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ABSTRACT

We propose a high-order stochastic–statistical moment closure model for efficient ensemble prediction of leading-order statistical moments
and probability density functions in multiscale complex turbulent systems. The statistical moment equations are closed by a precise calibra-
tion of the high-order feedbacks using ensemble solutions of the consistent stochastic equations, suitable for modeling complex phenomena
including non-Gaussian statistics and extreme events. To address challenges associated with closely coupled spatiotemporal scales in turbu-
lent states and expensive large ensemble simulation for high-dimensional systems, we introduce efficient computational strategies using the
random batch method (RBM). This approach significantly reduces the required ensemble size while accurately capturing essential high-order
structures. Only a small batch of small-scale fluctuation modes is used for each time update of the samples, and exact convergence to the
full model statistics is ensured through frequent resampling of the batches during time evolution. Furthermore, we develop a reduced-order
model to handle systems with really high dimensions by linking the large number of small-scale fluctuation modes to ensemble samples of
dominant leading modes. The effectiveness of the proposed models is validated by numerical experiments on the one-layer and two-layer
Lorenz ‘96 systems, which exhibit representative chaotic features and various statistical regimes. The full and reduced-order RBM models
demonstrate uniformly high skill in capturing the time evolution of crucial leading-order statistics, non-Gaussian probability distributions,
while achieving significantly lower computational cost compared to direct Monte-Carlo approaches. The models provide effective tools for a
wide range of real-world applications in prediction, uncertainty quantification, and data assimilation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160057

Understanding and predicting key physical processes in com-
plex turbulent systems remains a grand challenge in natural and
engineering systems. A novel high-order moment closure strat-
egy is developed addressing the nonlinear multiscale coupling
mechanism as a characteristic feature in high-dimensional tur-
bulent systems. Efficient computational algorithms are developed
that significantly reduce the high computational cost in achiev-
ing accurate ensemble solutions. The central statistical quanti-
ties involving multiscale interactions and highly non-Gaussian
features are fully recovered with accuracy through a random
batch approximation of the wide spectrum of fluctuation states.
The proposed strategy shows potential to facilitate the devel-
opment of new effective methods in uncertainty quantification

and data assimilation across a wide variety of complex turbulent
systems.

I. INTRODUCTION

Turbulent dynamical systems encountered in science and
engineering1–4 exhibit distinguished characteristics including a high-
dimensional state space with multiple spatiotemporal scales and
strong internal instabilities.5,6 Forecasting the intricate behaviors of
such complex systems poses a significant challenge in uncertainty
quantification and data assimilation problems.7–10 One key aspect
involves accurately quantifying the multiscale interaction between
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the large-scale mean state and the many interacting small-scale
fluctuations induced by internal instability. The interplay between
multiscale coupling and instability gives rise to a diverse array
of complex phenomena, such as bursting extreme structures and
skewed non-Gaussian distributions.11–14 Small randomness in initial
conditions and external stochastic effects is also rapidly amplified
and redistributed along the spectrum as the model evolves in time.
Capturing these unique features with efficient algorithms remains a
central issue in many practical problems.15–18 For example, in data
assimilation, accurate prediction of the mean and covariance statis-
tics is essential, while the evolution of these low-order moments is
closely linked to higher-order feedback due to the nonlinear cou-
pling. This requires the accurate and efficient quantification for the
extreme outliers and the related non-Gaussian statistics.

In developing efficient algorithms for accurate statistical pre-
diction of complex turbulent systems featuring multiscale interac-
tions and strong nonlinearity, a probabilistic approach is usually
needed to quantify the uncertainty utilizing a probability density
function (PDF) of the model states. Ensemble forecasting, through
a Monte Carlo (MC) type method, is commonly used to estimate
the PDF evolution by independently sampling an ensemble of tra-
jectories from an initial distribution.19 Ensemble-based approaches
have been extensively applied to address uncertainties arising from
various sources in real-world problems such as weather and cli-
mate forecast.4,20,21 However, achieving accurate numerical predic-
tion is hampered by the prohibitively high computational cost
attributed to the strongly coupled nonlinear interactions among
different scales in a high-dimensional space, known as “curse of
dimensionality.”22,23 With insufficient samples, ensemble approxi-
mation often suffers from the collapse of samples, leading to an
inadequate coverage of the entire probability measure in the high-
dimensional phase space. Various strategies have been devised to
increase the effective ensemble size and sufficiently characterize the
probability distribution.24,25 Parameterization is often used for effi-
cient approximation of the effects from unresolved small-scale pro-
cesses using information from the resolved large-scale states.8,26–29

In the case of high-dimensional turbulent systems, model errors are
significantly amplified by internal instability and careful calibrations
of the feedbacks from the large number of unresolved processes are
often required. Consequently, this often leads to an inherent diffi-
culty for generalization to high-dimensional and strongly turbulent
systems in realistic applications.

In this paper, we aim to develop a systematic modeling and
computational strategy for statistical prediction and data assimila-
tion of turbulent systems under a unified framework. The proposed
formulation (1) is applicable to complex spatially extended non-
linear dynamical systems widely studied in many fields.4,6,30–32 In
particular, we construct a coupled stochastic–statistical model (7)
that is suitable for both efficient prediction of leading-order statistics
(in the statistical equations) and explicit quantification of higher-
order non-Gaussian features (using the stochastic equations) at the
same time. The stochastic and statistical equations are seamlessly
coupled through the nonlinear interaction terms and using an essen-
tial relaxation term for consistency. The statistical equations admit a
hierarchical structure requiring a closure form for the higher-order
moment feedback induced by the quadratic nonlinear term. Instead
of the parameterization methods that usually require the exhausting

procedure of model calibration, we close the moment equations by
explicitly modeling the higher-order feedback through the ensemble
solution of the stochastic equations. This high-order moment clo-
sure through the stochastic–statistical model provides a statistically
consistent formulation that is able to correctly represent the crucial
features involving non-Gaussian and nonlinear phenomena.

The computational demand for solving the fully coupled
system (7) remains substantial when the state variable resides
in a high-dimensional space. For example, for a system with
K-dimensional state space, one time step update of the covariance
dynamics requires the computational cost of O

(

K4
)

by evolving
K × K matrix-valued differential equations with K2 quadratic cou-
pling terms in each entry. The ensemble simulation for the stochastic
dynamics further requires the computational cost of O

(

MK3
)

by
updating the K stochastic coefficients using M samples (usually with
exponential dependent on K). To overcome this issue, we use the
effective random batch method (RBM)33,34 for efficient computation
of a large number of high-order coupling terms reaching a much
reduced computational cost. The proposed method generalizes the
idea developed for simple mean-fluctuation systems in Ref. 35 and
provides an efficient computational strategy for the more univer-
sal formulation (7) valid for statistical prediction in a large group
of problems. Using the RBM approximation, the high-dimensional
modes are divided into small batches randomly drawn in each time
updating interval. Then, the nonlinear interaction is solely com-
puted among a small subset of modes within one batch so that the
computational cost is maintained at a low level. During the time
evolution, the batches are frequently resampled at the start of each
time updating step. The accuracy of the RBM approximation is
preserved by the ergodicity of the fast mixing fluctuation modes,
which implies that the accumulated effect of the average among frac-
tional fluctuation modes inside a small random batch at each time
step has an equivalent overall statistical contribution as the original
high-order moment feedback in the full model. Thus, accurate statis-
tical feedback is guaranteed in the sense of consistent time-averaged
statistics. The resulting RBM model (8) offers significant computa-
tional reduction with a cost of O

(

p2K2
)

for the covariance equations

and O
(

M1p
2K
)

for the ensemble forecast, where a considerable
smaller ensemble size M1 � M is sufficient only requiring sampling
the batch subspace consisting of p = O (1) modes in one batch. The
convergence of the mean and variance using RBM approximation is
proved through detailed error estimates dependent on the discrete
time step size. Furthermore, for really high-dimensional systems
with an extended spectrum, a reduced-order model (10) is proposed
to further reduce the computational cost to O

(

M1

(

K3
1 + p3

))

, mak-
ing it independent of the full dimension K by focusing on the first K1

leading modes and using RBM approximation for the rest of K − K1

small-scale fluctuation modes.
The performance of the stochastic–statistical model with RBM

approximations is examined under the one-layer and two-layer
Lorenz ‘96 (L-96) systems.36,37 The Lorenz ‘96 systems have been
widely used as prototype models for the atmosphere involving rich
chaotic phenomena with direct links to realistic systems.15,25,38,39 In
particular, the L-96 systems maintain a slow decay variance spec-
trum involving a large number of unstable modes (as illustrated in
Figs. 1 and 7), setting up a very challenging testing case for effective
ensemble prediction. The direct MC approach requires a very large
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ensemble size of order O
(

105
)

to resolve the highly non-Gaussian
statistics. The strong internal instability leads to additional problems
for easy divergence away from the final equilibrium state (shown
in Fig. 2). Using the efficient RBM model, it is found that a small
sample size of O (100) is sufficient to fully recover the evolutions
of statistical mean and variance as well as the non-Gaussian PDFs
in the 40-dimensional one-layer L-96 system (see Figs. 4 and 5).
In the genuinely high-dimensional two-layer L-96 system with full
dimension K = 264. The RBM model becomes especially effective to
capture the highly non-Gaussian statistics using at most M1 = 500
samples (see Figs. 10 and 11). The computational cost is further
reduced in the reduced-order model focusing on the leading K1 = 8
large-scale modes enabling an even smaller ensemble for all the
small-scale modes.

In the remainder part of this paper, we introduce the general
formulation of the stochastic–statistical model for multiscale tur-
bulent systems using high-order moment closure in Sec. II. The
efficient algorithms for solving the coupled high-dimensional equa-
tions using the RBM approximation for ensemble prediction are
developed in Sec. III together with the theoretical convergence anal-
ysis of the scheme. The performance of the methods is evaluated
on the concrete examples of the Lorenz ‘96 systems in Sec. IV. The
paper is closed with a summary and discussions on future directions
in Sec. V.

II. A STATISTICALLY CONSISTENT MODELING

FRAMEWORK FOR MULTISCALE TURBULENT

SYSTEMS

Turbulent dynamical systems are characterized by multiscale
nonlinear interactions, which redistribute energy across a broad
spectrum of stable and unstable modes, ultimately leading to a com-
plicated statistical equilibrium. The abstract mathematical formu-
lation of complex turbulent systems projected from the continuous
PDE systems can be introduced in the following canonical equations
about the state variable u ∈ R

d in a high-dimensional phase space
(with d � 1)

du

dt
= 3u + B (u, u) + F (t) + σ (t) Ẇ (t) . (1)

The model state starts from an initial distribution u (0) ∼ µ0 (u)

representing initial uncertainty. On the right-hand side of Eq. (1),
the first component, 3 = L − D, represents linear dispersion and
dissipation effects, where the dispersion L∗ = −L is an energy-
conserving skew-symmetric operator; and the dissipation D < 0 is a
negative-definite operator. The model (1) emphasizes the important
role of nonlinear interactions in a bilinear quadratic form, B (u, u).
This typical structure of nonlinear interactions is inherited from a
discretization of the continuous full system (for example, a spectral
projection of the nonlinear advection in fluid models). The non-
linear interaction ensures the energy conservation invariance such
that u · B (u, u) ≡ 0 with the inner product defined according to the
conserved quantity. In addition, the system is subject to external
forcing effects that are decomposed into a deterministic component,
F (t), and a stochastic component represented by a Gaussian random
process, σ (t) Ẇ (t), used to model the unresolved processes.

FIG. 1. Illustration of the model structure and typical solutions of the one-layer
L-96 system (18).

The evolution of the model state u depends on sensitivity to
the randomness in initial conditions and stochastic forcing effects.
These uncertainties will be amplified in time by the inherent internal
instability due to the nonlinear coupling term in (1). The associated
Fokker–Planck equation (FPE),40

∂pt

∂t
= LFPpt := −divu [3u + B (u, u) + F] pt +

1

2
divu∇

(

σσ
Tpt

)

,

(2)

describes the time evolution of the probability density function
(PDF) pt (u) = etLFP(u)µ0 starting from an initial distribution
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FIG. 2. Effects of instability in the one-layer L-96 system with F = 6. Left: quasilinear growth rate in each wavenumber−Re
(

γ ∗
k ū + 1

)

at several time instants; right: direct
solutions from the full model with different relaxation strengths ε.

pt=0 (u) = µ0 (u). However, it remains a challenging task for directly
solving the FPE (2) as a high-dimensional PDE system. As an alter-
native approach, ensemble forecast by tracking the Monte-Carlo
(MC) solutions estimates the model statistics through empirical
averages among a group of independent samples drawn from the ini-
tial distribution u(i) (0) ∼ µ0 (u) , i = 1, . . . , M at the starting time
t = 0. The PDF solution pt (u) and the associated statistical expec-
tation of any function ϕ (u) at each time instant t > 0 are then
approximated by the empirical ensemble representation of the M
samples, that is,

pt (u) ' pMC
t (u) :=

1

M

M
∑

i=1

δ
(

u − u(i) (t)
)

,

〈ϕ (u)〉pt
' 〈ϕ〉pMC

t
=

1

M

M
∑

i=1

ϕ
(

u(i) (t)
)

,

(3)

where δ is the Dirac delta function and 〈·〉p is the expectation
about the probability measure p. Still, the curse of dimensional-
ity23,41 arises in systems of even moderate dimension d since the
model errors grow significantly as the system dimension increases,
while only a small ensemble size M is allowed in practical numer-
ical methods due to the limited computational resources. Clearly,
efficient strategies and algorithms are still needed to effectively
reduce the computational cost and maintain high accuracy in
sampling the high-dimensional systems using a small number of
samples.

Remark. Many complex turbulent systems from nature and
engineering can be categorized into the abstract mathematical
framework in (1). The high-dimensional state u can be viewed as a
finite-dimensional truncation of the corresponding continuous field
with sufficient numerical resolution. One major group of examples
comes from the fluid flows including the Navier–Stokes equation
and turbulence at high Reynolds number5,30 and applications to
the geophysical models in coupled atmosphere and ocean systems
involving rotation, stratification, and topography1,2,4 and controlled
fusion in magnetically confined plasma systems.31,42 In particular, we
will consider the prototype Lorenz ‘96 systems in (18) and (21)36,37,43

that admit all representative dynamical structures in (1) as the main
test model in this paper.

A. Statistical and stochastic formulations for

multiscale systems

One major difficulty in complex turbulent systems is the fully
coupled nonlinear interactions across scales. The multiscale inter-
actions involve a large-scale mean state, which can destabilize the
smaller scales, while the excited fluctuation energy contained in
numerous small-scale modes can inversely impact the development
of the coherent structure at the largest scale. Thus, disregarding con-
tributions from small-scale modes through a simple high wavenum-
ber truncation is not a viable approach. To address this central issue
of coupled interactions with mixed scales, we start with a mean-
fluctuation decomposition for the model state u so that interactions
between different scales can be identified in detail. To achieve this,
we view u as a random field (denoted by ω due to randomness in ini-
tial state and stochastic forcing) and separate it into the composition
of a statistical mean state ū and a wide spectrum of stochastic fluctu-
ations u′ in a finite K-dimensional projected representation under a
fixed-in-time, orthonormal basis {vk}K

k=1 (usually with K = d for the
full model and K < d for the reduced-order model)

u (t; ω) = ū (t) + u′ (t; ω) = ū (t) +
K
∑

k=1

Zk (t; ω) vk. (4)

Here, ū = 〈u〉pt
represents the statistical mean field usually captur-

ing the dominant large-scale structure; and Zk (t; ω) is the stochastic
coefficient measuring the uncertainty in multiscale fluctuation pro-
cesses u′ projected on the eigenmode vk. The state decomposition (4)
provides a convenient way to identify different components in the
multiscale interactions, and thus can be used to derive new effective
multiscale models.

One way to avoid the high computational cost in directly solv-
ing the FPE (2) as well as the large ensemble MC simulation of
the full SDE (1) for the probability distribution pt (u) is to seek a
hierarchical statistical description of its moments 〈ϕ (u)〉pt

as the
expectation with respect to the time-dependent probability mea-
sure pt. In most situations, the primary interest lies in tracking
the time evolution of the leading moments quantifying the most
essential statistical characteristics. We can first derive the dynamics
for the mean state ū = 〈u〉pt

and the covariance among fluctuation

modes Rkl =
〈

ZkZ
∗
l

〉

pt
governed by the following set of deterministic
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statistical equations:

dū

dt
= 3ū + B (ū, ū) +

K
∑

k,l=1

RklB (vk, vl) + F, (5a)

dRkl

dt
=

K
∑

m=1

Lv,km (ū) Rml + RkmL∗
v,kl (ū) + Qσ ,kl

+
K
∑

m,n=1

〈ZmZnZl〉pt
B (vm, vn) · vk

+ 〈ZmZnZk〉pt
B (vm, vn) · vl, (5b)

for all the wavenumbers 1 ≤ k, l ≤ K. In (5b), the operator Lv,kl

= [3vl + B (ū, vl) + B (vl, ū)] · vk characterizes quasilinear cou-
pling between the statistical mean and stochastic modes; the
positive-definite operator Qσ ,kl =

∑

m (vk · σ m) (σ m · vl) expresses
energy injection from the stochastic forcing. Notably, the nonlinear
flux term involving all the third-order moments 〈ZmZnZk〉pt

enters
the equation for the second-order covariance Rkl describing nonlin-
ear energy exchanges among fluctuation modes, ending up with a
still unclosed set of equations.

Accordingly, the stochastic coefficients {Zk}K
k=1 in the decom-

position (4) satisfy the associated stochastic fluctuation equations

dZk

dt
=

K
∑

m=1

Lv,km (ū) Zm + σ (t) Ẇ (t) · vk

+
K
∑

m,n=1

(ZmZn − Rmn) B (vm, vn) · vk. (6)

The above equation is achieved by simply projecting the origi-
nal equation (1) on each fluctuation mode vk and removing the
mean dynamics (5a). The second-order moment equation (5b) is
then derived by applying Itô’s formula to ϕ (Zk) = |Zk|2 using the
stochastic equation (6). Therefore, the above statistical and stochas-
tic formulations are consistent for the evolution of uncertainty in
multiscale fluctuations. The detailed derivation of Eqs. (5) and (6)
from first principle can be found in Refs. 6 and 8.

Both the dynamical moment representation (5) and its stochas-
tic counterpart (6) have their respective advantages, and they also
suffer several difficulties when applied to resolve the key statisti-
cal quantities. The statistical moment equations (5) are easier to
compute with its deterministic dynamics, while such hierarchical
equations lead to a non-closed system of infinite-dimensional ODEs
as each lower-order moment equation is coupled to the next higher-
order moment. On the other hand, the stochastic equations (6)
provide a closed formulation to include all the higher-order infor-
mation. However, direct simulation of the SDE requires an MC
approach of a large sample size exponentially dependent on the state
dimension. In addition, the computational cost of both statistical
and stochastic models remains prohibitive for the coupled high-
dimensional systems characterized by an extended wide spectrum
of fluctuation modes K � 1. The situation becomes especially chal-
lenging when an ensemble approach is required for accurate state

estimation and data assimilation of extreme events represented by
the extended PDF tails.

B. A stochastic–statistical closure model with explicit

higher-order feedbacks

We introduce a seamless high-order closure model that inte-
grates the statistical equations (5) with the stochastic counterpart (6)
to effectively close the original non-closed equations. The resulting
coupled stochastic–statistical equations for the multiscale interacting
model become

dū

dt
= 3ū + B (ū, ū) +

K
∑

k,l=1

RklB (vk, vl) + F, (7a)

dZk

dt
=

K
∑

m=1

Lv,km (ū) Zm +
K
∑

m,n=1

γmnk (ZmZn − Rmn) + σkẆk, (7b)

dRkl

dt
=

K
∑

m=1

Lv,km (ū) Rml + RkmL∗
v,ml (ū) + Qσ ,kl

+
K
∑

m,n=1

[

γmnk 〈ZmZnZl〉pt
+ γmnl 〈ZmZnZk〉pt

]

+ ε−1
(

〈ZkZl〉pt
− Rkl

)

, (7c)

with the coupling coefficients Lv,km = [3vm + B (ū, vm) + B (vm, ū)] ·
vk and γmnk = B (vm, vn) · vk derived from the original equations.
Here, the mean equation (7a) for the leading-order statistics ū is
kept the same aiming to capture the dominant large-scale mean
structures. The covariance equation (7c) for R is closed by com-
puting the expectations of the cubic terms under the probability
measure pt discovered by the stochastic solution Z from (7b) so that
the higher-order moment feedbacks are explicitly modeled. In addi-
tion, a relaxation term is added with a small control parameter ε to
guarantee statistical consistency between the statistical and stochas-
tic equations. This term will become crucial if the system contains
strong internal instability (for example, see Fig. 2). Importantly, both
the statistical and stochastic equations become indispensable for the
modeling of the fully coupled multiscale system: (i) the stochastic
equations for the fluctuation modes Zk are introduced to provide
exact closure for the covariance R and (ii) the covariance dynamics
for R serves as an auxiliary equation to facilitate the explicit interac-
tions between the mean ū and stochastic modes Zk and can deal with
the inherent instability in the turbulent systems.

In developing an effective strategy to compute the high-order
expectation in the covariance equation (7c) according to the PDF
pt of the stochastic solutions in (7b), the stochastic equations for
the random fluctuation modes Zk are solved through an ensemble

approach using Z(i) =
{

Z
(i)
k

}

with sample index i = 1, . . . , M. The

higher-order feedbacks are then approximated through the empir-

ical average of the ensemble as in (3), 〈ϕ (Z)〉pt
≈ 1

M

∑M
i=1 ϕ

(

Z(i)
)

.
Compared with the direct MC approach of the original system (1),
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the new coupled model (7) adopting the explicitly coupled stochas-
tic–statistical dynamics presenting an attractive equivalent formula-
tion that enjoys the flexibility of developing efficient reduced-order
models.

The new formulation provides a desirable framework that is
suitable for the development of efficient computational methods and
reduced-order models as described in Sec. III B of this paper. It can
deal with the inherent difficulties raised in the original formulation
with irreducible equations. Instead of adding ad hoc approximations
for the unresolved higher moments (such as the data-driven model
in Ref. 29), the crucial third moments are captured explicitly through
the ensemble estimation of the stochastic modes. In addition, we
aim to control the computational cost by only running a very small
ensemble for limited samples M1 � M without sacrificing accuracy
(through the efficient random batch method introduced in Sec. III)
compared with the original direct MC approach which demands
a large sample size M. This combined framework enables flexible
modeling of both key leading-order moments through the statistical
equation and achieves accurate non-Gaussian higher-order statistics
and fat-tailed PDFs in extreme events. It is also more advantageous
than the mean-fluctuation model using only (7a) and (7b) (as pro-
posed in Ref. 35), which often leads to large numerical errors and
unstable dynamics due to the inherent instability in the turbulent
systems (see examples in Fig. 2 of Sec. IV A).

III. METHODS FOR EFFICIENT ENSEMBLE FORECAST

USING RANDOM BATCH APPROXIMATION

We propose new efficient computational methods to address
the inherent difficulties in complex turbulent systems involv-
ing multiscale interaction terms by solving the coupled stochas-
tic–statistical equations (7). Here, we describe the general strategy
in the new approach for efficient statistical prediction by running a
very small ensemble simulation of the stochastic fluctuation coeffi-
cients enabled by the random batch method (RBM) approximation.
The ideas will be further illustrated using concrete examples from
the L-96 systems in Sec. IV.

A. Random batch method for coupled turbulent

systems with a wide spectrum

It is realized that the most computational demanding part in
solving the coupled equations comes from getting accurate quan-
tification for the combined nonlinear feedbacks in the stochastic
coefficients and statistical covariance equations (7b) and (7c), which
involves high-order coupling terms involving a wide spectrum of
stochastic modes Z = {Zk}K

k=1 , K � 1 for each single trajectory. Fur-
thermore, in order to resolve the necessary high-order statistics with
desirable accuracy, an extremely large ensemble

{

Z(1), . . . , Z(M)
}

∈ R
K×M (with the sample size M) is required for the full high-

dimensional modes. Thus, using the direct MC method for the
stochastic equations ends up with a computational cost of O

(

MK3
)

for the M samples and K modes and cost O
(

K4
)

for the covari-
ance equation. The K3 cost is due to the quadratic interactions (of
total number K2 for each mode) and then for all K modes. In addi-
tion, the required ensemble size M to maintain sufficient accuracy

ALGORITHM 1. Full RBM approximation for the coupled multiscale stochastic–sta-

tistical model.

Initial condition: At initial time t = 0, assign the initial mean and
covariance for {ū0, R0} and draw samples Z0 from the initial
distribution µ0.

1: for s = 1 while s ≤ dT/1te, at the start of the time interval
t ∈ (ts, ts+1] with time step 1t = ts+1 − ts do

2: Partition the K modes into S batches (with pS = K) randomly as

Z s
q =

{

Zk (ts) , k ∈ I s
q

}

with ∪S
q=1Zq = Z.

3: Update {Zk (ts+1) , Rkl (ts+1)} for modes in batch k, l ∈ I s
q

independently according to (8a)) and (8b).
4: Update ū (ts+1) according to the original mean equation (7a)

using all the batch outputs.
5: end for

in the empirical statistical estimation (3) grows with an exponen-
tial rate dependent on the dimension K. This is known as the curse
of dimensionality22,41 and sets an inherent obstacle for effective
ensemble prediction of high-dimensional systems, especially when
non-Gaussian statistics amplifies the demand for an even larger
ensemble to capture PDF tails.

Here, we propose to design a computational efficient model
using the random batch method (RBM) developed in Refs. 33 and
34. The idea is proposed for the special mean-fluctuation systems in
Ref. 35 concerning only the coupling between the mean and fluctua-
tion modes. Now, we aim to develop an effective practical strategy
for the fully coupled multiscale states using the general stochas-
tic–statistical formulation (7). The crucial issue in constructing the
RBM approximation lies in devising an efficient estimation of the
nonlinear cross-interaction terms ZmZn in the stochastic and covari-
ance equations (7b) and (7c) without running a very large ensemble.
This becomes especially important in modeling high-dimensional
turbulent systems where a key feature is the nonlocal coupling of
multiscale states involving a large number of fluctuation modes Z.

In the main idea of the new RBM approach, we no longer
compute the expensive nonlinear interactions among the entire
stochastic coefficients 1 ≤ k ≤ K in the stochastic and covariance
equations. At the start of each time updating step t = ts, a partition
{

I s
q

}

of the mode index is introduced with ∪qI
s
q =

{

k : 1 ≤ k ≤ K
}

,

where each batch only contains a small portion of
∣

∣

∣I s
q

∣

∣

∣ = p ele-

ments randomly drawn from the total K indices (ending up with
⌈

K
p

⌉

batches). Accordingly, the full spectrum of modes is also

randomly divided into small batches Z s
q =

{

Zk (t) , k ∈ I s
q

}

with

∪qZ
s
q =

{

Zk (t) : 1 ≤ k ≤ K
}

in the time interval t ∈ (ts, ts+1]. Then,

instead of taking summation over all the wavenumbers m, n in the
summation terms of (7b) and (7c), only a small portion of the modes
Zk ∈ Z s

q with indices in the batch k ∈ I s
q are used to update the mode

Zk during the time updating interval. The exhausting procedure to
resolve all high-order feedback is effectively avoided through this
simple RBM decomposition. The entire high-dimensional system is
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then decomposed into smaller subsystems for modes {Zk, Rkl} con-
strained inside each small batch

{

k, l
}

∈ I s
q rather than the entire

spectral space. The resulting RBM model for the stochastic and
statistical equations during the time interval t ∈ (ts, ts+1] becomes

dZ(i)
k

dt
=

∑

m,n∈Is
q

L̃v,km (ū) Z(i)
m + γ̃mnk

(

Z(i)
m Z(i)

n − Rmn

)

+ σkẆ
(i)
k , (8a)

dRkl

dt
=

∑

m,n∈Is
q

L̃v,km (ū) Rml + RkmL̃∗
v,ml (ū) + Qσ ,kl

+
∑

m,n∈Is
q

γ̃mnk

1

M1

M1
∑

i=1

Z(i)
m Z(i)

n Z(i)
l

+ ε−1

(

1

M1

M1
∑

i=1

Z(i)
k Z(i)

l − Rkl

)

. (8b)

Here, all the wavenumbers k, l, m, n ∈ I s
q belong to the same self-

consistent random batchZ s
q. Importantly, new coupling coefficients,

L̃v,km = c1
pLv,km, γ̃mnk = c2

pγmnk [with the original coefficients Lv,km

and γmnk defined in (7)], are introduced in the new equations to
guarantee consistent statistics with the scaling factors c1

p = K
p

and

c2
p = K(K−1)

p(p−1)
. It is based on the idea that the random batch approx-

imation should yield an equivalent effect in the summation of
nonlinear coupling terms under probability expectation on the batch
partition I s. Detailed explanation for the rescaling coefficients c1,2

p

can be found in the proof of Theorem 1 and Ref. 35. A much smaller
ensemble size is used for the stochastic modes Z(i), i = 1, . . . , M1 in
(8a) to give empirical estimation of the higher-order moments in
(8b). Notice that in (8a) within the time interval, each sample is
updated independently. After this time updating interval (ts, ts+1],
the batches are resampled at the start of the new time step t = ts+1 to
repeat the same procedure, so the modes from different batches get
mixed.

The statistical consistency of the RBM approximation (8) is
guaranteed by the ergodicity and fast mixing of the high wavenum-
ber modes. First, considering the typical property of the turbulent
modes, the energy inside the single small-scale mode

〈

|Zk|2
〉

decays
fast as k grows large and de-correlates rapidly in time. Second,
ergodicity of the stochastic fluctuation modes Z implies that updat-
ing the key statistics using fractional fluctuation modes at each
time step with consistent time-averaged feedback can provide an
equivalent total contribution. Therefore, the total K spectral modes
are divided into smaller batches to be updated individually during
each time interval. As a result, rather than running a large ensem-
ble of high-dimensional solutions of the full fluctuation modes
Z(i) as in the direct MC approach of (7), only a small number of
stochastic trajectories are needed as long as it is sufficient to sam-
ple the p-dimensional modes inside each batch rather than the
full K-dimensional space. We show the rigorous convergence in
leading-order statistics of this RBM approximation in Sec. III C.

As the first major reduction of the above RBM model, instead
of using the entire spectrum of modes 1 ≤ k ≤ K to update each
wavenumber mode, we only consider the nonlinear interactions

between modes in a very small subset I s
q of size p. As shown in the

numerical examples in Sec. IV A, the batch size p can be picked as
a very small number p = O (1). This leads to the effective compu-
tational reduction from O

(

K3
)

in direct MC to O
(

p2K
)

for time

evolution of each single stochastic trajectory and from O
(

K4
)

to

O
(

p2K2
)

for the covariance equation. In addition, through the RBM,
only a very small number of modes are contained in each batch for
the estimation of the nonlinear coupling. Consequently, we do not
need to compute all the cubic terms ZmZnZl but only the modes
inside one batch of size p � K independent of the full dimension.
This leads to a further significant reduction in the required sample
size from O

(

MK3
)

to O
(

M1p
2K
)

in the ensemble prediction. Specif-
ically, the ensemble size M1 only needs to sample the p-dimensional
batch subspace in contrast to M in the full MC approach to sam-
ple the K-dimensional full space. Thus, the required sample size
will not grow as the dimension of the full system increases, which
shows the potential to overcome the curse of dimensionality. The
algorithm using random batch method for ensemble simulation of
the high-dimensional turbulent system under the coupled stochas-
tic–statistical closure model is summarized in Algorithm 1.

Remark. In the RBM model (8), we choose the random
batches I s

q by treating all the fluctuation modes equally. As a more

detailed calibration of the energy cascade in turbulent flows with
localized interactions, the spectral modes can be first grouped into
clustered samples of neighboring modes and random batches can be
drawn among each localized group with the strongest interactions.
The size of the random batches can also change according to the
energy in each mode.

B. Reduced-order model for efficient ensemble

simulations

In the above model with the RBM approximation, we still
need to run an ensemble simulation for the entire spectral modes
{

Z(i)
k

}K

k=1
even though with a much small number of samples

i = 1, . . . , M1, which reaches the final computational cost depen-
dent on the full dimension K. On the other hand, in practical
situations, we are mostly interested in the statistics in a much smaller
number of leading modes 1 ≤ k ≤ K1 � K (such as the largest scales
or the most energetic modes) rather than the entire spectrum. This
leads to the second major approximation to introduce the effective
reduced-order modeling strategy focusing on the leading dominant
modes while still taking into account the contributions from the
large number of small-scale fluctuation modes through the effective
RBM approximation allowing an even smaller sample size.

To achieve the model reduction, we utilize the idea introduced
in Ref. 35 and extend it to the general coupled stochastic–statistical
model (7). The key idea is still to notice that a large number of fast
mixing small-scale modes make an equivalent contribution through
time average; thus, we can decompose them into batches for updat-
ing different ensemble samples of the central large-scale modes. We
further introduce an explicit large–small scale decomposition for the
original fluctuation modes Z = (X, Y), where X = {Xk} represents
the small number of leading modes (such as

{

Zk, k ≤ K1

}

) while
Y = {Yl} are all the rest large number of smaller scale fluctuation
modes (such as all the rest modes

{

Zl, K1 < l ≤ K
}

). We aim to use
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an ensemble empirical approximation for the marginal distribution
of X, that is,

pRBM
t (X) :=

1

M1

M1
∑

i=1

K1
∏

k=1

δ

(

Xk − X(i)
k (t)

)

. (9)

By focusing on the leading modes in a much lower dimension K1

� K, the required ensemble size M1 is further reduced. Still, each

large-scale mode X(i)
k is coupled to the unresolved small-scale modes

Yl through the linear and nonlinear coupling terms. Using the model
reduction strategy to be combined with the RBM approximation, we
no longer run ensemble simulation for the large number of small-
scale fluctuation modes Y. Instead, only one (or at most a small
number) of stochastic trajectory Y (t) is solved in time. The total
K − K1 spectral modes in Y are then divided into small batches
to update different ensemble members of X(i), i = 1, . . . , M1. This
leads to M1 batches from the small-scale modes with the relation
pM1 = K − K1. The idea here is to use a large number of small-scale
modes to update different large-scale ensemble samples at each time
step.

In this way, we decompose the original stochastic equation
of independent samples (8a) into a coupled system with interact-

ing samples in large-scale states X(i) =
{

Z(i)
k

}K1

k=1
, i = 1, . . . , M1 and

one single trajectory of the small-scale state Y = {Zl}K
l=K1

(with K1

� K). At the start of time step t = ts, each large-scale sample X(i) is
grouped with one batch of the small-scale modes Y s

i = {Yl (ts)}l∈Is
i
,

where I s
i is the RBM partition of the small-scale modes with ∪iI

s
i

=
{

l : K1 ≤ l ≤ K
}

. Therefore, we get the coupled reduced-order
RBM equations for the ith large-scale ensemble sample grouped with

a batch of the small-scale modes
{

X(i)
k , Yl

}

k≤K1 ,l∈Is
i

during the time

updating interval t ∈ (ts, ts+1],

dX(i)
k

dt
= Fk

(

X(i), Y
)

+
∑

m,n≤K1

L̃v,km (ū) X(i)
m + γ̃mnk

(

X(i)
m X(i)

n − Rmn

)

+ σkẆ
(i)
k , 1 ≤ k ≤ K1, (10)

dYl

dt
= Gl

(

X(i), Y
)

+
∑

m,n∈Is
i

L̃v,lm (ū) Ym

+ γ̃mnl (YmYn − Rmn) + σlẆl, l ∈ I s
i .

Here, Fk and Gl contain the residual terms that represent the cross
coupling between the large- and small-scale states. Usually, the state
decomposition and the coupling dynamics will become straightfor-
ward according to the specific dynamical structure of the multiscale
system. The batches are then resampled each time at the start of the
new time updating cycle t = ts+1 same as the previous RBM strategy.
It needs to be noticed that through the above model approxima-
tion (10), different ensemble samples X(i) are no longer independent
since they are linked by the shared small-scale trajectory of Y. This is
a reasonable assumption from the common observation in turbulent
systems that a large number of small-scale fluctuation modes can
be viewed as almost independent random processes with a rapidly

ALGORITHM 2. Reduced-order RBM approximation for the coupled multiscale

stochastic–statistical model.

Model Setup: Decompose the stochastic modes Z = X + Y into
large scales X ∈ R

K1 and small scales Y ∈ R
K−K1 with K1 � K.

Initial condition: At initial time t = 0, assign the initial mean and
covariance for {ū0, R0}.
Draw samples for the large-scale modes X

(i)
0 , i = 1, . . . , M1 and

small-scale modes Y0 from the initial distribution.
1: for s = 1 while s ≤ dT/1te, at the start of the time interval

t ∈ (ts, ts+1] with time step 1t = ts+1 − ts do
2: Partition the K − K1 small-scale modes into M1 batches

randomly. The ith large-scale sample is grouped with the
small-scale modes in one batch as Z s

i =
{

X(i), Yl

}

l∈Is
i
.

3: Update
{

X(i) (ts+1) , Yl (ts+1)
}

for each batch l ∈ I s
i according to

(10).
4: Update the statistical mean and covariance to ū (ts+1) , R (ts+1)

accordingly based on (7a) and (7b) using all batch outputs.
5: end for

decaying energy spectrum. In Sec. IV B, we will show the construc-
tion of the reduced-order model through one explicit example from
the two-layer L-96 system.

Using the above decomposition, we can effectively reduce
the computational cost by only sampling a much smaller space
of dimension K1, thus enabling an even smaller sample size. The
final computational cost is then reduced to O

(

M1K
3
1 + (K − K1) p2

)

= O
(

M1

(

K3
1 + p3

))

(using the above partition relation for small-

scale modes, pM1 = K − K1) rather than the cost O
(

M1Kp2
)

in the
full RBM model involving a very large number of K. The ensem-
ble size M1 is then only sampling the very small large-scale modes
of dimension K1 = O (1) rather than the full state dimension K,
together with the rest dimension K − K1 only related to the small
batch size p = O (1). In this way, the curse of dimensionality is effec-
tively avoided. Similarly, we summarize the reduced-order RBM
strategy in Algorithm 2.

C. Error analysis for the RBM model approximation

Here, we provide convergence analysis on the RBM model
Algorithm 1 in (8) compared with the solution obtained from the
full stochastic–statistical equations (7). Through this analysis, we
rigorously demonstrate the effectiveness of the proposed RBM as a
precise approximation to the direct MC solutions. Besides, it also
provides error estimates and guidelines for selecting appropriate
model parameters in implementing the computational schemes.

First, we consider the convergence of the RBM approximation

Z̃k of the stochastic equation (8a) to the full stochastic equation (7b)
of the coefficients Zk

dZ̃k

dt
=

∑

m,n∈Is
k

L̃v,km (ū) Z̃m + γ̃mnk

(

Z̃mZ̃n − Rmn

)

+ σk
˙̃Wk, (11a)
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dZk

dt
=
∑

m,n≤K

Lv,km (ū) Zm + γmnk (ZmZn − Rmn) + σkẆk, (11b)

with the RBM parameters L̃v,km = K
p
Lv,km and γ̃mnk = K(K−1)

p(p−1)
γmnk and

p being the batch size. We need the following structure assumption
for the model parameters:

Assumption. Suppose that the quasilinear coupling coeffi-
cients in the stochastic equations are uniformly bounded

max
k,m

Lkm (ū) ≤ C, max
k,m,n

γmnk ≤ C. (12)

The quadratic coupling term satisfies the symmetry

B (uk, uk) = 0, [B (uk, ul) + B (ul, uk)] · uk = 0, for any k, l ≤ K.
(13)

In the above equations (11a) and (11b), we assume that the
full and RBM model have a consistent mean and covariance ū, R
from the statistical equations. In this way, we are able to focus on
the approximation due to the random batches I s

k. Conditional on
the accurate statistical mean state and covariance ū and R, the RBM
approximation adds additional randomness through the indices of
the modes. The model dynamics fit into the SDE systems discussed
in Refs. 33 and 34, where the interacting particles are replaced by
the coupled spectral modes in the above turbulent multiscale model.
We can find the statistical convergence in the stochastic coefficients
following the similar argument as in Ref. 35.

Theorem 1. Under the assumptions (12), the statistical esti-
mation of the RBM model (11a) with time step 1t converges to the
statistics of the full model (11b) up to the final time T as

sup
s1t≤T

∣

∣

∣

∣

∣

1

K

K
∑

k=1

Eϕ

(

Z̃s
k

)

−
1

K

K
∑

k=1

Eϕ
(

Zs
k

)

∣

∣

∣

∣

∣

≤ Cϕ (T) 1t, (14)

with the test function ϕ ∈ C2
b, and Z̃s

k = Z̃k (ts) , Zs
k = Zk (ts) the solu-

tions at ts = s1t. Cϕ is the coefficient independent of the model
dimension K.

The proof of Theorem 1 compares the backward equations for
the two equations (11a) and (11b) and uses the fact that the expecta-
tion on the random batch samples gives back the original equation
(which leads to the precise forms of the rescaling factors L̃v, γ̃ ). The
statistical consistency in the stochastic and statistical equations is
guaranteed by the additional relaxation term. We give the proof of
the theorem in Appendix A. Specifically, using the above conclu-
sion and choosing ϕ (Z) = Z2, we find the convergence of the total
variance in the ensemble estimate of the stochastic equations.

Corollary 2. The total variance estimation in the RBM model
(8) converges to the true statistics as

1

N

N
∑

s=1

∣

∣trR̃ (ts) − trR (ts)
∣

∣ ≤ sup
s1t≤T

∣

∣trR̃s − trRs

∣

∣ ≤ Cv (T) K1t, (15)

where trR̃ (ts) =
∑

k E

∣

∣

∣Z̃s
k

∣

∣

∣ and trR (ts) =
∑

k E
∣

∣Zs
k

∣

∣ are the traces of

the variance from the second moments of the stochastic coefficients.
Second, we consider the error in the statistical mean state using

the simplified version of the scalar mean equation for RBM model

and the full model

d ˜̄u
dt

= −λ ˜̄u + B
(

˜̄u, ˜̄u
)

+
∑

k,l≤K

R̃klB (vk, vl) + F, (16a)

dū

dt
= −λū + B (ū, ū) +

∑

k,l≤K

RklB (vk, vl) + F. (16b)

In the above statistical mean equations, we assume only linear
damping in the linear term and consider the error from the RBM
approximation of the second moments. R and R̃ are the covariance
matrices estimated in (14). The idea is to use the total statisti-
cal energy equation,8 which provides a balanced estimation for the
statistical in both mean and total variance, E = ū2 + 1

K
trR. The

assumption (13) provides a very simple equation describing the evo-
lution of the total statistical energy E. Using the estimate for the total
variance, we find the error in the RBM prediction in the mean state.

Theorem 3. Under the assumptions (13) and the estimate for
the total variance (15), the statistical mean estimation for the RBM
model (16a) converges to the full model solution (16b) with time step
1t and final time T as

∥

∥

∥

˜̄u − ū
∥

∥

∥

[0,T]
≤ sup

s1t≤T

∣

∣

∣

˜̄u (ts) − ū (ts)

∣

∣

∣ ≤ Cm (T)1t. (17)

Here, the error in the mean state is taking over the time average
∥

∥f
∥

∥

2

[0,T]
= 1

N

∑N
s=1 f 2 (ts) among solutions at each time evaluation step

ts = s1t up to the final time T = N1t.
Again, we put the proof of the above theorem in Appendix A.

The estimates in (15) and (17) quantify the approximation errors
dependent on the time step size 1t. In practice, it is always easier to
apply a smaller time step to effectively increase the prediction accu-
racy. The results in the mean and covariance convergence still rely
on the consistency in the stochastic and statistical equations (7b)
and (7c) in the coupled model. This is implicitly guaranteed by the
essential relaxation term as ε → 0. We leave the complete analy-
sis of the coupled stochastic–statistical equations (7) as a mean field
system10 in future research.

IV. NUMERICAL PERFORMANCE ON PROTOTYPE

MODELS: THE LORENZ ‘96 SYSTEMS

In evaluating the performance of the proposed methods, we
start with a simple prototype model, which is still able to capture
key properties of the general turbulent systems. The Lorenz ‘96
(L-96) systems provide a desirable testbed, exhibiting a range of rep-
resentative statistical features such as the interaction of variables
from different scales and non-Gaussian statistics. The model was
originally introduced to study the mid-latitude weather in a sim-
pler one-layer form36 and is later generalized to a two-layer form to
include strong multiscale spatiotemporal coupling.37 In this section,
we illustrate the application of the full and reduced-order RBM
models for predicting leading statistics and non-Gaussian PDFs
using the one-layer and two-layer L-96 systems.
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FIG. 3. Time evolutions of the mean and total variance as well as the variance spectra from the RBM prediction with batch size p = 2, 5 and ensemble size M1 = 100, 20.
Results from the two test regimes F = 6 and F = 8 are shown and the truth is recovered from a direct MC simulation with a large sample size M = 1 × 105.

A. The one-layer L-96 system

First, we consider the one-layer L-96 system36 that can be
expressed as a 40-dimensional ODE system with homogeneous
damping and forcing

duj

dt
=
(

uj+1 − uj−2

)

uj−1 − uj + F, j = 1, . . . , J = 40, (18)

with uJ+1 = u1 and constant uniform damping and forcing. The
model state is defined with periodic boundary condition uj+J = uj

mimicking geophysical waves at J equally distributed locations along
a constant mid-latitude circle (see the diagram in Fig. 1). The ODE
system has a moderate dimension J = 40. Various representative
statistical features comparable with the real data from observations
can be generated in the L-96 solutions (18) by simply changing
the constant forcing F. A smaller forcing F is related to a weaker
mean state and stronger non-Gaussian statistics, while a large forc-
ing value F leads to stronger mixing and near-Gaussian statistics.44

As illustrated in the typical solution trajectories plotted in Fig. 1,
the one-layer L-96 solutions display the distinctive dynamical tran-
sition from more regular wave patterns (with F = 6) to more chaotic
flow features (with F = 8). The model also maintains a spectrum
of a large number of unstable and energetic stochastic modes (see
Figs. 2 and 3). Accordingly, the PDFs of spectral modes demon-
strate the statistical transition from non-Gaussian distributions to
near-Gaussian ones between the two regimes (see Figs. 4 and 5 for
the marginal and joint PDFs). Thus, it established a challenging and
important test case for accurate prediction of model statistics and
PDFs.

1. Explicit formulation and RBM approximation for

the one-layer L-96 system

Here, we derive the explicit stochastic–statistical formulation
for the one-layer L-96 system as an example to illustrate the main
ideas and performance in the proposed strategy. In the L-96 sys-
tem (18), randomness comes only from the initial condition and
is amplified due to the internal instability. We seek the probability
solution of the model state pt

({

uj

})

starting from an initial dis-

tribution p0

({

uj

})

. Clearly, the L-96 system fits into the general
framework (1). The periodic boundary condition implies the mean-
fluctuation decomposition as in (4) by a Galerkin projection on the
Fourier basis

uj = ūj +
1

J

∑

|k|≤J/2

Zk (t) ei2πk
j
J , (19)

where ūj =
〈

uj

〉

pt
is the statistical mean and {Zk} are stochastic coef-

ficients with 〈Zk〉pt
= 0. Due to the constant forcing and damping

terms, the resulting statistics in each moment of the solution state is
translation invariant.8,45 It implies that the mean state,

〈

uj

〉

pt
= ū (t),

is uniform; and the off-diagonal covariance entries are all vanish-
ing, R (t) = 〈ZZ∗〉pt

= diag {rk (t)}. Therefore, we can focus on the
dynamical equations for the scalar mean ū and variance rk of each
Fourier mode together with the stochastic coefficients Zk to recover
the entire statistics in this system.

The explicit full stochastic–statistical formulation (7) and the
corresponding RBM model (8) for the L-96 system are listed in
Appendix B 1. Due to the still relatively low dimension J = 40 of
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FIG. 4. 1D marginal PDFs of the stochastic coefficients Zk in the two test regimes F = 6, 8 of the one-layer L-96 system. The RBM predictions with sample size M1 = 100
are compared with the truth from direct MC simulation with M = 1 × 105. The Gaussian fits of the PDFs with the same mean and variance are also plotted in dashed lines.

the one-layer model, we apply the full RBM model in Algorithm 1
and test the random batch approximation for the full spectrum pre-
diction involving a large number of highly unstable and energetic
modes. We summarize several main features observed from using
the RBM model on the one-layer L-96 system before showing the
detailed discussions on the numerical results in Sec. IV A 2:

• The computational cost for the full model (B1) is O
(

J+MJ2+MJ2
)

= O (J (1 + 2MJ)), where J is the full dimension of the system and
M is the ensemble size to sufficiently sample the J-dimensional
space. In the RBM approximation (B2), the computational cost is
effectively reduced to O

(

J
(

1 + 2M1p
))

with p being the batch size
and M1 � M is the sample size only required to sample the much
smaller p-dimensional subspace in each batch. Specifically, p does
not increase as the dimensional J increases.

• The coupled formulation combining the variance equations for
rk and stochastic equations for Zk with the relaxation factor ε is

essential to reach the correct final equilibrium state. Using purely
the stochastic equations for Zk is insufficient to recover the correct
statistics when the sample size becomes small due to the strong
model instability.

• The RBM approximation relies on the ergodicity and fast mix-
ing of the small-scale modes. The L-96 system possesses a wide
spectrum with a large number of fluctuation modes showing dis-
tinctive time scales, making it a difficult test case for the RBM
model. Still, accurate statistical prediction is achieved even with
an extremely small batch size p = 2. Prediction results can be
further improved by reducing the time step size 1t.

2. Numerical tests on the one-layer L-96 model

In the numerical tests, we take two typical regimes of the
L-96 system with F = 6 (showing non-Gaussian statistics) and

FIG. 5. 2D joint PDFs of the leading modes in the two test regimes F = 6, 8 of the one-layer L-96 system. The RBM predictions with sample size M1 = 100 and batch size
p = 5 are compared with the truth from direct MC simulation with M = 1 × 105.
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FIG. 6. Errors in the total variance from the RBM prediction with different batch sizes p = 2, 5, 10 in the two test regimes F = 6, 8 of the one-layer L-96 system.

F = 8 (showing near-Gaussian statistics). The standard fourth-
order Runge–Kutta scheme is adopted for the time integration with
time step size 1t = 1 × 10−4. A large ensemble size M = 1 × 105

is needed to capture the true model statistics accurately from the
direct MC simulation. In the RBM prediction, different batch sizes
p = 2, 5, 10 are used to compute the high-order interactions com-
pared with the full model using the entire J = 40 modes. Therefore,
only a very small sample size M1 = 100 becomes sufficient, allowing
for efficient computation.

First, we illustrate the inherent difficulty in running ensemble
prediction for turbulent systems with instability. In the full model
(B1), the variance equations for rk (as well as the stochastic equa-
tions for Zk) are subject to internal instability due to the real part of
the coupling coefficient −

(

γ ∗
k ū + 1

)

representing interaction with
the mean state ū. As illustrated in the left panel of Fig. 2, positive
growth rates are induced in a large number of modes as the sys-
tem evolves in time. This indicates the crucial role of the combined
third-order moments

〈

ZmZ∗
nZ∗

k

〉

acting as a balancing factor for these
internally unstable modes. On the other hand, with insufficient sam-
ple size, large errors can be introduced to the empirical estimation
of the higher-order feedback term. The inherent instability in the
turbulent model formulation can also be seen in the zeroth mode
equation (20). It shows that the equation is only marginally stable,
thus small errors in the ensemble estimation will lead to large errors.

In the practical simulation of the ensemble scheme, the inter-
nal instabilities will amplify the small errors and lead to disastrous
results. The situation will become increasingly serious if we only
want to use a small ensemble size. As a typical example shown on
the right panel of Fig. 2, we get the truth from the direct MC simu-
lation of (18) with an extremely large ensemble size M = 1 × 105.
In comparison, we run the full model (B1) with several differ-
ent values ε in the additional relaxation term ε−1

(〈

|Zk|2
〉

− rk

)

. It
shows that even with this moderate dimension J = 40 and very large
ensemble size, the solution for the statistical mean and variance
will diverge without the relaxation term ε = ∞, while equilibrium
consistency is guaranteed when a smaller value of ε is added. It

demonstrates the crucial role of the additional relaxation term to
guarantee equilibrium converge. It also shows that the model is
robust with consistent final statistics for a wide range of values of
ε as long as it is not too large.

Remark. As a simple example to illustrate the internal insta-
bility, the explicit equation for the zeroth mode Z0 in the full model
(B1) gives

dZ0

dt
=

1

J

∑

k

γk

(

|Zk|2 − rk

)

− Z0, (20)

with γk = cos 4πk
J

− cos 2πk
J

. The consistent final equilibrium

requires 〈Z0〉 = 1
J

∑

k γk

(〈

|Zk|2
〉

− rk

)

= 0, while instability will be

introduced through errors due to the empirical average
〈

|Zk|2
〉

∼ rk.
This will lead to inherent difficulty even with a very large sample size
as shown in Fig. 2.

Next, we check the performance of the RBM prediction with
different batch sizes. In the one-layer L96 model with J = 40, we will
focus on the fully resolved RBM model (B2) described in Algorithm
1. In Fig. 3, the time series of the mean ū and total variance trR
=
∑

rk as well as the prediction for the detailed variance spectrum
in each mode during the time evolution are plotted. Two batch sizes
p = 5, 2 with M1 = 100 samples from the RBM model prediction
are compared with the truth from the direct MC simulation using
M = 1 × 105 samples for the full dimension J = 40. Furthermore,
we also test an extreme case with only p = 2 modes (that is, using
only one term in the high-order feedback for the strongly unsta-
ble dynamics) in each batch and a very small sample size M1 = 20
in computing the statistics. It shows that all the RBM results accu-
rately track the truth statistics with lines overlapping on each other
while saving much computational costs using the extremely small
ensemble. In particular, the L-96 system sets a challenging test model
for the RBM model since it contains a wider spectrum of ener-
getic modes containing large degrees of instabilities. Still, as shown
in the energy spectra from the starting transient stage to the final
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FIG. 7. Illustration of the two-layer L-96 system with large-scale size J = 8 and small-scale size JL = 256. Upper: diagram for the model structure and growth rates in the
small-scale modes; Lower: a typical time-series solution for the large- and small-scale states with c = 4, b = 10, h = 1.

equilibrium, the variances in all the modes are captured with high
precision.

Then, another important goal of the RBM model is to accu-
rately characterize the PDFs of the model states. This is especially
important in application to uncertainty quantification and data
assimilation, where an accurate estimate of PDFs using a limited
number of samples is crucial. In the RBM approach, the PDFs are
captured by the empirical distribution (3) of the stochastic coeffi-
cients Zk. Figure 4 first plots the 1D marginally PDFs in the leading
Fourier modes Zk of the one-layer L-96 system in the two test
regimes. It shows that the F = 6 regime generates stronger non-
Gaussian PDFs while the F = 8 regime is closer to Gaussian but
still contains non-negligible non-Gaussian features. Usually, a very
large ensemble is essential to capture such non-Gaussian statistics
in the direct MC approach. Using the efficient RBM approximation,
the shapes of PDFs including the skewed and sub-Gaussian struc-
tures are accurately characterized using a very small ensemble size
M1 = 100. As a more precise calibration of the prediction of PDFs,
we plot in Fig. 5 the 2D joint PDFs between the most important
modes containing the largest variances. The non-Gaussian struc-
tures can be observed more clearly in the joint distributions. The
outliers in the sampled PDFs play an important role in character-
izing the occurrence of extreme events and have a crucial impact
in many practical applications with limited samples. The RBM

model successfully captures the joint PDFs especially recovers the
representative non-Gaussian shapes in the outlier regions by using
only a very small number of samples.

Finally, we provide a quantitative quantification of the model
errors of the RBM prediction with different batch sizes p. In particu-
lar, one of the central quantities to estimate in the RBM is the second
moments; thus, we consider the time-averaged errors in the vari-

ance prediction ‖Rm − Rt‖ = 1
N

∑N
s=1

∑

k

∣

∣rm,k (ts) − rt,k (ts)
∣

∣, where
Rm is the RBM prediction and Rt is the truth. Figure 6 plots the errors
with the batch sizes p = 2, 5, 10 and sample size M1 = 500. We use
a relatively larger sample size to reduce the fluctuation errors from
the small ensemble. The convergence of RBM estimates depends on
the average of the random batches (thus equivalently on time aver-
age of the fast mixing modes); therefore, the errors grow as the time
step size 1t increases. A smaller batch size will lead to larger errors
due to the fewer high-order terms explicitly modeled at each time
updating step. When the time step decreases to smaller values, the

TABLE III. Model parameters used for the two-layer L-96 model (21).

J L F c b h 1t M M1

8 32 20 4, 10 10 1 1 × 10−4 5 × 105 500, 100
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FIG. 8. Prediction of the mean and averaged variance in both large- and small-scale modes from full RBM model with different batch sizes (p, q) compared with the full MC
model with JL = 256 modes in small scales and sample size M = 5 × 105. M1 = 500 samples are used for all the RBM models. The trajectory errors in the mean and
variance are also compared.

major source of errors is taken over by the fluctuation errors from
the small ensemble size, so the decay of the errors starts to slow
down. Also, the larger batch size p = 10 shows a slower decay rate
since it needs to sample a relatively larger dimensional batch sub-
space in computing the nonlinear coupling terms. Overall, the error
plot shows that the RBM model has a uniformly high prediction skill
in accurately recovering the key statistics with a much lower afford-
able computational cost. It also implies that it is a good strategy to
improve the prediction accuracy by taking a smaller time step 1t
without increasing much of the computational cost.

B. The two-layer L-96 system

In the second test model, we examine the model effectiveness
in handling truly high-dimensional systems with multiscale struc-
tures by considering the more complicated two-layer L-96 system.
As a further generalization of the original one-layer system, the two-
layer L-96 system37,43 introduces an additional second layer state vi,
i = 1, . . . , JL to the first layer state uj, j = 1, . . . , J such that

duj

dt
=
(

uj+1 − uj−2

)

uj−1 − uj + F −
hc

b

jL
∑

i=L(j−1)+1

vi,

dvi

dt
= −cb (vi+2 − vi−1) vi+1 − cvi +

hc

b
u[ i−1

L

]

+1
,

(21)

both with periodic boundary conditions, uj+J = uj and vi+JL = vi.
Here, u is usually referred to as the large-scale slow variables and
v as the small-scale fast variables. On the right-hand sides of (21),
the double layer states follow the same energy-conserving nonlin-
ear self-coupling structure as well as uniform linear damping effect
as in the one-layer case. The two states of different scales are then
coupled through three additional model parameters, c, b, h: c sig-
nifies the timescale separation; b controls the ratio between the
amplitudes of two layer states uj and vi; and h characterizes the
coupling strength between the two states. We illustrate the cou-
pling structure of the two-layer system in the upper diagram of
Fig. 7. In particular, the second layer states vi for i = 1, . . . , JL are
locally coupled with one corresponding first layer state uj with the

index j =
[

i−1
L

]

+ 1 (where [a] takes the integer part of a), and are
globally linked with each other by the nonlinear self-interactions.
Inversely, each first layer state uj receives the combined feedback

from a sequence of L second layer states vi, i = L
(

j − 1
)

+ 1, . . . , jL.
This leads to a fully coupled high-dimensional system including the
two-level states

{

uj, vi

}

with a total of J (L + 1) state variables. The
multiscale structure of the dynamical solution is demonstrated by
a typical time series of the large- and small-scale processes in the
lower panel of Fig. 7. It is clear to observe the distinctive time and
spatial scales and close correlation between the two scales. The small
scales vi possess a much faster time scale and more rapidly changing
spatial structures. On the other hand, the slow dynamics in the large-
scale states uj are closely correlated to a large number of fast- and
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small-scale processes, leading to much more complicated turbulent
structures.

The model parameters used in the numerical tests are listed in
Table I taken the standard model setup as in Refs. 25, 37, and 43.
Specifically, we consider two typical parameter regimes with a mild
timescale separation c = 4 and a strong timescale separation c = 10.
Again, the two-layer L-96 system displays strong internal instability
containing a large number of unstable modes with positive growth
rates as shown in Fig. 7. To recover the true model statistics with
sufficient accuracy, we need to take a small time step 1t = 1 × 10−4

in order to completely resolve the extremely fast time scales in the
second layer variables vi. A fourth-order Runge–Kutta scheme is
adopted for the time integration in both the direct MC simulation
and the RBM approaches. A very large ensemble size M = 5 × 105 is
required considering the very high-dimension d = J (L + 1) = 264
of the system. In contrast, it is sufficient to only use M1 = O (100)
samples in both the full and reduced-order RBM approaches.

1. Stochastic–statistical formulation for the two-layer

L-96 system

Similar to the one-layer L-96 system, we can project the large-
and small-scale states to the Fourier modes due to the periodic
boundary condition for both uj and vi as

uj = ū +
1

J

∑

|k|≤J/2

Zk (t) ei2πk
j
J , vi = v̄ +

1

JL

∑

|l|≤JL/2

Yl (t) ei2π l i
JL ,

(22)

where Zk and Yl are the stochastic coefficients for the large- and
small-scale states correspondingly. The two-layer L-96 system (21)
also accepts the general system structure (1). Using the translation
invariance in both large and small scales, the statistical predic-
tion aims to recover the homogeneous mean states ū ≡

〈

uj

〉

pt
and

v̄ ≡ 〈vi〉pt
and the variances in large- and small-scale modes ru

k

=
〈

|Zk|2
〉

pt
, rv

l =
〈

|Yl|2
〉

pt
according to the model probability measure

pt. The detailed equations involving various linear and nonlin-
ear coupling effects between different scales become very compli-
cated. We list the explicit mean and covariance equations involv-
ing complicated higher-order coupling terms across the scales
in Appendix B 2.

The most important ideas concerning the RBM approximation
of the two-layer L96 system (21) can be illustrated in the stochastic
equations for the large- and small-scale fluctuation modes

dZk

dt
=

1

J

∑

m−n=k

(

ZmZ∗
n − ru

mδmn

)

γ u
mn − duZk −

1

L

∑

|s|≤L/2

λ∗
k+sJYk+sJ,

(23)

dYl

dt
=

1

JL

∑

p−q=l

(

YpY
∗
q − rv

pδpq

)

γ v
pq − dvYl + λlZmod(l,J).

Here, we have the coupling coefficients γ u
mn = e2π i m+n

J − e−2π i 2m−n
J ,

γ v
pq = cb

(

e−2π i
p+q
JL − e2π i

2p−q
JL

)

, λl = hc
b

1−e
−2π i l

J

1−e
−2π i l

JL

, and the quasilin-

ear operator for interaction with the mean states, du = 1 + γ u∗
k ū, dv

= c
(

1 + bγ v∗
l v̄
)

[see the detailed model parameters in (B4)]. Notice

that in the large-scale modes, the indices in the summation for
nonlinear coupling go through all the wavenumbers, |m| ≤ J/2,
while in the small-scale modes the indices for nonlinear coupling
include all the small-scale wavenumbers,

∣

∣p
∣

∣ ≤ JL/2. This leads to an
extremely high computational overload considering the high dimen-
sion of the small-scale modes. Finally, the large- and small-scale
modes are coupled through the last linear terms. Specifically, the
small-scale modes Yk+sJ, |s| ≤ L/2 give a combined feedback to the
large-scale mode Zk, while each Zk is acting on a sequence of small-
scale modes Yk+sJ. It is realized that in (23) the most computational
demanding part comes from the summation terms going through all
the wavenumbers representing both linear and nonlinear coupling
between scales.

Next, we present the performance of the RBM models on
the two-layer L-96 with genuinely high-dimensional and multiscale
processes. In particular, we first consider the full RBM model in
Algorithm 1, then further reduce the computational cost by applying
the reduced-order RBM model in Algorithm 2 exploiting the large
number of fast-mixing small-scale modes.

2. Numerical results for the full RBM model

First, we consider the full RBM approximation, that is, to intro-
duce random batch decomposition in both the large- and small-scale

stochastic modes
{

Z
(i)
k , Y

(i)
l

}

, while still run independent samples

for ensemble simulation of the entire stochastic equations during
each time updating interval. This leads to the full RBM model for
the stochastic coefficients of the two-layer L-96 system following the
general formulation (8)

dZ
(i)
k

dt
= cp

∑

m∈Is
k

(

Z(i)
m Z(i)∗

m−k − ru
mδm,m−k

)

γ u
m,m−k − duZ(i)

k

− cL

∑

s:k+sJ∈J s
l

λ∗
k+sJY

(i)
k+sJ,

(24)

dY(i)
l

dt
= cq

∑

p∈J s
l

(

Y(i)
p Y(i)∗

p−l − rv
pδp,p−l

)

γ v
p,p−l − dvY

(i)
l + λlZ

(i)

mod(l,J)
,

with independent samples i = 1, . . . , M1. In the RBM approxima-
tion at each time updating step t = ts, we choose the batches ∪kI

s
k

=
{

k :
∣

∣k
∣

∣ ≤ J
2

}

with batch size p =
∣

∣I s
k

∣

∣ for the large-scale modes

Zk and batches ∪lJ
s
l =

{

l :
∣

∣l
∣

∣ ≤ JL
2

}

with q =
∣

∣J s
l

∣

∣ for the small-
scale modes Yl. Then, the original summation terms taking over
the entire spectrum space are reduced to the summation for modes
restricted inside one batch of very small size

(

p, q
)

(with the pair ele-
ments corresponding to large- and small-scale batch sizes). The new
normalization factors can be found as cp = 1

J
J−1
p−1

, cq = 1
JL

JL−1
q−1

, and

cL = 1
L

L−1
q−1

following the same principle as the one-layer case. The

corresponding RBM equations for the associated covariance equa-
tions can be derived accordingly. We list the explicit equations in
Appendix B 2. In this way, the computational cost for the nonlin-
ear coupling terms, particularly the small scales with a large number
of modes, is greatly saved by constraining the high-order interac-
tions only inside the very small batch. This leads to the effective
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FIG. 9. Prediction of the variance spectra for large- and small-scale modes in full RBMmodel with different batch sizes (p, q) compared with the full MC model with JL = 256
modes in small scales and sample size M = 5 × 105.

reduction in computational cost to O
(

M1J
(

p + Lq
))

in solving the

stochastic equations compared to the original cost O
(

MJ2
(

1 + L2
))

in the direct MC approach in computing the full ensemble of size
M � M1.

In the numerical test of the full RBM model, we take the model
parameters for the standard regime c = 10, b = 10, h = 1, F = 20,
and J = 8, L = 32. The resulting coupled large and small-scale
processes form a very high total dimension d = J (L + 1) = 264.
In particular, the small-scale variable vi has a much faster time
scale and the large-scale state uj. This leads to a more challeng-
ing multiscale problem since we have to resolve a large number
of small-scale modes even we are only interested in the large-scale
state. In order to get accurate statistical prediction resolving all the

multiscale features, we use a very large ensemble size M = 5 × 105

for the direct MC simulation to accurately recover the true refer-
ence solution. In the RBM model, three different batch pairs

(

p, q
)

= (4, 16) , (4, 8) , (2, 4) are tested in contrast to the total number of
modes (J, JL) = (8, 256). A much smaller ensemble size M1 = 500 is
used and this is made possible by sampling only the q-dimensional
subspace instead of the JL-dimensional full space of the small scales.

In Fig. 8, we first show the RBM model prediction for the mean
ū, v̄ and average total variance

∑

ru
k/J,

∑

rv
l /JL with three differ-

ent batch sizes, as well as the pointwise errors in mean and total
variance at each time step. It shows accurate recovery of the key
statistics in both the mean and variance, and in both the start-
ing transient stage and final equilibrium. The high accuracy is

FIG. 10. 1D marginal PDFs of the leading large- and small-scale stochastic modes Zk , Yl of the two-layer L-96 system. The RBM predictions are compared with the truth
from direct MC simulation. The Gaussian fits of the PDFs with the same mean and variance are also plotted in dashed lines.
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FIG. 11. 2D joint PDFs of the leading large- and small-scale stochastic modes Zk , Yl of the two-layer L-96 system. The RBM predictions are compared with the truth from
direct MC simulation.

maintained with almost indistinguishable results as we reduce the
batch sizes

(

p, q
)

. Relatively larger errors are observed in the start-
ing transient stage when a small batch size is applied. Notice that
significant computational reduction is achieved where the smallest
batch size refers using only q = 4 nonlinear coupling terms for each
Yl out of the total JL = 256 terms. In addition, the detailed model
prediction for the variance spectra in each large- and small-scale
mode is shown in Fig. 9. A wide range of the small-scale modes
with high wavenumbers are excited due to the instability in small
scales, as illustrated in Fig. 7. This presents a highly challenging
scenario as we only resolve a very small batch of modes for the
nonlinear coupling term to stabilize a large number of unstable
modes. Again, the energy spectrum is recovered exactly with uni-
formly high skill using the three extremely small batch sizes. This
highlights the robust skill of the RBM model to achieve computa-
tional efficiency and maintain high prediction accuracy at the same
time.

Next, we proceed to check the ability of the RBM model to
capture the PDFs of the dominant modes. Figure 10 shows the
marginal PDFs of the leading stochastic modes in both large and
small scales. In this case of the two-layer L-96 system, even stronger
non-Gaussian statistics are displayed with highly skewed and fat-
tailed PDFs. Accurate characterization of such non-Gaussian PDFs
becomes an even more critical issue in statistical prediction of such
high-dimensional systems. Usually, the small number of samples
tend to concentrate near the central part of the PDF and miss the
crucial extreme events featuring the edge regions of the large phase
space. Using the RBM model with a very small ensemble size, the
strongly non-Gaussian PDFs are successfully captured confirming
the very high skill of the RBM approach in recovering the true
model statistics not only in the leading moments but also in the
more challenging higher-order statistics. In addition, we also com-
pare the joint PDFs in the predicted leading modes in Fig. 11.
The non-Gaussian structures become more pronounced in the 2D
distributions, revealing bimodal PDFs as already indicated in the
marginal PDFs. The RBM predictions maintain high accuracy in

recovering the highly non-Gaussian statistics despite using a very
small ensemble size.

Finally, we provide a quantitative comparison of the RBM
model prediction errors as the key model parameters change.
In Fig. 12, we show the averaged errors in the total vari-

ance ‖Rm − Rt‖ = 1
N

∑N
s=1

∑

k

∣

∣rm,k (ts) − rt,k (ts)
∣

∣ and the mean

‖v̄m − v̄t‖2 = 1
N

∑N
s=1 |v̄m (ts) − v̄t (ts)|2 according to the time inte-

gration step 1t = ts+1 − ts with two batch sizes
(

p, q
)

= (4, 16) ,
(4, 8) and two ensemble sizes M1 = 500, 100. The errors grow with
larger time step size and with smaller ensemble and batch sizes
agreeing with the intuition. Among the range of large to moder-
ate time step sizes, reducing the time step can effectively improve
the prediction accuracy since it is corresponding to more frequent
resampling (thus more equivalent samples in the time average) in
the RBM approximation. With very small time step size though,
the error will saturate because the small ensemble size will account
for the major error in the statistical estimates. It also implies that it
might be useful to use a smaller batch size q with a relatively larger
ensemble to achieve accurate prediction with minimum computa-
tional cost.

3. Numerical results for the reduced-order RBM

model

Next, we consider a further reduction of computation cost by
applying the reduced-order RBM model as described in Algorithm
2. In the reduced RBM model, we still keep the statistical mean and
covariance equations (B3) and (B5) the same as the full RBM model
case. In the two-layer L-96 system, most of the computational cost
comes from the ensemble simulation for the stochastic coefficients
in (23) for the wide range of small-scale modes Yl. In most situa-
tions, we are mostly interested in the statistics in the main large-scale
modes Zk while the small-scale modes give crucial combined feed-
back to affect the large-scale state, thus their contributions cannot be
simply ignored. The unstable growth (shown in Fig. 7) and excited
small scales in equilibrium energy spectrum (in Fig. 9) emphasize
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FIG. 12. Errors in the statistical mean and total variance from the RBM prediction with different batch and ensemble sizes for the two-layer L-96 system.

the non-negligible role of these small-scale modes. This sets the
inherent obstacle in developing effective reduced-order models for
multiscale systems.

To enable further computational reduction for the small-scale
modes, following the idea in (10) we group the ensemble members in
the large-scale modes Z(i), i = 1, . . . , M1 with one single small-scale
state Y. In applying the RBM approximation, the same partition I s

k is
applied to the small number of large-scale modes. The model reduc-
tion strategy is applied to the expensive small-scale equations. The
large number of small-scale modes is then divided into the batches

J s
i , satisfying ∪M1

i=1J
s
i =

{

l :
∣

∣l
∣

∣ ≤ JL/2
}

. According to the modes in
the batches, the full system is decomposed into much smaller sub-
systems with one large-scale sample Z(i) together with a portion of
the small-scale modes Yl, l ∈ J s

i . The model reduction is made pos-
sible by the very large number of fast-mixing small-scale modes.
This leads to the coupled equations for the stochastic coefficients
in subsets

{

Z(i), Yl

}

l∈J s
i

during the time interval t ∈ (ts, ts+1],

dZ(i)
k

dt
= cp

∑

m∈Is
k

(

Z(i)
m Z(i)∗

m−k − ru
mδm,m−k

)

γ u
m,m−k − duZ(i)

k

− cL

∑

s:k+sJ∈J s
i

λ̃∗
k+sJYk+sJ, (25)

dYl

dt
= cq

∑

p∈J n
i

(

YpY
∗
p−l − rv

pδp,p−l

)

γ v
p,p−l

− dvYl + λ̃lZ
(i)

mod(l,J)
, l ∈ J n

i .

Here, the ensemble is used only to sample the low-dimensional
large-scale state Z(i) ∈ R

J, while only a small portion of small-scale
modes {Yl}l∈Ii

are grouped with the ith sample Z(i) together for the
time update at t = ts. The union of all the randomly sampled groups
forms the entire spectrum of small-scale modes. In this way, we
no longer need to run a very large ensemble for the small scales
Yl by exploiting its wide spectrum of modes acting at different
large-scale samples. Notice that the samples Z(i) will no longer stay
independent and will be linked by the small-scale modes through
the random batches. Still, the important correlations between the
small- and large-scale modes are maintained through this splitting
of small-scale modes.

Remark. In practice, we may still want to run a small

number of small-scale modes Y(j), j = 1, . . . , M2. This is equiv-
alent to introduce an ensemble of size M2 to the above block
model (25) so that the model parameters have the relation
κ = M1

M2
= JL

2q
. For consistent statistics, the large- and small-scale

FIG. 13. Prediction of the mean and variances in the reduced-order RBM model with batch size (p, q) = (4, 32) and sample size (M1,M2) = (500, 125), (100, 25) for M1

samples of large-scale state and M2 of small-scale state. The time evolutions of the errors in mean and variance are also compared.
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FIG. 14. Reduced-order RBM model prediction of the variance spectra in both large- and small-scale modes at several time instants t = 0.5, 1, 2.

coupling coefficient needs to be updated as λ̃l =
√

κλl. This leads

to the computational reduction from O
(

M1J
(

p + Lq
))

in the full

RBM model to O
(

M1Jp + M2JLq
)

= O
(

M1

(

q2 + pJ
))

, which is
only dependent on the dimension J of the large-scale state and
independent of the small-scale dimension JL.

In the numerical test of the reduced-order model, we con-
sider the parameter regime of the two-layer L-96 system with
c = 4, b = 10, h = 1, F = 20. This regime gives a weaker scale sep-
aration between the large and small scales, thus setting a more
important role for the small-scale processes with a non-negligible
contribution to the large-scale modes. We fix the batch size as

(

p, q
)

= (4, 32). The relatively large batch size q = 32 (compared with the
full dimension JL = 256) is used to ensure a larger allowed sample

size M2 = 2qM1
JL

for the small-scale modes. We pick a moderate sam-

ple size M1 = 500 to sample the large-scale mode of dimension J and
the large number of small-scale modes only requires a small sample
size M2 = 125. Another extreme sample size M1 = 100, M2 = 25 is
also tested. The reduced-order model enables even more efficient

computation compared with the very high dimension of the full
system d = J (L + 1) = 264.

We show the prediction results in the reduced-order RBM
model in Fig. 13. It can be seen that the reduced model maintains
the high skill to capture the leading statistics in both the large-
and small-scale states while saving additional computational costs
by avoiding running the large ensemble simulation. The pointwise
errors in mean and variance further confirm the accurate statisti-
cal prediction even with a small and reduced sample size. Notice
that there are bursts of relatively larger errors in the mean state pre-
diction during the transition regime. This is due to the insufficient
instant sampling of the full statistics with a very small ensemble in
the RBM approximation. Accordingly, we show the detailed predic-
tion of the energy spectra at several time instants in both large- and
small-scale modes in Fig. 14. In the case of reduced-order model due
to the very small ensemble size in small scales, it is expected that the
small-scale modes will become very noisy and have larger fluctu-
ation errors, especially for the large wavenumber modes. Still, the
reduced-order RBM model successfully captures the structure of the
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entire spectrum in both large and small scales. These encouraging
results suggest further applications of the RBM models to more prac-
tical and realistic systems exhibiting stronger multiscale coupling
and a very wide spectrum covering a large number of scales.

V. SUMMARY

We present a systematic closure modeling framework that
enables efficient ensemble prediction of leading-order statistics and
non-Gaussian PDFs in complex turbulent systems, which are char-
acterized by strong internal instability and interactions of coupled
spatiotemporal scales. A general stochastic–statistical formulation
is established derived from a generic multiscale nonlinear system,
capable of modeling a wide range of complex phenomena observed
in natural and engineering systems. A mean and fluctuation decom-
position of the original model state is introduced to deal with the
irreducible dynamics in the high-dimensional equations. The fluctu-
ation modes, which capture large uncertainty in multiscale modes,
are modeled using stochastic equations that depend on the mean
state and covariance of fluctuation modes. The leading-order sta-
tistical equations for the mean and covariance incorporate higher-
order moment feedback from different scales. A precise high-order
closure is introduced using an empirical average of the ensem-
ble prediction of the stochastic equation solution, which explicitly
captures detailed multiscale interactions. The coupling between
stochastic and statistical equations is further reinforced by a relax-
ation term for statistical consistency. This approach effectively bal-
ances the strong internal instability often encountered in turbulent
systems, mitigating the inherent problem of numerical divergence
in the statistical solution. The model achieves high skill in capturing
non-Gaussian statistics and extreme outliers by explicitly resolv-
ing crucial higher-order moments instead of relying on insufficient
low-order parameterizations. The stochastic–statistical formulation
offers a flexible approach for recovering essential model statistics,
making it applicable to a wide range of problems in uncertainty
quantification and data assimilation.7,10,46

To enable efficient computation using a small ensemble size
for the stochastic equation and limit the number of high-order
nonlinear coupling terms during each time update, we generalize
the idea in RBM approximation for mean-fluctuation equations.35

The approach decomposes the wide spectrum involving a large
number of multiscale modes into small random batches. A much
smaller ensemble size is made possible by just sampling the non-
linear coupling terms involving modes in a low-dimensional sub-
space inside one batch. Simultaneously, the contribution from all
the other modes is fully modeled by resampling the batches at
each time step, exploiting the ergodicity of the stochastic modes.
Consequently, high prediction accuracy concerning all high-order
feedback is achieved. For systems with exceptionally high dimen-
sionality, a model reduction strategy is proposed to further reduce
the computational cost by linking the large number of small-scale
fluctuation modes to the ensemble samples of large-scale state.
The resulting algorithms are straightforward to implement and
are well-suited for a wide range of multiscale turbulent systems.
We evaluate the performance of the proposed RBM models using
the representative one-layer and two-layer L-96 systems, which
exhibit strong multiscale coupling and a wide spectrum of energetic

unstable modes. The models demonstrate uniform high prediction
skills for the leading order mean and variance, and more notably,
capture the highly non-Gaussian PDFs and extreme events using a
very small ensemble. As a result, the computational cost is reduced
to an affordable level for genuinely high-dimensional systems. In
future research directions, we aim to develop a complete theory to
analyze the general stochastic–statistical modeling framework build-
ing upon the preliminary estimates presented in this paper. This can
provide precise guidelines for the choice of model parameters such
as the random batch size and the relaxation parameter to achieve
optimal model performance. The promising results suggest poten-
tial applications to more realistic high-dimensional systems such as
the quasi-geostrophic and Boussinesq equations where the required
sample size in the prediction methods will not increase with the
dimension of the system. The reduced-order RBM model shows
potential in overcoming the curse of dimensionality and providing
an effective tool for a wide range of practical problems related to
prediction and data assimilation.

ACKNOWLEDGMENTS

The research of J.-G.L. is partially supported by the National
Science Foundation (NSF) under Grant No. DMS-2106988. The
authors would like to thank the reviewers for the very helpful
suggestions that improve the quality of this paper.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Di Qi: Conceptualization (equal); Investigation (equal); Method-
ology (equal); Validation (equal); Writing – original draft (equal).
Jian-Guo Liu: Conceptualization (equal); Investigation (equal);
Methodology (equal); Validation (equal); Writing – original draft
(equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: PROOF OF THEOREMS IN SEC. III C

Proof. Define the following functions according to solutions to
(11a) and (11b)

w̃ (x, t) =
1

K

K
∑

k=1

Exϕ

(

Z̃k (t)
)

,

w (x, t) =
1

K

K
∑

k=1

Exϕ (Zk (t)) ,

(A1)

with the test function ϕ ∈ C2
b and initial state Z (0) = Z̃ (0) = x

∈ R
K. The functions (A1) defined in the time interval t ∈ (ts, ts+1]

are governed by the backward Kolmogorov equation40 as
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∂tw̃ = L̃Is w̃ =
K
∑

k=1

[

∑

m,n

Is
k (m) L̃v,km (ū) xm + Is

k (m) Is
k (n) γ̃mnk (xmxn − Rmn)

]

· ∂xk
w̃ +

1

2

K
∑

k=1

σ 2
k ∂2

xk
w̃,

∂tw = Lw =
K
∑

k=1

[

∑

m,n

Lv,km (ū) xm + γmnk (xmxn − Rmn)

]

· ∂xk
w +

1

2

K
∑

k=1

σ 2
k ∂2

xk
w.

(A2)

In (A2), the backward equation for the RBM model w̃ is subject
to the additional randomness due to the partition I s =

{

I s
k

}

during
the time updating interval. We introduce the index function defined
in time t ∈ (ts, ts+1]

Is
k (m) =

{

1, if m ∈ I s
k,

0, otherwise.

Notice that the function Is
k is kept constant during each time inter-

val (ts, ts+1] and will change values subject to the resampling of the
random batches. According to the conclusion in Ref. 35, we have
the expectation of the partition functions by counting the ordered
combinations of the random batches

EIs
k (m) =

p

K
, EIs

k (m) Is
k (n) =

p

K

p − 1

K − 1
.

This leads to the consistent condition on the expectation with the
partition using the proper choice of the coupling coefficients

E
Is
L̃Is = L.

Using the semigroup operator S̃ acting on the function w (x, ts) and
the above identity, we have

S̃w (x, ts) − w (x, ts+1)

= E
Is

e1tL̃
Is w (x, ts) − w (x, ts+1)

=
∫ 1t

0

(1t − τ)

[

E
Is
(

L̃Is

)2

eτL̃
Is − L2eτL

]

w (x, ts) dτ .

By the assumptions (12), the residual terms on the last equality are
uniformly bounded

∥

∥

∥

∥

(

L̃Is

)2

eτL̃
Is w (·, t)

∥

∥

∥

∥

∞
< C,

∥

∥L2 eτLw (·, t)
∥

∥

∞ < C.

Therefore, the one-step error for between the RBM solution

S̃w (x, ts) and the full model w (x, ts+1) can be estimated as
∥

∥

∥S̃w (·, ts) − w (·, ts+1)

∥

∥

∥

∞
≤ C1t2.

Finally, by applying S̃ on the initial function w (x, 0) = ϕ (x) s times
and recurrently using the above contraction property, we compute
the total error at t = ts as

∥

∥

∥S̃
(s)ϕ (·) − w (·, ts)

∥

∥

∥

∞
≤
∥

∥

∥S̃

[

S̃(s−1)ϕ (·) − w (·, ts−1)

]∥

∥

∥

∞
+
∥

∥

∥S̃w (·, ts−1) − w (·, ts)

∥

∥

∥

∞

≤
∥

∥

∥S̃
(s−1)ϕ (·) − w (·, ts−1)

∥

∥

∥

∞
+
∥

∥

∥S̃w (·, ts−1) − w (·, ts)

∥

∥

∥

∞

≤
s
∑

i=1

∥

∥

∥S̃w (·, ti−1) − w (·, ti)

∥

∥

∥

∞
≤ C (ts)1t.

This completes the proof of the theorem. �

Proof of Theorem 3. Under the structure assumptions of the
bilinear term (13), the total statistical energy E = ū2 + 1

K
trR from

the solutions of the mean and covariance equations in (7) satisfies

dE

dt
= −2 dE + ū · F.

Similarly, the RBM model (8) also satisfies the corresponding

energy equation with Ẽ = ˜̄u2 + 1
K

trR̃ with the consistent structure
symmetry

dẼ

dt
= −2 dẼ + ˜̄u · F.

By taking the difference between the above two equations, we can
write the solution for the difference between the statistical energy in

truth and RBM approximation formally as

δE (t) = δū2 +
1

K
δtrR =

∫ t

0

e−2d(t−s)δū (s) · F (s) ds,

where we assume the initial states are the same, E (0) = Ẽ (0), and
δE = E − Ẽ, δū = ū − ˜̄u. Then, using the statistical estimation for
the total variance derived in (14), we find

M |δū| ≤
∣

∣

∣ū2 − ˜̄u2
∣

∣

∣ ≤
1

K

∣

∣trR − trR̃
∣

∣+
∫ t

0

e−2d(t−s) |δū| · |F| ds

≤ C (T)1t +
∫ t

0

|δū| · |F| e−2d(t−s) ds. (A3)
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On the left-hand side of the above equation, we use the assumption

that the mean states
∣

∣

∣
ū + ˜̄u

∣

∣

∣
> M have a uniformly common bound

from below. This is observed in the numerical simulations. Finally,
applying Grönwall’s inequality to (A3), we have the uniformly
bound for the convergence of the statistical mean state

|δū| (t) ≤ C (T)1t e
∫ t
0 |F|e−2d(t−s)ds ≤ C1 (T) 1t.

The final result (17) is achieved by taking the supremum for
t ∈ [0, T]. �

APPENDIX B: DETAILED RBM EQUATIONS FOR THE

L-96 SYSTEMS

1. Explicit equations for the one-layer L-96 system

According to the general equations (7), the full stochas-
tic–statistical formulation for the L-96 system (18) can be derived
as

dū

dt
=

1

J2

∑

k

γkrk − ū + F,

drk

dt
=

1

J

∑

m−n=k

[

〈

ZmZ∗
nZ∗

k

〉

p
γmn +

〈

Z∗
mZnZk

〉

p
γ ∗

mn

]

− 2 (Reγkū + 1) rk + ε−1
(

〈

|Zk|2
〉

p
− rk

)

, (B1)

dZk

dt
=

1

J

∑

m−n=k

(

ZmZ∗
n − rmδmn

)

γmn −
(

γ ∗
k ū + 1

)

Zk.

Here, we have the coupling coefficients γmn = exp
(

i2π m+n
J

)

− exp
(

−i2π n−2m
J

)

and γk := γkk. The first two equations are deter-

ministic providing the statistical mean and variance dynamics.
The third equation characterizes the stochastic evolution of the
coefficients Zk (with randomness from the initial ensemble). The
higher-order moments in the variance equations are recovered by
the stochastic equation containing non-Gaussian information,

〈

f
〉

p

=
∫

f dp. Therefore, the above equations (B1) provide a closed sys-
tem by coupling the statistical and stochastic equations including
all the higher-order feedback. Specifically, an additional relaxation
term is added to the variance equation for rk to guarantee the con-
sistent statistical mean and variance in the model prediction. In one
time update of the above full equations, the mean equation requires
J operations for the summation of all the variance. Each component
of the J variances requires J operations in the summation together
with M operations needed in computing the empirical average of the
third moments. Finally, the ensemble simulation of the stochastic
coefficients requires J2 operations for each of the M samples.

Correspondingly, we can derive the RBM model for the one-
layer L-96 system (B1) in the time updating interval t ∈ (ts, ts+1] as

dū

dt
=

1

J2

∑

k

γkrk − ū + F,

drk

dt
= cp

∑

m∈Is
k

〈

ZmZ∗
m−kZ

∗
k

〉

pM
γm,m−k +

〈

Z∗
mZm−kZk

〉

pM
γ ∗

m,m−k

− 2Reγkūrk − 2rk + ε−1
(

〈

|Zk|2
〉

pM
− rk

)

, (B2)

dZ
(i)
k

dt
= cp

∑

m∈Is
k

(

Z(i)
m Z(i)∗

m−k − rmδmn

)

γm,m−k −
(

γ ∗
k ū + 1

)

Z(i)
k .

Here, the deterministic solutions of the statistical mean ū and vari-
ances rk are closed by the stochastic equation for the coefficients Zk,
which are sampled by an ensemble simulation using a small sam-
ple size of trajectories i = 1, . . . , M1. The empirical statistics in the
dynamics are computed from the ensemble average of the sample
realizations at each time updating step

〈

f
〉

pM
=

1

M1

M1
∑

i=1

f
(

Z(i)
)

.

Importantly, it is crucial to use the consistent scaling factor cp

= 1
J

J−1
p−1

according to the batch size p in the summation for higher-

order feedback. Through the RBM approach, the set of total spectral
modes {Zk}|k|≤J/2 are randomly divided into small batches I s

k with

size p at each time step t = ts. This enables the large computational
reduction from O(J2) to O(Jp) for each single sample trajectory and
reduces the sample size from a very large M to M1 � M sampling
only the p-dimensional batch subspace.

2. Explicit equations for the two-layer L-96 system

Following the same procedure using the general formulation
(7), we first derive the mean equations for the large- and small-scale
states of the two-layer L-96 system (21)

dū

dt
=

1

J2

∑

|k|≤J/2

γ u
k ru

k − ū + F −
hc

b
Lv̄,

dv̄

dt
=

cb

J2L2

∑

|l|≤JL/2

γ v
l rv

l − cv̄ +
hc

b
ū.

(B3)

Next, we have the set of covariance equations associated with
the large- and small-scale stochastic coefficients from the Fourier
decomposition in (22)
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dru
k

dt
=

1

J

∑

m−n=k

[〈

ZmZ∗
nZ∗

k

〉

γ u
mn +

〈

Z∗
mZnZk

〉

γ u∗
mn

]

− 2
(

1 + Reγ u
k ū
)

ru
k −

hc

b

1

L

L/2
∑

s=−L/2+1

λ∗
k+sJr

x
k+sJ + ε−1

(〈

|Zk|2
〉

− ru
k

)

,
∣

∣k
∣

∣ ≤ J/2,

drv
l

dt
=

cb

JL

∑

p−q=l

[〈

YpY
∗
qY∗

l

〉

γ v
pq +

〈

Y∗
pYqYl

〉

γ v∗
pq

]

− 2c
(

1 + bReγ v
l v̄
)

rv
l +

hc

b
λlr

x
l + ε−1

(〈

|Yl|2
〉

− rv
l

)

, (B4)

drx
l

dt
=

1

J

∑

m−n=k

γ u
mn

〈

ZmZ∗
nY∗

l

〉

+
cb

JL

∑

p−q=l

γ v∗
pq

〈

Y∗
pYqZmod(l,J)

〉

−
(

γ u∗
mod(l,J)

ū + cbγ v
l v̄ + 1 + c

)

rx
l

+
hc

b
λ∗

l

(

ru
mod(l,J)

−
1

L
rv
l

)

+ ε−1
(〈

Zmod(l,J)Y
∗
l

〉

− rx
l

)

,
∣

∣l
∣

∣ ≤ JL/2,

where ru
k =

〈

|Zk|2
〉

, rv
l =

〈

|Yl|2
〉

are the variances for the large and small scales, and rx
l =

〈

Zmod(l,J)Y
∗
l

〉

gives the cross-covariance. The coupling

coefficients are γ u
mn = e2π i m+n

J − e−2π i 2m−n
J , γ v

pq = e−2π i
p+q
JL − e2π i

2p−q
JL , λl = 1−e

−2π i l
J

1−e
−2π i l

JL

, and γ u
k = e4π i k

J − e−2π i k
J , γ v

l = e−4π i l
JL − e2π i l

JL .

Correspondingly, the RBM approximation for the covariance equations is derived according to the full and reduced-order stochastic
equations proposed in (24) and (25). The explicit RBM model equations during the time interval t ∈ (ts, ts+1] can be found as

dru
k

dt
= cp

∑

m∈Is
k

[〈

ZmZ∗
m−kZ

∗
k

〉

γ u
m,m−k +

〈

Z∗
mZm−kZk

〉

γ u∗
m,m−k

]

− 2
(

1 + Reγ u
k ū
)

ru
k − cL

hc

b

∑

k+sJ∈Is
k

λ∗
k+sJr

x
k+sJ + ε−1

(〈

|Zk|2
〉

− ru
k

)

,

drv
l

dt
= cqcb

∑

p∈J s
l

[〈

YpY
∗
p−lY

∗
l

〉

γ v
p,p−l +

〈

Y∗
pYp−lYl

〉

γ v∗
p,p−l

]

− 2c
(

1 + bReγ v
l v̄
)

rv
l +

hc

b
λlr

x
l + ε−1

(〈

|Yl|2
〉

− rv
l

)

, (B5)

drx
l

dt
= cp

∑

m∈Is
k

γ u
m,m−k

〈

ZmZ∗
m−kY

∗
l

〉

+ cqcb
∑

p∈J s
l

γ v∗
p,p−l

〈

Y∗
pYp−lZmod(l,J)

〉

−
(

γ u∗
mod(l,J)

ū + cbγ v
l v̄ + 1 + c

)

rx
l

+
hc

b
λ∗

l

(

ru
mod(l,J)

−
1

L
rv
l

)

+ ε−1
(〈

Zmod(l,J)Y
∗
l

〉

− rx
l

)

,

with the important rescaling parameters cp = 1
J

J−1
p−1

, cq

= 1
JL

JL−1
q−1

, and cL = 1
L

L−1
q−1

. In the same way as the one-layer case, the

higher-order moments are computed through the empirical average
of the computed samples.
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