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Abstract

In this article, the authors devel oped an alternative methodology to calculate the
option-adjusted spread for the mortgage-backed securities using partial differen-
tial equation technique. The numerical implementation is discussed in detail, in-
cluding the convergence and error analysis. This approach provides us afast and
accurate way to pricing MBS.

1. Introduction

The option-adjusted spread (OAS) analytics of the mortgage-backed securities
have become increasingly important in today’s MBS market. Compared to con-
ventional static pricing method, the OAS has an attractive feature of valuing the
MBS sreturn in excess of U.S. Treasury, at the same time taking the built-in pre-
payment option into account. The OAS is more and more accepted by many who
trade and invest in the MBS as a gauge to measure the securities s response to the
change of the interest rate environment.

In order to calculate OAS and related analytics, one often uses Monte Carlo
dynamic methodology. However, this method often provesto be slow in conver-
gence. Sometimes large errors result.

Inthisarticle, we have devel oped anew method to cal culate OAS and rel ated
analytics for MBS, using partia differential equation (PDE) methodology. This
would solve the problem of slow convergence and large error resulted from the
Monte Carlo method.

One problem we had to overcome in order to develop such method is the
path-dependency of the MBS cash flows. That means at any month the principle
and interest payment from an MBS depends not only on the current interest rate at
the time, but also on the interest rate in the past. We solved the problem by intro-
ducing new variablesthat carry natural meanings. Wethen carefully designed the
numerical agorithm to carry out the computations, so that the convergenceisopti-
mized and error isvery small.

Inthelast section, wediscussed an examplein theframework of aHull-White
interest rate model. We showed how the OAS can be calculated, and the effective
duration and convexity aso computed.

2. Partial differential equations for mortgage-backed securities
We start with the general form of the N-factor interest term structure model. Sup-

pose that r; isthe short-term (theoretically, the instantaneous) interest rate, and r,
r;, ..., ry aecurrent rates of longer terms. They follow
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dr(t)=o ,(t,r,(t),...,ry (1)) dt + Z 0, (t,n(2),...,ry (1) dz (1),
i=12,..,n) (1)

wherez,(f)’s are canonical Wiener processes with covariant coefficients

_cov(dz, ,dz,)

a, = 2
. |dz, ||dz,| @)

Suppose that at agiventimet, r(f) = r, andO(t, T, r;, ..., ry) isthe price of the
default-riskless zero-coupon bond which matures at 7 and pays $1 at the maturity.
In this article we will call such bonds zero-coupon treasuries. Using 1t6 calculus,
we have

00 0, L 0 _$
do = —dr+Za—d w1y O dndr, = at+£6%dt

af i1 }"'. I"j

N
+ ) 0, —dz , 3
Jj=1

l

where the differential operator

. N 02 N 0
=3 . +ya,—. 4
/C 2 iyZ:L r] i ariarj Z i ari ( )
and
N
r] ij = kZlO-ik 0/‘/ a Kl " (5)

The operator £ is eliptic, but it has degeneracy when »; = 0.

Assume that the market price of risk on change of r;isA(t7,....ry). Wehave
the following equation for zero-coupon treasuries.

00 00
S, *4e- ’/ZA o,/a——;e 0 (6)

with the terminal condition

o, T,r,...,ry)=1,
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Consider amortgage-backed security which is supported by apool which matures
attime T. Let ¢ bethe coupon rate, w the WAC, and & the (actual) delay of the cou-
pon distribution. We denote

O=0(t,t+8,1, ,...,ry ), (7)

thediscount factor for treasury at time ¢ of aterm 8. We further assume that during
the period from ¢ and ¢+dt, the underlying pool generate a cash-flow F(z7,,...,7y,
P1,.Pp), Where py, ..., p, are status variable other than the interest rates r, ..., ry.
These status variables cover abroad category of parameters which affect the pric-
ing of mortgage-backed securities, such as the pool factor, the prepayment speed,
and sometimesthe lagged yield for along term treasury usually used to determine
the cost of mortgage loans, etc. They follow (or can be approximated by) hidden
Markov processes in the following manner.

dp, (1) =Y, (115 (1) oo 1y (0) Po(0) o P, (D)1, (K =1, p). (8)

For the sake of smplicity, wewill restrict our discussion to the pass-throughs and
strips, although more complicated collaterals can be discussed with similar meth-
ods. We al so assumethat theinstrumentsin our discussion are supported by asin-
gle pool of mortgage. The discussion can be applied to multiple pool supported
instrumentseither by aggregating the pool sor tointroducemore statusvariabl es.

Supposethat P(¢, T,7,,...,rv, Py,..., Pp) iSthepricefor the mortgage-backed secu-
rity. Using Feynman-Kac path integral, we have

P(t,T,r ,...,7y Py ,pp):EXpt

g"' e (L5, () s Py (5)) X F(5,71(5) ooy ()P (5),00ns, (5)) dsg,
9)

wherea isthe option adjusted spread, and the expectation istaken with the market
condition at time t when r,(f) = r,, ..., ry(t) = ry and p;(£) = Py ..., PH(O)= P,

Using It calculus, one gets

oP X oP Y 9°P
dP=—dt+N —dr +1 dr. dr. + 10
ot ,Z- or, i 2,3;1 ar,.arj T 47 (10
aP P orP O N oP
+ P+ t+ o, ——dz ..
3 o5, Ly AP S Ve g [ 3.0, 50

Consider aportfolio consisting of one share of mortgage-backed security and
v; shares of zero-coupon treasury that maturesat 7, (i=1,..., n.) Notethat v; may be
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negative, aswemay takeashort position. We use ©, todenote @(t, 7; 74,...,ry). Then
by (3),

_[90, | il
do, —%+£O,Hdz+AZ o (12)

kj
1’6}

During the time period from ¢ to ¢+dt, the change of value of the portfolio is
dpP - le v,dO, ,and the portfolio generated an income of F(t,7;,...,7y,Q;,.-.,Q,)dl.
Thus at the end of the period, the portfolio worths

N

d(P + Z v ©)+ FOdt

B oP
_E¢+£P+LZIYA£+Z %74-'66 E+F@Ddt+ (12)

Choose vy, ..., vy so that at time ¢,

Za} v, =- a; (k=1,...,N). (13)

Then the portfolio becomes interest-risk-neutral during the period from ¢ to ¢+dt.
Note that the interest-risk-neutrality means that the present value of the portfolio
would not be affected by theinterest environment change during the short period. It
does not imply, however, that the prepayment risk of the mortgagein the portfolio
isneutralized. Such risk isnot hedgible by thetreasuries, although the interest rate
indirectly plays arole in the prepayment. As the portfolio becomes interest-risk-
neutral, it should haveareturn of riskless short-terminterest ratein the period from
t to t+dt. In addition, the mortgage in the portfolio earns an extra option adjusted
spread. (It isfor this extra spread theinvestors are willing to take extrarisk of “ir-
rational behavior’’ of mortgage holders.) Thus

oP il O

6_+£P+LZYA Z %—+L’OE+FG)-; @D ZviG),H+aP.
Using (6) and (13), one has

oP il or & oP ~

—+ LP- o, —+ ——(r, +a)P=-FO. 14

Py L ,-,,2:1 ' or ;YA % (r, ta) (14)

with terminal condition
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P(T,T,#, ...,y P,y 1o sP,) =0, (15)
Naturally, we have that

I|m P(t,T,ry s, 7y 4Py »e--4P,) =0, (16)

l—>°°

forany i=1, ..., N.

Itisinteresting to observethat although we used the zero-coupon treasuriesto
hedge the mortgage portfolio to get the equation (14), the values of the hedging
bonds do not explicitly appear in the equation for the value of mortgage. Thisisa
desirable and conceptually important point. Because we may use different sets of
Zero-coupon treasuriesto hedgethe mortgage, and we should get the sameequation
no matter what set of treasuries we choose to use.

Another interesting point to observeisthat, comparing equation (6) and equa
tion (14), one can see that the path dependency in the case of mortgage has been
codified into the movement along the characteristic lines p ;= py ().

Thestatusvariablesp;, ..., p,, usually containsthe pool factor and the prepay-
ment speed. Let fbethe pool factor. Also, we denote g such that 1-e<?/isthesingle

month mortality of theunderlying pool. (HereAr =3 year.) Thisimpliesthat 1-e¢is
the annual CPR. We have

S b _folt+B)
EONAC

where

wi l wl wit

e —-e
()=l ———=——
fo( ) eu'[ _l eu'[ _l

(17)

isthe amortization schedule factor, i.e., the pool factor under zero prepayment as-
sumption. Thisresultsin the following stochastic process

D
d O———+glfdt. 18
f [b“ I ) _ gD/ ( )

Thesingle month mortality g followsaprocess specifiedinaprepayment model. In
Section 4, we will give an example of such a process.

In the above equation, F isthe cash flow velocity at timez, with interest rates
r1, ..., ¥y and pool factor . Denote F'» the cash flow from the principal and F;the
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cash flow from the interest. Suppose the pass-through has coupon rate ¢, then we
have

o w 0.
F, =cf.
For pass-throughs, F=F, +F,
For POs F=Fp.
For I0s F=F,

Equation (14) can becalled the general equation for mortgage-backed secu-
rities. In the following section, we will see that its coefficients must satisfy some
conditionsin order to guaranteeitswell-posedness. These conditionsareingeneral
satisfied by most econometric models used in the industry. In section 4, we will
solve the equation for a particular case.

3. Discussion on Underline Mathematical Theory}

We denote

N 0N ;

N
=a,-YAo, -2
pl i /Z J o 2; a}

Then (14) can be written as

J

y o U aPD AR) ) ~
+; - =~ O+ o+ —=(r,+a)P=-F0O. (20
oY o Do ot R T Vg, Tt (20)

i
with terminal condition

P(T, T, ,...,7y Py +...P,) =0 (21)
and boundary condition

lllm P(T,T,r, ...,7y Py »---,P,) =0, (22)

-

Note that the diffusion coefficient o;; is degenerate when»; =0, i.e,,
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0, |,20=0. (23)
Thisimplies that
r]ij | r =0 :O

In order to have a unique solution to (20) with boundary condition (21) and
(22) but no other additional conditionfor variablesr,, ..., ry, weneed thefollowing
conditions

11: N ar],'/‘
a|,_.,25lim

= r-047 Or,

- J

or equivaently

- ik
a; | ri=0 2%“% ‘ Z ) a0 , or (24)
i F1=

Clearly, we have
r]i/‘ | r,:O EO" pi | Tizg 20

For statevariablesp,, ..., p,, weassumethefollowing condition is always satisfied:
For each k, the p, variesin interval [a;b,], (& may be -, b, may be «.) Further-
more,

=a 201 or y | =a <O’ Pl =a :O7

yl\ |P/\ k k1 p=ay Px /\_ (25)
yl\ | Pr =by SO’ or yl\ | Pr=by >O’ Pl Py =by =0.

Thecoefficientsn , p; areassumed to be differentiable, and y, areassumed to piece-

wisedifferentiable. Suppose the coefficientsy; isdiscontinuous, and the hypersur-
facef(¢,7,p) = Oisthefront of discontinuity, we assumethefollowing condition of
“market nationality’’:

(V,.7)(V_ .ii)>0 (26)

where 7 isthe normal vector at the hypersurface, v.. and v. are the limit vectors of
(1.Y1,..., Yp) @ the surface from both sides.

The conditions (23), (25) and (26) are naturally posed. However, condition
(24) may be violated in some circumstances as we use interest rate model s such as
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Cox-Ingersoll-Ross model when interest rateyield curve areflat at alow level and
volatility isvery high. Nevertheless, if themodel isone-factor CIR model, such cir-
cumstance will not affect the general outcome of our analysis. Thiswas proved by
Feller [F] for the case of absenceof variables p;. Hisproof can beeasily extended to
the case when p;’ sarein presence..

Without loss of generality, we assumethat 0 < p, <1, and thereis no disconti-
nuity in coefficients, sincethe“market rationality’’ conditionwill ensuretheterms
arise out of the existence of the front surface in the following equation would not
affect our estimation.

We have the following energy estimates.

0 ) X oP dP
-— + L — +
5 Jor Joup £ VoAV, ,-;1 o Jor M o or dv,dv,

> oF, c oP
; IRQ ﬁo’”p aT",-PZ de v, Zl IR: ,I[.o,ll” Eyk P? dvp dv. +

) 2
IR: ﬁo,ll" Ar, +a)Pdv,dv,_

~ N
2( s foue PEOAV,dV, _,-,Z

Jj=1

2y, = o
J.R,,\'l ﬁo,ll" (p,P?)|r,=0dV, av,

Here we use the notation

dv, =dr dr,...dr, ,
av,=dp, dp,...dp, ,

dv_=dr, ...dr_, dr., ..dr,
dVe =d, ...dp__dp,., ...dp

P

Assume that

o Oy _
s Yice, @1<c.
or,  0p,

i

Then we have
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< - OP oP
IR: ﬁo,l]" p* dvodv, + ,-,Zl L IR: ﬂo,u" et n, aa_”;de dv, dt

! ”, (1-1)
<C, L I&\ jw e UTIVFR AV, v, dt. (27)
Similarly, we have estimate of the high order derivatives

(S
IPIG <Cy | e F2 |, d, (29)

H' —

This proves the following theorem.

Theorem: Suppose F[ILZ (H! ) for some integer /=0 and (23), (24), (25) and

(26) holdstrue, then thereis aunique solution P OL? (L. ») to equation (20) with
(22), (22) and

”P”L‘;Q(H,/v‘p) SC”F”L%(H’{‘F‘)' (29)

Now, we describe the numerical method and its convergence theory for the
equation (14). Without loss of generality, we use a one-factor model:

oP 9°P opP oP
— +a(t,r)— + b(t,r)— + c(t,r,p)— +
ot al ')arz ( })ar d }p)ap

d(t,r,p)P + F(t,r,p)=0. (30)

The generalization to the multifactor-models is straightforward.

We first make the following transformation

1
1+ vr’

Then (30) becomes

AL
ot " ox?

w50 L 4 ax )2+
Ox ap
d(t,x,p) P+ F(t,x,p)=0. (31)
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where

~ 1-
a=Nx* a(f,ix),
VX

~ l_ l_
b=2A2x%a(t, " )= wlb(t, - ).
VX VX

Some other kind of transformation is needed for other variablesp in some applica-
tionsinorder toreducethelargeor infiniterangeto asmall one, or sometimesto re-
duce singularities. Such transformations can only be dealt case by case. We will
explainin detail by an examplein section 4.

Thetimediscretization for the second order termisimplemented by stableim-
plicit schemes such asbackward Euler, Crank-Nicholson, or implicit Runge-K utta
methods. The spatial discretization isimplemented by standard center-difference.
Since there is no boundary condition for x = 1, i.e. » = 0, we need a numerical
boundary condition at this point. We choose no-flux as the numerical boundary
condition. Itisknownthat thisnumerical boundary conditionwill not effect theac-
curacy at interior. (cf. [KL])

The time-discretization for the first order termsis done by explicit scheme.
The gpatial discretization is done by up-winding method. The following Courant-
Friedrichs-Lewy (CFL) stability condition must be satisfied

Aﬁwpu?(z,xmAA;sumE(z,x,pnﬂ (32)

where At, Ax and Ap bethe grid sizesfor ¢, x and p, respectively.

In more detail, we use P"; to approximate P(z,x,p) at pointst, = nlAt, x; = ilAx
and p; = jAp. The above scheme can be carried out as follows

n+l n n n n
- - +
Pi,j Pi,j + Ei(t X p ) })i+l,j 2Pi+l,j Pi*l,j +
y; pEdt Ax?
n+l _ pn+l n+l _ pn+l
-~ i+1, ) ij P ij i-1,j
b +(Z11+1’xi’pj) AX +b (ZnJrl "xi7p/‘) AX + (33)
n+tl _ pntl n+l _ pn+l
= i i~ P =P +
¢ (ZnJrl’xi’pj) Ap ¢ (Zn+1’xi’p/) Ap

d(t,,1,%,.0,)0) 7 +F(t,.,.x,,p,)=0.
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Scheme (33) isfirst order in space and time. Following standard technique,
we can prove the following theorem.

Theorem: Suppose P OH ?(H? ) is the solution to equation (20) with (21) and
(22), P!, isthe approximate solution given by (33) with all appropriate boundary
condition satisfied. Assume the CFL condition (32) is satisfied, then we have

1

o ﬁzp”—Pz ZAXADE<CA,+AX+A)
0<t, <T w‘l n ~ P, x00,] pH_ ( 0).

In the next section, we will discussasimple exampleat length on the numeri-
cal computation of our theory. Thismodel, because of itssimplicity, illustratesour
main idea. And is sufficient in most cases. However, one may call for amore so-
phisticated model which require higher dimensionincomputation. After aseriesof
experiments on the model s, we discovered that anumber of toolswhich can be ap-
plied in our theory to achieve higher efficiency. We observed that there are critical
paths (regions) in the state spaces where the behavior of the system exertsmost in-
fluence on the final outcome.

Thisregion is closely related to the current market environment. By using
adaptive mesh refinement method in this critical region, one may substantially
lower the cost of computation. The method we usewill be adaptiveto the change of
the environment. Thus is very practical in the ever changing environment of the
world of financial industry.

Another important tool whichisextremely useful in multi-factor modelsinar-
tifical decoupling of fasting using aternating iteration. This idea is similar to
Schwartz method in domain decomposition computation method. The reason that

it can be used isbecausein most of the placein the state space, factorsare often not
very closely coupled.

Inregionwhereone or morefactorsdo not have significant effect onthe equa-
tion. The system may be projected onto a space of lower dimension. One may find
extensive use of asymptotic analysisin this aspect.

4. A One-Factor Example

Consider the process of Cox-Ingersoll-Ross model of interest rate
dr(t) =k(0 () — r(#))dt + 0\/@ dz(1), (34)

wherek and o are positive constants, z() is the canonical Wiener process, 6(¢) isa
deterministic function of ¢. The zero-coupon treasuries then have value

(¢, T,r) = A(t,T)e 2D (35)

where
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A(1,T) =exp LTKG(T)B(T,T)dT%,

2" =)

B(t,T)= po )
(t.7) (K+A+g)(e’" ™ - +29

(36)

and@® =(k + A)? =202 , \ isrelated to the market price of risk.

Recall that the pool factor variable ffollows the process

. w .
df =— %"‘ g%_/df (37

We consider a mortgage with the following prepayment model.
g = min(L,42) (s,(f )(s5(w— y — m)=06+ h(z))+06);

—axf it f<0l
s,(f)=0 1 if 01<f<08
E f+02 if 08<f<1

0 0601-0d ; -
10025—x It x<0025
5(x) = [1942657x + 0011429 if 0025<x <02
O 0394+03 it 02<x
H  098+x

and /(¢) can be used to represent the seasonality factor of prepayment, y isthe ten-
year rate, m isthe spread of cost of mortgage over the ten-year rate. The leading
factor min(1,.4r) may be chosen in amore sophistical way “tofit the historical data
better’’. Thetwo termswith long-termyield y reflect the incentive to prepay when
theinterest rate are sufficiently below the WAC. Thelast termreflectsthe speed-up
of the prepayment as the pool-factor decreases. The seasonality function A(z) is
given in the following table:

Figure 1 showsthe CPR obtained by the above model, with pool factor set to
1. Please note that we have chosen asimplistic example of prepayment function g
heretoillustrate our method. Inreal applications, one can choosefar more sophisti-
cated prepayment model s. Theimplementation of these more sophisticated models
would be similar to the one shown below.

Recall that we are using CIR term structure model, we can easily computethe
ten year yield from current short-term rate r, using (35) and (36).
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| montht | h(t) [ momh: | ) ]
0 -0.0195 6 -0.0337
1 0.0438 7 0.0560
2 0.0275 8 0.0418
3 0.0092 9 0.0435
4 0.0163 10 0.0382
5 0.0105 11 0.0242

om

GSUHUSMJG

Figure 1: CPR in first three years

Wr)=-2 I’”Oxe(r)B(r,z +10)dt + B(1,1 +10). (38)
When 6 is a constant
(Z)__ KG In[l 2¢65(K+}\+/;) D
y - &)_2 %( +)\ + ¢)(610/1 _l)+2¢%+
D )10/1 _l . D
(e 103’ E (39)
(K + A+ 6)(™™ ~1) + 2411

Suppose that P(z,T,r,f) isthe price for amortgage-backed security with cash flow
F(trf). We have the following equation T for P.

oP 1 , 9°P P
+ - +(KO-(K+A)r)_—-
o T 20 g T KB+ A))

0
or
w 0P =
%7)“.(,,,) _lg%/ & —-(r+a)P=-FO (40)

with terminal condition
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P(T,t,f)=0. (41)

Footnote

T The example shown here has no lagged long-term yield. If thelagged long-term
yield isinvolved, one can use the following process to approximate the lagged in-
terest rate movement.

[Hr =k(8 - r)dt + o\rdz ,
(u =12(r — u)dt.

Then the equation (40) is changed to the following form.

or 1 0°P w ‘
E + 50 pYe; - +12(r - u)— T _1+ g@r/
OP

a_f -(r+a)P= -FO.

Intheaboveequation, Fisthecashflow speed at timez, withinterest rater and
pool factor /. Denote Fp the cash flow from the principal and 7 the cash flow from
the interest. Suppose the pass-through has coupon rate ¢, then we have

For pass-throughs, F=Fp=F
For POs F=Fp.
For 10s F=F,
By equations (7), (35) and (36), we have

_ 1+ 0(1)B(T,T+5) ST-B (1,1 +3)T
=eJ

2K/J
O et of ~2Ae® - 1)r
@+?\+¢)(eé”-l)+2¢% EkK+A+¢)(e5"—1)+2¢H'

(42)

Now we are going to solve eguation (40) numerically. We choose thefollow-
ing variable transformation.
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1 _ f

BETR P 1-e"e D

Then equation (40) becomes

2
‘?;;+;ozvxf*(l—x)‘;xf+((K+>\)(1—x)x—vx2Ke)gf—
oP 1-x ~
- -+ P=-FO, 43
s (43)
where

F,=(g+(w=-g)e"""")p,
F, = ol-e"p, (44)
F=F,+F,.

Numerically, we use the following boundary conditions:

P |,\':O = O ! P\' |,\—:1 = O 1 P | O

p=0 —

There is no need for boundary conditions at p = 1, since the up-winding
scheme will naturally “flow the data at the boundary out’”.

OAS: 755p
WAC: 0.0785
coupen: 0.07
term: 30 years
delay: 45 days
kappa: 0.05
lambda; 0.0
theta: 0.10
sigma; 0,15

. 1 A L " . L L L
.02 0.04 0.06 0.08 01 0.12 0.14 0.18 0.18 a2
short-term rate

Figure 3: Current price of mortgage as function of interest rate
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The following datais used in the numerical demonstration:

K A 0 o
0.05 0.00 0.10 0.15

We computefor a30 year term pass-through with the prepayment data shown
above. The coupon for the mortgage is 7%, and the option-adjusted spread is as-
sumed 75 basi s points. Weran the program on aSPARC-10 machine, within 2 sec-
onds, we obtained the current and all future price for the pass-through as the
function of interest rate r, the pool factor £, and timez. Thewholecurveof pricever-
susshort rateisshown asin Figure2. Another advantage of thismethod to calculate
OAS, aside of the speediness, is that the effective duration and convexity arrive
naturally with the solution. Inthiscaseif we assumethat the short rateis 5.2%, we
have the priceis 99.67%. The effective duration is-4.7190 and the effective con-
vexity is-0.5359.

Itisimportant to note that because the program give usall priceinthe future,
the data can be used to do the horizon analysis and the risk management. We will
deal with thisin our other article([LX]). Thismakesthe PDE approach immensely
attractive compared to the now commonly used Monte Carlo method, whose one
point a time approach make the horizon analysis very expensive, sometimes im-
possible. Another advantage of the PDE approach isits reliable accuracy, which
the Monte Carlo method often lacks when using too few pathsin the trading off for
performance.

Asone may have expected, the parpayment model playsanimportant rolein
the valuation. In the frame of our computation theory, the prepayment model ac-
guired one moreimportant role—- form of the model will directly affectsthe effi-
ciency of the method.
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