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Abstract. This paper investigates the global existence of weak solutions for

the incompressible p-Navier-Stokes equations in Rd (2 ≤ d ≤ p). The p-

Navier-Stokes equations are obtained by adding viscosity term to the p-Euler
equations. The diffusion added is represented by the p-Laplacian of velocity

and the p-Euler equations are derived as the Euler-Lagrange equations for the

action represented by the Benamou-Brenier characterization of Wasserstein-p
distances with constraint density to be characteristic functions.

1. Introduction. In this paper, we show the global existence of weak solutions for
the p-Navier-Stokes (p-NS) equations in Rd:

∂tup + u · ∇up +∇π = ν∆γu,

up = |u|p−2u,

∆γu = ∇ · (|∇u|γ−2∇u),

∇ · u = 0, u(x, 0) = uin.

(1)

Here u(x, t) : Rd ×R+ → Rd is the velocity field. up is the signed power of velocity
u and is called the momentum. π(x, t) : Rd × R+ → R denotes the unknown
scalar pressure. ∆γu is γ-Laplacian of velocity. Physically it is related to the shear
thinning effect and is reminiscent of the shear thickening fluid [2]. ν > 0 and γ > 1
are constants, which denote viscosity and strength of diffusion respectively. The
parameter γ measures the level of diffusion. It is the fast diffusion when γ ∈ (1, 2),
whereas γ ∈ (2,∞) corresponds to the slow diffusion. If γ = 2, it is the usual
diffusion in the Newtonian fluid. In addition, we require the solution to decay fast
enough at infinity.
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The p-Laplace equation (∆pu = 0) is a far-reaching generalization of the ordinary
Laplace equation, but it is non-linear and degenerate (p > 2) or singular (p <
2). More physical situations and applications about p-Laplacian can also be found
in [1, 18]. The systems of p-Naiver-Stokes equations and p-Euler equations were
proposed by Li and Liu in [16]. p-Euler equations are derived as the Euler-Lagrange
equations for the action represented by the Benamou-Brenier characterization of
Wasserstein-p distances with constraint density to be a characteristic function. The
difference between p-Euler equations and usual Euler equations is the nonlinear p-
momentum in the velocity. The p-Navier-Stokes equations are derived by adding
a viscosity with γ-Laplacian (∆γu) to p-Euler equations. It should be mentioned
that the name of ‘p-Navier-Stokes equations’ is reminiscent of the models for non-
Newtonian fluids, which were studied by Breit in [1, 2] based on a power law model
for the viscosity term. Their models are the usual Navier-Stokes equations with the
viscous term replaced by div(|ε|p−2ε) where ε = 1

2 (∇u +∇uT ). With this term, it
follows that

〈div(|ε|p−2ε), u〉 = −‖ε‖pLp .

However, in Equations (1) we have

〈∆γu, u〉 = 〈div(|∇u|γ−2∇u), u〉 = −‖∇u‖γLγ .

Hence, if γ = p, we can give a priori estimates of (1)

u ∈ L∞(0, T ;Lp) ∩ Lp(0, T ;W 1,p).

The p-Laplacian diffusion has been studied by many authors. Lindqvist studied
stationary p-Laplace equation in [18]. Matas and Merker in [19] investigated exis-
tence of weak solutions to doubly degenerate diffusion equations via Faedo-Galerkin
approximation. A degenerate p-Laplacian Keller-Segel model was studied by Cong
and Liu in [9]. In addition, there have been extensive numerical works for various
gradient flows, such as [8, 12, 22, 24]. The convexity of such a p-Laplacian energy
has played a crucial role in the energy stability estimates in these numerical works.

About p-Navier-Stokes equations, it is worth noting that Li and Liu [16] have
studied the existence of global weak solution by using the time-shift estimate and
compactness criterion. In this paper we give a completely different proof about
the global existence of weak solutions. More precisely, compared to the results in
[16] we construct a sequence of approximate solutions by use of a semi-implicit
scheme at first. In this construction, we establish a well-defined operator Φ and
apply the Leray-Schauder fixed point theorem and the monotone operator theory to
prove the existence of a solution to the discrete problem. The monotone operators
theory was proposed by Minty [20, 21], which was used to obtain the existence
results for quasi-linear elliptic and parabolic partial differential equations, see for
instance [3, 4, 10, 14, 15]. Then, it is sufficient to get uniform estimates for the time
shifts uτ − uτ (· − τ) for τ > 0 instead of all time shifts uτ − uτ (· − h) for h > 0.
Next, we employ compactness and the monotone operator theory to show that the
constructed solution converges to the weak solution. Some compactness results for
piecewise constant functions in time can be found in [5, 11].

The rest of the paper is organized as follows. In Section 2, we give the definition
of weak solution for (1) and the proof of some essential inequalities. In Section 3,
we prove Theorem (4) by using a semi-implicit scheme to construct approximate
solutions, which indeed converge to a weak solution. Finally, in the appendix, we
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establish existence and uniqueness of the weak solution for a class of stationary
p-Laplacian equations.

2. Preliminaries. The global weak solution to the p-Navier-Stokes equations is
defined as below:

Definition 2.1. We say u is a global weak solution to the p-Navier-Stokes equations
(1) with an initial data uin ∈ Lp(Rd) and ∇ · uin = 0 when γ = p, if for ∀ T > 0,

u ∈ L∞(0, T ;Lp(Rd)) ∩ Lp(0, T ;W 1,p(Rd));
and for ∀ ϕ ∈ C∞c ([0, T );Rd) and ∇ · ϕ = 0, it satisfies that∫ T

0

∫
Rd
up · ∂tϕdxdt+

∫ T

0

∫
Rd
∇ϕ : (u⊗ up)dxdt

=

∫ T

0

∫
Rd
∇ϕ : (∇u|∇u|p−2)dxdt−

∫
Rd

(uin)p · ϕ(x, 0)dx, (2)

where the term about pressure π vanishes:
∫
Rd ∇πϕdx = −

∫
Rd π∇ · ϕdx = 0,

because ϕ is divergence free. Furthermore,

∇ϕ : (u⊗ up) =
∑
ij

∂iϕjvi(vp)j ,∇ϕ : ∇u =
∑
ij

∂iϕj∂iuj .

We prove the following essential lemma:

Lemma 2.2 ([18]). Let p ≥ 2, then there exists C(p) > 0 such that ∀ a, b ∈ Rd,
then

C(p)|a− b|p ≤ (|a|p−2a− |b|p−2b) · (a− b), (3)

Proof.

(|a|p−2a− |b|p−2b) · (a− b) =
|a|p−2 + |b|p−2

2
|a− b|2 +

(|a|p−2 − |b|p−2)(|a|2 − |b|2)

2
.

If p ≥ 2,

(|a|p−2a− |b|p−2b) · (a− b) ≥ |a|
p−2 + |b|p−2

2
|a− b|2 ≥ 22−p|a− b|p.

3. Existence of the global weak solution. In this section, we state our theorem
and give a proof.

Theorem 3.1. When 2 ≤ d ≤ p, the p-Navier-Stokes equations (1) have a global
weak solution with γ = p and an initial data uin ∈ Lp(Rd).

Remark 3.1. Note that we allow 2 = d = p. This is the classical incompressible
Navier-Stokes equations in R2, which is well-known to have global weak solutions
and strong solutions. Actually, we mainly focus on 2 < d ≤ p or 2 = d < p in our
proof. However, we include the result for the case that 2 = d = p in the statement
of the theorem, for the sake of completeness.

We complete the proof through four subsections. Firstly, we use a semi-implicit
scheme to construct a sequence of approximate solutions in the bounded domain by
the Leray-Schauder fixed point theorem, and prove the existence of the approximate
solution in the whole space by using maximal monotone operator theory. Then
uniform estimates for approximate solutions are obtained. Next, we show that the
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sequence of constructed approximate solutions has a subsequence which converges
to u by the compactness argument. We finally prove that u is indeed a global weak
solution of the equations (1) when γ = p.

3.1. The approximate solutions. The following notation will be used: A ↪→ D
(orA ↪→↪→ D) denotes that A is continuously (or compactly) embedded in D. fτ →
(⇀ or

∗
⇀)f in A denotes that a sequence {fτ}τ>0 ⊂ A converges strongly (weakly

or weakly star) to f in A as τ → 0. C(a, b, ...) denotes a constant only dependent
on a, b, ....

In this subsection, we will use a semi-implicit time scheme to obtain a sequence
of approximate solutions in Bn(x) by employing the Leray-Schauder fixed point the-
orem and then give the extension of solutions in Bn to Rd. The extended solutions
actually converge to the approximate solutions in whole space as n→∞.

Let ∀ T > 0, N ∈ N and set τ = T/N , 0 < τ � 1. We divide the time interval
[0,T) into ∪Nk=1[(k − 1)τ, kτ). For any k = 1, ..., N , given ũk−1, the approximate
problem reads∫

Rd

ũkp − ũk−1p

τ
· ϕdx+

∫
Rd
ũk−1 · ∇ũkpϕdx+

∫
Rd
|∇ũk|p−2∇ũk∇ϕdx = 0, (4)

for any test function ϕ ∈ W 1,p
0 (Rd) and ∇ · ϕ = 0. In addition, the term about

pressure π vanishes because ϕ is divergence free,∫
Rd
∇πϕdx = −

∫
Rd
π∇ · ϕdx = 0.

We now prove the existence of solutions to approximate equation (4) by the following
proposition:

Proposition 3.1. Let ũk−1 ∈ W 1,p
0 (Rd) and ∇ · ũk−1 = 0. Then there exists a

solution ũk, ũk ∈ W 1,p
0 (Rd) and ∇ · ũk = 0, which solves (4) when 2 < d ≤ p or

2 = d < p.

Proof of Proposition 3.1. We give the proof in two steps. In Step 1, we show the
existence of ũk to (4) in a bounded domain Bn(x) for a fixed radius Rn by the
Leray-Schauder fixed point theorem (see Theorem 11.3, [13]). In Step 2, we extend
the function ũk by zero outside Bn and denote such extended functions by ũk,n.
Then we make use of the monotone operator theory to get the approximate solutions
on the whole space.

Step 1. For fixed Rn, Bn denotes a ball centered at 0 of radius Rn ∈ N, and

V := {u ∈ Lp(Bn) : ∇ · u = 0, u|∂Bn = 0}, H := {u ∈W 1,p(Bn) : ∇ · u = 0}.

Firstly, we construct a mapping. Let uk−1 ∈ H and define the mapping Φ :
V × [0, 1]→ V by Φ(ūk, σ) = uk via the following procedure∫
Bn

ukp ·ϕdx+ τ

∫
Bn

|∇uk|p−2∇uk∇ϕdx = σ

∫
Bn

uk−1p ϕdx−στ
∫
Bn

uk−1 ·∇ūkpϕdx.

(5)
It can be deduced that the mapping Φ is well-defined through the existence and
uniqueness of the weak solution to stationary p-Laplacian equation (49) in the
Appendix.
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Moreover, we find uk ∈ W 1,p(Bn) by a priori estimate. Indeed, it follows that
by taking ϕ = uk in (5)

‖uk‖pLp + τ‖∇uk‖pLp ≤ σ

∫
uk−1p ukdx− στ

∫
uk−1 · ∇ūkpukdx

≤ σ‖uk−1‖p−1Lp ‖u
k‖Lp + στ‖uk−1‖L∞‖ūk‖p−1Lp ‖∇u

k‖Lp

≤ C(p)‖uk−1‖pLp + C(p)‖∇uk−1‖
d
p−1

Lp ‖u
k−1‖

p−d
p−1

Lp ‖ū
k‖pLp

+
τ

p
‖∇uk‖pLp +

1

p
‖uk‖pLp , (6)

where we have used the Hölder inequality, the Young inequality and the Gagliardo-

Nirenberg inequality: ‖uk−1‖L∞ ≤ C‖∇uk−1‖
d
p

Lp‖uk−1‖
1− dp
Lp , 2 < d ≤ p or 2 = d <

p. Then, we obtain

‖uk‖pLp + τ‖∇uk‖pLp ≤ C(p, ‖uk−1‖H , ‖ūk‖V ).

Secondly, we shall prove that the mapping Φ1 of V into itself given by Φ(ūk, 1) =
uk has a fixed point uk ∈ V by the Leray-Schauder fixed point theorem. To achieve
this goal, we need to show the following four claims (this format was used in [6, 7]):

Claim 1. Φ(ūi, 0) = 0 for any ūi ∈ V .

Claim 2. Φ : V × [0, 1]→ V is continuous.

Claim 3. Φ is compact.

Claim 4. Γ := {uk ∈ V : uk = Φ(uk, σ) for all σ ∈ [0, 1]} is bounded in V .

Proof of Claim 1. If Φ(ūi, 0) = ui for any ūi ∈ V ,∫
Bn

(ui)p · ϕdx+ τ

∫
Bn

|∇ui|p−2∇ui∇ϕdx = 0,

taking ϕ = ui yields

‖ui‖pLp + τ‖∇ui‖pLp = 0,

whence, ui = 0. Thus, Φ(ūi, 0) = 0 for any ūi ∈ V . This ends the proof of Claim
1.

Proof of Claim 2. Assume Φ(ū, σ) = u and Φ(ūi, σ) = ui, i ∈ N, σ 6= 0, then∫
Bn

(ui)p · ϕdx+ τ

∫
Bn

|∇ui|p−2∇ui∇ϕdx = σ

∫
Bn

uk−1
p ϕdx− στ

∫
Bn

uk−1 · ∇(ūi)pϕdx.

(7)

If

ūi → ū in V as i→∞,

we claim that

ui → u in V as i→∞.

Indeed, it follows from subtraction between equation (7) and (5) that∫
Bn

(|ui|p−2ui − |u|p−2u)ϕdx+ τ

∫
Bn

(|∇ui|p−2∇ui − |∇u|p−2∇u)∇ϕdx

= στ

∫
Bn

(uk−1 · ∇ūp − uk−1 · ∇(ūi)p)ϕdx.
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Taking ϕ = ui − u, using Lemma 2.2 and integrating by parts gives

‖ui − u‖pLp + τ‖∇ui −∇u‖pLp

≤ C(p)τ

∫
uk−1((ūi)p − ūp)(∇ui −∇u)dx

≤ C(p)τ

∫
uk−1|ūi − ū|(|ūi|p−2 + |ū|p−2)(∇ui −∇u)dx

≤ C(p)τ‖∇(ui − u)‖Lp‖ūi + ū‖p−2Lp ‖ūi − ū‖Lp‖u
k−1‖L∞

≤ τ

p
‖∇(ui − u)‖pLp + C(p)‖ūi − ū‖

p
p−1

Lp ‖ūi + ū‖
p(p−2)
p−1

Lp

×‖∇uk−1‖
d
p−1

Lp ‖u
k−1‖

p−d
p−1

Lp ,

where we have used the Hölder inequality, the Young inequality and the Gagliardo-

Nirenberg inequality ‖uk−1‖L∞ ≤ C‖∇uk−1‖
d
p

Lp‖uk−1‖
1− dp
Lp , 2 < d ≤ p or 2 = d < p.

Hence, ‖ui − u‖pLp ≤ C‖ūi − ū‖
p
p−1

Lp . Thus, ui → u in V when ūi → ū in V as
i→∞, i.e. Φ is continuous. This completes the proof of Claim 2.

Proof of Claim 3. It holds from (6) that

∃C(p) > 0, ∀ ūk ∈ V , ‖Φ(ūk, σ)‖W 1,p(Bn) ≤ C(p)(1 + ‖ūk‖Lp(Bn)).

This inequality above together withW 1,p(Bn) ↪→↪→ Lp(Bn) (for any bounded Ω, the
embedding of W 1,p(Ω) into Lp(Ω) is compact by the Rellich-Kondrachov theorem)
gives the proof of Claim 3.

Proof of Claim 4. Assuming that for any σ ∈ [0, 1], it holds that∫
Bn

ukp ·ϕdx+τ

∫
Bn

|∇uk|p−2∇uk∇ϕdx = σ

∫
Bn

uk−1p ϕdx−στ
∫
Bn

uk−1·∇(uk)pϕdx.

Taking ϕ = uk yields

‖uk‖pLp(Bn) + τ‖∇uk‖pLp(Bn) ≤ C(p)‖uk−1‖Lp ,

where

τ

∫
Bn

uk−1 · ∇(uk)pu
kdx = −τ 1

p

∫
Bn

uk−1 · ∇|uk|pdx = 0.

This establishes the Claim 4.
Thus, there exists a fixed point for Φ1 given Φ1 = Φ(u, 1) of V into itself, i.e.

Φ(uk, 1) = uk, by Leray-Schauder fixed point theorem. Moreover, ‖uk‖W 1,p(Bn) ≤
C. Therefore, uk ∈ H.

Step 2. Since Bn is a ball of radius Rn centred at zero, Rn is an increasing sequence
with Rn →∞, and zero Dirichlet boundary condition in Bn: uk|∂Bn = 0, we extend
the uk by zero outside Bn and denote such extended function by ũk,n, i.e.

ũk,n(x) :=

{
uk(x), if x ∈ Bn,

0, if x /∈ Bn.

Due to step 1, in fact we can show ũk,n is a solution solving (4), i.e. ∀ϕ ∈W 1,p
0 (Rd)

where the support of ϕ is larger than Bn,∫
Rd
ũk,n
p ·ϕdx+τ

∫
Rd
ũk−1,n·∇ũk,n

p ϕdx+τ

∫
Rd
|∇ũk,n|p−2∇ũk,n∇ϕdx =

∫
Rd
ũk−1
p ϕdx. (8)
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We can obtain a priori estimate from (6) and (8) that

‖ũk,n‖p
Lp(Rd) + τ‖∇ũk,n‖p

Lp(Rd) ≤ C,

where C is independent of n.
Since {ũk,n} is bounded in W 1,p(Rd), there exist a subsequence {ũk,n}, not

relabeling and ũk ∈W 1,p(Rd) such that

ũk,n ⇀ ũk weakly in W 1,p(Rd) as n→∞.

By the Rellich-Kondrashov theorem (see Theorem 8.9, [17]), there exist a sub-
sequence of {ũk,n}, not relabeling, and ũk ∈ W 1,p(Rd) such that the following
uniformly strong convergence holds true

ũk,n(x)→ ũk in Lploc(Rd) as n→∞.

Through the argument about strong convergence, we easily obtain the convergence
of linear terms in (8), i.e. as n→∞∫

Rd ũ
k,n
p · ϕdx→

∫
Rd ũ

k
p · ϕdx;∫

Rd ũ
k−1,n · ∇ũk,np ϕdx→

∫
Rd ũ

k−1 · ∇ũkpϕdx.

Now we only need to prove
∫
Rd |∇ũ

k,n|p−2∇ũk,n∇ϕdx→
∫
Rd |∇ũ

k|p−2∇ũk∇ϕdx
as n→∞.

Indeed, due to ũk,n ⇀ ũk weakly in W 1,p
loc (Rd) as n→∞, without loss of gener-

ality, we assume |∇ũk,n|p−2∇ũk,n ⇀ χ̃ in L
p
p−1 (Rd). Hence, let n →∞ in (8) and

obtain ∫
Rd
ũkp · ϕdx+ τ

∫
Rd
ũk−1 · ∇ũkpϕdx+ τ

∫
Rd
χ̃∇ϕdx =

∫
Rd
ũk−1p ϕdx. (9)

Choosing φ̃(x) ∈ C∞c (Rd) with 0 ≤ φ ≤ 1 and taking ϕ = ũkφ̃ in (9), we obtain∫
Rd
|ũk|p · φ̃dx+τ

∫
Rd
ũk−1 ·∇ũkpũkφ̃dx+τ

∫
Rd
χ̃∇(ũkφ̃)dx =

∫
Rd
ũk−1p ũkφ̃dx. (10)

We take ϕ = ũk,nφ̃ in (8) and have∫
Rd
|ũk,n|pφ̃dx + τ

∫
Rd
ũk−1,n · ∇ũk,np ũk,nφ̃dx+ τ

∫
Rd
|∇ũk,n|pφ̃dx

+τ

∫
Rd
|∇ũk,n|p−2∇ũk,nũk,n∇φ̃dx =

∫
Rd
ũk−1,np ũk,nφ̃dx. (11)

Since the inequality (3), for any ω̃ ∈W 1,p
loc (Rd) we have

τ

∫
Rd

(|∇ũk,n|p−2∇ũk,n − |∇ω̃|p−2ω̃)(∇ũk,n −∇ω̃)φ̃dx

≥ C(p, τ)

∫
Rd
|∇ũk,n −∇ω̃|pφ̃dx ≥ 0,

i.e.

− τ
∫
Rd
|∇ũk,n|pφ̃− |∇ũk,n|p−2∇ũk,n∇ω̃φ̃− |∇ω̃|p−2∇ω̃∇ũk,nφ̃+ |∇ω̃|pφ̃dx ≤ 0.

(12)
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Combining (11) with (12) yields∫
Rd
|ũk,n|pφ̃dx + τ

∫
Rd
ũk−1,n · ∇ũk,np ũk,nφ̃+ |∇ũk,n|p−2∇ũk,nũk,n∇φ̃

+ |∇ũk,n|p−2∇ũk,n∇ω̃φ̃+ |∇ω̃|p−2∇ω̃(∇ũk,n −∇ω̃)φ̃dx

−
∫
Rd
ũk−1,np ũk,nφ̃dx ≤ 0. (13)

Letting n→∞, we obtain∫
Rd
|ũk|pφ̃dx + τ

∫
Rd
ũk−1 · ∇ũkpũkφ̃+ χ̃ũk∇φ̃

+ χ̃∇ω̃φ̃+ |∇ω̃|p−2∇ω̃(∇ũk −∇ω̃)φ̃dx

−
∫
Rd
ũk−1p ũkφ̃dx ≤ 0. (14)

Combining (10) with (14) yields∫
Rd

(∇ω̃ −∇ũk)(χ̃− |∇ω̃|p−2∇ω̃)φ̃dx ≤ 0.

Taking ω̃ = ũk − λϕ with λ ≥ 0 yields that∫
Rd

(χ̃− |∇ũk − λ∇ϕ|p−2∇(ũk − λ∇ϕ))∇ϕφ̃dx ≥ 0.

Choosing φ̃ such that supp ϕ ⊂ supp φ̃ and φ̃ = 1 on supp φ̃. When λ → 0, it
follows that ∫

Rd
(χ̃− |∇ũk|p−2∇ũk)∇ϕdx ≥ 0.

Employing the same method with ω̃ = ũk − λϕ and λ ≤ 0, we obtain∫
Rd

(χ̃− |∇ũk|p−2∇ũk)∇ϕdx ≤ 0.

Thus, χ̃ = |∇ũk|p−2∇ũk.
That proves

∫
Rd |∇ũ

k,n|p−2∇ũk,n∇ϕdx→
∫
Rd |∇ũ

k|p−2∇ũk∇ϕdx.

Therefore, if ũk−1 ∈W 1,p
0 (Rd), we will obtain ũk ∈W 1,p(Rd) solving (4) through

discussion of Step 1 and Step 2. That completes the proof of Proposition 3.1.

3.2. Uniform estimates. In this subsection, we aim to obtain the uniform esti-
mates of the approximate solutions {ũk}.

At first, we regularize uin by ũ0 which is the weak solution of ũ0p−τ∆pũ
0 = (uin)p,

with uin ∈ Lp(Rd) (Meanwhile, the existence and uniqueness for weak solution to
this stationary p-Laplacian equation is given in Appendix by calculus of variations).
Therefore, multiplying above equation with ũ0 and integrating in Rd gives

‖ũ0‖p
Lp(Rd) + τ‖∇ũ0‖p

Lp(Rd) ≤ ‖uin‖
p
Lp(Rd). (15)

By the weak compactness, there exists a subsequence (without relabeling) ũ0 ⇀ uin
in Lploc(Rd) as τ → 0+. Moreover, we get ũ0 ∈W 1,p(Rd).

It follows from Proposition 3.1 that a sequence of approximate solutions

{ũ0, ũ1, ũ2, ũ3, ...} ∈W 1,p(Rd),



EXISTENCE OF GLOBAL WEAK SOLUTIONS OF p-NAVIER-STOKES EQUATIONS 477

which satisfy the approximate problem of equations (4).
The first uniform estimate: Taking ϕ = ũk in (4), we deduce

‖ũk‖p
Lp(Rd) + τ‖∇ũk‖p

Lp(Rd) ≤
∫
Rd
ũk−1p ũkdx ≤ ‖ũk−1‖p

Lp(Rd), (16)

where the term of
∫
uk−1 · ∇ukpukdx vanishes because of divergence free,∫
uk−1 · ∇ukpukdx = − 1

p

∫
uk−1 · ∇|uk|pdx = 0.

Then, summing up (16) from k = 1 to N yields

‖ũN‖p
Lp(Rd) + τΣNk=1‖∇ũk‖

p
Lp(Rd) ≤ ‖ũ

0‖p
Lp(Rd) ≤ ‖uin‖

p
Lp(Rd). (17)

The second uniform estimate: Taking ϕ = ũk−ũk−1 in (4) and using Lemma
2.2, we obtain

1

τ
‖ũk − ũk−1‖p

Lp(Rd) + ‖∇ũk‖p
Lp(Rd)

≤
∫
Rd
|∇ũk|p−2∇ũk∇ũk−1dx+

∫
Rd
ũk−1 · ∇ũkpũk−1dx

≤ ‖∇ũk‖p−1Lp ‖∇ũ
k−1‖Lp + ‖ũk−1‖L∞‖ũk‖p−1Lp ‖∇ũ

k−1‖Lp .
We infer from (17) that

‖ũk − ũk−1‖p
Lp(Rd) +

τ

p
‖∇ũk‖p

Lp(Rd) ≤
τ

p
‖∇ũk−1‖p

Lp(Rd) + Cτ‖∇ũk−1‖p
Lp(Rd) + Cτ.

Then, summing up above inequality from k = 1 to N yields

N∑
k=1

‖ũk − ũk−1‖p
Lp(Rd) +

τ

p
‖∇ũN‖p

Lp(Rd) ≤ C + CNτ. (18)

3.3. Convergence.

Definition 3.2. Define the following piecewise function in t by

uτ (t, ·) := ũk(·), πτuτ (t, ·) := ũk−1(·),
∂tu

τ (t, ·) := ũk(·)−ũk−1(·)
τ , t ∈ [(k − 1)τ, kτ), k = 1, 2, ..., N .

In this subsection, we aim to obtain the compactness of {uτ} in Lp(0, T ;Lp(Rn)).
We will employ an important lemma about compactness (see Theorem 3, [23]):

Lemma 3.3 ([23]). Let X and Y be Banach spaces such that the embedding X ↪→↪→
Y is compact. If 1 ≤ p ≤ ∞, let {uτ} be a sequence of functions in Lp(0, T ;Y ),
satisfying
(1) {uτ} is bounded in L1

loc(0, T ;X); (2) ‖uτ (·+ τ)−uτ‖Lp(0,T−τ ;Y ) → 0 as τ → 0,
uniformly for uτ .
Then {uτ} is relatively compact in Lp(0, T ;Y )(and in C(0, T ;Y ) if p =∞).

We have our results about convergence.

Proposition 3.2. As τ → 0+, there exist a subsequence of {uτ}, not relabeled,
and u satisfying u ∈ L∞(0, T ;Lp(Rd)) ∩ Lp(0, T ;W 1,p(Rd)) for any T > 0 with
d ≤ p <∞ such that

uτ → u in Lp(0, T ;Lploc(R
d)), (19)

πτu
τ → u in Lp(0, T ;Lploc(R

d)), (20)

∇uτ ⇀ ∇u in Lp(0, T ;Rd), (21)

uτ
∗
⇀ u in L∞(0, T ;Lp(Rd)). (22)
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Proof of Proposition 3.2. It follows from the estimate of (17) that

‖uτ‖p
L∞(0,T ;Lp(Rd)) +

∫ T

0

‖∇uτ‖p
Lp(Rd)dt ≤ ‖uin‖

p
Lp ,

hence ∫ T

0

‖uτ‖W 1,p(Rd)dt ≤ C(T )

∫ T

0

‖uτ‖p
W 1,p(Rd)dt ≤ C(T )‖uin‖pLp . (23)

In addition, (18) yields∫ T−τ

0

‖uτ (t+ τ)− uτ‖pLpdt ≤ τ
N−1∑
k=1

‖ũk+1 − ũk‖pLp ≤ Cτ,

whence
‖uτ (t+ τ)− uτ‖Lp(0,T−τ ;Lp(Rd)) → 0 as τ → 0+. (24)

For any compact set K ⊂ Rd, W 1,p(K) ↪→↪→ Lp(K), so it follows from Lemma
3.3 and (23)(24) that {uτ} is relatively compact in Lp(0, T : Lploc(Rd)). Then we
obtain (19). ∫ T

τ

‖πτuτ − uτ‖pLpdt ≤ τ
N∑
k=1

‖ũk − ũk−1‖pLp ≤ Cτ.

This and (19) yield (20).
Since {∇uτ} is bounded in Lp(0, T ;Lp(Rd)) from (23), the set is weakly pre-

compact in Lp(t1, t2;Lp(Rd)) for all t1, t2 ∈ (0, T ) and t1 < t2. By diagonal argu-
ment, we obtain (21). Indeed, we can pick out a subsequence (without relabeling)
such that ∇uτ ⇀ ζ ∈ Lp(t1, t2;Lp(Rd)) as τ → 0+. For any ψ ∈ C∞c (0, T ;Rd)∫ t2

t1

∫
Rd
ζ · ψdxdt = lim

τ→0

∫ t2

t1

∫
Rd
∇uτψdxdt

= − lim
τ→0

∫ t2

t1

∫
Rd
uτ∇ · ψdxdt

= −
∫ t2

t1

∫
Rd
u∇ · ψdxdt,

where the last equality employs the strong convergence uτ → u in Lp([0, T );Lploc
(Rd)). Thus, ∇u = ζ for ∀t ∈ [0, T ) \Θ where Θ is a set of measure zero.

By above similar diagonal argument and employing the Banach-Alaoglu Theorem
(any bounded set in the dual of a separable space in weak star precompact), we get
(22).

3.4. Proof of Theorem 3.1. Now, we are in the position to prove that u is a
weak solution of the equations (1). The weak approximate form of (4) is rewritten
that, for any T > 0, the test function ϕ ∈ C∞c ([0, T );Rd) and ∇ · ϕ = 0,∫ T

0

∫
Rd
∂tu

τ
p ·ϕdxdt+

∫ T

0

∫
Rd
πτu

τ ·∇uτpϕdxdt+
∫ T

0

∫
Rd
|∇uτ |p−2∇uτ∇ϕdxdt = 0.

(25)
Next, we separate the proof of this step into three parts.

(i) We first claim that,∫ T

0

∫
Rd
∂tu

τ
pϕdxdt→ −

∫ T

0

∫
Rd
up∂tϕdxdt−

∫
Rd

(uin)pϕ(0)dx, as τ → 0+. (26)
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Indeed,∫ T

0

∫
Rd
∂tu

τ
pϕdxdt

=

∫ T

τ

∫
Rd

uτp(t)− uτp(t− τ)

τ
ϕdxdt+

∫ τ

0

∫
Rd

uτp − u0p
τ

ϕdxdt

=

∫ T

0

∫
Rd

uτp
τ
ϕdxdt−

∫ T−τ

0

∫
Rd

uτp
τ
ϕ(t+ τ)dxdt−

∫ τ

0

∫
Rd

u0p
τ
ϕdxdt

=

∫ T

T−τ

∫
Rd
uτp
ϕ

τ
dxdt+

∫ T−τ

0

∫
Rd
uτp
ϕ

τ
dxdt−

∫ T−τ

0

∫
Rd
uτp
ϕ(t+ τ)

τ
dxdt

−
∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt

=

∫ T

T−τ

∫
Rd
uτp
ϕ

τ
dxdt−

∫ T−τ

0

∫
Rd
uτp
ϕ(t+ τ)− ϕ(t)

τ
dxdt−

∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt

=

∫ T

T−τ

∫
Rd
uτp
ϕ

τ
dxdt−

∫ T−τ

0

∫
Rd
uτp∂tϕdxdt−

∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt.

Then, ∫ T

0

∫
Rd
∂tu

τ
pϕdxdt+

∫ T

0

∫
Rd
up∂tϕdxdt+

∫
Rd

(uin)pϕ(0)dx

=

∫ T

T−τ

∫
Rd
uτp
ϕ

τ
dxdt−

∫ T−τ

0

∫
Rd
uτp∂tϕdxdt−

∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt

+

∫ T

0

∫
Rd
up∂tϕdxdt+

∫
Rd

(uin)pϕ(0)dx

= (

∫ T

T−τ

∫
Rd
uτp
ϕ

τ
+ up∂tϕdxdt) + (

∫ T−τ

0

∫
Rd
up∂tϕ− uτp∂tϕdxdt)

+(

∫
Rd

(uin)pϕ(0)dx−
∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt)

=: J1 + J2 + J3.

We estimate J1, J2 and J3, respectively.

|J1| ≤
∫ T

T−τ

∫
Rd
uτp |

ϕ(t)− ϕ(T )

t− T
|+ up∂tϕdxdt

≤ τ‖∂tϕ‖L∞(0,T ;Lp(Rd))(‖uτ‖
p−1
L∞(T−τ,T ;Lp(Rd)) + ‖u‖p−1

L∞(T−τ,T ;Lp(Rd)))

≤ Cτ → 0, as τ → 0+.

And

|J2| ≤
∫ T−τ

0

∫
Rd
up(∂tϕ−

ϕ(t+ τ)− ϕ(t)

τ
)dxdt

+

∫ T−τ

0

∫
Rd
|up − uτp ||

ϕ(t+ τ)− ϕ(t)

τ
|dxdt

≤ τ‖∂ttϕ‖L1(0,T ;Lp(Rd))‖u‖
p−1
L∞(0,T−τ ;Lp(Rn))

+‖u− uτ‖Lploc(0,T ;Rd)‖u+ uτ‖p−2
Lp(0,T−τ ;Rd)‖∂tϕ‖Lp(0,T−τ ;Rd),
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where we have used Lemma 2.2. Moreover, Proposition 3.2 yields

|J2| → 0, as τ → 0+.

It follows from u0 ⇀ uin in V as τ → 0+ and the mean value theorem that

|J3| ≤
∫
Rd

(uin)pϕ(0)dx−
∫ τ

0

∫
Rd
u0p
ϕ

τ
dxdt

≤
∫
Rd

((uin)p − u0p)ϕ(0)dx+

∫
Rn
u0p(ϕ(0)− 1

τ

∫ τ

0

ϕdt)dx

≤
∫
Rd
|uin − u0||uin + u0|p+2ϕ(0)dx+

∫
Rd
u0p(ϕ(0)− 1

τ

∫ τ

0

ϕdt)dx

→ 0, as τ → 0.

Thus, we establish (26).
(ii) Then, we show for any ϕ ∈ C∞c (0, T ;Rd) and ∇ · ϕ = 0, it holds that∫ T

0

∫
Rd
πτu

τ · ∇(uτp)ϕdxdt→
∫ T

0

∫
Rd
u · ∇upϕdxdt, as τ → 0+. (27)

In fact,

|
∫ T

0

∫
Rd
πτu

τ · ∇uτpϕdxdt−
∫ T

0

∫
Rd
u · ∇upϕdxdt|

= |
∫ T

0

∫
Rd

(u · up − πτuτ · uτp)∇ϕdxdt|

≤ |
∫ T

0

∫
Rd

(uτ − πτuτ )uτp∇ϕdxdt|+ |
∫ T

0

∫
Rd

(u · up − uτ · uτp)∇ϕdxdt|

= K1 +K2,

where

K1 ≤
∫ T

0

∫
Rd
|(uτ − πτuτ )uτp∇ϕ|dxdt

≤ ‖uτ − πτuτ‖Lploc(0,T ;Rd)‖uτ‖Lp(0,T ;Rd)‖∇ϕ‖L∞(0,T ;Rd)

→ 0, as τ → 0+,

and

K2 ≤
∫ T

0

∫
Rd
|(u|u|p−2u∇ϕ− uτ |uτ |p−2uτ∇ϕ)|dxdt

≤
∫ T

0

∫
Rd

(u− uτ )|u|p−2u∇ϕ+ uτ (|u|p−2u− |uτ |p−2uτ )∇ϕdxdt

≤ ‖u− uτ‖Lploc(0,T ;Rd)‖u‖
p−1
Lp(0,T ;Rd)‖∇ϕ‖L∞(0,T ;Rd)

+‖u− uτ‖Lploc(0,T ;Rd)‖u+ uτ‖p−2
Lp(0,T ;Rd)‖u

τ‖Lp(0,T ;Rd)‖∂tϕ‖L∞(0,T ;Rd)

→ 0, as τ → 0+.

(iii) Next, we establish that∫ T

0

∫
Rd

∆pu
τϕdxdt→

∫ T

0

∫
Rd

∆puϕdxdt, as τ → 0+; (28)
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i.e.∫ T

0

∫
Rd
|∇uτ |p−2∇uτ · ∇ϕdxdt→

∫ T

0

∫
Rd
|∇u|p−2∇u · ∇ϕdxdt, as τ → 0+.

Since ‖∇uτ‖Lp(0,T ;Lp(Rd)) ≤ C in (23), we obtain∫ T

0

∫
Rd
||∇uτ |p−2∇uτ |

p
p−1 dxdt =

∫ T

0

∫
Rd
|∇uτ |pdxdt ≤ C.

Then there exists a χ such that

|∇uτ |p−2∇uτ ⇀ χ, in L
p
p−1 (0, T ;L

p
p−1 (Rd)). (29)

Letting τ → 0 in (25) and considering (26)(27)(29) yields

−
∫ T

0

∫
Rd
up∂tϕdxdt−

∫
Rd

(uin)pϕ(0)dx +

∫ T

0

∫
Rd
u · ∇upϕdxdt

+

∫ T

0

∫
Rd
χ · ∇ϕdxdt = 0. (30)

Then we will prove∫ T

0

∫
Rd
|∇u|p−2∇u · ∇ϕdxdt =

∫ T

0

∫
Rd
χ · ∇ϕdxdt (31)

to finish the proof of (28).
Choosing φ(x, t) ∈ C∞c (0, T ;Rd) with 0 ≤ φ ≤ 1, multiplying the equation (25)

by uτφ and integrating in Rn and (0, T ), we obtain∫ T

0

∫
Rd
∂tu

τ
pu

τφdxdt +

∫ T

0

∫
Rd
πτu

τ · ∇uτpuτφdxdt

+

∫ T

0

∫
Rd
|∇uτ |pφ+ uτ |∇uτ |p−2∇uτ∇φdxdt = 0.(32)

For any ω ∈ Lp(0, T ;W 1,p(Rd)) to be determined later, we obtain the following
inequality by using Lemma 2.2∫ T

0

∫
Rd

(|∇uτ |p−2∇uτ − |∇ω|p−2∇ω)∇(uτ − ω)φdxdt ≥ 0, (33)

i.e.

−
∫ T

0

∫
Rd
|∇uτ |pφdxdt+

∫ T

0

∫
Rd
|∇ω|p−2∇ω∇uτφdxdt

+

∫ T

0

∫
Rd
|∇uτ |p−2∇uτ∇ωφdxdt−

∫ T

0

∫
Rd
|∇ω|pφdxdt ≤ 0. (34)

Combining (32) and (34), we have∫ T

0

∫
Rd
∂tu

τ
pu

τφdxdt+

∫ T

0

∫
Rd
πτu

τ · ∇uτpuτφdxdt

+

∫ T

0

∫
Rd
uτ |∇uτ |p−2∇uτ∇φdxdt+

∫ T

0

∫
Rd
|∇ω|p−2∇ω(∇uτ −∇ω)φdxdt

+

∫ T

0

∫
Rd
|∇uτ |p−2∇uτ∇ωφdxdt ≤ 0. (35)

Then we estimate every terms in (35) one by one.
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From (25), (26) and (29), it easily follows that as τ → 0+∫ T

0

∫
Rd
∂tu

τ
pu

τφdxdt→
∫ T

0

∫
Rd
∂tupuφdxdt, (36)∫ T

0

∫
Rd
πτu

τ · ∇uτpuτφdxdt→
∫ T

0

∫
Rd
u · ∇upuφdxdt (37)

and ∫ T

0

∫
Rd
|∇uτ |p−2∇uτ∇ωφdxdt→

∫ T

0

∫
Rd
χ∇ωφdxdt. (38)

It holds from (29) and Proposition 3.2 that

|
∫ T

0

∫
Rd
uτ |∇uτ |p−2∇uτ∇φdxdt−

∫ T

0

∫
Rd
uχ∇φdxdt|

≤ |
∫ T

0

∫
Rd
uτ (|∇uτ |p−2∇uτ − χ)∇φdxdt|+ |

∫ T

0

∫
Rd

(uτ − u)χ∇φdxdt|

→ 0, as τ → 0+. (39)

And (21) yields

|
∫ T

0

∫
Rd
|∇ω|p−2∇ω(∇(uτ − ω)−∇(u− ω))φdxdt|

= |
∫ T

0

∫
Rd
|∇ω|p−2∇ω∇(uτ − u)φdxdt|

→ 0, as τ → 0+. (40)

Then, combining (36)-(40) and letting ε→ 0, (35) becomes that∫ T

0

∫
Rd
∂tupuφdxdt+

∫ T

0

∫
Rd
u · ∇upuφdxdt+

∫ T

0

∫
Rd
uχ∇φdxdt

+

∫ T

0

∫
Rd
|∇ω|p−2∇ω(∇u−∇ω)φdxdt+

∫ T

0

∫
Rd
χ∇ωφdxdt

≤ 0. (41)

Taking ϕ = uφ in (30), we have∫ T

0

∫
Rd
∂tupuφdxdt+

∫ T

0

∫
Rd
u·∇upuφdxdt+

∫ T

0

∫
Rd
χ∇uφ+χu∇φdxdt = 0. (42)

Combing (41) and (42) yields that∫ T

0

∫
Rd
|∇ω|p−2∇ω(∇u−∇ω)φdxdt+

∫ T

0

∫
Rd
χ∇(ω − u)φdxdt ≤ 0,

i.e. ∫ T

0

∫
Rd

(|∇ω|p−2∇ω − χ)(∇u−∇ω)φdxdt ≤ 0. (43)

Taking ω = u− λϕ with λ ≥ 0 yields that∫ T

0

∫
Rd

(|∇(u− λϕ)|p−2∇(u− λϕ)− χ)∇ϕφdxdt ≤ 0. (44)

Choosing φ such that supp ϕ ⊂ supp φ and φ = 1 on supp φ. When λ → 0, it
follows that ∫ T

0

∫
Rd

(|∇u|p−2∇u− χ)∇ϕdxdt ≤ 0. (45)
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Employing the same method with ω = u− λϕ and λ ≤ 0, we obtain∫ T

0

∫
Rd

(|∇u|p−2∇u− χ)∇ϕdxdt ≥ 0. (46)

Thus, for any ϕ ∈ C∞c (0, T ;Rd),∫ T

0

∫
Rd
|∇u|p−2∇u∇ϕdxdt =

∫ T

0

∫
Rd
χ∇ϕdxdt. (47)

Therefore, combining (i)-(iii), we have for ∀T > 0

−
∫ T

0

∫
Rd
up∂tϕdxdt+

∫ T

0

∫
Rd
u · ∇upϕdxdt +

∫ T

0

∫
Rd
|∇u|p−2∇u∇ϕdxdt

=

∫
Rd

(uin)pϕ(0)dx. (48)

Therefore, we complete the proof of Theorem 3.1. �

4. Appendix. In this Appendix, we give a proof of existence for weak solutions to
equation (49) by calculus of variations.

up − τ∆pu = |uin|p−2uin, x ∈ U

∇ · u = 0, x ∈ U

u(x) = 0, x ∈ ∂U

uin ∈ Lp(U),

up = |u|p−2u,∆pu = ∇ · (|∇u|p−2∇u)

(49)

where the given positive constant τ > 0.
At first, we show the definition of weak solution for (49):

Definition 4.1. We suppose that a domain U ⊂ Rd is bounded, connected and
has a smooth boundary. We say u is a weak solution of (49) if u ∈ W 1,p(U) which
satisfies ∫

U

upψdx+ τ

∫
U

|∇u|p−2∇u∇ψdxdx =

∫
U

|uin|p−2uinψdx (50)

for any ψ ∈W 1,p
0 (U) and given uin ∈ Lp(U).

Lemma 4.2. For uin ∈ Lp(U). The problem (49) admits a unique weak solution.

Proof. We first give the proof of existence in three steps.

Step 1. Define a functional I[·]. We set

A := {w ∈W 1,p(U) | ∇ · w = 0, w(x)|∂U = 0}.
For any function w ∈ A, we define a functional

I[w] :=

∫
U

L(Dw,w, x)dx =

∫
U

τ

p
|Dw|p +

1

p
|w|p − |uin|p−2uinwdx.

Since ∫
U

|uin|p−2uinwdx ≤ ‖uin‖pp +
1

p
‖w‖pp,

we have

I[w] ≥ τ

p
‖Dw‖pp − ‖uin‖pp. (51)
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Step 2. Existence of a minimizer for I[·]. Due to (51), we set

m := inf
w∈A

I[w]

and choose a sequence of functions uk ∈ A such that

m = lim
k→∞

I[uk].

Note that

sup
k
‖uk‖W 1,p(U) <∞.

By weak compactness there exists a subsequence of {uk}∞k=1, without relabeling,
and a function u ∈W 1,p(U) so that

uk ⇀ u weakly in W 1,p(U). (52)

By the Rellich-Kondrachov theorem we get that uk → u strongly in Lp(U); and
choose a subsequence uk(without relabeling) such that uk → u a.e. in U . In fact,
u ∈ A. Furthermore, we obtain that

‖u‖W 1,p(U) ≤ lim inf
k→∞

‖uk‖W 1,p(U),

therefore

I[u] ≤ lim inf
k→∞

I[uk] = m,

i.e. I[·] is weakly lower semicontinuous on W 1,p(U). Since u ∈ A, it follows that

I[u] = m = min
w∈A

I[w]. (53)

Step 3. Existence of a weak solution for (1). Fix any ψ ∈ W 1,p
0 (U) and set

i(ε) := I[u+ εψ](ε ∈ R):

i(ε) : =

∫
U

L(∇(u+ εψ), u+ εψ, x)dx

=

∫
U

τ

p
|∇u+ ε∇ψ|p +

1

p
|u+ εψ|p − |uin|p−2uin(u+ εψ)dx.

i′(ε) =

∫
U

τ |∇u+ ε∇ψ|p−2(∇u+ ε∇ψ)∇ψ+ |u+ εψ|p−2(u+ εψ)ψ−|uin|p−2uinψdx.

Since i(·) has a minimum for ε = 0, we know i′(0) = 0:∫
U

{−τ∇ · (|∇u|p−2∇u) + |u|p−2u− |uin|p−2uin}ψdx = 0.

Hence, u is a weak solution to (49).
Now we prove the uniqueness. Assume that u, ũ ∈ A are two weak solutions

satisfying (50), i.e. for any ψ ∈W 1,p
0 (U),∫

U

upψdx+ τ

∫
U

|∇u|p−2∇u∇ψdx =

∫
U

|uin|p−2uinψdx, (54)∫
U

ũpψdx+ τ

∫
U

|∇ũ|p−2∇ũ∇ψdx =

∫
U

|uin|p−2uinψdx. (55)

By subtraction,∫
U

(up − ũp)ψdx+ τ

∫
U

(|∇u|p−2∇u− |∇ũ|p−2∇ũ)∇ψdx = 0.
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Taking ψ = u− ũ yields

0 =

∫
U

(up − ũp)(u− ũ)dx+ τ

∫
U

(|∇u|p−2∇u− |∇ũ|p−2∇ũ)∇(u− ũ)dx

≥ C(p)‖u− ũ‖pp + C(p)‖∇(u− ũ)‖pp ≥ C(p)‖u− ũ‖pp.

Hence, u = ũ a.e. in U .
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