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ABSTRACT

A new efficient ensemble prediction strategy is developed for a multiscale turbulent model framework with emphasis on the nonlinear inter-
actions between large and small-scale variables. The high computational cost in running large ensemble simulations of high-dimensional
equations is effectively avoided by adopting a random batch decomposition of the wide spectrum of the fluctuation states, which is a char-
acteristic feature of the multiscale turbulent systems. The time update of each ensemble sample is then only subject to a small portion of
the small-scale fluctuation modes in one batch, while the true model dynamics with multiscale coupling is respected by frequent random
resampling of the batches at each time updating step. We investigate both theoretical and numerical properties of the proposed method.
First, the convergence of statistical errors in the random batch model approximation is shown rigorously independent of the sample size
and full dimension of the system. Next, the forecast skill of the computational algorithm is tested on two representative models of turbulent
flows exhibiting many key statistical phenomena with a direct link to realistic turbulent systems. The random batch method displays robust
performance in capturing a series of crucial statistical features with general interests, including highly non-Gaussian fat-tailed probability
distributions and intermittent bursts of instability, while requires a much lower computational cost than the direct ensemble approach. The
efficient random batch method also facilitates the development of new strategies in uncertainty quantification and data assimilation for a wide
variety of general complex turbulent systems in science and engineering.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129127

It remains a grand challenge to obtain accurate statistical strate-

gies for the understanding and forecast of key physical processes

in many natural and engineering systems concerning complex

turbulent dynamics, such as climate forecast. A new efficient

ensemble forecast algorithm is developed dealing with the non-

linear multiscale coupling mechanism as a characteristic feature

in high-dimensional turbulent systems. The high computational

cost in large ensemble simulations is greatly reduced in the effi-

cient algorithm, while the central statistical quantities involving

multiscale interactions are fully recovered with accuracy exploit-

ing a random batch decomposition of the wide spectrum of

fluctuation states. The proposed strategy also shows potential to

facilitate the development of new effective methods in uncertainty

quantification and data assimilation in a wide variety of complex

turbulent systems.

I. INTRODUCTION AND BACKGROUND

Turbulent dynamical systems appearing in many natural and
engineering fields1–5 are characterized by a wide range of spatiotem-
poral scales in a high-dimensional phase space. Small uncertainties
in the multiscale high-dimensional states can be rapidly amplified
through the nonlinearly coupled dynamics and inherent instabil-
ity possessed by the turbulent flow. These distinctive features give
rise to a wide variety of complex phenomena, such as intermit-
tent bursts of extreme flow structures and strongly non-Gaussian
probability density functions (PDFs) in the key state variables.6–9 A
probability representation for the evolution of the major flow states
is, thus, essential to accurately quantify the uncertainty in the prac-
tical prediction of such turbulent systems. The ensemble forecast
through a Monte Carlo (MC) type approach estimates the evolu-
tion of the PDFs by tracking an ensemble of trajectories solved
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independently from an initial distribution.10–12 The empirical statis-
tics of the ensemble solutions are used to approximate the model
uncertainty due to randomness from various internal and external
sources. A particular issue with large societal impact is to accu-
rately capture the non-Gaussian PDFs related to the extreme event
outliers13–15 using the finite size ensemble. However, the “curse-
of-dimensionality” forbids direct MC simulations of such high-
dimensional systems especially in cases, including strongly coupled
multiscale nonlinear interactions.4,11 A very large ensemble size is
usually needed to sufficiently sample the entire coupled fluctuation
modes in a wide energy spectrum, while only a small number of
solutions are affordable in many practical situations, such as cli-
mate forecast.3,16 New efficient methods are developed for improv-
ing ensemble forecasts in multiscale systems without a clear scale
separation17,18 that offer a promising approach to generate diverse
samples. Still, it remains a grand challenge to obtain accurate sta-
tistical estimates for the key physical quantities from the multiscale
interaction between the large-scale mean flow and the interacting
high-dimensional small-scale fluctuations.

In this paper, we propose an efficient method for the under-
standing and ensemble forecast of a general group of complex tur-
bulent systems accepting coupled multiscale dynamics.19,20 We use
the ideas in the random batch method (RBM) originally developed
for interacting particle systems21–23 and apply it to the very different
problem of multiscale turbulent systems. Inspired by the stochas-
tic gradient descent24–26 in machine learning, the RBM randomly
divides and constrains the large number of interacting particles into
small batches in each time interval. The RBM can greatly reduce
the computational cost in large particle systems and has many suc-
cessful applications, such as on manifold learning14,23 and quantum
simulations.27 In the ensemble prediction of turbulent systems, we
focus on the dominant flow structure in the largest scale; thus, the
required ensemble size to sample a low-dimensional subspace can
be controlled. This reduced modeling strategy usually suffers dif-
ficulties in practice since the large scale is closely coupled with all
the unresolved small-scale fluctuations; thus, it is impossible to only
perform ensemble simulation inside the large-scale subspace. Using
random batches, this difficulty is effectively overcome by regroup-
ing the large number of small-scale fluctuating modes into small
batches each containing only a few modes. Then, the batches from
a single simulation of the fluctuation modes are used for updat-
ing different ensemble members of the large-scale state separately
during a short time step update. This approximation is based on
the important observation that the small-scale fluctuations often
decorrelate much faster in time and contain less energy than the
mean-flow state on the largest scale. The batches of different modes
are randomly resampled before each time updating step; thus, con-
tributions from all scales are well represented during the evolution
in time. In this way, we achieve an efficient algorithm that gains
high skill in capturing the fully non-Gaussian statistical feature in
the most important large-scale mean-flow state, while greatly reduce
the high computational cost independent of the dimensionality of
the full system.

In order to achieve a detailed analysis of the method for the
complex turbulent system, which usually combines various complex
effects from different sources, we develop the new RBM algorithm
on a class of simplified turbulent systems with emphasis on the

explicit coupling between large and small scales, while the unre-
solved nonlinear coupling among small scales is approximated by
linear damping and white noise forcing. The simplified formulation
reveals the most important key physical processes on the nonlinear
interaction between the large-scale mean-flow component and the
smaller scale fluctuation components. On the other hand, the extra
complexity due to the nonlinear self-interactions among the less
important small scales is avoided to provide a cleaner model setup.
The model framework is shown to have many representative appli-
cations in physical and engineering problems.1,28–31 Precise error
estimations are derived for the RBM approach based on this gen-
eral framework using a finite number of samples. The convergence
of the statistical quantities is proved using the semigroups generated
by the backward Kolmogorov equations32 of the RBM model. The
RBM performance is then verified numerically on two representa-
tive prototype turbulent models. Different non-Gaussian statistics
are observed in the two models inferring strong intermittency and
extreme events induced from distinct physical mechanisms. The
numerical tests show accurate prediction of both transient and equi-
librium PDFs recovering various non-Gaussian features under a
much lower computational cost requiring a much smaller ensemble
size.

First in the following, we start with a general formulation,
including dynamical structures that are representative in the turbu-
lent systems. Then, a simplified multiscale model is derived from the
general framework as the central model for the study in this paper
to enable an accurate ensemble prediction strategy with precise
analysis of the probability solutions.

A. General formulation for turbulent systems and

challenges in efficient statistical forecast

The complex turbulent systems discussed above can be written
as the following canonical equation about the state variable u in a
high-dimensional phase space:

du

dt
= 3u + B (u, u) + F (t) + σ (t) Ẇ (t; ω) . (1)

On the right hand side of Eq. (1), the first component, 3 = −D + L,
represents linear dissipation and dispersion effects (with a negative-
definite dissipation operator −D < 0 and a skew-symmetric disper-
sion operator LT = −L as in Ref. 19). One representative feature
of such complex systems is the nonlinear energy conserving inter-
action that transports energy across scales. The nonlinear effect is
introduced through a bilinear quadratic form, B (u, u), that satis-
fies the conservation law u · B (u, u) ≡ 0. External forcing effects are
decomposed into a deterministic component, F (t), and a stochastic
component represented by a Gaussian random process, σẆ.

The evolution of the model state u depends on the sensitivity to
the randomness in initial conditions and external stochastic effects.
Combined with the inherent internal instability due to the nonlinear
coupling term in (1), small perturbations are amplified in time, thus
requiring a probabilistic description to completely characterize the
development of uncertainty in the model state u. The time evolution
of the PDF p (u, t) can be found directly from the solution of the
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associated Fokker–Planck equation (FPE),32

∂p

∂t
= LFPp := −divu [3u + B (u, u) + F] p +

1

2
divu∇

(
σσ

Tp
)

,

(2)

with an initial condition p |t=0= µ0. However, it is still a challenging
task to directly solve the FPE (2) as a high-dimensional PDE system.
As an alternative approach, ensemble forecast by tracking the Monte
Carlo solutions11 estimates the essential statistics through empirical
averages among a group of independently sampled trajectories of
(1). In particular, the ensemble members {u(i)} are sampled at the
initial time t = 0 according to the initial distribution µ0. The PDF
solution p (u, t) at each time instant t > 0 is then approximated by
evolving each sample independently in time according to the same
dynamical equation.

Though simple to implement, a direct ensemble forecast run-
ning the original model (1) suffers several difficulties in accurately
recovering the key model statistics and PDFs in a high-dimensional
space. First, the ensemble size required to achieve desirable accu-
racy will grow exponentially in direct ensemble simulation of the full
model as the dimension of the system increases. Second, the turbu-
lent systems often contain strong internal instability and multiscale
coupling along the entire spectrum. Thus, reduced models by simply
truncating the stabilizing small-scale modes19 are not feasible to cor-
rectly represent the true model dynamics. Besides, different orders of
statistical characteristics are fully coupled in the general formulation
(1); therefore, it is difficult to identify the contributions of different
scales especially when highly non-Gaussian statistics appear. These
are the central difficulties we will address in this paper using ideas in
the RBM approximation.

In the following part of the paper, we first propose a more
tractable model framework with emphasis on the explicit coupling
between large and small scales in Sec. II. Based on this model frame-
work, the RBM algorithm for ensemble prediction is developed in
Sec. III. Detailed error estimation and convergence analysis of the
new RBM method are obtained in Sec. IV. The performance of the
method is verified on two prototype turbulence models with prac-
tical importance in Sec. V. A summary of this paper is given in
Sec. VI.

II. A TURBULENT MODEL FRAMEWORK WITH AN

EXPLICIT MULTISCALE COUPLING MECHANISM

One major difficulty in complex turbulent systems is the
strong nonlinear coupling across scales where the large-scale state
can destabilize the smaller scales with a small variance, while the
increased fluctuation energy contained in a large number of small-
scale states can inversely impact the development of the coherent
largest-scale structure. To address this central issue of coupling with
mixed scales in modeling turbulent systems, we introduce the sim-
plified multiscale model with explicit large–small scale interactions,

dū

dt
= V (ū) +

1

K

K∑

k,l=1

ZkZlB̄ (ek, el) + F,

dZk

dt
=

1

K

K∑

l=1

γkl (ū) Zl − dkZk + σkẆk, k = 1, . . . , K,

(3)

focusing on the multiscale interaction between the large-scale state
ū and the fluctuation coefficients Zk defined next by the proper
decomposition in (4). The simplified model structure enables us to
focus on the key nonlinear large- and small-scale coupling mecha-
nism in the general system (1) and will serve as the main model for
the construction of efficient ensemble forecast methods.

Here, we illustrate the derivation of the central governing
model (3) according to a mean-fluctuation decomposition of the
original model state u in (1) so that the multiscale interactions can be
identified in a natural way. To achieve this, we view u as a random
field and separate it into the composition of a large-scale random
mean state and stochastic fluctuations in a finite-dimensional repre-
sentation under a basis {ek}k

k=1 (which can be pre-determined based
on the specific problem, for example, the Fourier basis as a natural
choice for periodic boundary conditions),

u (t; ω) = ū + u′ := ū (t; ω) +
1

√
K

K∑

k=1

Zk (t; ω) ek, (4)

where the overbar “•” denotes coarse-graining from a spatial aver-
age operator. In this way, the mean state ū (t; ω) represents the
dominant spatial structure with randomness consisting of a collec-
tion of large-scale modes (for example, the zonal jets in geophysical
turbulence28 or the coherent radial flow in fusion plasmas33); and
Z (t; ω) = {Zk (t; ω)}K

k=1 are stochastic coefficients measuring the
uncertainty in multiscale fluctuation processes u′ on the basis ek

(with a zero averaged mean u′ = 0). Usually, ū can be represented
in a much lower dimension d than the dimension K of full stochas-
tic modes Z representing fluctuations along a wide spectrum of
scales. The state decomposition (4) enables us to analyze the indi-
vidual contributions from different scale modes to the large- and
small-scale dynamics. Similar ideas for proper state decomposition
have been widely used for modeling turbulent processes, such as the
closed stochastic models34 and the Fourier decimated system.35

First, by averaging over the original equation (1) and applying
the mean-fluctuation decomposition (4), the evolution equation of
the large-scale mean stateū is given by the following dynamics:

dū

dt
= 3ū + B (ū, ū) +

1

K

K∑

k,l=1

ZkZlB̄ (ek, el) + F. (5a)

Above, the small-scale nonlinear fluctuating feedback to the large-
scale mean dynamics is represented by the quadratic coupling ZkZl

with the coupling coefficients B̄ (ek, el). The term B (ū, ū) represents
the self-interaction within the mean state. Next, by projecting the
fluctuation equation to each orthogonal basis element ei, we obtain
the evolution equation for the stochastic fluctuation coefficients

dZk

dt
=

1

K

K∑

l=1

γkl (ū) Zl +
1

K3/2

K∑

m,n=1

ZmZnB′ (em, en) · ek

+
σ (t)

K1/2
Ẇ (t; ω) · ek, (5b)

where γkl (ū) = [3el + B′ (ū, el) + B′ (el, ū)] · ek characterizes the
quasilinear coupling from the mean state ū in the fluctuation modes
Z. The interactions between the fluctuation modes in different scales
are summarized in the second term on the right hand side of (5b)
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with the fluctuation coefficients B′ = B − B̄. In addition, without
loss of generality, we assume that the deterministic forcing F exerts
on the large-scale mean state, while the fluctuation modes are subject
to the coupled white noise forcing.

Still, the fully coupled mean-fluctuation model (5) contains
multiple linear and nonlinear interaction components involving
both large-scale mean ū and small-scale fluctuations u′; thus, it may
not be a desirable starting model for identifying the central dynam-
ics in multiscale interactions. Rather, we would like to propose a
further simplified model based on a mean-fluctuation interaction
mechanism, which only maintains the key large and small-scale
interaction explicitly while eliminates the large number of small-
scale self-interaction terms. Considering this, we assume that the
combined nonlinear feedback among different small-scale modes
(5b) can be parameterized by independent damping and stochastic
forcing,

dZk

dt
=

1

K

K∑

l=1

γkl (ū) Zl − dkZk + σkẆk. (6)

Above, the linear and nonlinear effects within the mean state,
3ū and B (ū, ū), are summarized in a single term V (ū). The
model simplification occurs in the small-scale dynamics (5b) for
Zk which replaces the combined nonlinear small-scale coupling
ZmZnB′ (em, en) · ek by statistically equivalent damping and noise
with parameters dk, σk. In fact, this replaced term represents the
higher-order moment feedback to the covariance dynamics from
a detailed statistical analysis of the moment equations and can be
generalized to include inhomogeneous effects as dkl, σkl.19 The sim-
plification is derived from the important observation that these
small-scale modes are fast mixing (thus decorrelate fast in time);
therefore, the average of the large number of modes plays an equiv-
alent role as the linear damping and white noise as in the homog-
enization theory. The introduced model damping parameter dk is
usually picked according to the decorrelation time of the mode Zk,
and the noise parameter σk is determined by the equilibrium statis-

tical spectrum Ek = σ 2
k

2dk
= E0

∣∣k
∣∣−s28 with s determining the energy

decaying rate in the fluctuation modes.
The resulting simplified model (3) recovers the most essen-

tial coupling mechanism between the large-scale mean state ū and
the small-scale fluctuation modes Zk, which is explicitly modeled
through the quasi-linear operator γkl (ū) in the fluctuation equations
and globally linked to the mean equation through the fully coupled
quadratic feedback term. Notice that the strong internal instability,
which is the key feature of turbulent systems, is maintained in both
the mean and fluctuation modes by coupling terms V and γkl in (5a)
and (5b). The only model approximation comes from parameteriza-
tion of the complicated self-interactions of small-scale fluctuations.
Using this simplified model avoids the various sources of uncertain-
ties from the fluctuation scales so that the dominant large–small
scale interaction is identified. On the other hand, the simplified
model lacks the skill to capture the detailed interactions among the
small scales; thus, it is not sufficient to model the locally coupled
states, such as what occurs in the multiscale Lorenz model.17 The
thorough analysis of the fully coupled nonlinear fluctuation model
(5b) will be left for the future study.

As a final comment, the multiscale model formulation (3)
enjoys the advantage of more flexibility to run ensemble simulations
for statistical forecast, uncertainty quantification, and data assimi-
lation in practical applications. A wide variety of turbulent systems
(as well as a number of approximation reduced-order models)30,36

can be categorized into this framework so that it has wide validity
in developing the efficient ensemble forecast methods. Two typ-
ical prototype models accepting the dynamical structure (3) with
a wide multiscale spectrum will be discussed in Sec. V display-
ing a wide variety of different turbulent features. In Secs. III–IV,
we will develop efficient ensemble forecast strategies based on this
representative turbulent model formulation.

III. RANDOM BATCH METHOD FOR ENSEMBLE

FORECAST OF TURBULENT MODELS

Next, we propose an efficient ensemble forecast method to
describe the time evolution of the probability distribution of the
state u. The direct Monte Carlo approach runs an ensemble simu-
lation using N independent samples u(i) =

{
ū(i), Z(i)

}
, i = 1, . . . , N,

with ū ∈ R
d being the large-scale mean state and Z = {Zk}K

k=1

∈ R
K the entire small-scale fluctuation modes in a high dimensional

space K � d. The samples are drawn from the initial distribution
u(i) (0) ∼ µ0 (u) at the starting time t = 0, and the time-dependent
solution of each sample u(i) (t) is achieved by solving Eq. (3) inde-
pendently in time. The resulting PDF at each time instant t is
approximated by the empirical ensemble representation,

p (u, t) ' pMC (u, t) :=
1

N

N∑

i=1

δ
(
u − u(i) (t)

)
, u ∈ R

d+K, (7)

with N being the total number of samples for the entire(
d + K

)
-dimensional space. Associated with the PDF, the statistical

expectation of any function ϕ (u) can be estimated by the empirical
average of the samples according to (7),

E
pϕt (u) ' E

MCϕt (u) =
1

N

N∑

i=1

ϕ
(
u(i) (t)

)
.

In particular, for the model (3), all the small-scale modes con-
tribute to the mean state equation as a combined feedback. As a
result, even though we are mostly interested in the statistics from
the mean state samples ū(i) in the relatively low-dimensional sub-
space, the solution of entire K small-scale modes Z(i) must be
computed. The K-dimensional equations for fluctuation modes also
need to be solved repeatedly N times for all the samples i = 1, . . . , N.
Thus, the direct ensemble method reaches a high computational
cost of O

(
NK2

(
d + 1

))
for one time step update. Furthermore, the

required number of samples N to maintain accuracy in the empir-
ical PDF (7) is also dependent on the system dimension

(
d + K

)

and will grow exponentially as K increases (known as the curse-of-
dimensionality37,38). Therefore, this direct MC approach will quickly
become computational unaffordable as a larger N is needed to
resolve all the detailed small-scale fluctuations.

Here, we propose to reduce the computational cost in ensemble
simulations of the turbulent models using the idea in the effective
random batch method.21,22 We focus on the ensemble sampling of
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the most dominant mean state statistics ū ∈ R
d in a much lower

dimensional subspace d � K. Thus, accurate empirical estimation
of the marginal probability distribution of ū in (3) can be reached
using a much smaller ensemble size N1 � N sampling only the
dominant large-scale state,

pRBM (ū) =
1

N1

N1∑

i=1

δ
(
ū − ū(i)

)
, ū ∈ R

d. (8)

Accordingly, the expectation in the resolved mean state is computed
by the empirical estimation, E

RBMϕt (ū) = 1
N1

∑
i ϕ
(
ū(i) (t)

)
. In the

main idea of the RBM model, we no longer run the large ensem-
ble simulation of the full fluctuation modes {Z(i)} ∈ R

K×N associated
with each mean state sample ū(i). Instead, only one stochastic trajec-
tory of Z (t) is solved in time, while the K spectral modes are divided
into smaller subgroups (batches) for updating different ensemble
members ū(i). The RBM approximation is suitable considering the
typical property of the turbulent system where the energy inside the
single small-scale mode E |Zk|2 , k � 1 decays fast and decorrelates
rapidly in time (see examples in Figs. 1 and 4 of Sec. V). On the other
hand, ergodicity in the stochastic fluctuation modes39,40 implies that
updating the mean state ū using fractional fluctuation modes at each
time step with consistent time-averaged feedback can provide an
equivalent total contribution without altering the original statistical
equations.

Next, we describe the detailed RBM approach for modeling
turbulent systems. To accurately quantify the small-scale feedback
in the mean state dynamics, we introduce a partition I

n = {In
i } of

the mode index k = 1, . . . , K at the start of each time updating step
t = tn−1. Thus, the full spectrum of modes is divided into N1 small
batches of size p =

∣∣In
i

∣∣ according to the total number of samples

i = 1, . . . , N1 of ū(i),

∪N1
i=1 I

n
i = {k : 1 ≤ k ≤ K}. (9)

Then, the ith sample of the mean state ū(i) is updated only using
the fluctuation modes {Zk} whose indices belong to the batch
k ∈ I

n
i during the time interval t ∈ (tn−1, tn] with time integration

step τ = tn − tn−1,

dū(i)

dt
= V

(
ū(i)
)
+
∑

k,l∈In
i

cklZkZlB̄ (ek, el) + F. (10a)

Correspondingly, only the modes {Zk} whose indices k are in the
batch I

n
i are updated using the ith mean state solution,

dZk

dt
=

1

p

∑

l∈In
i

γkl

(
ū(i)
)

Zl − dkZk + σkẆk, k ∈ I
n
i . (10b)

Above, the coupled feedback of small-scale modes in the batch is
rescaled by the new combining coefficients ckl

ckl =





1
p
, k = l,

1
p

K−1
p−1

, k 6= l,
(11)

which will be explained in Sec. IV. Equations (10a) and (10b) com-
bining all the batches i = 1, . . . , N1 give the complete formulation
of the random batch model for statistical ensemble forecast of turbu-
lent systems during the time interval (tn−1, tn]. Then, the batches are
regrouped again at the start of the next time step t = tn to repeat this
procedure. Through the RBM reduction, only a very small number
of modes p is needed in each batch i,

p =
K

N1

≥ 2.

Notice that the batch size p should be at least 2 to include one
quadratic interaction of modes in the mean equation. In practice,
it is shown that the batch size p can be sufficiently small [for exam-
ple, we take p = 5 or even p = 2 compared with K = O (100) for
the numerical tests in Sec. V]. Through the shared modes among
batches, the computational cost of the RBM model (10) is effectively
reduced to O

(
N1dp2

)
= O

(
dpK

)
. Particularly, the cost will not have

the exponential growth depending on the full dimension d + K of
the system since the samples of size N1 are only used to capture
statistics in the low-dimensional state ū ∈ R

d.
We summarize the random batch method for ensemble sim-

ulation of high-dimensional turbulent system in the following
algorithm:

Remark:
1. The total number of batches N1 is associated with the num-

ber of small-scale fluctuation modes K. In the RBM model
(10), we assume that the number of fluctuation modes is large
enough K � 1 so that it can offer sufficient samples N1 = K/p
to approximate the PDF of ū. Sometimes, it is useful to expand
the sample size to N1 = n2K/p by running a small number n2

FIG. 1. Statistics of the conceptual turbulence model (21). Left: equilibrium energy spectrum and decorrelation time in the fluctuation modes. Right: time series of the energy
in the first four leading modes and energy in all the rest fluctuation modes.
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ALGORITHM 1. RBM model for ensemble forecast of turbulent systems.

Initial condition: At initial time t = t0, draw random samples from the initial distribution ū(i) (t0) ∼ µ0 (ū) with i = 1, . . . , N1, and one
associated sample for {Zk (t0)}K

k=1.
1: for n = 1 while n < T/τ , at the start of the time interval t ∈ (tn−1, tn] with time step τ = tn − tn−1 do
2: Collect samples ū(i) (tn−1) and fluctuation modes {Zk (tn−1)}K

k=1 from all output batches of previous time step;

3: Partition the modes into N1 batches Zi = {Zk}k∈In
i

with ∪N1
i=1Zi = {Zk}K

k=1 according to (9);

4: Update the samples ū(i) (tn) and the spectral modes {Zk (tn)}k∈Im
i

in each batch i to the next time step by solving Eq. (10).

5: end for

of samples for the fluctuation modes Z
(j)
k with j = 1, . . . , n2.

The sampled solutions are divided into small batches of size p
according to the index j in the same way as before. The batches
can also change size pi =

∣∣In
i

∣∣ according to the energy in each
mode.

2. The RBM algorithm can model the internal instability in the
leading fluctuation modes as a crucial feature in the turbulent
dynamics. In practical applications to estimate the marginal
distribution (8), the number of the resolved modes for the
ensemble simulation can be extended to also include the lead-
ing fluctuation modes Zk, k ≤ K1 displaying unstable dynamics
γkl > 0. The numerical scheme can be easily generalized to this
case following exactly the same steps of Algorithm 1. Examples
are shown in the unstable test models in Sec. V and explicit
formulations in (B1) and (B2) in Appendix B.

IV. ERROR ESTIMATE OF THE RANDOM BATCH

ALGORITHM FOR ENSEMBLE PREDICTION

In this section, we analyze the approximation error in the
RBM model in Algorithm 1 compared with the direct Monte Carlo
approach for the turbulent model. Ensemble simulation of the
coupled large–small scale system (3) is considered for probabilis-
tic prediction of the large-scale mean state u ∈ R

d (we modified
the previous notation for the mean state ū in this section for a
cleaner representation in the proofs). For the direct MC model, the
governing equations for each ensemble member of the full states

{u(i), Z(i)
k }, i = 1, . . . , N can be expressed as

du(i)

dt
= V

(
u(i)
)
+

1

K

∑

k,l

Z(i)
k Z(i)

l Bkl + F,

dZ(i)
k

dt
= γk

(
u(i)
)

Z(i)
k − dkZ

(i)
k + σkẆ

(i)
k , 1 ≤ k ≤ K,

(12)

with the multiscale coupling coefficient Bkl = B (ek, el) and self-
interaction inside the mean state summarized in V (u). For simplic-
ity, we adopt the diagonal coupling coefficients γk in the fluctuation
equation for Zk, which can be achieved by a proper change of basis
from (3). An ensemble of samples i = 1, . . . , N is drawn from the
initial distribution in the direct MC simulation. For each sample
i, the mean state u(i) is coupled with all the small-scale fluctua-

tion modes {Z(i)
k } ∈ R

K of the entire spectrum k ≤ K (with K � 1
in a high-dimensional phase space). The samples are updated inde-
pendently for each i during the time evolution of solutions. The

randomness in the model (12) comes from the small-scale white
noise and the uncertainty from the initial samples u(i) (0) ∼ µ0.

In contrast, the RBM model (10) updates each mean state
sample ũ(i) using only a portion of small-scale modes inside the cor-
responding batch I

m
i ⊆ {k : 1 ≤ k ≤ K} at the time updating step tm.

For distinction in notations, we use states {ũ, Z̃k} with “tildes” to rep-
resent the RBM solutions compared with the full MC states {u, Zk}.
The dynamics of the ith batch {ũ(i), Z̃k}k∈Im

i
during the time interval

t ∈ (tm−1, tm] can be formulated as

dũ(i)

dt
= V

(
ũ(i)
)
+
∑

k,l∈Im
i

cklZ̃kZ̃lBkl + F,

dZ̃k

dt
= γk

(
ũ(i)
)

Z̃k − dkZ̃k + σk
˙̃Wk, k ∈ I

m
i ,

(13)

with samples only drawn for the large-scale mean state ũ(i),
i = 1, . . . , N (for simplicity, we take N1 = N in Algorithm 1). Only

one realization of the fluctuation modes Z̃k, k ≤ K is needed, and
the K modes are shared among the N mean state samples ũ(i).

At the start of each updating time t = tm−1, the modes
{
Z̃k

}
are

randomly regrouped into new batches ∪iI
m
i =

{
k : k ≤ K

}
of size

p
(
= K

N
= O (1)

)
. The random batches are chosen independent of

the noises in the stochastic modes. Only the modes belonging to the

ith batch, Z̃k, k ∈ I
m
i , are updated using the ith mean state ũ(i), and

only these modes in batch i are used to update the mean state sam-
ple ũ(i). Due to the batch approximation, new coupling coefficients
ckl in (11) are introduced. Notice that in this RBM model (13), dif-
ferent samples ũ(i) are no longer independent with each other during
the entire time evolution since they are linked by the batch resam-
pling at the start of each time update. Therefore, the RBM model
has the additional randomness from the random partition of modes

{Im}[T/τ ]
m=1 with τ = tm − tm−1 the discrete time step size.

A. Main theorem for the approximation error in the

RBM ensemble model

In the ensemble forecast, we are interested in recovering the
statistics through the empirical PDF (7) rather than each individ-
ual trajectory solution. One effective way to calibrate the statistical
error is to compare the difference between the ensemble aver-
aged 1

N

∑N
i=1 Eϕ

(
u(i) (tn)

)
and 1

N

∑N
i=1 Eϕ

(
ũ(i) (tn)

)
from model

(12) and (13) for any test function ϕ ∈ C2
b. We propose the following
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structural assumptions for the coupling parameters of the mod-
els (12) and (13):

Assumption 1: In the mean state equation for u, suppose that
the bilinear coupling coefficients Bkl in the mean state dynamics are
uniformly bounded,

max
1≤k,l≤K

Bkl ≤ C. (14a)

The self-coupling term V (u) and its derivatives up to the second order
are uniformly bounded,

‖V‖C2 =
∑

|α|≤2

‖∇αV‖∞ ≤ C. (14b)

In the fluctuation equations for {Zk}, we assume that there is no inter-
nal instability induced by u in all small-scale modes and the total
noise amplitude is bounded. That is, there is a positive constant r
independent of u so that

min
1≤k≤K

{dk − γk (u)} ≥ r > 0 and

K∑

k=1

σ 2
k ≤ C. (14c)

Assumption (14a) is natural from the definition of the
quadratic bilinear form Bkl = B (ek, el), and assumption (14b) for the
self-coupling term V (u) makes sure that this term does not have a
rapid growth (this can be guaranteed by imposing constraints on the
maximum value of u). Assumption (14c) implies that the mean state
induces no internal instability to the fluctuation equations through
the coupling with the small-scale modes. This requires that we only
partition the stable small-scale modes into random batches for the
time updating in Algorithm 1. On the other hand, it needs to be
emphasized that the important unstable dynamics in the leading
fluctuation modes can still be modeled exactly in Algorithm 1 by
adding them to the resolved mean state as illustrated later in the
numerical examples.

Under these assumptions, we have the following main theorem
characterizing the statistical error in the RBM ensemble prediction:

Theorem 2: With Assumption 1 satisfied, the empirical sta-
tistical estimation of the random batch model (8) with discrete time
step τ converges to that of the full model solution (7) up to final time
t = T as

sup
nτ≤T

∣∣∣∣∣
1

N

N∑

i=1

Eϕ
(
ũ(i)

n

)
− Eϕ (un)

∣∣∣∣∣ ≤ Cϕ (T) τ , (15)

with any ϕ ∈ C2
b, un = u (nτ) by solving (12), and ũn = ũ (nτ) by

solving (13). Cϕ is independent of the sample size N and the fluctua-
tion modes dimension K.

Above, (15) gives the error estimation of the averaged RBM
prediction of the statistics Eϕ

(
ũ(i)

n

)
compared with the full ensem-

ble method Eϕ
(
u(i)

n

)
. Since the samples in the full ensemble model

are independent and identical under expectation, we have Eϕ (un)

= Eϕ
(
u(i)

n

)
= 1

N

∑N
i=1 Eϕ

(
u(i)

n

)
. Notice that this formula does not

quantify the sufficient size of the ensemble N to reach accurate
statistical prediction of Eϕ. In particular, the full ensemble model
(12) requires exhausting sampling of the full phase space of high
dimension d + K � 1. It ends up with an exponential growth in the
sample size N as the dimension K increases, thus suffers the curse-
of-dimensionality. In contrast, the RBM model (13) only needs to

sample the low-dimensional resolved subspace d � d + K. Thus,
the required sample size N for ũ(i) can be controlled regardless of
the high dimension K of the full fluctuation state.

B. Proof of the main theorem

In order to estimate the statistical error under the test func-
tion ϕ, we first introduce the function wZ based on the solution of
the full model (12) given the realization of the small-scale stochastic
process Z (·),

wZ (x, t) := w (x, t | Z) =
1

N

N∑

i=1

ϕx
(
u(i) (t) | Z(i) (s) , s < t

)
. (16)

Above, we use x = {xi}N
i=1 ∈ R

d×N to denote the initial val-
ues of all the samples [with u(i) (0) = xi for each initial state
xi =

(
x1

i , . . . , xd
i

)
∈ R

d]. The function ϕx ∈ C2
b

(
R

d
)

evaluates the

sample solution u(i) (t) starting at initial state u(i) (0) = xi. The func-
tion wZ is defined according to the solutions of the first equation of
(12) depending on the entire time sequence of the stochastic process
Z (s) , s < t, with Z = {Zk}K

k=1 ∈ R
K. Next, we define the determinis-

tic function w (x, t) after taking expectation E
Z [we use superscript

for expectation on the stochastic process Z (·)]

w (x, t) := E
ZwZ (x, t) =

1

N

N∑

i=1

Exϕ
(
u(i) (t)

)
, (17)

with Ex = E
(
· | u(i) (0) = xi

)
being the expectation given sam-

ple initial values x. By definition, we have the initial condition
wz (x, 0) = 1

N

∑
i ϕ (xi) = w (x, 0). The functions w and wz satisfy

the basic properties from the semigroup.41,42 That is, let Lz be the
generator for Eq. (12), ∂twz (x, t) = Lzwz (x, t) as in (19a). We have
from the L∞ contraction of the semigroup,

∥∥etLzϕ
∥∥

∞ ≤ ‖ϕ‖∞, so
that

‖w (·, t)‖∞ =
∥∥EZetLZw (·, 0)

∥∥
∞ ≤ E

Z
∥∥etLZw (·, 0)

∥∥
∞

≤ E
Z ‖w (·, 0)‖∞ = ‖w (·, 0)‖∞

≤ C.

Accordingly, we can define the associated function w̃ using the

solution ũ(i) (t) of the RBM model (13) starting from ũ(i)
0 = xi as

w̃ (x, t) :=
1

N

N∑

i=1

Ex

[
ϕ
(
ũ(i) (t)

)]
.

Here, the expectation Ex applies on the additional randomness sub-
ject to random partition I

m of the batches in {Zk} at each time
update as well as the stochastic white noise. In order to character-
ize the statistical evolution of the samples, we construct the discrete

semigroup S̃ associated with the RBM model in three steps accord-
ing to Algorithm 1 in the time interval (tm−1, tm]. First, starting with
the initial function w̃ (x, tm−1), we fix the solution of the fluctuation
modes during the next updating interval, Z(s), tm−1 < s ≤ tm. Next,
before the time update at t = tm−1, we partition the modes Z = {Zk}
into small batches Im = {Im

i }. Finally, we update the solution to the
next time step t = tm by integrating the backward equation (19b) of
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the mean state with time step τ = tm − tm−1. The one-step integra-

tion of the RBM generator L̃Im
z conditional on the partition I

m and
the fluctuation solution Z during the mth update time interval gives
the conditional updating operator

S̃
Im
Z w̃ (x, tm−1) := eτL̃Im

Z w̃ (x, tm−1) .

The one-step semigroup operator follows by taking expectation first
on the random partition E

I
m

and then on the stochastic process E
Z

in the updating interval Z (s) , tm−1 < s ≤ tm,

S̃w̃ (x, tm−1) := E
Z
E
Im

S̃
Im
Z w̃ (x, tm−1) = E

Zw̃Z (x, tm) = w̃ (x, tm) ,
(18)

where we define w̃Z = S̃Zw̃ = E
Im

S̃
Im
Z w̃, and S̃ = E

Z
S̃Z. There-

fore, it can be shown that the semigroup is formed by

S̃
(m)ϕ (x) =

1

N

N∑

i=1

Ex

[
ϕ
(
ũ(i)

m

)]

= w̃ (x, tm) = S̃w̃ (x, tm−1) = S̃ ◦ S̃
(m−1)ϕ,

with ũm = ũ (tm).
Applying the backward Kolmogorov equation to the full MC

model and the reduced RBM model, we find the governing equa-
tions depending on the realization z (·),

∂twz = Lzwz =
N∑

i=1

[
V (xi) +

1

K

∑

k,l

zkzlBkl + F

]
· ∂xi

wz, (19a)

∂tw̃z = L̃
I

m

z w̃z =
N∑

i=1

[
V (xi) +

∑

k,l

cklI
m
i

(
k
)

Im
i

(
l
)

zkzlBkl + F

]

· ∂xi
w̃z. (19b)

Above, the RBM generator L̃
Im
z is also conditional on the ran-

dom batch partition of modes Im = {Im
i } in each time interval

t ∈ (tm−1, tm]. To formulate the equations under comparable terms,
we introduce the index function during the time interval tm−1 < t
≤ tm as

Im
i

(
k
)

=
{

1 if k ∈ I
m
i ,

0 otherwise.
(20)

The index function Im
i is fixed during the time interval and will be

modified at the beginning of each time updating step tm subject to
the random partition (we neglect the subscript “m” for time step tm

in the rest part of this section for brevity of notations).
The proof of Theorem 2 follows the method of weak conver-

gence in Ref. 22. The main difference here is that we have to deal
with the nonlinear coupling from the fluctuation modes Z. We need
the following lemmas to compare the difference between the statis-
tical functions w and w̃. The proofs of these lemmas can be found in
Appendix A.

First, Lemma 3 indicates the values of the new coupling coeffi-
cients ckl in (11) of the RBM model according to expectations on the
random batch partition.

Lemma 3: Let Ii

(
k
)

be the index function (20), indicating that
the mode k belongs to the batch Ii with k = 1, . . . , Np = K (K is the

total number of modes partitioned into N random batches). Then, we
have the expectations about the partition I for any k

EI2
i

(
k
)

= EIi

(
k
)

=
p

K

and for any k 6= l

EIi

(
k
)

Ii

(
l
)

=
p

K

p − 1

K − 1
.

Next, the following lemma describes the estimates on the
moments of entire fluctuation modes. The supremum bound is
guaranteed by the crucial stability assumption (14c) with uniform
negative damping in the dynamical equations of all the modes Zk.

Lemma 4: Under the stable dynamics (14c), the fluctuation

modes Zk and Z̃k in (12) and (13) satisfy

sup
t≤T

E ‖Zt‖2q < Cq, sup
t≤T

E

∥∥∥Z̃t

∥∥∥
2q

< Cq

for any integer q ≥ 1 and ‖Zt‖2 =
∑K

k=1 |Zk (t)|2. The constant Cq is
independent of T.

The last lemma shows the regularity in the function w (x, t) that
is uniformly bounded up to second-order differentiations.

Lemma 5: For t ≤ T, we have the uniform bound for the
characteristic function (17) at least up to second-order derivatives

∥∥∇2
x w (·, t)

∥∥
∞ =

N∑

i,j=1

∥∥∥∂2
xixj

w (·, t)
∥∥∥

∞
< Cϕ (T) ,

with the constant Cϕ (T) > 0 independent of N.
With the above lemmas, we can give the proof of our main

theorem. First, we estimate the one-step error between wz (x, tm+1)

and S̃zw (x, t), and then the final estimate follows by taking the
expectation about Z.

Proof of Theorem 2. In the RBM model, the batches of modes

{Z̃k} are regrouped before each time step update at tm = mτ . Thus,
we first focus on the one-step update during the time internal
tm < t ≤ tm+1 for all m ≤ n in the backward equations for the full
model (19a) and the RBM model (19b).

For the one-step time update of the RBM model and given

z (s) , tm < s ≤ tm+1, the discrete semigroup operator S̃I

z for a fixed
batch partition I applied on the function w (x, tm) according to (19b)
has the expanded expression

S̃
I

z w (x, tm) = eτL̃I
z w (x, tm) = w (x, tm) + τ L̃I

z w (x, tm)

+
∫ τ

0

(τ − s)
(
L̃

I

z

)2

esL̃I
z w (x, tm) ds.

Correspondingly, for the full model (19a), we have the continuous
generator applying on the same function at t = tm+1

wz (x, tm+1) = eτLzw (x, tm) = w (x, tm) + τLzw (x, tm)

+
∫ τ

0

(τ − s)L2
ze

sLzw (x, tm) ds.

Notice that above, we consider the one-step update from w (x, tm)

conditional on the realization of fluctuation modes z during the
updating interval (tm, tm+1].
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Next, we take the expectation on the random batch partition

I at step tm on the RBM generator L̃
I

z . Then, the RBM generator
becomes consistent with the full model generator under the proper
choice of the coefficients ckl

E
I
L̃

I

z = Lz.

This is guaranteed by Lemma 3, and the coefficients ckl in (11)
appear naturally from the lemma. With this, we have from the
definition in (18)

S̃w (x, tm) − w (x, tm+1)

= E
Z
E
I
S̃

I

Z w (x, tm) − E
ZwZ (x, tm+1)

=
∫ τ

0

(τ − s)

[
E

Z,I
(
L̃

I

Z

)2

esL̃I

Z − E
Z
L

2
ZesLZ

]
w (x, tm) ds.

Then, we show that the residual terms in the above integrants are
uniformly bounded with the constant C independent of N, K,

∥∥EZ
L

2
ZesLZw (·, t)

∥∥
∞ < C,

∥∥∥∥E
Z
(
L̃

I

Z

)2

esL̃I

Z w (·, t)
∥∥∥∥

∞
< C.

In fact, using the fact that L2
z and esLz are commutative and esLz is a

contraction under L∞, we have the estimation

∥∥EZ
L

2
ZesLZw (·, t)

∥∥
∞

≤ E
Z
∥∥esLZL

2
Zw (·, t)

∥∥
∞ ≤ E

Z
∥∥L2

Zw (·, t)
∥∥

∞

≤
(

C0 +
C1

K

∑

k,l

E |ZkZl| +
C2

K2

∑

k,l,m,n

E |ZkZlZmZn|
)

×
∥∥∇2

x w (·, t)
∥∥

∞ .

In the last inequality above, we expand that the operator L
2
Z

and C0, C1, C2 are three positive constants independent of N, K,

and
∥∥∇2

x w
∥∥

∞ =
∑

i,j

∥∥∥∂2
xixj

w
∥∥∥

∞
. The uniform bounds for the total

moments 1
K

∑
k,l E |ZkZl| ≤ E ‖Z‖2 and 1

K2

∑
k,l,m,n E |ZkZlZmZn|

≤ E ‖Z‖4 are guaranteed by Lemma 4. We have the uniform bound

for
∥∥∇2

x w
∥∥

∞ by Lemma 5. The same result can be achieved for L̃I

Z

with a similar argument.
Therefore, during the time updating from tm−1 to tm, we have

the one-step error between the RBM solution S̃w (x, tm) and the
full model w (x, tm+1) from the time integration of the residual term
inside the time interval

∥∥∥S̃w (·, tm) − w (·, tm+1)

∥∥∥
∞

=
∥∥∥EZ

[
S̃Zw (·, tm) − wZ (·, tm+1)

]∥∥∥
∞

≤ Cτ 2.

Finally, applying S̃(n) on the initial function ϕ and using

S̃w̃ (x, tm) = w̃ (x, tm+1) by recurrently applying the semigroup and

using the L∞ contraction property for S̃ , the total error at t = tn

= nτ can be computed as
∥∥∥S̃(n)ϕ − w (·, tn)

∥∥∥
∞

≤
∥∥∥S̃

[
S̃

(n−1)ϕ − w (·, tn−1)

]∥∥∥
∞

+
∥∥∥S̃w (·, tn−1) − w (·, tn)

∥∥∥
∞

≤
∥∥∥S̃(n−1)ϕ − w (·, tn−1)

∥∥∥
∞

+
∥∥∥S̃w (·, tn−1) − w (·, tn)

∥∥∥
∞

≤
n−1∑

m=0

∥∥∥S̃w (·, tm) − w (·, tm+1)

∥∥∥
∞

≤ C (tn) τ .

This gives the final error estimate by maximizing among the initial
samples xi. �

V. NUMERICAL TESTS OF THE RANDOM BATCH

ALGORITHM ON TURBULENT MODELS

Now, we evaluate the numerical performance of the general
RBM model in Algorithm 1 using turbulent models containing
a wide spectrum of fluctuation modes. In particular, we test the
algorithm on two prototype benchmark models, that is, the concep-
tual turbulent model and the topographic barotropic model, which
are shown to generate various representative phenomena in multi-
scale turbulence. The RBM algorithm displays uniformly high skill
in capturing the key statistical behaviors in the dominant large-
scale states displaying highly non-Gaussian PDFs and intermittent
extreme events with much lower computational cost.

A. Random batch algorithm for the conceptual

turbulent model

One particular concrete example accepting the general model
framework (3) is the conceptual dynamical model for turbulence
developed in Ref. 43,

dū

dt
= −d̄ū +

γ

K

K∑

k=1

v2
k − ᾱū3 + F̄,

dvk

dt
= −γ ūvk − dkvk + σkẆk, 1 ≤ k ≤ K.

(21)

Above, the state variables (ū, vk) ∈ R
1+K constitute a

(K + 1)-dimensional system. The scalar large-scale mean state ū
is coupled with each small-scale mode vk through the nonlinear
interaction coefficient γ > 0, while the large number of small-
scale fluctuation modes vk impact the large-scale mean state ū
together through a quadratic coupling term. It is easy to check
that the nonlinear coupling term conserves the total energy
E = 1

2

(
ū2 + 1

K

∑
k v2

k

)
so that the structural property in (1) is sat-

isfied. The model (21) gives a typical characterization for the
anisotropic turbulence in which fluctuating energy flows intermit-
tently from a wide range of small scales to affect the largest-scale
mean flow. Besides, unstable dynamics are also induced in the lead-
ing fluctuation modes vk through coupling with the mean state when
−dk − γ ū > 0, where strong intermittency and extreme events are
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TABLE I. Parameter values for the conceptual turbulent model.

K d̄ ᾱ F̄ γ dk σ k E0 K1 p N (full MC) N1 (RBM)

100 −0.1 0.05 −0.055 1.5 1 + 0.02k2
√

2Ekdk 0.004 4 5 10 000 100

triggered with non-Gaussian statistics through the chaotic fluctu-
ations. This characterizes another key observation in turbulence,
which is captured in this conceptual model.

The model parameters
(
d̄, ᾱ, F̄, γ , dk, σk

)
for a strongly unsta-

ble regime are listed in Table I. Strong instability in the large-scale
dynamics for ū is imposed through the linear anti-damping term

d̄ < 0, which needs to be balanced by the nonlinear feedbacks from
both small and large scales. A wide spectrum of modes K = 100 is
included for multiscale fluctuations. dk and σk are used to describe
the turbulent dissipation and white noise forcing in these fluctuation
modes, respectively. For the convenience of the numerical test, we

assign the Kolmogorov spectrum Ek = σ 2
k

2dk
= E0k

−5/3 for the lead-

ing modes k ≤ K1 = 4, while all the other smaller-scale modes have

equipartition of energy Ek = E0K
−5/3
1 . Under this model setup, it can

be shown that an ergodic invariant measure40 will be reached, while
instability on both small and large scales will create intermittent
behavior and non-Gaussian PDFs during the model evolution.

For direct ensemble simulation in a large phase space with
dimension 1 + K = 101, we take a large ensemble size N = 1 × 104

for accurate MC simulation to get the reference true distribution.
Next, to apply the RBM model to recover the probabilistic solutions
in leading states, only the mean state ū together with the first four
leading fluctuation modes vk, k ≤ K1 = 4 is sampled. This is consid-
ering their unstable dynamics to satisfy the assumption in (14c) so
that only stable small-scale fluctuation modes are partitioned in the
random batches of a small size p = 5. Thus, a much smaller sample

size N1 = 100 is sufficient to model the 1 + K1 = 5 dimensional
subspace. The algorithm can be developed directly according to the
steps in Algorithm 1 with a simple generalization of also resolving
the leading fluctuation modes. The joint PDFs of the resolved states
can be approximated by sample histograms as the empirical rep-
resentations in (7) and (8). We summarize the detailed numerical
RBM equations for the conceptual model (21) in Appendix B 1.

To illustrate the basic statistical features, Fig. 1 plots the
equilibrium energy spectrum E

eq |vk|2 and the decorrelation time∫∞
0

E
eq |vk (t) vk (0)| dt of the fluctuation modes (with E

eq denoting
the average about the equilibrium measure). This displays a typi-
cal example of the common features in turbulent flows: the first few
leading modes accumulate most of the energy and a relatively long
decorrelation time, while there exists a long extended spectrum of
small-scale fast-mixing fluctuating modes containing small energy
in each mode but having a non-negligible combined contribution to
the large-scale mean flow. This is shown more clearly in the right
column of Fig. 1 for the time evolution of energy

∑
k |vk|2 in the

leading modes k ≤ 4 and all the rest small-scale modes k > 4. The
leading modes show intermittent bursts of large energy due to the
destabilizing coupling with the mean flow, while the large number of
small-scale fluctuating modes account for a major amount of energy
during the quiescent regime for most of the time during the evolu-
tion. This confirms that the contributions from the many small-scale
modes play an important role of driving the large scales to the final
equilibrium and cannot be simply ignored in simulations.

First, we check the recovery of the solution trajectories using
the RBM model. Figure 2 plots the typical time series of the mean

FIG. 2. Time trajectories of the mean state ū and the first four leading mode vk from one typical realization of the direct simulation (left) and the random batch method (right).

Chaos 33, 023113 (2023); doi: 10.1063/5.0129127 33, 023113-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Predicted PDFs from the direct MC simulation with N = 10 000 samples and from the RBM model using N1 = 100 samples for the conceptual model. The 1D and
2D marginal PDFs of the leading modes (ū, v1, v2, v3, v4) are compared. In the 1D PDFs, the Gaussian fit with the same mean and variance is plotted in a dashed line.
The 2D joint PDFs are shown by scatterplots with colors indicating sample density. The PDFs in the starting transient state (upper) and the final equilibrium state (lower) are
compared.

state ū and the first four leading modes vk from direct simula-
tion and the random batch approximation. Highly non-Gaussian
features with intermittent bursts of extreme events can already be
observed in the time series of the leading modes. The intermittent
flow structure is a key feature to model that is closely related to

the largest-scale mean state. Qualitatively, we observe that the struc-
tures in the most energetic modes are precisely captured from the
RBM approach especially with the random intermittent bursts and
extreme events. Notice that in each time step update of the model,
only p = 5 modes are included in updating the mean equation
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FIG. 4. Statistics of the topographic barotropic model (22). Left: equilibrium energy spectrum and decorrelation time in the fluctuation modes. Right: time series of the energy
in the first two leading modes and energy in all the rest fluctuation modes.

randomly picked from the total K = 100 small-scale modes. It is
shown that the batch size can be further reduced to even p = 2 in
Fig. 6. Thus, the exhausting computational cost to resolve the long
spectrum of all fluctuation modes in each ensemble member at each
time step can be effectively avoided.

Next, we test the performance of the RBM model in efficient
ensemble prediction of the probability distributions. In particu-
lar, the prediction skill of both the final equilibrium probabil-
ity distribution and the transient probability distributions before
equilibrium is considered. In the tests, the initial samples at the
starting time are drawn from independent Gaussian distributions
for each mode with mean zero and a small variance. Thus, the
PDFs will go through a statistical transition from the Gaussian
initial distribution to the non-Gaussian final equilibrium. Figure 3
compares the prediction of marginal and joint PDFs in both the

starting transient state and the final statistical equilibrium. First,
from the sample distributions, we observe the drastic deviation from
Gaussian in the PDFs. Strongly non-Gaussian structures appear in
both the starting transient state and the final statistical equilibrium.
The fat-tailed PDFs refer to the intermittent extreme flow structures
and are of particular interest in the study of turbulent flows. To
capture such extreme features, a very large sample size is required
in the direct MC simulation to sufficiently characterize the outliers
that constitute the PDF tails. In contrast, the RBM model focuses
on the mean and the first four dominant modes and recovers the
joint PDFs of these most important modes. It is able to capture both
the transient and equilibrium non-Gaussian PDFs, especially the
non-Gaussian PDF tails to a large extent accurately, while saving
the computational cost to a large degree requiring a much smaller
number of samples.

FIG. 5. Predicted PDFs from the direct MC simulation with N = 10 000 samples and from the RBM model using N1 = 100 samples for the topographic model. The 1D and
2D marginal PDFs of the leading modes (U, Rev1, Rev2, Imv1, Imv2) are compared. In the 1D PDFs, the Gaussian fit with the same mean and variance is plotted in a dashed
line. The 2D joint PDFs are shown by scatterplots with colors indicating sample density.
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B. Random batch algorithm for the topographic

barotropic model

The topographic barotropic flow is a paradigm model in geo-
physical turbulence,44 which generates many representative fea-
tures found in real atmosphere and ocean. It identifies the mul-
tiscale interactions between a large-scale mean flow and fluctua-
tions through interaction with topography. Under projection along
one characteristic wavenumber direction, the topographic barotropic
model of layered topography can be expressed in terms of a large-
scale mean flow U and a wide spectrum of fluctuation modes vk in
complex values as

dU

dt
=

1

K

K∑

k=−K

h∗
kvk − d0U + σ0Ẇ0,

dvk

dt
= i

(
k−1β − kU

)
vk − Uhk − dkvk + σkẆk,

∣∣k
∣∣ ≤ K.

(22)

Above, the complex flow modes satisfying v−k = v∗
k are derived

from the Fourier expansion of the fluctuation flow field. The model
(22) constitutes a system of dimension 1 + 2K. The fixed complex
modes hk represent the topographic effect, and β , d0, dk, σ0, σk are
other model parameters representing rotation, damping, and unre-
solved forcing in large and small scales. The topographic model
eliminates the nonlinear interactions between the fluctuation modes
and focuses on the coupling effect between the large and small
scales. Equation (22) becomes consistent with the general multiscale

model framework (3) by introducing the auxiliary dynamics
dhk
dt

≡ 0, which represents the constant topographic structure. There-
fore, Algorithm 1 still applies to implementing the RBM model for
this system. The topographic model also generates many key fea-
tures of interest in turbulent flows, including skewed non-Gaussian

PDFs and the related extreme events from a new generating mech-
anism. Different from the previous conceptual model (21), the
small-scale feedback to the mean U is coupled through a com-
bined interaction with the topographic mode hk, and instability in
the leading fluctuation modes is introduced from the coupling with
topographic stress. A detailed derivation from the two-dimensional
barotropic model and many desirable properties, such as conserva-
tion of energy, can be found in Refs. 28 and 45.

The model parameters in (22) are listed in Table II. The topo-
graphic modes hk are defined by the Fourier modes of the spatial
topography structure as a combination of two major large scales and
multiple small-scale random perturbations

h = H (sin x + cos x) +
H

2
(sin 2x + cos 2x) +

∑

3≤|k|≤K

ei(kx+θk),

with θk being the random phase shift drawn independently from a
uniform distribution in [0, 2π). A white noise forcing with small
amplitude σ0 = 1

4
√

2
is also added in large scale to induce stronger

chaotic dynamics in the mean state. This can also fit into the model
framework with simple generalization. In the small scales, β = 2
represents the rotational effect of the flow. Again, we adopt the

Kolmogorov spectrum Ek = σ 2
k

2dk
= E0k

−5/3 in the first two complex

modes
∣∣k
∣∣ ≤ K1 = 2 and with equipartition of energy for all the

small scales,
σ 2

k
2dk

= E0K
−5/3
1 ,

∣∣k
∣∣ > K1. These choices of parameter

values are following the non-dimensionalization of the real physics
measurements of the characteristic scales.28 We first demonstrate the
model statistical features in Fig. 4. The equilibrium energy spectrum
and the decorrelation time in the fluctuation modes display again
the decaying energy and the fast mixing rate in small scales typical
in turbulent flows. The small-scale fluctuation modes contain small

FIG. 6. Statistical moments M2 = 1
N

∑
i

∣∣u(i)
∣∣2 and errors E2 =

∣∣∣ 1
N

∑
i

∣∣u(i)
∣∣2 − 1

N

∑
i

∣∣ũ(i)
∣∣2
∣∣∣ of the RBM model in the time development of the conceptual model (left)

and the topographic model (right). The results with different batch sizes p = 2, 5, 10 are compared with the direct MC approach.
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TABLE II. Parameter values for the topographic barotropic model.

K H β d0 σ 0 dk σ k E0 K1 p N (full MC) N1 (RBM)

100 1 2 0.0125
1

4
√

2
0.0125k

√
2Ekdk 0.02 2 5 10 000 100

energy and fast decaying autocorrelation in each single mode, while
they constitute a major contribution in their combined feedback to
the mean state. The bursts in the first two leading modes imply the
occurrence of extreme events excited by such a multiscale interac-
tion. Thus, the small scales play a non-negligible role and are suitable
for the RBM approximation.

In the test for ensemble forecast, we aim to capture the PDFs
in the mean-flow state U together with the first two leading modes
v1, v2. Since the fluctuation modes are in complex values, it forms a
five-dimensional subspace compared with the full model dimension
1 + 2K = 201. A large ensemble size N = 1 × 104 is again needed
to sufficiently sample the high-dimensional phase space of the sys-
tem in the full MC model, while in contrast, the RBM model uses
a much smaller ensemble of N1 = 100 samples. We put the detailed
RBM model formulation of the topographic model (22) following
Algorithm 1 in Appendix 2. In this topographic model, one typi-
cal feature is the intermittent bursts of extreme events in both the
mean flow U and the leading fluctuation modes v1, v2, reflected
by the skewed fat-tails in the resulting PDFs. This makes an even
more challenging case for accurate ensemble forecast since it usually
requires a much larger ensemble size to capture the extreme events
in the asymmetric PDF tails with accuracy. The RBM prediction for
the marginal PDFs and the joint PDFs in the resolved leading modes
is shown in Fig. 5 compared with the direct MC results. As shown
in both the marginal PDFs of the leading modes and the joint distri-
butions, complicated non-Gaussian structures are generated during
the evolution of the states. Again, the RBM model maintains a high
skill to capture the skewed PDF structures while greatly reducing the
computational cost.

Finally, we offer a quantitative calibration for the prediction
errors by measuring the empirical statistics in the first two moments

as E2 =
∣∣∣ 1

N

∑
i

∣∣u(i)
∣∣2 − 1

N

∑
i

∣∣ũ(i)
∣∣2
∣∣∣ with u being the mean state of

the full MC model and ũ being the RBM solution. In comparison,
for the error amplitudes, we also plot the time evolution of the

absolute moments M2 = 1
N

∑
i

∣∣u(i)
∣∣2 together with the error bars

estimated from several repeated simulations. A large sample size
N = 1 × 104 is used to reduce the error from the empirical sample
average approximation. In Fig. 6, we plot the evolution of errors for
the two test models. Notice that there exist errors from the ensem-
ble approximation of the expectation due to the finite sample size N.
Still, it shows that the error stays small in the ensemble approxima-
tions during the entire time evolution of the second moments M2.
It is observed that the RBM model maintains accurate prediction
skill of the statistics with small errors during the model evolution.
The errors gradually grow in time and will saturate at a low level
when the system reaches a statistical equilibrium. As a further com-
parison, we also compare the errors under different batch sizes p. It
shows that we can even push the batch sizes to an extreme p = 2,

and the model still provides accurate prediction with just a slightly
larger error. Overall, this confirms the robust performance of the
RBM model subject to different turbulent dynamical features and
for different statistical regime in both transient and final equilibrium
state.

VI. SUMMARY

We developed a new efficient ensemble prediction strategy to
model and forecast the time evolution of probability distributions
and the associated statistical features in the dominant large-scale
states of complex turbulent systems with a coupled multiscale struc-
ture. Standard Monte Carlo simulation of a high-dimensional tur-
bulent system suffers the curse-of-dimensionality and, thus, requires
an unaffordable ensemble size to even maintain a low-order approx-
imation. The proposed RBM model circumvents the inherent diffi-
culty by just sampling a low-dimensional subspace, which contains
the dominant large-scale states, while the contributions from all the
small-scale fluctuation modes are fully considered through a ran-
dom batch decomposition. The wide spectrum of the K small-scale
fluctuation modes is randomly divided into small batches of size p
at the start of each time updating step, and each of the K/p batches
is associated with one of the N large-scale state samples to update
the coupled nonlinear feedback term computed inside the batch.
The modes in each batch serve as the different samples to compute
the small-scale feedback in the ensemble update of the large-scale
state. The computational cost is then greatly reduced based on the
random batch decomposition, which avoids the expensive ensem-
ble simulation of a large number of small-scale fluctuation modes.
The true multiscale dynamics is recovered in the efficient algorithm
due to the frequent resampling of the batches at each time updating
step and the fast mixing rate of the ergodic small-scale fluctuation
modes. The resulting algorithm is also very easy to implement for
a general group of multiscale turbulent models capable of creating a
wide variety of realistic complex phenomena. Therefore, the efficient
RBM model developed here provides a useful tool for improving
the understanding of various turbulent features observed in natural
and engineering systems and the further development of effective
methods in uncertainty quantification and data assimilation4,46 of
complex turbulent systems.

In the analysis of the RBM model for the coupled large- and
small-scale turbulent systems, the approximation errors under sta-
tistical expectation of the empirical ensemble average are derived by
comparing the semigroups generated by the backward equation of
the original model and the RBM approximation. The error is shown
to be only related to the numerical time step and independent of
the sample size and the full dimension of the system. The RBM
model is then applied to two representative turbulent models with
a close link to several realistic phenomena, such as extreme events
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and intermittent instability. One central issue in practical forecast of
turbulent systems concerns the accurate characterization of extreme
events represented in the long extended PDF tails and the deviation
from the Gaussian distribution. The RBM model is show to have
a uniformly high skill in predicting various different structures in
the PDFs during the time evolution in both test models driven by
different types of coupling mechanisms. Only a very small ensem-
ble size N = 100 is needed to achieve sufficient accuracy for models
with a high-dimensional fluctuation state dimension K = 100 and
K = 200. In contrast, the direct MC simulation requires at least
N = 1 × 104 samples to reach a relatively high accuracy. The RBM
model here is designed for the large–small scale interaction model
(3) with a wide spectrum of fast mixing and rapid decaying small-
scale fluctuation modes. In the next stage development of the
method, a more complete approach is needed to include both the
large–small scale interaction and the self-coupling between the small
scales in the fully coupled model (5) and to apply to more real-
istic applications with coupled multiscale effects. The RBM model
here shows potential to deal with the different levels of multiscale
coupling effects combining all stochastic modes and to overcome
the curse-of-dimensionality for a wider group of practical prob-
lems involving prediction and data assimilation of fully turbulent
high-dimensional flows.
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APPENDIX A: PROOFS OF THE LEMMAS

Proof of Lemma 3. This is the direct conclusion by counting
the number of ordered combinations of the n random batches. First,
we define the total number of ways of listing np distinguishable
objects into n ordered batches of size p as

n!M (n) =
(
np
)
!

(
p!
)n .

We use M (n) to denote the number of combinations to put np
objects to p groups without order. Next, for the kth mode falling
in the batch i, we determine the ith batch to contain k and select the
other p − 1 objects in this batch from the remaining np − 1 objects
and then order the rest n − 1 batches. This gives

EIi

(
k
)

=

(
np − 1
p − 1

)
(n − 1)!M (n − 1)

n!M (n)
=

1

n
=

p

K
.

Similarly, for two modes k 6= l falling in the same batch i, we put
these two objects together with other p − 2 objects and then still
order the rest n − 1 batches, which gives

EIi

(
k
)

Ii

(
l
)

=

(
np − 2
p − 2

)
(n − 1)!M (n − 1)

n!M (n)

=
1

n

p − 1

np − 1
=

p

K

p − 1

K − 1
. �

Proof of Lemma 4. Applying Ito’s lemma for f (z) = ‖z‖2q

=
{
(
∑
k

|zk|2)
}

q according to the SDE of Zk in (12), we have the

conditional expectation Eu with a fixed u as

d

dt
Eu ‖Z‖2q = 2q

∑

k

(
γk (u) − dk

)
EuZ2

k ‖Z‖2(q−1)

+ qEu ‖Z‖2(q−1)
∑

k

σ 2
k + 2q

(
q − 1

)

×
∑

k

σ 2
k EuZ2

k ‖Z‖2(q−2) .

From (14c) in Assumption 1, the coefficients are uniformly
bounded, dk − γk (u) ≥ r > 0 and

∑
k σ 2

k ≤ C. Thus,

d

dt
Eu ‖Z‖2q ≤ −2qrEu ‖Z‖2q + q2C′

Eu ‖Z‖2(q−1) .

First, for q = 1, the last term on the above inequality becomes a con-

stant; thus, E ‖Zt‖2 = E
U
E ‖Z (t | U)‖2 ≤ C′

2r
≡ C1. Next, we have

by induction E ‖Zt‖2q ≤ Cq for any integer q ≥ 1. In the same way,

we have E

∥∥∥Z̃t

∥∥∥
2q

< Cq for any t > 0. �

Proof of Lemma 5. By using the backward Kolmogorov
equation (19) for wz (x, t) and taking its derivative about the ith
coordinate xi ∈ R

d with i = 1, . . . , N, it yields

∂t∂xi
wz = Lz∂xi

wz + ∇V (xi) · ∂xi
wz.

Above, we define the vector function ∂xi
wz = {∂

x
j
i
wz}d

j=1 ∈ R
d with

xi = {xj
i}j and ∇V (x) = {∂xjVj}j : R

d → R
d×d. From the definition

of the generator, the only term that is dependent on x in Lz is V (xi).
This leads to the formal solution

∂xi
wz (x, t) = etLz∂xi

wz (x, 0) +
∫ t

0

e(t−s)Lz∇V (xi) · ∂xi
wz (x, s) ds.

By the contraction of the semigroup etLz , we have
∥∥etLzwz (x, 0)

∥∥
∞ ≤ ‖wz (x, 0)‖∞
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and
∥∥e(t−s)Lz∇V (xi) · ∂xi

wz (x, s)
∥∥

∞ ≤
∥∥∇V (xi) · ∂xi

wz (x, s)
∥∥

∞ .

Therefore, using the uniform boundedness of V in (14b),

∥∥∂xi
wz (x, t)

∥∥
∞ ≤

∥∥∂xi
wz (x, 0)

∥∥
∞ +

∫ t

0

∥∥∇V (xi) · ∂xi
wz (x, s)

∥∥
∞ ds

≤
∥∥∂xi

w (x, 0)
∥∥

∞ + C

∫ t

0

∥∥∂xi
wz (x, s)

∥∥
∞ ds.

Using the integral form of Grönwall’s inequality, we get
∥∥∂xi

w (x, t)
∥∥

∞ ≤ EZ

∥∥∂xi
wZ (x, t)

∥∥
∞ ≤ C (t)

∥∥∂xi
w (x, 0)

∥∥
∞

≤
C (t, ϕ)

N
.

Above, in the last inequality, by definition, w (x, 0) = 1
N

∑N
i=1 ϕ (xi),

then ∂xi
w (x, 0) = 1

N
∇ϕ (xi) is bounded since ϕ ∈ C2

b.
Next, by taking a second derivative about xj on the backward

equation, we have

∂t∂
2
xixj

wz = Lz∂
2
xixj

wz +
[
∇V (xi) + ∇V

(
xj

)]
· ∂2

xixj
wz

+ δij∇2V (xi) · ∂xi
wz.

Above, the last term on the right hand side only appears when i = j.
Following the same argument as before and using the boundedness
of the initial condition ∂2

xixj
w (x, 0) = 1

N
∇2ϕ (xi) δij and ∇2V, we first

get the bound for a second derivative about i, j,

∥∥∥∂2
xixj

w (x, t)
∥∥∥

∞
≤

C

N
.

Then, under similar estimation of the second-order deriva-
tion equation and taking summation among all the samples i,
j = 1, . . . , N,

∑

i,j

∥∥∥EZ∂2
xixj

wZ (x, t)
∥∥∥

∞
≤
∑

i,j

∥∥∥∂2
xixj

w (x, 0)
∥∥∥

∞

+ C0

∫ t

0

∑

i

∥∥EZ∂xi
wZ (x, s)

∥∥
∞ ds

+ C1

∫ t

0

∑

i,j

∥∥∥EZ∂2
xixj

wZ (x, s)
∥∥∥

∞
ds

≤ C (T) + C1

∫ t

0

∑

i,j

∥∥∥EZ∂2
xixj

wZ (x, s)
∥∥∥

∞
ds.

In the second row, we use the initial condition w (x, 0) = 1
N∑N

i=1 ϕ (xi) and the estimation on the first derivative so that the
bounds on the right are both of order O (1) and independent of N

∑

i,j

∥∥∥∂2
xixj

w (·, 0)
∥∥∥

∞
=
∑

i

1

N

∥∥∇2ϕ
∥∥

∞ ,

∑

i

∥∥∂xi
w (·, s)

∥∥
∞ ≤

∑

i

C

N
.

Letting f (t) =
∑

i,j

∥∥∥EZ∂2
xixj

wZ (·, t)
∥∥∥

∞
, then

f (t) ≤ C + C1

∫ t

0

f (s) ds.

Grönwall’s inequality gives
∑

i,j

∥∥∥∂2
xixj

w
∥∥∥

∞
≤ C (t, ϕ) ,

with the constant C on the right only dependent on the time t and
the test function ϕ. �

APPENDIX B: DETAILED RBM FORMULATION FOR THE

TEST MODELS

1. RBM equations for the conceptual turbulent model

Here, we show the detailed equations of the RBM model for the
ensemble prediction of the conceptual turbulent model (21). First,
we decompose the small-scale states v = {v1,k, v2,k} further into the
unstable leading modes v1,k, k ≤ K1 and the rest fluctuating smaller
scales, v2,k, K1 < k ≤ K, with stable dynamics. This decomposition is
used to also resolve the leading fluctuation modes containing inter-
mittent unstable growth when −

(
dk + γ ū

)
> 0 from the coupling

with the mean. In this way, we still only need to sample a much lower
dimensional subspace containing the most energetic leading modes
together with the mean state, that is, {ū, v1,k}k≤K1 , while the much
less energetic stable smaller-scale fluctuation modes are modeled by
the random batches. The ensemble approximation of the marginal
PDF with N1 samples becomes

pRBM (ū, v1) =
1

N1

N1∑

i=1

δ
(
ū − ū(i)

)
⊗

K1∏

k=1

δ

(
v1,k − v(i)

1,k

)
.

The above empirical approximation requires a much smaller ensem-
ble size N1 and is independent of the full dimension K (� K1) of
the system. Next, the random batch partition is applied to the large
group of small-scale fluctuation modes {v2,k}k>K exploiting their
ergodicity with a fast mixing rate. In particular, the large number
of fluctuation modes {v2,k} are divided into small batches of size p
each. In the RBM model, the sample size N1 in the ensemble sim-
ulation is associated with the same number of batches. For the ith
sample in the large-scale ensemble {ū(i), v(i)

1,k}, the large-scale mean
equation only includes p randomly picked small-scale modes in one
batch, {v2,k : k ∈ Ii}. The RBM model with samples i = 1, . . . , N1 at
time step t = tn becomes

dū(i)

dt
= −d̄ū(i) +

γ

K1

K1∑

k=1

(
v(i)

1,k

)2

+
γ

p

∑

k∈Ii

(
v2,k

)2 − ᾱ
(
ū(i)
)3 + F̄,

dv(i)
1,k

dt
= −dkv

(i)
1,k − γ ū(i)v(i)

1,k + σkẆ
(i)
k , 1 ≤ k ≤ K1, (B1)

dv2,k

dt
= −dkv2,k − γ ū(i)v2,k + σkẆk, k ∈ Ii, i = 1, . . . , N1.

The small-scale modes v2,k are segmented into small batches
with ∪iIi = {k : K1 < k ≤ K}. In addition, we add a small ensem-
ble n2 (= 5) for the small-scale modes. Therefore, there are
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N1 =
⌈
n2

K−K1
p

⌉
samples to sufficiently sample the resolved sub-

space. Only a very small ensemble is needed for the high-
dimensional subspace for {v2,k} satisfying

n2 =
N1p

K − K1

.

We can estimate the computational cost of (B1) as O
(
N1 (1 + K1) p

)

∼ O (n2 (1 + K1) K). Notice that the cost will not have the exponen-
tial growth depending on the full dimension 1 + K of the system by
avoiding sampling the full high-dimensional space.

2. RBM equations for the topographic barotropic

model

In a similar way, we display the detailed equations for the
implementation of the RBM model for the topographic barotropic
model (22). Again, we focus on the ensemble approximation of the
dominant mean state and the first K1 leading modes,

(
U, v1,k

)
with∣∣k

∣∣ ≤ K1

pRBM (U, v1) =
1

N1

N1∑

i=1

δ
(
U − U(i)

)
⊗

K1∏

k=1

δ

(
v1,k − v(i)

1,k

)
,

while all the other small-scale modes {v2,k}, K1 <
∣∣k
∣∣ ≤ K are mod-

eled in the random batches ∪iIi = {k : K1 <
⌈
k
⌉

≤ K} with the size
of the batches p = |Ii|. The RBM model for samples i = 1, . . . , N1 at
time step t = tn becomes

dU(i)

dt
=

1

K1

∑

|k|≤K1

h∗
kv

(i)
1,k +

1

p

K̃ − 1

p − 1

∑

k∈Ii

h∗
kv2,k − d0U

(i) + σ0Ẇ
(i)
0 ,

dv(i)
1,k

dt
= i

(
k−1β − kU(i)

)
v(i)

1,k − U(i)hk − dkv
(i)
1,k + σkẆ

(i)
k ,

∣∣k
∣∣ ≤ K1,

(B2)

dv2,k

dt
= i

(
k−1β − kU(i)

)
v2,k − U(i)hk − dkv2,k + σkẆk, k ∈ Ii.

Notice that we have the fixed-in-time auxiliary variable hk; thus,

we need to take the new quadratic coupling coefficients ckl = 1
p

K̃−1
p−1

in (11) between the two different modes v2,k, hk. In this case, the
K̃ = K − K1 small-scale modes v2,k are partitioned into N1 small
batches, and only the modes in the ith batch are used to update the

ith mean state sample U(i). Still, the first K1 leading modes v(i)
1,k are

resolved explicitly by the ensemble and acting on the corresponding
mean state U(i) considering their important role in generating the
correct dynamics.
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