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A RANDOM PARTICLE BLOB METHOD

FOR THE KELLER-SEGEL EQUATION

AND CONVERGENCE ANALYSIS

JIAN-GUO LIU AND RONG YANG

Abstract. In this paper, we introduce a random particle blob method for
the Keller-Segel equation (with dimension d ≥ 2) and establish a rigorous

convergence analysis.

1. Introduction

The vortex method, pioneered by Chorin in 1973 [3], is one of the most successful
computational methods for fluid dynamics and other related fields. When the effect
of viscosity is important, the random vortex method is used to replace the vortex
method. The success of the random vortex method was exemplified when it was
shown to accurately compute flow past a cylinder at the Reynolds numbers up to
9500 in the 1990s [13]. The convergence analysis for the random vortex method
for the Navier-Stokes equation was given by [8, 16, 18] in the 1980s. We refer to
the book [4] for theoretical and practical use of the vortex methods, refer to [5]
for recent progress on a blob method for the aggregation equation, and also refer
to [7, 9, 19] for many exciting recent developments in the theory of propagation of
chaos.

In this paper, analog to the random vortex blob method, we introduce a random
particle blob method (we will abbreviate it to a random blob method) for the
Keller-Segel (KS) equation, which reads⎧⎨

⎩
∂tρ = ν�ρ−∇ · (ρ∇c), x ∈ R

d, t > 0,
−�c = ρ(t, x),
ρ(0, x) = ρ0(x),

(1.1)

where ν is a positive constant, and supp ρ0(x) ⊂ D, where D is a bounded domain.∫
D
ρ0(x)dx = 1 and ρ0 ∈ L∞(Rd)∩L1(Rd). In the context of biological aggregation,

ρ(t, x) represents the bacteria density and c(t, x) represents the chemical substance
concentration. In this paper, we also provide a rigorous convergence proof of this
random blob method for the KS equation. We point out that the convergence
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rate given in this paper is far from sharp. Sharp convergence rates have been
found for the random vortex method when applied to the Navier-Stokes equation
by Goodman [8] and Long [16]. We will investigate the question on the sharp rate
of the random blob method in the future.

In Section 2, we introduce a random blob method for the KS equation (1.1),
which is given by the following stochastic particle system of N particle paths
{(Mi, X

i,ε
t )}Ni=1:

(1.2)

Xi,ε
t = Xi

0 +
1

N − 1

N∑
j �=i

Mj

∫ t

0

∇
(
Jε ∗ Φ(Xi,ε

s −Xj,ε
s )

)
ds+

√
2νBi

t, i = 1, · · · , N,

where {Bi
t}Ni=1 are N independent Brownian motions and Φ is the Newtonian po-

tential which we consider to be attractive. Jε is a blob function with size ε (see
Lemma 2.8). For the initial data ρ0, we can choose a probability measure g0 on
R+ × R

d such that ρ0(x)dx =
∫
R+

mg0(dm, dx). Let {(Mi, X
i
0)}Ni=1 be N inde-

pendent and identically g0-distributed random variables. Mi is the mass of the
particle Xi,ε

t , which is sampled from the initial distribution and remains constant
throughout the time evolution. The purpose of introducing this variable mass Mi

is to coarse grain many small particles. In other words, a particle with large mass,
Mi, can be viewed as a cluster of many particles with small mass, and thus we are
effectively taking a coarse grain approximation of the small particles, which leads
to a gain in the efficiency and stability of the computational method. Because the
KS equation favors aggregation, this coarse-grained approximation does not lead
to a significant loss in accuracy.

In Section 3, we prove the convergence of the random blob method. To do
this, we show that there exist regularized parameters ε going to zero as N goes
to infinity, and the stochastic particle system (1.2) converges to the mean-field
nonlinear stochastic differential equation

(1.3) Xt = X0 +

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds+
√
2νBt,

where ρ(t, x)dx=
∫
R+

mgt(dm, dx), gt(m,x)=L(M,Xt), (M,X0) is a g0-distributed

random variable that is independent of Bt, L(M,Xt) denotes the law of (M,Xt)
and F (x) = ∇Φ(x). The global existence and uniqueness of a strong solution (see
Definition 2.5) to (1.3) is almost the same as a previous result of [15, Theorem
1.1] for the case of ρ(t, x)dx = gt(dx) and M ≡ 1. Thanks to the Itô formula
[20, Theorem 4.1.2], we derive that ρ is a weak solution to (1.1) with the initial
density ρ0.

In Subsection 3.2, a coupling method is used to estimate the difference between
the stochastic path (Mi, X

i,ε
t ) for the particle method (1.2) and the stochastic path

(Mi, X
i
t) of (1.3), where both paths begin with the same initial data {(Mi, X

i
0)}Ni=1

and {Bi
t}Ni=1 as (1.2). We show that there exist regularized parameters ε(N) ∼

(lnN)−
1
d → 0 as N → ∞ such that for any 1 ≤ i ≤ N ,

lim
N→∞

E
[

sup
t∈[0,T ]

Mi|Xi,ε(N)
t −Xi

t |
]
= 0.(1.4)
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In Subsection 3.3, we show that the empirical measures

μN :=
1

N

N∑
i=1

MiδXi,ε → f in law,(1.5)

where ft(dx) = ρt(x)dx and ρ is the unique weak solution to (1.1) with the initial

density ρ0. μ
N are positive Radon measures with total variation 1

N

N∑
i=1

Mi. By the

strong law of large numbers [6, see p. 55 (7.1)], 1
N

N∑
i=1

Mi → 1 almost surely (a.s.) as

N → ∞, which implies f is a probability measure on R
d. To obtain (1.5), we first

prove in Proposition 3.9 that (1.5) is equivalent to showing that E[|〈μN−f, ϕ〉|] → 0
for any ϕ ∈ Cb(R

d). Then, following Sznitman [21] and by the exchangeability of

{(Mi, X
i,ε
t )}Ni=1, we have

E[〈μN − f, ϕ〉2] = 1

N
E
[
M2

1ϕ(X
1,ε
t )2

]
+

N − 1

N
E
[
M1ϕ(X

1,ε
t )M2ϕ(X

2,ε
t )

]
− 2〈f, ϕ〉E

[
M1ϕ(X

1,ε
t )

]
+ 〈f, ϕ〉2.

(1.6)

Therefore, demonstrating the convergence of μN is reduced to show the following
two points: (i) E

[
M1ϕ(X

1,ε
t )

]
converges to 〈f, ϕ〉, and (ii) two-particle’s pairwise

correlation converges to 0; i.e. E
[
M1ϕ(X

1,ε
t )M2ϕ(X

2,ε
t )

]
converges to 〈f, ϕ〉2. Both

(i) and (ii) can be proved by (1.4).
Besides the above-mentioned main techniques, we also mention that some stan-

dard techniques are also used to achieve our goal. By using the uniform estimates
and the Lions-Aubin lemma [17, Lemma 10.4.], we give a sufficient condition (As-
sumption 2.2) of the initial data ρ0 for the existence of the global weak solution to
(1.1) in Section 2.

Finally, in Section 4, we provide some practical algorithms and their convergence
results.

2. The random blob method and the main results

We begin by introducing the topology of the 1-Wasserstein space which will
be used for the well-posedness of the KS equation. Let (E, d) be a Polish space.
Consider the space of probability measures,

P1(E) =
{
f | f is a probability measure on E and

∫
E

d(0, x)df(x) < +∞
}
.

We define the Kantorovich-Rubinstein distance in P1(E) as follows:

W1(f, g) = inf
π∈Λ(f, g)

{∫
E×E

d(x, y)dπ(x, y)
}
,

where Λ(f, g) is the set of joint probability measures on E × E with marginals f
and g. When f, g have densities ρ1, ρ2 respectively, we also denote the distance as
W1(ρ

1, ρ2). In [22, Theorem 6.18], it has been proven that P1(E) endowed with
this distance is a complete metric space, and the following proposition holds by
[22, Theorem 6.9].
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Proposition 2.1 (Wasserstein distances metrize weak convergence). If (E, d) is a

Polish space, then for a given sequence
{
fk
}∞
k=1

and f in P1(E), the convergence of{
fk
}∞
k=1

to f in the 1-Wasserstein distance can deduce the narrow convergence of{
fk
}∞
k=1

, i.e.

W1(fk, f)
k→∞−−−−→ 0 ⇒

∫
ϕdfk(x)

k→∞−−−−→
∫

ϕdf(x) for any ϕ ∈ Cb(E),

where Cb(E) is the space of continuous and bounded functions.

Now recalling a recent result of the authors [15], we give some sufficient conditions
of the initial data for the existence and uniqueness of the global weak solution in
L∞(

0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)
)
to (1.1).

Assumption 2.2. The initial data satisfies

(1) ρ0(x) ∈ L∞(Rd) ∩ L1(Rd, (1 + |x|)dx),
∫
Rd ρ0(x)dx = 1;

(2)

(2.1) ‖ρ0‖
L

d
2 (Rd)

<

⎧⎨
⎩

8πν if d = 2,

8νSd

d
if d ≥ 3,

where Sd = d(d−2)
4 22/dπ1+1/dΓ

(
d+1
2

)−2/d
, which is the best constant in the

Sobolev inequality [14, p. 202].

We use the following definition of the weak solution to (1.1).

Definition 2.3 (Weak solution). Given the initial data ρ0(x) ∈ L2d/(d+2)(Rd) ∩
L1(Rd, (1 + |x|)dx) and T > 0, we shall say that ρ(t, x),

ρ(t, x) ∈ L∞(
0, T ;L2d/(d+2)(Rd) ∩ L1(Rd, (1 + |x|)dx)

)
∩ L2(0, T ;H1(Rd)),

∂tρ ∈ L2
(
0, T ;H−1(Rd)

)
,

is a weak solution to (1.1) with the initial data ρ0(x) if it satisfies:

(1) For all ϕ ∈ C∞
c (Rd), 0 < t ≤ T , the following holds:∫

Rd

ρ(t, x)ϕ(x)dx−
∫
Rd

ρ0(x)ϕ(x)dx+ ν

∫ t

0

∫
Rd

∇ϕ(x) · ∇ρ(s, x)dxds

=

∫ t

0

∫
Rd

ρ(s, x)
( ∫

Rd

F (x− y)ρ(s, y)dy
)
· ∇ϕ(x)dxds,(2.2)

where the interacting force F (x) =∇Φ(x) = −C∗x
|x|d , ∀ x ∈ R

d\{0}, d ≥ 2,

where C∗ = |Sd−1|−1, |Sd−1| = 2πd/2

Γ(d/2)
and Φ(x) is the Newtonian poten-

tial, which can be represented as

(2.3) Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

Cd

|x|d−2
if d ≥ 3,

− 1

2π
ln |x| if d = 2,

where Cd =
1

d(d− 2)αd
, αd =

πd/2

Γ(d/2 + 1)
; i.e. αd is the volume of the

d-dimensional unit ball.
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(2) c is the chemical substance concentration associated with ρ and given by

(2.4) c(t, x) = Φ ∗ ρ(t, x).
Assumption 2.2 is sufficient for the existence of a global weak solution to (1.1); see

[1,2]. Recently, the existence, uniqueness and Dobrushin’s type stability of the weak
solution in the space L∞(

0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)
)
were established in

[15, Theorem 1.1 and Theorem 1.2], which is summarized in the following theorem.

Theorem 2.4. Considering the KS equation (1.1), we have

(i) Assume that ρ0(x) satisfies Assumption 2.2. Then for any T > 0, there
exists a unique weak solution ρ(t, x) to (1.1) with the initial data ρ0 and ρ
is in L∞((0, T )× R

d).
(ii) Assume that ρ10(x), ρ20(x) both satisfy Assumption 2.2. For any T > 0,

let ρ1, ρ2 be two weak solutions to (1.1) with the initial conditions ρ10(x)
and ρ20(x) respectively. Then there exist two constants C (depending only
on ‖ρ1‖L∞(0,T ;L∞∩L1(Rd)) and ‖ρ2‖L∞(0,T ;L∞∩L1(Rd))) and CT (depending
only on T ) such that

sup
t∈[0,T ]

W1(ρ
1
t , ρ

2
t ) ≤ CT max

{
W1(ρ

1
0, ρ20), {W1(ρ

1
0, ρ20)}exp(−CT )

}
.

Now we introduce the mean-field nonlinear stochastic process for the particle
model (1.2) (see Proposition 3.5), and its density satisfies the KS equation (see
Proposition 3.4).

Definition 2.5. Let ρ0 ∈ L1 ∩ L∞(Rd) and Bt be a Brownian motion. Choose
a probability measure g0 on R+ × R

d such that ρ0(x)dx =
∫
R+

mg0(dm, dx). Let

(M,X0) be a g0-distributed random variable that is independent of Bt. We say that
a pair (Xt, ρ(t, x)), whereXt is a stochastic process and ρ ∈ L∞(

0, T ;L∞∩L1(Rd)
)
,

is a strong solution to the nonlinear stochastic differential equation (1.3) if for all
t ≥ 0,

Xt = X0 +

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds+
√
2νBt,

where ρ(t, x)dx =
∫
R+

mgt(dm, dx), gt(m,x) = L(M,Xt).

Theorem 2.6. Suppose we are given a probability measure g0 with support con-
tained in (0, M̄ ] × R

d, with g0 satisfying the consistency condition ρ0(x)dx =∫ M̄

0
mg0(dm, dx) and ρ0 satisfying Assumption 2.2. Then there exists a unique

strong solution (Xt, ρ(t, x)) to (1.3) associated to the g0-distributed initial random
variable (M,X0).

Below we give an example of constructing the g0-distributed initial random vari-
able (M,X0).

Remark 2.7. Suppose ρ0(x) ∈ L1∩L∞(D), where D ⊂ R
d is a bounded domain and

is the support of ρ0. Suppose |∂D| = 0. Let X0 : Ω → D be a random variable with

density χD

|D| , M = |D|ρ0(X0) and g0(m,x) = L(M,X0). Then
∫ M̄

0
mg0(dm, dx) =

ρ0(x)dx and 0 < M ≤ M̄ a.s., where M̄ = |D|‖ρ0‖L∞ .

Proof. For any ϕ ∈ Cb(R
d), take ψ(m,x) = mϕ ∈ Cb([0, M̄ ]× R

d). Then one has

(2.5) E[ψ(M,X0)] =

∫
Rd

|D|ρ0(x)ϕ(x)
χD

|D|dx =

∫
Rd

ρ0(x)ϕ(x)dx.
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On the other hand, by g0(m,x) = L(M,X0),

(2.6) E[ψ(M,X0)] =

∫
Rd

∫ M̄

0

mϕ(x)g0(dm, dx).

Combining (2.5) and (2.6) and using the Fubini theorem, we get

(2.7)

∫
Rd

ρ0(x)ϕ(x)dx =

∫
Rd

ϕ(x)

∫ M̄

0

mg0(dm, dx).

Since ϕ is arbitrary, we obtain
∫ M̄

0
mg0(dm, dx) = ρ0(x)dx.

Finally, from the fact that |∂D| = 0, one has 0 < M ≤ M̄ a.s. �

Before giving the main Theorem 2.9 of this paper, we describe how to regularize
the Newtonian potential with a blob function.

Lemma 2.8 ([15, Lemma 2.1]). Suppose J(x) ∈ C2(Rd), supp J(x) ∈ B(0, 1),
J(x) = J(|x|) and J(x) ≥ 0. Let Jε(x) = 1

εd
J(xε ). Let Φε(x) = Jε ∗ Φ(x) for

x ∈ R
d, Fε(x) = ∇Φε(x). Then Fε(x) ∈ C1(Rd), ∇ · Fε(x) = −Jε(x) and

(i) Fε(0) = 0 and Fε(x) = F (x)g( |x|ε ) for any x �= 0, where g(r) =

1
C∗

∫ r

0
J(s)sd−1ds, C∗ =

Γ(d/2)

2πd/2
, d ≥ 2;

(ii) |Fε(x)| ≤ min{C|x|
εd

, |F (x)|} and |∇Fε(x)| ≤ C
εd
.

In this article we take a blob function J(x) ≥ 0, J(x) ∈ C3
0 (R

d),

J(x) =

{
C(1 + cosπ|x|)2 if |x| ≤ 1,

0 if |x| > 1,

where C is a constant such that C|Sd−1|
∫ 1

0
(1 + cosπr)2rd−1dr = 1.

Theorem 2.9. Let ρ(t, x) be the unique weak solution to (1.1) with the initial

density ρ0 satisfying Assumption 2.2 and {X1,ε
t , · · · , XN,ε

t } be the unique strong
solution to (1.2) associated to the independent and identically distributed (i.i.d.)
initial random variables {(Mi, X

i
0)}Ni=1. The initial data have common distribu-

tion g0(m,x) satisfying ρ0(x)dx =
∫ M̄

0
mg0(dm, dx) and 0 < Mi ≤ M̄ a.s., where

M̄ is a constant. Denote ft(dx) := ρ(t, x)dx. Then there exist a subsequence of

{X1,ε
t , · · · , XN,ε

t } (which we have taken without relabeling N) and regularized pa-

rameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that for any t > 0,

1

N

N∑
i=1

MiδXi,ε(N)
t

→ ft(x) a.s. as N → ∞.(2.8)

Remark 2.10. 1
N

N∑
i=1

MiδXi,ε(N)
t

are M+(R
d; 1

N

N∑
i=1

Mi)-valued random variables,

where M+(R
d; a) denotes the space of positive Radon measures on R

d where the
total variation equals a. Since {Mi}Ni=1 are i.i.d. and

E[Mi] =

∫
(0,M̄ ]×Rd

mg0(dm, dx) =

∫
Rd

ρ0(x)dx = 1,(2.9)
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by the strong law of large numbers, we have

1

N

N∑
i=1

Mi → 1, a.s. as N → ∞.(2.10)

3. Convergence proof

3.1. Preliminaries. Before giving the convergence proof of Theorem 2.9, we recall
two lemmas stated in [15] and prove a result on the regularity of the regularized
drift term

∫
Rd Fε(Xs − y)ρ(s, y)dy of (1.3).

Lemma 3.1 ([15, Lemma 2.2]). For any function ρ(x) ∈ L∞∩L1(Rd), there exists
a constant C such that for all 0 ≤ ε′ ≤ ε,

(i)
∫
Rd |ρ(y)Fε(x− y)|dy ≤ C ‖ρ‖L∞∩L1 .

(ii)
∫
Rd |ρ(y)||Fε(x− y)− Fε(x

′ − y)|dy ≤ C ω(|x− x′|) ‖ρ‖L∞∩L1 , where

(3.1) ω(r) =

{
1 if r ≥ 1,

r(1− ln r) if 0 < r < 1.

(iii)
∫
Rd |ρ(y)||Fε(x− y)− Fε′(x− y)|dy ≤ C ‖ρ‖L∞ ε.

The following lemma is a Gronwall-type inequality with a logarithmic singularity.

Lemma 3.2 ([15, Lemma 2.4]). Assume that there exists a family of nonnegative
continuous functions {αε(t)}ε>0 satisfying

αε(t) ≤ C

∫ t

0

αε(s)[1− lnαε(s)]ds+ CεT for t ∈ [0, T ],

where C is a constant. Then there exist two constants CT and ε0(T ) > 0 such that
if ε < ε0(T ),

sup
t∈[0,T ]

αε(t) ≤ CT ε
exp(−CT ) < 1.(3.2)

Lemma 3.3. Let (M,Xi) (i = 1, 2) be two random variables with distributions
gi(m,x), 0 < M ≤ M̄ a.s., where M̄ is a constant. Suppose that there exists

ρi ∈ L∞∩L1(Rd) such that ρi(x)dx =
∫ M̄

0
mgi(dm, dx). For any 0 ≤ ε′ ≤ ε, define

I :=

∫
Rd

MFε(X
1 − y)ρ1(y)dy −

∫
Rd

MFε′(X
2 − y)ρ2(y)dy.

Then there exists a constant C (depending only on M̄ , ‖ρ1‖L∞∩L1 and ‖ρ2‖L∞∩L1)
such that

E
[
|I|

]
≤ C

(
ε+ ω(E[M |X1 −X2|])

)
.(3.3)

Proof. A direct computation shows that

|I| ≤
∫
Rd

M |Fε(X
1 − y)− Fε(X

2 − y)|ρ1(y)dy

+

∫
Rd

M |Fε(X
2 − y)− Fε′(X

2 − y)|ρ1(y)dy

+

∫
Rd

M |Fε′(X
2 − y)ρ1(y)− Fε′(X

2 − y)ρ2(y)|dy

= : I1 + I2 + I3.(3.4)
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By (ii) and (iii) in Lemma 3.1, one has

I1 ≤ C ‖ρ1(y)‖L∞∩L1(Rd)Mω
(
|X1 −X2|

)
,(3.5)

I2 ≤ C ‖ρ1(y)‖L∞(Rd)ε.(3.6)

Suppose (M,X1) and (N, Y 1) are i.i.d., and (M,X2) and (N, Y 2) are i.i.d. We
have

E[I3] = E
[ ∫

Rd

M |Fε′(X
2 − y)ρ1(y)− Fε′(X

2 − y)ρ2(y)|dy
]

= ExEy

[
MN |Fε′(X

2 − Y 1)− Fε′(X
2 − Y 2)|

]
= Ey

[ ∫
Rd

N |
(
Fε′(x− Y 1)− Fε′(x− Y 2)

)
ρ2(x)|dx

]
≤ CE[Nω

(
|Y 1 − Y 2|

)]
= CE[Mω

(
|X1 −X2|

)
].(3.7)

By taking the expectation of (3.4) and combining (3.5), (3.6) and (3.7), we obtain
that

E[|I|] ≤ Cε+ CE[Mω
(
|X1 −X2|

)
].(3.8)

Using the facts that xω(r) ≤ ω(xr) for any 0 < x ≤ 1, that M ≤ M̄ , and that ω(r)
is concave, we then obtain that

E[|I|] ≤ Cε+ CE
[M
M̄

ω
(
|X1 −X2|

)]
≤ Cε+ CE

[
ω
(M
M̄

|X1 −X2|
)]

≤ Cε+ Cω
( 1

M̄
E
[
M |X1 −X2|

])
.(3.9)

Notice that for any given constant C1, there exists a constant C2 (depending only
on C1) such that ω(C1x) ≤ C2ω(x), which allows us to simplify (3.9) to read

E[|I|] ≤ Cε+ Cω
(
E[M |X1 −X2|]

)
,(3.10)

which finishes the proof. �

3.2. Convergence of the paths. First, we prove the well-posedness of the non-
linear stochastic differential equation corresponding to the KS equation.

Proof of Theorem 2.6. Let (M,X0) be g0-distributed and independent of the Brow-
nian motion Bt. For any fixed ε > 0 and initial distribution gε0(m,x) = L(M,X0),
the regularized equation

(3.11) Xε
t = X0 +

∫ t

0

∫
Rd

Fε(X
ε
s − y)ρεs(y)dyds+

√
2νBt

is well-posed [15, see Theorem 2.1], where gεt (m,x) = L(M,Xε
t ), ρε(t, x)dx =∫ M̄

0
mgεt (dm, dx). We denote the unique solution as (Xε

t , ρ
ε(t, x)). From the Itô

formula, we know that ρε(t, x) is the unique classical solution to the following
regularized KS equation:⎧⎨

⎩
∂tρ

ε = ν�ρε −∇ · [ρε∇cε], x ∈ R
d, t > 0,

−�cε = Jε ∗ ρε(t, x),
ρε(t, x)t=0 = ρ0(x).

(3.12)
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In [15, Theorem 2.2], we obtained that there exists a constant C (depending only
on T , ‖ρ0‖L∞(Rd)∩L1(Rd,(1+|x|)dx) and data in (2.1)) such that

(3.13) ‖ρε‖L∞(0,T ;L1(Rd)) = 1, ‖ρε‖L∞(0,T ;L∞(Rd)) ≤ C,

∫
Rd

|x|ρε(t, x)dx ≤ C,

and

(3.14)

∫ T

0

‖∇ρε‖2L2(Rd)dt ≤ C,

∫ T

0

‖∂tρε‖2H−1(Rd)dt ≤ C.

We divide the rest of the proof into four steps to show that (i) {MXε
t }ε>0 is

a Cauchy sequence, (ii) there exists a subsequence of ρε such that the limit of
this subsequence is the unique weak solution to the KS equation (1.1) and satisfies
the consistent equality (3.18), (iii) there exists a subsequence of (Xε

t , ρ
ε) such that

the limit of this subsequence is a strong solution to the corresponding nonlinear
stochastic equation (1.3), and (iv) the strong solution to (1.3) is unique.

Step 1. For any 0 < ε′ < ε, let (Xε
t , ρ

ε) and (Xε′

t , ρε
′
) be the unique strong solutions

to (3.11) with the same initial data (M,X0). We first prove that

lim
ε→0

E
[

sup
t∈[0,T ]

M |Xε
t −Xε′

t |
]
= 0.(3.15)

By the fact that

M(Xε
t −Xε′

t ) =

∫ t

0

∫
Rd

MFε(X
ε
s −y)ρεs(y)dyds−

∫ t

0

∫
Rd

MFε′(X
ε′

s −y)ρε
′

s (y)dyds,

Lemma 3.3, the fact that ω is nondecreasing, and the uniform estimates of ρεs(y),
we assert that there exists a constant C independent of ε and ε′ such that

E
[

sup
t∈[0,T ]

M |Xε
t −Xε′

t |
]

≤
∫ T

0

E
[
M |

∫
Rd

Fε(X
ε
s − y)ρεs(y)dy −

∫
Rd

Fε′(X
ε′

s − y)ρε
′

s (y)dy|
]
ds

≤ CεT + C

∫ T

0

ω
(
E
[
M |Xε

s −Xε′

s |
])
ds

≤ CεT + C

∫ T

0

ω
(
E
[

sup
τ∈[0,s]

M |Xε
τ −Xε′

τ |
])
ds.

By Lemma 3.2, we achieve (3.15) immediately.

Step 2. From (3.15), there exists a subsequence of MXε
t (without relabeling) and

a limiting point MXt such that

E
[

sup
t∈[0,T ]

M |Xε
t −Xt|

]
→ 0 as ε → 0.(3.16)

On the other hand, based on the uniform estimates (3.13) and (3.14), and using the
Lions-Aubin lemma [17, Lemma 10.4.], there exists a subsequence of ρε (without
relabeling) such that for any ball BR,

ρε → ρ in L2
(
0, T ;L2(BR)

)
as ε → 0.(3.17)
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Since ρε is a weak solution to (3.12), taking the limit ε → 0 concludes that ρ(t, x)
is a weak solution to (1.1) with the following regularities:

(i) ρ ∈ L∞(
0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)

)
;

(ii) ρ ∈ L2
(
0, T ;H1(Rd)

)
, ∂tρ ∈ L2

(
0, T ;H−1(Rd)

)
.

By Theorem 2.4, ρ(t, x) is the unique weak solution to (1.1). We claim that

ρ(t, x)dx =

∫ M̄

0

mgt(dm, dx), where gt(m,x) = L(M,Xt).(3.18)

Indeed for any t > 0 and ϕ ∈ BL(Rd) (here we denote BL(Rd) as the space of
bounded Lipschitz continuous functions), one has

M |ϕ(Xε
t )− ϕ(Xt)| ≤ CM |Xε

t −Xt|.(3.19)

Thus E[M |ϕ(Xε
t )− ϕ(Xt)|] ≤ CE

[
sup

t∈[0,T ]

M |Xε
t −Xt|

]
, and then

E[Mϕ(Xε
t )] =

∫
(0,M̄ ]×Rd

mϕ(x)gεt (dm, dx)

ε→0−−−→ E[Mϕ(Xt)] =

∫
(0,M̄ ]×Rd

mϕ(x)gt(dm, dx).(3.20)

By the portemanteau theorem [12, p. 254, Theorem 13.16],
∫ M̄

0
mgεt (dm, ·) narrowly

converges to
∫ M̄

0
mgt(dm, ·).

On the other hand, for any t > 0, by (3.17) we have

(3.21)

∫
Rd

∫ M̄

0

mϕ(x)gεt (dm, dx) =

∫
Rd

ϕ(x)ρεt(x)dx
ε→0−−−→

∫
Rd

ϕ(x)ρt(x)dx.

Combining (3.20) and (3.21), we obtain (3.18).

Step 3. Now we show that

Xt = X0 +

∫ t

0

∫
Rd

F (Xs − y)ρs(y)dyds+
√
2νBt a.s.(3.22)

Using Lemma 3.3 and taking ε′ = 0, we obtain that for any s ∈ [0, T ],

(3.23) E
[ ∫

Rd

M |Fε(X
ε
s−y)ρεs(y)−F (Xs−y)ρs(y)|dy

]
≤ Cε+Cω

(
E
[
M |Xε

s−Xs|
])
.

Combining (3.23) and (3.16), one has

E
[
|
∫ t

0

∫
Rd

MFε(X
ε
s − y)ρεs(y)dyds−

∫ t

0

∫
Rd

MF (Xs − y)ρs(y)dyds|
]

≤ CTε+ CTω
(
E
[

sup
s∈[0,T ]

M |Xε
s −Xs|

])
→ 0 as ε → 0.

Thus there exists a subsequence (without relabeling) such that

(3.24)

∫ t

0

∫
Rd

MFε(X
ε
s − y)ρεs(y)dyds

ε→0−−−→
∫ t

0

∫
Rd

MF (Xs − y)ρs(y)dyds a.s.

Taking the limit ε → 0 in (3.11), one has

(3.25) MXt = MX0 +M

∫ t

0

∫
Rd

F (Xs − y)ρs(y)dyds+M
√
2νBt a.s.
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Since (M,X0) is g0-distributed and g0 has support (0, M̄ ]× R
d, then 0 < M ≤ M̄

a.s. Hence the above equation implies that (Xt, ρ) is a strong solution to (1.3).

Step 4. Suppose (X1
t , ρ

1) and (X2
t , ρ

2) are two strong solutions to (1.3) with the
same initial random variable (M,X0). Then ρ1 and ρ2 both are weak solutions to
the KS equation with the same initial data ρ0. This will be proved by Proposition
3.4 (i). Since the weak solution to the KS equation is unique, one has ρ1 = ρ2.
Using Lemma 3.3 and taking ε′ = ε = 0, one has

E[M |X1
t −X2

t |] ≤ ω
(
E[M |X1

t −X2
t |]

)
.

Combining the initial data X1
0 = X2

0 = X0 and the fact that 0 < M ≤ M̄ a.s., we
obtain X1

t = X2
t a.s.; i.e. the strong solution to (1.3) is unique. �

Proposition 3.4. Let ρ0 satisfy Assumption 2.2 and let Bt be a Brownian motion.
Choose a probability measure g0 on (0, M̄ ] × R

d such that ρ0(x)dx =∫
(0,M̄ ]

mg0(dm, dx). Let (M,X0) be a g0-distributed random variable independent

of Bt. The relationship between the strong solution to (1.3) and the weak solution
to (1.1) holds as follows:

(i) If (Xt, ρ(t, x)) is a strong solution to (1.3) associated to the initial random
variable (M,X0), then ρ(t, x) is a weak solution to (1.1) with the initial
data ρ0(x).

(ii) If ρ is a weak solution to (1.1) with the initial data ρ0(x), then there exists
a unique stochastic process Xt such that (Xt, ρ(t, x)) is the unique strong
solution to (1.3) associated to the initial random variable (M,X0).

Proof. Let (Xt, ρ(t, x)) be a strong solution to (1.3). Then Xt is an Itô process
[20, Definition 4.1.1]. For any ϕ(x) ∈ C2

b (R
d), the Itô formula states that

ϕ(Xt) = ϕ(X0) +

∫ t

0

∫
Rd

∇ϕ(Xs)F (Xs − y)ρs(y)dyds

+
√
2ν

∫ t

0

∇ϕ(Xs)dBs + ν

∫ t

0

�ϕ(Xs)ds.(3.26)

Multiplying (3.26) by M and taking the expectation, one has∫
R+×Rd

mϕ(x)gt(dm, dx) =

∫
mϕ(x)g0(dm, dx) + ν

∫ t

0

∫
�ϕ(x)mgs(dm, dx)ds

+

∫ t

0

∫
m∇ϕ(x)F (x− y)ρs(y)dygs(dm, dx)ds.

Since ρ(t, x)dx =
∫
R+

mgt(dm, dx), one knows that ρ is a weak solution to (1.1)

with the initial data ρ0(x).
To prove (ii), we first consider the following linear Fokker-Planck equation:{

∂tρ = ν�ρ−∇ · [Vg(t, x)ρ], x ∈ R
d, t > 0,

ρ(t, x)t=0 = ρ0(x),
(3.27)

where Vg(t, x) =
∫
Rd F (x − y)g(t, y)dy and g(t, x) ∈ L∞(

0, T ;L∞ ∩ L1(Rd)
)
is a

given function. Recalling the proof of [15, Proposition 2.3], (3.27) has a unique
weak solution.

Now let Vρ(t, x) =
∫
Rd F (x − y)ρ(t, y)dy, where ρ is a weak solution to (1.1).

Hence ρ is also a weak solution to (3.27) associated with Vρ and the initial data ρ0.
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Since Vρ is log-Lipschitz continuous, repeating the proof of the well-posedness for
the nonlinear stochastic equation (1.3), one can show that the stochastic equation

(3.28) Xt = X0 +

∫ t

0

Vρ

(
s,Xs

)
ds+

√
2νBt

has a unique strong solution Xt. Denoting g̃t(m,x) = L(M,Xt), one also can
obtain that there exists a density ρ̃ such that

∫
R+

mg̃t(dm, dx) = ρ̃(x)dx. By the

Itô formula, ρ̃ is a weak solution to (3.27) associated with Vρ and the initial data
ρ0. By the uniqueness of (3.27) we obtain ρ̃ = ρ; i.e. (Xt, ρ) is a strong solution to
(1.3) associated to (M,X0).

Hence combining the uniqueness of (1.3), we have proven that if ρ(t, x) is a
weak solution to (1.1) with the initial data ρ0, then there exists a unique stochastic
process Xt such that (Xt, ρ(t, x)) is the unique strong solution to (1.3) associated
to the initial random variable (M,X0). �

Now let us write the main estimate of the difference between the stochastic
process (Mi, X

i,ε
t ) for the particle method (1.2) and (Mi, X

i
t) for the mean-field

nonlinear stochastic equation (1.3).

Proposition 3.5. Let {X1,ε
t , · · · , XN,ε

t } be the unique strong solution to (1.2) as-
sociated to the i.i.d. initial random variables {(Mi, X

i
0)}Ni=1, 0 < Mi ≤ M̄ a.s., and

independent Brownian motions {Bi
t}Ni=1. Let {(Mi, X

i
t)}Ni=1 be the unique strong

solutions to (1.3) with the same initial data {(Mi, X
i
0)}Ni=1 and {Bi

t}Ni=1 as (1.2).

Then {(Mi, X
i,ε
t )}Ni=1 are exchangeable, {(Mi, X

i
t)}Ni=1 are i.i.d. and there exist

regularized parameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that

lim
N→∞

E
[

sup
t∈[0,T ]

Mi|Xi,ε(N)
t −Xi

t |
]
= 0 for any 1 ≤ i ≤ N.(3.29)

Proof. For the i.i.d initial data {(Mi, X
i
0)}Ni=1 and Brownian motions {Bi

t}Ni=1, con-
sider the equation
(3.30)

X̄i,ε
t = Xi

0 +

∫ t

0

∫
(0,M̄ ]×Rd

mFε(X̄
i,ε
s − y)ḡs(dm, dy)ds+

√
2νBi

t , i = 1, · · · , N,

where ḡt(m,x) = L(Mi, X̄
i,ε
t ),

∫
R+

mḡt(dm, dx) = ρ̄(x)dx. In the proof of Theorem

2.6, we know that (3.30) has a unique solution {(Mi, X̄
i,ε
t )}Ni=1 and that they are

i.i.d. This equation serves as a link between (1.2) and (1.3), and it will be verified
by the following three steps.

Step 1. We prove that

E
[

sup
t∈[0,T ]

Mi|Xi,ε
t − X̄i,ε

t |
]
≤ CT√

N − 1εd−1
exp(

CT

εd
),(3.31)

which gives a relationship between (3.30) and (1.2).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

RANDOM PARTICLE BLOB METHOD 737

Since
∣∣∇Fε(x)

∣∣ ≤ C
εd

by Lemma 2.8, one has

Mi|Xi,ε
t − X̄i,ε

t | ≤
∫ t

0

1

N − 1

N∑
j �=i

∣∣MiMjFε(X
i,ε
s −Xj,ε

s )−MiMjFε(X̄
i,ε
s − X̄j,ε

s )

+MiMjFε(X̄
i,ε
s − X̄j,ε

s )

−Mi

∫
(0,M̄ ]×Rd

mFε(X̄
i,ε
s − y)ḡs(dm, dy)

∣∣ds
≤
∫ t

0

1

N − 1

N∑
j �=i

[CMi

εd
|Xi,ε

s − X̄i,ε
s |+ CMj

εd
|Xj,ε

s −X̄j,ε
s |+ |Ai

j |
]
ds,

(3.32)

where

(3.33) Ai
j := MiMjFε(X̄

i,ε
s − X̄j,ε

s )−Mi

∫
(0,M̄ ]×Rd

mFε(X̄
i,ε
s − y)ḡs(dm, dy).

Since {(Mi, X
i,ε
t )}Ni=1 are exchangeable random variables and {(Mi, X̄

i,ε
t )}Ni=1 are

i.i.d. random variables, we have the following exchangeability property:

E
[
Mi|Xi,ε

s − X̄i,ε
s |

]
= E

[
Mj |Xj,ε

s − X̄j,ε
s |

]
for any 1 ≤ i, j ≤ N.

After taking the expectation of (3.32), by the exchangeability property, one has

E
[

sup
t∈[0,T ]

Mi|Xi,ε
t − X̄i,ε

t |
]
≤

∫ T

0

E
[∣∣ 1

N − 1

N∑
j �=i

Ai
j

∣∣]ds
+

C

εd

∫ T

0

E
[
Mi|Xi,ε

s − X̄i,ε
s |

]
ds.

Applying Gronwall’s lemma, one deduces that

E
[

sup
t∈[0,T ]

Mi|Xi,ε
t − X̄i,ε

t |
]
≤ exp(

CT

εd
)

∫ T

0

E
[∣∣ 1

N − 1

N∑
j �=i

Ai
j

∣∣]ds
≤ exp(

CT

εd
)

∫ T

0

{
E
[
| 1

N − 1

N∑
j �=i

Ai
j |2

]} 1
2 ds.

(3.34)

Because {(Mi, X̄
i,ε
t )}Ni=1 are i.i.d. random variables, when j �= k,

E
[
Ai

jA
i
k

]
= 0.

Hence

E
[∣∣ 1

N − 1

N∑
j �=i

Ai
j

∣∣2] = 1

(N − 1)2
E
[ N∑
j,k �=i

Ai
jA

i
k

]
≤

E
[
(A1

2)
2
]

N − 1
.(3.35)
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Since {(Mi, X̄
i,ε
t )}Ni=1 are i.i.d., we have

E
[
(A1

2)
2
]
= E

[
|M1M2Fε(X̄

1,ε
s − X̄2,ε

s )−M1

∫
(0,M̄ ]×Rd

mFε(X̄
1,ε
s − y)dḡs(dm, dy)|2

]
≤ 2E

[
M2

1M
2
2F

2
ε (X̄

1,ε
s − X̄2,ε

s ) +
(
M1

∫
(0,M̄ ]×Rd

mFε(X̄
1,ε
s − y)dḡs(dm, dy)

)2]
≤ 2E

[
M2

1M
2
2F

2
ε (X̄

1,ε
s − X̄2,ε

s ) +M2
1

∫
(0,M̄ ]×Rd

m2F 2
ε (X̄

1,ε
s − y)dḡs(dm, dy)

]
= 4E

[
M2

1M
2
2F

2
ε (X̄

1,ε
s − X̄2,ε

s )
]
.

(3.36)

For all ε > 0, using
∣∣Fε(x)

∣∣ ≤ min{C|x|
εd

, C
|x|d−1 } from Lemma 2.8, we obtain that

E
[
M2

1M
2
2F

2
ε (X̄

1,ε
s − X̄2,ε

s )
]

≤ C

∫
|x−y|≤ε

|x− y|2
ε2d

df1,ε
s (x)df2,ε

s (y)

+C

∫
|x−y|>ε

1

|x− y|2(d−1)
df1,ε

s (x)df2,ε
s (y)

≤ C

ε2(d−1)
,(3.37)

where f i,ε
s (·) =

∫ M̄

0
mḡs(dm, ·), i = 1, 2. Plugging (3.37) into (3.36), one has

E
[
(A1

2)
2
]
≤ C

ε2(d−1)
.(3.38)

Combining (3.34), (3.35) and (3.38) yields (3.31).

Step 2. We deduce the relationship between (3.30) and (1.3); i.e. there exist CT

and ε0(T ) > 0 such that if ε < ε0(T ), then

(3.39) E
[

sup
t∈[0,T ]

Mi|X̄i,ε
t −Xi

t |
]
≤ CT ε

exp(−CT ) for any 1 ≤ i ≤ N.

From (3.30) and (1.3) directly, one has

Mi|X̄i,ε
t −Xi

t | ≤
∫ t

0

∫
Rd

∣∣MiFε(X̄
i,ε
s − y)ρ̄s(y)−MiF (Xi

s − y)ρs(y)
∣∣dyds.

Taking the expectation and using Lemma 3.3, we have

E
[

sup
t∈[0,T ]

Mi|X̄i,ε
t −Xi

t |
]

≤
∫ T

0

E
[ ∫

Rd

|MiFε(X̄
i,ε
s − y)ρ̄s(y)−MiF (Xi

s − y)ρs(y)|dy
]
ds

≤ CεT + C

∫ T

0

E
[

sup
τ∈[0,s]

Miω(|X̄i,ε
τ −Xi

τ |)
]
ds.

(3.40)

By Lemma 3.2, we achieve (3.39).

Step 3. Combining (3.31) and (3.39), one has

E
[

sup
t∈[0,T ]

Mi|Xi,ε
t −Xi

t |
]

≤ E
[

sup
t∈[0,T ]

Mi|Xi,ε
t − X̄i,ε

t |
]
+ E

[
sup

t∈[0,T ]

Mi|X̄i,ε
t −Xi

t |
]

≤ CT√
N − 1εd−1

exp(
CT

εd
) + CT ε

exp(−CT ).(3.41)
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We choose ε = ε(N) = λ(lnN)−
1
d → 0 as N → ∞ in (3.41), where λ is a large

enough positive constant, and conclude that

E
[

sup
t∈[0,T ]

Mi|Xi,ε(N)
t −Xi

t |
]
≤ CTN

CT
λd (lnN)

d−1
d

λd−1
√
N − 1

+ CT ε
exp(−CT ) → 0 as N → ∞,

which completes the proof of Proposition 3.5. �
Denote Gε

t (m1, x1, · · · ,mN , xN ) as the joint distribution of {(Mi, X
i,ε
t )}Ni=1. Be-

low we will use the result of Proposition 3.5 to show the convergence of the j-th
order marginal distribution of Gε

t in W1 distance.

Corollary 3.6 (Propagation of chaos). Let {(Mi, X
i,ε
t )}Ni=1 and {(Mi, X

i
t)}Ni=1 be

defined as in Proposition 3.5. Define

f
(j),ε
t =

∫
(0,M̄ ]N×R(N−j)d

m1, · · · ,mjG
ε
t (dm1, · · · , dmN , ·, dxj+1, · · · , dxN ), j ≥ 1.

Let gt be the common time marginal of
{
(Mi, X

i
t)
}N

i=1
and ft(dx) :=

∫ M̄

0
mgt(dm, dx).

Then there exist regularized parameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that

sup
t∈[0,T ]

W1(f
(j),ε(N)
t , f⊗j

t ) → 0 as N → ∞.(3.42)

Proof. Denote F̃t(m1, · · · ,mN , x1, · · · , xN , x̂1, · · · , x̂j) as the joint distribution of(
M1, · · · ,MN , X1,ε

t , · · · , XN,ε
t , X1

t , · · · , X
j
t

)
. Then one has the following facts:

f⊗j
t =

∫
(0,M̄ ]N×RNd

m1, · · · ,mjF̃t(dm1, · · · , dmN , dx1, · · · , dxN , ·);

f
(j),ε
t =

∫
(0,M̄ ]N×RNd

m1, · · · ,mjF̃t(dm1, · · · , dmN , ·, dxj+1, · · · , dxN , dx̂1, · · · , dx̂j);∫
(0,M̄ ]N×R(N−j)d

m1, · · · ,mjF̃t(dm1, · · · , dmN , ·, dxj+1, · · · , dxN , ·)∈Λ(f
(j),ε
t , f⊗j

t ).

By (2.9), we also have∫
Rjd

df
(j),ε
t =

∫
Rjd

df⊗j
t = E[M1 · · ·Mj ] =

(
E[M1]

)j
= 1.

Applying (3.29), we obtain

sup
t∈[0,T ]

W1(f
(j),ε(N)
t , f⊗j

t )

≤ sup
t∈[0,T ]

∫
R2jd

(
|x1 − x̂1|+ · · ·+ |xj − x̂j |

)
×
∫
(0,M̄ ]N×R(N−j)d

m1, · · · ,mjF̃t(dm1, · · · , dx̂j)

≤ jM̄ j−1 sup
t∈[0,T ]

∫
(0,M̄ ]N×R(N+j)d

m1|x1 − x̂1|

× F̃t(dm1, · · · , dmN , dx1, · · · , dxN , dx̂1, · · · , dx̂j)

≤ jM̄ j−1
Em1,··· ,mN ,x1,··· ,xN ,x̂1,··· ,x̂N

[
sup

t∈[0,T ]

M1|X1,ε(N)
t −X1

t |
]
→ 0 as N → ∞.

�
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3.3. Convergence of the random blob method.

Lemma 3.7. Let (E, d) be a Polish space and let Wd be the Wasserstein distance
on P(E) associated with the metric d. If x ∈ E, y is a random variable on E, and
we denote f = L(y), then Wd(f, δx) = E[d(y, x)].

Proof.

Step 1. For any f, g ∈ P(E), we show that if π ∈ Λ(f, g), then supp π ⊂ supp f ×
supp g.

For any Borel set A ⊂ E,

π(suppf ×A) = π(E ×A)− π((supp f)c ×A) = g(A)− π((supp f)c ×A).

On the other hand, π((supp f)c × A) ≤ π((supp f)c × E) = f((supp f)c) = 0.
Hence π(supp f × A) = g(A). Taking A = supp g, one has π(supp f × supp g) =
g(supp g) = 1, i.e. supp π ⊂ supp f × supp g.

Step 2. If g = δx, by Step 1,∫
E×E

d(y1, y2)π(dy1, dy2) =

∫
E×{x}

d(y1, y2)π(dy1, dy2)

=

∫
E×{x}

d(y1, y2)(f ⊗ δx)(dy1, dy2) =

∫
E

d(y1, x)f(dy1).

Hence

Wd(f, δx) = inf
π∈Λ(f,δx)

∫
E×E

d(y1, y2)π(dy1, dy2)

=

∫
E

d(y1, x)f(dy1) = E[d(y, x)].

�

Remark 3.8. Let E be a topological space, {(Mi, X
i)}Ni=1 be N random variables

on (0, M̄ ] × E and μN = 1
N

N∑
i=1

MiδXi ∈ M+(E). Introduce ĜN = L(μN ) ∈

P
(
M+(E)

)
and GN = L(M1, X

1, · · · ,MN , XN ) ∈ P
(
((0, M̄ ]×E)N

)
. Then ∀ Φ ∈

Cb(M+(E)),

(3.43) 〈ĜN ,Φ〉 =
∫
((0,M̄ ]×E)N

Φ(μN )GN (dm1, dx2, · · · , dmN , dxN ).

In fact, we can construct a measurable map

T : ((0, M̄ ]× E)N → M+(E), (m1, x1, · · · ,mN , xN ) �→ 1

N

N∑
i=1

miδxi .

Therefore T transports GN onto ĜN . We shall write ĜN = T�GN and say that
ĜN is the push-forward of GN by T , or equivalently ∀ Φ ∈ Cb(M+(E)),∫

((0,M̄ ]×E)N
(Φ ◦ T )GN (dm1, dx2, · · · , dmN , dxN ) =

∫
M+(E)

Φ(Y )ĜN (dY );

i.e. (3.43) is satisfied.
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Proposition 3.9. Let (E, d) be a locally compact Polish space, {(Mi, X
i)}Ni=1 be

N random variables on (0, M̄ ]×E and f be a positive Radon measure on E. Then
the following two conditions are equivalent:

(i) The positive Radon measure μN := 1
N

N∑
i=1

MiδXi converges in law to the

constant random variable f as N → ∞.
(ii) ∀ ϕ ∈ Cb(E), E[|〈μN − f, ϕ〉|] → 0 as N → ∞.

Proof. First, we show that (ii)⇒ (i): Since E is a locally compact Polish space,
there is a dense sequence (ϕn)n∈N in C0(E). One can define the weak-∗ distance
[22, p. 98]

∀ g1, g2 ∈ M+(E), d1(g1, g2) :=
∑
n∈N

1

2n
(1 ∧ |〈g1 − g2, ϕn〉|);

then (M+(E), d1) is a Polish space [10, Section 15.7]. For any α, β ∈ P(M+(E)),
define a Wasserstein distance on P(M+(E)) as

Wd1
(α, β) := inf

π∈Λ(α,β)

{∫
M+(E)×M+(E)

d1(g1, g2)π(dg1, dg2)
}
.

Then by Lemma 3.7 and Remark 3.8, one has

Wd1
(ĜN , δf ) =

∫
M+(E)

d1(g1, f)Ĝ
N (dg1)

=

∫
((0,M̄ ]×E)N

d1(μ
N , f)GN (dm1, dx2, · · · , dmN , dxN )

=
∑
n∈N

1

2n
E
[
(1 ∧ |〈μN − f, ϕn〉|)

]
.

For any ε > 0, there exists Kε such that∑
n>Kε

1

2n
E
[
(1 ∧ |〈μN − f, ϕn〉|)

]
≤ ε

2
.(3.44)

By (ii), there exists N ′ such that when N ≥ N ′,∑
1≤n≤Kε

1

2n
E
[
(1 ∧ |〈μN − f, ϕn〉|)

]
≤ ε

2
.(3.45)

Combining (3.44) and (3.45), we have

Wd1
(ĜN , δf ) → 0 as N → ∞.

Using Proposition 2.1, ĜN narrowly converges to δf as N → ∞, which implies that
(i) holds.

Now we prove (i)⇒ (ii): For any μ ∈ M+(E) and ϕ ∈ Cb(E), define a functional

Γ : M+(E) → R, μ �→ Γ(μ) := |〈μ− f, ϕ〉|+ |〈f, ϕ〉|,(3.46)

and notice that Γ ∈ Cb(M+(E)). By (i), we obtain

(3.47) E[Γ(μN )] = E[|〈μN − f, ϕ〉|] + |〈f, ϕ〉| → E[Γ(f)] = |〈f, ϕ〉| as N → ∞.

Thus E[|〈μN − f, ϕ〉|] → 0 as N → ∞. �
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Proof of Theorem 2.9. Let {(Mi, X
i,ε
t )}Ni=1 and {(Mi, X

i
t)}Ni=1 be defined as in

Proposition 3.5, L(Mi, X
i
0) = g0 and ρ0(x)dx =

∫ M̄

0
mg0(dm, dx). Let gt be the

common time marginal of {(Mi, X
i
t)}Ni=1. From Proposition 3.4, we know that

ft(dx) := ρ(t, x)dx =
∫ M̄

0
mgt(dm, dx), where ρ is the unique weak solution to

(1.1) with the initial data ρ0. By the exchangeability of {(Mi, X
i,ε
t )}Ni=1, for any

ϕ ∈ Cb(R
d),

E[|〈 1
N

N∑
i=1

MiδXi,ε
t

− f, ϕ〉|2] = E[| 1
N

N∑
i=1

Miϕ(X
i,ε
t )− 〈f, ϕ〉|2]

=
1

N
E
[
M2

1ϕ(X
1,ε
t )2

]
+

N − 1

N
E
[
M1ϕ(X

1,ε
t )M2ϕ(X

2,ε
t )

]
− 2〈f, ϕ〉E

[
M1ϕ(X

1,ε
t )

]
+ 〈f, ϕ〉2.

(3.48)

Recall that Gε
t (m1, x1, · · · ,mN , xN ) is the joint distribution of

(
M1, X

1,ε
t , · · · ,

MN , XN,ε
t

)
in Corollary 3.6. Taking j = 2 in (3.42) and by Proposition 2.1, there

exist regularized parameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that

E
[
M1ϕ(X

1,ε(N)
t )M2ϕ(X

2,ε(N)
t )

]
=

∫
((0,M̄ ]×Rd)N

m1m2ϕ(x1)ϕ(x2)G
ε
t (dm1, dx1, · · · , dmN , dxN )

=

∫
R2d

ϕ(x1)ϕ(x2)f
(2),ε(N)
t (dx1, dx2)

N→∞−−−−→
( ∫

Rd

ϕ(x)ft(dx)
)2
.

(3.49)

Similarly, taking j = 1 in (3.42), one has

E
[
M1ϕ(X

1,ε(N)
t )

]
→

∫
Rd

ϕ(x)ft(dx) as N → ∞.(3.50)

Taking the limit N → ∞ in (3.48), thanks to (3.49) and (3.50), we have

E[|〈 1
N

N∑
i=1

MiδXi,ε(N)
t

− f, ϕ〉|2] → 0 as N → ∞.(3.51)

From (3.51), one also has

E[|〈 1
N

N∑
i=1

MiδXi,ε(N)
t

− f, ϕ〉|] ≤
{
E[〈 1

N

N∑
i=1

MiδXi,ε(N)
t

− f, ϕ〉2]
} 1

2

→ 0 as N → ∞.(3.52)

From Proposition 3.9, we have

1

N

N∑
i=1

MiδXi,ε(N)
t

→ f in law as N → ∞.

Since f is a constant random variable, then 1
N

N∑
i=1

MiδXi,ε(N)
t

converges to f in

probability [11, Lemma 3.7]. Thus there exists a subsequence that converges a.s.
[11, Lemma 3.2], and we complete the proof. �
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4. Practical algorithms and convergence results

First we approximate the initial density ρ0. Take h as a grid size and decompose
the domain D into the union of nonoverlapping cells Cα = Xα + [−h

2 ,
h
2 ]

d with

center Xα = hα, i.e. D ⊂
⋃
α∈I

Cα, where I = {α} ⊂ Z
d is the index set for cells.

The total number of cells is given by M =
∑
α∈I

≈ |Ω|
hd .

Define Mα = M
∫
Cα

ρ0(x)dx; then Mα ≤ CA =: M̄ , where A = ‖ρ0(x)‖L∞(Rd).

Take a function ϕ satisfying supp ϕ(x) ⊂ B(0, 1), ϕ(x) ≥ 0 and
∫
B(0,1)

ϕ(x)dx = 1.

Approximate ϕ as ϕh(x) =
1
hdϕ(

x
h ). Then approximate ρ0 as

ρ0,h =
1

M

∑
α∈I

Mαϕh(x−Xα).(4.1)

We can derive that there exists a constant C such that

‖ρ0,h‖L1 = ‖ρ0‖L1 , ‖ρ0,h‖L∞ ≤ C‖ρ0‖L∞ ,

∫
|x|ρ0,hdx ≤ C

∫
|x|ρ0dx,

and

W1(ρ0,h, ρ0) ≤ Ch.

To sample the density ρ0,h in (4.1), we construct the random variables

{(Mh
i , X

i,h
0 )}Ni=1 as follows:

(i) Pick i = α ∈ I with equal probability 1
M .

(ii) Construct N i.i.d. random variables {ξhi }Ni=1 with common density ϕh(x).
Let

Mh
i = Mα, Xi,h

0 = Xα + ξhi .(4.2)

From the above construction, it is easy to verify that (Mh
i , X

i,h
0 ) are i.i.d. with

common distribution gh0 (m,x), where

gh0 (dm, dx) =
1

M

∑
α∈I

δMα
⊗ ϕh(x−Xα)dx.

Remark 4.1. Mh
i are i.i.d. with the common marginal distribution R0(dm) =

1
M

∑
α∈I

δMα
; Xi,h

0 are i.i.d. with the common marginal density H0(x) =

1
M

∑
α∈I

ϕh(x−Xα); E(M
h
i ) =

∫ M̄

0
mR0(dm) = 1

M

∑
α∈I

Mα = 1 and

∫ M̄

0

mgh0 (dm, ·) = ρ0,h(x)dx.(4.3)

Remark 4.2. In practical computation, we take N = M and order all the cells
α ∈ I, and denote the order as i. The convergence analysis for this method should
be similar to Theorem 2.9.

From Theorem 2.4 (ii), we have the following corollary.

Corollary 4.3. Let ρh(t, x) and ρ(t, x) be the unique weak solutions to the KS equa-
tion (1.1) with the initial data ρ0,h and ρ0 respectively. Then there exist three con-
stants C0(T ), C (depending on ‖ρ1‖L∞(0,T ;L∞∩L1(Rd)) and ‖ρ2‖L∞(0,T ;L∞∩L1(Rd)))
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and CT such that if W1(ρ0,h, ρ0) < Ch < C0(T ), then

sup
t∈[0,T ]

W1(ρt,h, ρt) ≤ CTW1(ρ0,h, ρ0)
exp(−CT ) ≤ CTh

exp(−CT ).(4.4)

Theorem 4.4. Let ρ(t, x) be the unique weak solution to the KS equation (1.1) with

the initial data ρ0 and {X1,ε,h
t , · · · , XN,ε,h

t } be the unique strong solution to (1.2)

with the initial data {(Mh
i , X

i,h
0 )}Ni=1 given by (4.2). Then there exist a subsequence

of {X1,ε,h
t , · · · , XN,ε,h

t } (without relabeling N) and regularized parameters ε(N) ∼
(lnN)−

1
d → 0 as N → ∞ such that

lim
h→0

lim
N→∞

1

N

N∑
i=1

Miϕ(X
i,ε(N),h
t ) =

∫
Rd

ϕ(x)ρtdx for any ϕ ∈ Cb(R
d).(4.5)

Proof. Fix h > 0. Let ρh(t, x) be the unique weak solutions to the KS equation
(1.1) with the initial data ρ0,h. From (3.52), we obtain that for any ψ ∈ BL(R)

there exist regularized parameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that

E
[
ψ
( 1

N

N∑
i=1

Miϕ(X
i,ε(N),h
t )

)
− ψ

( ∫
Rd

ϕ(x)ρht dx
)]

≤ CE
[∣∣ 1
N

N∑
i=1

Miϕ(X
i,ε(N),h
t )−

∫
Rd

ϕ(x)ρht dx
∣∣] → 0 as N → ∞.(4.6)

By the portemanteau theorem, (4.6) means that the law of 1
N

N∑
i=1

Miϕ(X
i,ε(N),h
t )

narrowly converges to the law of
∫
Rd ϕ(x)ρ

h
t dx as N → ∞. Thus there exists a

subsequence of {X1,ε,h
t , · · · , XN,ε,h

t } (without relabeling N) such that

1

N

N∑
i=1

Miϕ(X
i,ε(N),h
t ) →

∫
Rd

ϕ(x)ρht dx a.s. as N → ∞.

From Corollary 4.3 and Proposition 2.1, one has∫
Rd

ϕ(x)ρht dx →
∫
Rd

ϕ(x)ρtdx as h → 0.

Combining the above two results, we finish the proof. �
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