj≤1}

τ2up+α−1
j dxdt+

∫
{uj>1}

τ2up+α−1
j dxdt

≤ cτ2 +

∫
{uj>1}

τ2u
p+2α−1+((α−n)++1) 2

N
j dxdt

≤ cτ2 +cτ→0 as τ→0. (4.16)

Similarly, we can show that τ3
∫

ΩT
up+ε−1
j dxdt→0 as ε→0. This completes the proof.

Lemma 4.2. Let the assumptions of Lemma 4.1 hold. If n≤1+ σ
4 , then the sequence

{∂tũj} is bounded in L1((0,T );(W 2,∞(Ω))∗), where σ is given as in (1.14).

Proof. We first claim that ∫
ΩT

uσ+2α
j dxdt≤ c. (4.17)

This estimate is a consequence of Lemmas 3.3 and 3.5. Indeed, Lemma 3.3 says that
uj(x,t) is bounded in L∞(0,T ;L1(Ω)), while Lemma 3.5 asserts that uαj (x,t) is bounded

in L2(0,T ;W 2,2(Ω)). If N >4, then we have from (1.14) that σ= 4
N <1. We estimate

from Hölder’s inequality and the Sobolev embedding theorem that∫
ΩT

u
4
N +2α
j dxdt=

∫ T

0

(∫
Ω

ujdx

) 4
N
(∫

Ω

u
α 2N
N−4

j dx

)N−4
N

dt

≤
(

max
0≤t≤T

∫
Ω

ujdx

) 4
N
∫ T

0

(∫
Ω

u
α 2N
N−4

j dx

)N−4
N

dt

≤ c
∫ T

0

‖uαj ‖2W 2,2(Ω)dt≤ c. (4.18)
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If N = 4, then σ∈ (0,1) according to (1.14). Subsequently,∫
ΩT

uσ+2α
j dxdt≤

(
max

0≤t≤T

∫
Ω

ujdx

)σ∫ T

0

(∫
Ω

u
α 2

1−σ
j dx

)1−σ

dt

≤ c
∫ T

0

‖uαj ‖2
W

2, 2
2−σ (Ω)

dt≤ c. (4.19)

The last step is due to 2
2−σ <2. If N <4, then σ= 1 by (1.14). Consequently, we have∫

ΩT

u1+2α
j dxdt≤

∫ T

0

∫
Ω

ujdx‖uαj ‖2∞dt

≤ c
∫ T

0

(
‖∇2uαj ‖22 +‖uαj ‖22

)
dt≤ c. (4.20)

This completes the proof of (4.17).
Recall that

(uj+τ)n−1∇ujF j =uα−1
j (uj+τ)n−1∇uj∆uαj +τuε−1

j (uj+τ)n−1∇uj∆uαj
−τup+α−1

j (uj+τ)n−1∇uj−τ2up+ε−1
j (uj+τ)n−1∇uj

+τuα−1
j (uj+τ)n−1∇uj+τ2uε−1

j (uj+τ)n−1∇uj . (4.21)

Our objective here is to show that each term on the right-hand side of the above equation
is bounded in (L1(ΩT ))N . To this end, we note

(uj+τ)n−1≤un−1
j +τn−1

since n−1<1. By our assumption, 0<−α+4n−1≤2α+σ. We compute∫
ΩT

uα+n−2
j |∇uj∆uαj |dxdt=

4

3α−1

∫
ΩT

u
−α4 +n− 1

4
j |∇u

3α−1
4

j |u
α−1
2

j |∆uαj |dxdt

≤ c
(∫

ΩT

u−α+4n−1
j dxdt

) 1
4
(∫

ΩT

|∇u
3α−1

4
j |4dxdt

) 1
4

·
(∫

ΩT

uα−1
j |∆uαj |2dxdt

) 1
2

≤ c. (4.22)

There are too many terms on the right-hand side of (4.21), and so we will skip the
obvious ones. Now we look at the second term on the right-hand side of (4.21). We
have

τ

∫
ΩT

uε+n−2
j |∇uj∆uαj |dxdt

=
4

α+ε

∫
ΩT

τ
1
4u

ε
4−

α
4 +n− 1

2
j τ

1
4 |∇u

α+ε
4

j |τ 1
2u

ε−1
2

j |∆uαj |dxdt

≤ c
(∫

ΩT

τuε−α+4n−2
j dxdt

) 1
4
(∫

ΩT

τ |∇u
α+ε
4

j |4dxdt
) 1

4

·
(∫

ΩT

τuε−1
j |∆uαj |2dxdt

) 1
2

≤ cτ 1
4 . (4.23)
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Here we have used the fact that 0<ε−α+4n−2≤2α+σ. Next we estimate

τ

∫
ΩT

up+α+n−2
j |∇uj |dxdt≤

(∫
ΩT

τup+α−2
j |∇uj |2dxdt

) 1
2
(∫

ΩT

τup+α−2+2n
j dxdt

) 1
2

≤ c. (4.24)

The last step is due to Lemma 3.6 because n≤1+ σ
4 . The rest of the terms can be

estimated similarly.
We still need to consider the term

(uj+τ)nF j =uα−1
j (uj+τ)n∆uαj +τuε−1

j (uj+τ)n∆uαj

−τup+α−1
j (uj+τ)n−τ2up+ε−1

j (uj+τ)n

+τuα−1
j (uj+τ)n+τ2uε−1

j (uj+τ)n. (4.25)

It is easy to see that it is also bounded in L1(ΩT ). Let ξ be a C∞ test function with
∇ξ ·ν= 0 on ∂Ω. We have

(∂tũj ,ξ) =

∫
Ω

(uj+τ)n∇F j ·∇ξdx+τ

∫
Ω

F jξdx

=−
∫

Ω

F j
(
n(uj+τ)n−1∇uj ·∇ξ+(uj+τ)n∆ξ

)
dx+τ

∫
Ω

F jξdx, (4.26)

where (·, ·) is the duality pairing between W 2,∞(Ω) and its dual space (W 2,∞(Ω))∗, from
which the lemma follows.

Lemma 4.3. Let the assumptions of Lemma 4.2 hold. Then the sequence {uj} is
precompact in L2α((0,T );L2α(Ω)).

Proof. Set

q=
8α+4σ

4+σ
,

where σ is given as before. By our assumption on α, we obviously have q>2α. We
estimate that∫

ΩT

|∇uj |qdxdt=
2q

αq

∫
ΩT

u
(2−α)q

2
j |∇u

α
2
j |
qdxdt

≤ c
(∫

ΩT

|∇u
α
2
j |

4dxdt

) q
4
(∫

ΩT

u
2(2−α)q

4−q
j dxdt

)1− q4
.

Note that 2(2−α)q
4−q = 2α+σ. Therefore, we obtain from (4.17)∫

ΩT

|∇uj |qdxdt≤ c. (4.27)

We can easily deduce from the definitions of uj ,ũj that∫
ΩT

|ũj |2αdxdt≤
∫

ΩT

|uj |2αdxdt+
1

2
τ

∫
Ω

|u0|2αdx, (4.28)∫
ΩT

|∇ũj |2αdxdt≤
∫

ΩT

|∇uj |2αdxdt+
1

2
τ

∫
Ω

|∇u0|2αdx. (4.29)
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Thus {ũj} is bounded in L2α((0,T );W 1,2α(Ω)). Note that for t∈ (tk−1,tk] we have

ũj(x,t)−uj(x,t) = (tk− t)∂tũj(x,t).

This together with Lemma 4.2 implies that∫ T

0

‖uj− ũj‖(W 2,∞(Ω))∗dt≤ cτ. (4.30)

Observe that the embeddingW 1,2α(Ω) ↪→L2α(Ω) is compact and L2α(Ω) ↪→
(
W 2,∞(Ω)

)∗
is continuous. A result of [26] asserts that {ũj} is precompact in both L2α((0,T );L2α(Ω))
and L1((0,T );(W 2,∞(Ω))∗). According to (4.30), we also have that {uj} is precompact
in L1((0,T );(W 2,∞(Ω))∗). This puts us in a position to apply the results in [26] again,
from which the lemma follows. The proof is complete.

We are ready to complete the proof of Theorem 1.1. We can extract a subsequence
of {j}, still denoted by {j}, such that

uj→u strongly in L2α(ΩT ) and a.e., (4.31)

uαj ⇀uα weakly in L2((0,T );W 2,2(Ω)). (4.32)

Equipped with this, we calculate that∫
ΩT

|∇uαj |2dxdt=−
∫

ΩT

∆uαj u
α
j dxdt→−

∫
ΩT

∆uαuαdxdt=

∫
ΩT

|∇uα|2dxdt. (4.33)

This implies that

uαj →uα strongly in L2((0,T );W 1,2(Ω)). (4.34)

Without loss of generality, we may also assume

∇uαj →∇uα a.e. on ΩT . (4.35)

Note that α≥1 and ∇uj = 1
αu

α−1
j ∇uαj . This along with (4.31) shows

∇uj→∇u a.e. on ΩT . (4.36)

Next we wish to prove

(uj+τ)n−1F j∇uj⇀
2

α
u
α
2 +n−1∆uα∇uα2 weakly in L1(ΩT ). (4.37)

This can be derived from the proof of Lemma 4.2. To see this, first observe that

uα+n−2
j ∇uj→uα+n−2∇u a.e. on ΩT . (4.38)

According to Egoroff’s Theorem, to each δ>0 there corresponds a set Eδ⊂ΩT with the
property

uα+n−2
j ∇uj→uα+n−2∇u uniformly on ΩT \Eδ and |Eδ|<δ. (4.39)

Due to our assumption, we have σ−4n+4>0. By a calculation identical to (4.22), we
obtain ∣∣∣∣∫

Eδ

uα+n−2
j ∇uj∆uαj dxdt

∣∣∣∣≤ c(∫
Eδ

u2α+4n−4
j dxdt

) 1
4
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≤ c
(∫

Eδ

u2α+σ
j dxdt

)α+2n−2
2(2α+σ)

|Eδ|
σ−4n+4
4(2α+σ)

≤ cδ
σ−4n+4
4(2α+σ) . (4.40)

Consequently, we have

limsup
j→∞

∣∣∣∣∫
ΩT

uα+n−2
j ∇uj∆uαj dxdt−

∫
ΩT

uα+n−2∇u∆uαdxdt

∣∣∣∣
≤ cδ

σ−4n+4
4(2α+σ) +

∣∣∣∣∫
Eδ

2

α
u
α
2 +n−1∆uα∇uα2 dxdt

∣∣∣∣ . (4.41)

The right-hand side goes to 0 as δ→0. Therefore,

uα+n−2
j ∇uj∆uαj ⇀uα+n−2∇u∆uα weakly in L1(ΩT ). (4.42)

We can also prove ∫
ΩT

τup+α−2+2n
j dxdt→0 as τ→0. (4.43)

In this case, we use the inequality

up+α−2+2n
j ≤ δup+α+ 2

N
j +c(δ), δ >0.

Then apply Lemma 3.6 to yield the desired result. The remaining terms on the right-
hand side of (4.17) are very easy to handle. Thus (4.37) follows.

On account of (4.25), we have

(uj+τ)nF j⇀uα+n−1∆uα weakly in L1(ΩT ).

We can infer from (4.30) that

ũj→u strongly in L2α(ΩT ). (4.44)

Assume ξ(x,T ) = 0 in (4.26), integrate it over (0,T ), then let j→∞, and thereby obtain
the theorem. The proof is complete.

5. Proof of Theorem 1.2
The proof of Theorem 1.2 relies on the following lemma

Lemma 5.1. Let the assumptions of Lemma 3.3 hold. Assume

α= 1,
1

2
<β<n. (5.1)

Then there is τ0∈ (0,1) such that for all τ ∈ (0,τ0) we have∫
Ωt

(∆u
1+β
2

j )2dxds+τ

∫
Ωt

(∆u
ε+β
2

j )2dxds

+τ

∫
Ωt

up+β−2
j |∇ρk|2dxds+τ2

∫
Ωt

up+ε+β−3
j |∇uj |2dxds

+τ2

∫
Ωt

uβ+ε−3
j |∇uj |2dxds+τ2

∫
Ωt

(1+τuε−1
j )(upj −1)M(uj)dxds≤ c, (5.2)
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where

M(r) =

∫ r

1

βsβ−1

(s+τ)n
ds. (5.3)

Proof. Let M(r) be given as above. We use M(ρk) as a test function in (3.23) to
obtain

−
∫

Ω

∇Fk ·∇ρβkdx−τ
∫

Ω

FkM(ρk)dx+
1

τ

∫
Ω

(ρk−ρk−1)M(ρk)dx= 0. (5.4)

The first integral in the above equation is equal to∫
Ω

Fk∆ρβkdx=

∫
Ω

∆ρk∆ρβkdx+τ

∫
Ω

ρε−1
k ∆ρk∆ρβkdx

+pβτ

∫
Ω

ρp+β−2
k |∇ρk|2dx

+(p+ε−1)βτ2

∫
Ω

ρp+ε+β−3
k |∇ρk|2dx

−(ε−1)βτ2

∫
Ω

ρβ+ε−3
k |∇ρk|2dx. (5.5)

By virtue of Lemma 2.5, we have∫
Ω

∆ρk∆ρβkdx≥ c
∫

Ω

(∆ρ
β+1
2

k )2dx, β∈ (
1

2
,2), (5.6)

while Corollary 2.2 implies∫
Ω

ρε−1
k ∆ρk∆ρβkdx≥ c

∫
Ω

(∆ρ
β+ε
2

k )2dx, β∈ (
1

2
,2). (5.7)

Using (5.6)-(5.7) in (5.5), we obtain∫
Ω

Fk∆ραkdx≥ c
∫

Ω

(∆ρ
β+1
2

k )2dx+cτ

∫
Ω

(∆ρ
β+ε
2

k )2dx

+pβτ

∫
Ω

ρp+β−2
k |∇ρk|2dx

+(p+ε−1)βτ2

∫
Ω

ρp+ε+β−3
k |∇ρk|2dx

−(ε−1)βτ2

∫
Ω

ρβ+ε−3
k |∇ρk|2dx. (5.8)

We calculate the second integral in (5.4) to obtain

−τ
∫

Ω

FkM(ρk)dx=−τ
∫

Ω

(1+τρε−1
k )M(ρk)∆ρkdx

+τ2

∫
Ω

(ρpk−1)(1+τρε−1
k )M(ρk)dx

≡K1,k+K2,k. (5.9)
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Notice that M(r) changes from negative to positive at 1, and thus we always have

K2,k≥0. (5.10)

The term K1,k can be written in the form

K1,k =−τ2

∫
Ω

(1−ε)M(ρk)ρε−2
k |∇ρk|2dx

+βτ

∫
Ω

ρ1−ε
k +τ

(ρk+τ)n
ρβ+ε−2
k |∇ρk|2dx. (5.11)

Let Bk ={x∈Ω :ρk(x)≥1} be given as before. On the set Bk, we have

M(ρk)≤ β

n−β
.

Keeping this in mind, we estimate

K1,k≥−(1−ε)τ2

∫
Ω

M(ρk)ρε−2
k |∇ρk|2dx

≥−cτ2

∫
Bk

|∇ρk|2dx

≥−cτ2

∫
Ω

ρp+β−2
k |∇ρk|2dx. (5.12)

In view of the coefficient of the fourth integral in (5.8), we just need to select a number
τ0 in (0,1) with the property

cτ0<pβ, (5.13)

where c is the same as the one in the last line of (5.12). Then K1,k can be absorbed
into the fourth term in (5.8).

By a calculation similar to (3.74), we have

M(r)≥

{
β

β−n
[
(r+τ)β−n−(1+τ)β−n

]
if r>1,

β
β−nr

β−n if r≤1.
(5.14)

Thus we always have ∫
Ω

∫ uj

u0

M(r)drdx≥−c.

The remaining proof is similar to that of Lemma 3.3. The proof is complete.

We are ready to conclude the proof of Theorem 1.2. Since n> 1
2 , we can pick a

number β with the property

1

2
<β<min{1,n}.

Then we apply Lemma 5.1 to obtain

τ2

∫
ΩT

(1+τuε−1
j )(upj −1)M(uj)dxds≤ c. (5.15)
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This combined with the fact that

lim
r→0+

M(r) =−∞ (5.16)

implies

τF j→0 strongly in L(ΩT ). (5.17)

We can easily infer this from the proof of Lemma 4.1. That is, if we replace K(r) with
M(r) in the proof, all the arguments there still work. By examining the rest of the
calculations in the proof of Theorem 1.1, we see that all of them are still applicable
here except (4.23), for which we make some adjustments. To this end, we set α= 1,γ=
1+β

2 ,u=uj in (2.18) to obtain

∆uj =
2(1−β)

(1+β)2
u−βj |∇u

1+β
2

j |2 +
2

1+β
u

1− 1+β
2

j ∆u
1+β
2

j

=
8(1−β)

(1+β)2
u

1−β
2

j |∇u
1+β
4

j |2 +
2

1+β
u

1−β
2

j ∆u
1+β
2

j . (5.18)

Substitute this into the left-hand side of (4.23) to obtain

τ

∫
ΩT

uε+n−2
j |∇uj∆uj |dxdt

≤ 8(1−β)

(1+β)2
τ

∫
ΩT

u
1−β
2 +ε+n−2

j |∇uj ||∇u
1+β
4

j |2dxdt

+
2

1+β
τ

∫
ΩT

u
1−β
2 +ε+n−2

j |∇uj∆u
1+β
2

j |dxdt

≡A1 +A2. (5.19)

We estimate A2 to yield

A2≤ c
(∫

ΩT

τ2u
β+ε−3+2(n−β)+ε
j |∇uj |2dxdt

) 1
2
(∫

ΩT

|∆u
1+β
2

j |2dxdt
) 1

2

≤ c
(∫

ΩT

τ2u
β+ε−3+2(n−β)+ε
j |∇uj |2dxdt

) 1
2

. (5.20)

Thus if the exponent β+ε−3+2(n−β)+ε<0, then there holds the inequality

u
β+ε−3+2(n−β)+ε
j =

(
1

uj

)−(β+ε−3)−[2(n−β)+ε]

≤ δ
(

1

uj

)−(β+ε−3)

+c(δ)

= δuβ+ε−3
j +c(δ). (5.21)

Consequently, we can deduce from Lemma 5.1 that

limsup
τ→0

A2≤ limsup
τ→0

c

(
δ

∫
ΩT

τ2uβ+ε−3
j |∇uj |2dxdt+c(δ)τ2

∫
ΩT

|∇uj |2dxdt
) 1

2
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≤ cδ 1
2 . (5.22)

Since δ is arbitrary, we have limτ→0A2 = 0. If the exponent β+ε−3+2(n−β)+ε≥0,
then we use the inequality

u
β+ε−3+2(n−β)+ε
j ≤ δup−1

j +c(δ).

This can be done because from our assumptions we always have β+ε−3+2(n−β)+ε<
p−1. We can conclude from Lemma 3.3 that limτ→0A2 = 0. The term A1 can be
handled in exactly the same way. This completes the proof.

Acknowledgment. Portion of this work was completed while the second author
was visiting Duke University. He would like to express his gratitude for the hospitality
of the hosting institution and the financial support from the KI-Net for his visit. The
research of JL was partially supported by KI-Net NSF RNMS grant No. 1107291 and
NSF grant DMS 1514826.

REFERENCES

[1] H. Al Hajj Shehadeh, R.V. Kohn, and J. Weare, The evolution of a crystal surface: Analysis of a
one-dimensional step train connecting two facets in the ADL regime, Phys. D, 240(21):1771–
1784, 2011. 1

[2] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Diff. Eqs.,
83:179–206, 1990. 1

[3] A.L. Bertozzi and M.C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin
film equations, Indiana Univ. Math. J., 49:1323–1366, 2000. 1

[4] L. Chen and M. Dreher, The viscous model of quantum hydrodynamics in several dimensions,
Math. Model. Meth. Appl. Sci., 17:1065–1093, 2007. 1

[5] M. Chugunova, M.C. Pugh, and R.M. Taranets, Nonnegative solutions for a long-wave unstable
thin film equation with convection, SIAM J. Math. Anal., 42:1826–1853, 2010. 1

[6] G. Dal Maso, I. Fonseca, and G. Leoni, Analytical validation of a continuum model for epitaxial
growth with elasticity on vicinal surfaces, Arch. Ration. Mech. Anal., 212:1037–1064, 2014. 1,
1

[7] R. Dal Passo, H. Garcke, and G. Grün, On a fourth-order degenerate parabolic equation: global
entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal.,
29(2):321–342, 1998. 1

[8] R. Dal Passo, L. Giacomelli, and G. Grün, A waiting time phenomenon for thin film equations,
Ann. Scuola Norm. Sup. Pisa., 30:437–463, 2001. 1

[9] C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM
J. Math. Anal., 27:404–423, 1996. 1

[10] J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J.
Math. Anal., 50(1):411–455, 2018. 1

[11] Y. Gao, J.-G. Liu, and J. Lu, Weak solution of a continuum model for vicinal surface in the
attachment-detachment-limited regime, SIAM J. Math Anal., 49:1705–1731, 2017. 1, 1
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