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A B S T R A C T

In this paper, we introduce a novel concordance-based predictive uncertainty (CPU)-Index, which integrates
insights from subgroup analysis and personalized AI time-to-event models. Through its application in refining
lung cancer screening (LCS) predictions generated by an individualized AI time-to-event model trained with
fused data of low dose CT (LDCT) radiomics with patient demographics, we demonstrate its effectiveness,
resulting in improved risk assessment compared to the Lung CT Screening Reporting & Data System (Lung-
RADS). Subgroup-based Lung-RADS faces challenges in representing individual variations and relies on a
limited set of predefined characteristics, resulting in variable predictions. Conversely, personalized AI time-to-
event models are hindered by transparency issues and biases from censored data. By measuring the prediction
consistency between subgroup analysis and AI time-to-event models, the CPU-Index framework offers a
nuanced evaluation of the bias–variance trade-off and improves the transparency and reliability of predictions.
Consistency was estimated by the concordance index of subgroup analysis-based similarity rank and model
prediction similarity rank. Subgroup analysis-based similarity loss was defined as the sum-of-the-difference
between Lung-RADS and feature-level 0-1 loss. Model prediction similarity loss was defined as squared loss.
To test our approach, we identified 3,326 patients who underwent LDCT for LCS from 1/1/2015 to 6/30/2020
with confirmation of lung cancer on pathology within one year. For each LDCT image, the lesion associated
with a Lung-RADS score was detected using a pretrained deep learning model from Medical Open Network
for AI (MONAI), from which radiomic features were extracted. Radiomics were optimally fused with patient
demographics via a positional encoding scheme and used to train a neural multi-task logistic regression time-
to-event model that predicts malignancy. Performance was maximized when radiomics features were fused
with positionally encoded demographic features. In this configuration, our algorithm raised the AUC from
0.81 ± 0.04 to 0.89 ± 0.02. Compared to standard Lung-RADS, our approach reduced the False-Positive-Rate
from 0.41 ± 0.02 to 0.30 ± 0.12 while maintaining the same False-Negative-Rate. Our methodology enhances
lung cancer risk assessment by estimating prediction uncertainty and adjusting accordingly. Furthermore, the
optimal integration of radiomics and patient demographics improved overall diagnostic performance, indicating
their complementary nature.
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1. Introduction

In medicine, subgroup analysis plays a crucial role across preven-
tion science, intervention research, and early diagnosis efforts [1–3].
In early diagnosis, subgroup analysis allows for examining whether
screening tests or diagnostic procedures differentially predict disease
status or identify early symptoms across groups defined by demograph-
ics, risk factors, biomarkers, or other characteristics. This can inform
clinical decision-making and guide targeted treatments for specific
subpopulations of patients. Fundamentally, subgroup analysis evaluates
whether and how the effects of an intervention or the predictive
value of a diagnostic test differ within and between groups defined by
baseline characteristics. For example, in patients at risk for lung cancer,
such characteristics may include high-level demographic variables, or
more complex representations of lung nodule morphology on imaging.
Subgroup analysis can be categorical or continuous, and can range from
frequently occurring to harder to capture in large samples. Despite its
broad application, subgroup analysis has many technical challenges
in its implementation (e.g., limitations in capturing individual-level
heterogeneity which leads to high variance, high reliance on limited
predefined features, low granularity, etc.).

A particularly important area of healthcare that requires robust sub-
group analysis is lung cancer screening (LCS). Lung cancer is a major
cause of cancer-related deaths [4] and therefore LCS on chest low-dose

T (LDCT) is essential to early detection and prevention. Early imple-
entation of LDCT LCS programs has been a success, most notably the
ational Lung Screening Trial (NLST), which demonstrated diagnostic
enefit over radiography and reported a 20% decrease in lung cancer
ortality [5]. However, compared to other image-based screening
odalities (e.g., mammography), LDCT diagnostic lexicons are rela-

ively immature and the current Lung Imaging Reporting and Data
ystem (Lung-RADS) may not fully capture the screened population [6].

Thus, despite the proven benefit of LDCT-based LCS, Lung-RADS is an
evolving process and efforts to improve its sensitivity and specificity
are paramount.

Due to the time dynamics of screening problems, such as LCS, robust
time-to-event analysis (i.e., statistical methods used to analyze the time
ntil a specific event of interest occurs) is essential to understanding
he timing and probability of events (e.g., diagnosis of lung cancer).

In general, time-to-event analyses have wide-reaching applications in
medicine and healthcare [7–9] and may guide informed decision sup-
port for improved patient care. Furthermore, time-to-event prediction

odels provide a novel framework for complex screening problems,
iming to improve the accuracy of predicting future events, such as
ung cancer. In recent years, the emergence of AI has significantly fur-
her enhanced these methods, enabling more sophisticated and accurate
ime-to-event analyses [10–13].

However, despite their improvements, AI-driven time-to-event mod-
els still face significant challenges of uncertainty. The uncertainty stems
mainly from two sources. First, there is a lack of interpretability.
While AI models can handle complex, high-dimensional data better
than simpler methods, they often act like black boxes. This makes
it non-trivial for clinicians to understand how decisions are made,
potentially limiting their use in patient care. Post-hoc interpretation
methods like SHAP [14], are frequently used in time-to-event predic-
tions to enhance interpretability due to its model-agnosticism [15].
However, these methods focus solely on the AI model’s perspective,
leaving uncertainties unaddressed and not accounting for to integrate
complementary information from other sources. Second, these models
struggle with censored data (i.e., incomplete information in medical
studies when patients drop out or are lost to follow-up). While mod-
ern models, such as DeepSurv [10] and its derivatives (e.g., neural

ulti-task linear regression (NMTLR) [12]), contain specific design
choices to handle censored data effectively, certain limitations persist
n scenarios involving heavily censored datasets, long-term outcomes,
nd/or rare events (e.g., LCS), where biases and reduced reliability can
2 
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impact performance. These limitations underscore the critical need for
Uncertainty Quantification (UQ) techniques in time-to-event models.

As such, researchers have proposed various approaches to address
ncertainty from all sources in time-to-event problems. Non-sampling
pproaches, such as García-Donato et al.’s Bayesian Cox regression
16], and Monte Carlo sampling methods, including Loya et al.’s deep
earning-based Bayesian framework [17] and Sokota et al.’s personal-
zed uncertainty representation [18], have shown promise. Addition-

ally, methods exploring intrinsic uncertainty have further advanced the
ield: Chapfuwa et al.’s adversarial nonparametric models improve cal-

ibration and concentration of time-to-event distributions [19], Dubey
et al.’s Bayesian Neural Hawkes Process enables uncertainty-aware
event prediction [20], and Huh et al.’s joint prognostic frameworks
integrate longitudinal and time-to-event uncertainties [21]. However,
hese approaches still face notable limitations: García-Donato’s and Huh
t al.’s methods have limited applicability to other parametric survival
odels, while Chapfuwa et al.’s and Dubey et al.’s techniques are

estricted to deep neural network-based models. Sokota’s approach is
onfined to parametric models, and Loya’s and Jacob’s methods, while
apable of identifying out-of-distribution cohorts, fail to provide UQ for
ndividual cases. Furthermore, techniques like those proposed by Chap-
uwa et al. [19] and Dubey et al. [20] lack seamless applicability to

real-time clinical scenarios. Consequently, model-agnostic, explainable
methods are needed to analyze the uncertainty of individual patient
redictions in the absence of ground truth—an essential requirement

for clinically relevant, real-world applications aimed at prospectively
monitoring patients throughout their care.

To address that need, we propose a novel concordance-based pre-
ictive uncertainty (CPU)-Index framework for survival analysis that
s capable of estimating the uncertainty of individual predictions. The
roposed framework addresses limitations of variance vs. bias for both
ubgroup analysis and personalized AI time-to-event models. We hy-
othesize that prediction uncertainty for a test patient during inference

increases with lower consistency in feature-space-similarity between
the test patient and training set patients, as observed across both

ethodologies. To test this hypothesis, we propose to represent the
ncertainty for a particular patient-of-interest by a modified concor-
ance index between a subgroup analysis-based similarity rank and a

model prediction similarity rank. Patients are then split into batches to
calculate the concordance index and reduce the effect of noise within
the outcomes data [22].

To evaluate the efficacy of our proposed approach, we employed
the CPU-Index to refine the LCS prediction generated by an individu-
alized AI time-to-event model, specifically, an NMTLR model [12]. In
addition, we introduced a positional encoding (PE)-based imaging-EHR
fusion technique [23] to further boost model performance. Specifically,

e defined subgroup analysis-based similarity loss as the sum-of-the-
ifference between the Lung-RADS score and the feature-level 0-1 loss,
nd model prediction similarity loss as squared loss. Subsequently, we
omputed the CPU-Index for each case in the test dataset. A case is
lassified as unlikely to receive a cancer diagnosis within one year of
he scan if both the model assigns a low-risk prediction and the CPU-
ndex is low. Our findings indicate that incorporating the CPU-Index
mproves LCS predictions compared to relying solely on the Lung-RADS
core or the NMTLR model.

The structure of the following sections is as follows: Section 2
introduces prior work used in our experiments. In Section 3, we present
our proposed CPU-Index methodology. Section 4 introduces the experi-
mental setup and data materials, and reports the findings. The analysis
and discussion of the results are reported in Section 5. Finally, Section 6
provides a summary of the key conclusions drawn from the study.
m ClinicalKey.com by Elsevier on December 26, 2024. 
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2. Prior work

2.1. Data fusion quantification and optimization via positional encoding

In medicine, diverse data types such as imaging (CT, MR, etc.),
umerical values like lab results are considered throughout the com-

plete healthcare spectrum. These varied data types offer complemen-
tary insights, enhancing the overall understanding of the condition.
Consequently, the development of computer-assisted models typically
involves the integration of diverse data types. Achieving optimal inte-
gration requires robust data fusion—a process that combines multiple
data sources to generate information that is more consistent, accurate,
and valuable than what individual sources provide. This consideration
is common in medical imaging scenarios, where the dominance of high-
dimensional imaging features over low-dimensional clinical features
can result in unequal contributions from individual data sources to
the model. Positional encoding has proved to be effective as a vector-
growing scheme to increase the dimension of low-dimension data to
minimize the source bias [23,24].

The fused feature can be represented as a potential function with
 distribution resembling the classical Gibbs measure, conceptualized
s random variables influenced by state functions, with these functions
epresenting distinct data sources, i.e., CT imaging, 𝑥 = {𝑥𝑖}𝑑1𝑖=1 ∈ R𝑑1 ,
s. EHR data, 𝑦 = {𝑦𝑗}𝑑2𝑗=1 ∈ R𝑑2 . Using a kernel density estimation
echnique, the marginal contribution of each source can be quantified
s radial basis functions,

𝜙1(𝑥) = 1
𝑑1

𝑑1
∑

𝑖=1
𝑒−

1
2𝜎2

[𝑥−𝑥𝑖]2 , (1)

𝜙2(𝑦) = 1
𝑑2

𝑑2
∑

𝑗=1
𝑒−

1
2𝜎2

[𝑦−𝑦𝑗 ]2 , (2)

where 𝜙𝑖 and 𝜙𝑗 represent the relative contribution of 𝑥 and 𝑦, respec-
tively, to the density of the fused feature,

𝜙12(𝑥, 𝑦) = 𝛼
𝑑1
∑

𝑖=1
𝑒−

1
2𝜎2

[𝑥−𝑥𝑖]2 + 𝛽
𝑑2
∑

𝑗=1
𝑒−

1
2𝜎2

[𝑦−𝑦𝑗 ]2 , (3)

where 𝛼 = 1
𝑑1

and 𝛽 = 1
𝑑2

represent the contribution weights.
To explore the optimal contributing ratio, a positional encoding vec-

or growing scheme is implemented to transcribe the low-dimensional
ata into a higher-dimensional space that complements the high-
imensional imaging features. Positional encoding is described
s,

𝑃 𝐸(𝑦, 2𝑘|𝑑∗2 ) = sin 𝑦

10000
2𝑘
𝑑∗2

, (4)

and

𝑃 𝐸(𝑦, 2𝑘 + 1|𝑑∗2 ) = cos 𝑦

10000
2𝑘
𝑑∗2

, (5)

where, 𝑦 = {𝑦𝑗}𝑑2𝑗=1 are the positions in the whole distribution, and 𝑑∗2
is the dimension of the encoding space. The scaling coefficient 𝛾 = 𝛼

𝛽∗
s usually defined to explore the data fusion quality, where 𝛽∗ is the
imension of the positional encoded low dimensional features. Prior
tudies have demonstrated that the optimal 𝛾 ratio varies depending on
he specific application. For instance, Zhao et al. identified an optimal 𝛾
atio of 0.5 for fusing dose-incorporated MRI imaging features and clin-
cal features for predicting brain metastasis stereotactic radiosurgery
utcomes [24]. In contrast, Wang et al. reported an optimal 𝛾 ratio of

1.0 when combining CT imaging features and blood markers to predict
portal hypertension [23].
3 
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2.2. Monai

MONAI [25], which stands for Medical Open Network for AI, is
n open-source, community-driven framework designed to facilitate

deep learning in healthcare. It is particularly focused on medical imag-
ing applications, providing specialized tools and functionalities that
treamline the development of AI models to the specific needs of

medical imaging, such as handling various imaging modalities (MRI,
CT, X-ray, etc.) and supporting advanced image processing techniques.
In this work, we used the LDCT nodule detection model from MONAI.

2.3. Neural Multi-task Linear Regression (NMTLR)

Over the past decades, a series of time-to-event models have evolved
[10–13,26–28]. The primary goal of the time-to-event model is to
estimate the probability of occurrence of the event of interest over
time and to investigate the impact of various covariates on the event
probability. Therefore, it can be modeled as either a regression prob-
lem, a classification problem, or a multi-task problem. In the regression
pproach, the focus is on predicting the time to the event of interest.
he goal is to estimate the hazard function or survival function, which
escribes the probability of an event occurring at a specific time given
he relevant covariates. In contrast, the classification approach aims
o predict whether an event will occur within a given time window,

without explicitly estimating the exact time to the event. In this case,
he response variable is binary, indicating the occurrence or non-
ccurrence of the event. Combining both ideas, it can also be modeled
s a multi-task problem, for example, NMTLR [12], predicting whether

and when the event will happen simultaneously. As the focus of this
work is not to explore different time-to-event models, we selected the

MTLR as the time-to-event model for this work.
The NMTLR model is a deep learning approach that extends the

tandard multi-task linear regression model to handle multiple related
asks simultaneously. It is particularly useful in problems where tasks

are correlated or share common structures, such as predicting survival
ates at different time intervals. The model consists of a shared input
ayer that learns a common representation across tasks, followed by
ask-specific output layers to capture task-specific parameters. This
rchitecture enables NMTLR to leverage shared information across
asks while maintaining flexibility for individual predictions, making
t well-suited for time-to-event analyses with high-dimensional and
eterogeneous data. As highlighted in recent work on hepatocellular
arcinoma (HCC) patients using the SEER database [29], NMTLR out-

performed other deep learning and machine learning models, such as
DeepSurv [10], Cox Proportional Hazards [30] and Random Survival
orest [31], in both calibration and discriminative ability, suggesting
MTLR a highly suitable choice for our study to provide the baseline

time-to-event predictions.

3. Methodology

3.1. Concordance-based Predictive Uncertainty (CPU)-Index

As illustrated in Fig. 1, the CPU-Index is based on the assumption
that when the true label of a test case is unknown, the AI model’s
rediction is less uncertain if it aligns more consistently with subgroup
nalysis conclusions.

Fig. 2 illustrates our complete methodological workflow for calcu-
lating CPU-Index while Algorithm 1 provides a step-by-step pseudo-
code workflow. The process is briefly described as follows. Given a
particular patient of interest (POI), we first calculate the subgroup
analysis-based similarity between each patient in the training set and
the POI as shown in Step 1 of Fig. 2. Based on this similarity measure-
ment, patients in the training set are split into k batches as illustrated
in Step 2 of Fig. 2. The batches are utilized to obtain a group-level
m ClinicalKey.com by Elsevier on December 26, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 1. A toy example showcasing the intuition of the CPU-Index. The process involves three key steps: (1) Mapping patient similarities from a clinical feature perspective based
on subgroup analysis, where gray dots represent training cases, and the green dot indicates the patient of interest unseen by the model with an unknown true label. (2) Adding
the AI model’s perspective by color-coding patients based on model predictions (yellow and blue representing different classes). (3) Comparing these two perspectives to determine
prediction uncertainty; the model’s prediction is more uncertain if it is less consistent with the conclusions of the subgroup analysis.
Algorithm 1 CPU-Index algorithm
Ensure: function 𝑀 ∶ trained model

𝑃 ∶ training set
𝑃 𝑂 𝐼 ∶ patient of interest
𝑘 ∶ the number of batches
𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛_𝑙 𝑖𝑠𝑡 ← []
function 𝐿𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝(𝑎, 𝑏) ∶ the loss between a and b calculated from subgroup analysis
function 𝐿𝑝𝑟𝑒𝑑 (𝑎, 𝑏) ∶ the prediction loss between a and b

procedure calculating the CPU-Index
𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑟𝑎𝑛𝑘 ← generate_linearly_spaced_vector(1, 𝑘)
for 𝑝 in 𝑃 do

𝐿𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝(𝑝, 𝑃 𝑂 𝐼) = |𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑝) − 𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑃 𝑂 𝐼)| + ||𝑃 𝑂 𝐼 ⊕ 𝑝||0
Append 𝐿𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝(𝑝, 𝑃 𝑂 𝐼) to 𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛_𝑙 𝑖𝑠𝑡

𝑃𝑠𝑜𝑟𝑡𝑒𝑑 ← sort(𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛_𝑙 𝑖𝑠𝑡)
𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑚𝑜𝑑 𝑒𝑙_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑙 𝑜𝑠𝑠_𝑙 𝑖𝑠𝑡 ← []
for 𝑖 in 𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑟𝑎𝑛𝑘 do

𝑏𝑎𝑡𝑐 ℎ𝑖 ← cases indexed from (𝑖 − 1) ∗ 𝑘 + 1 to 𝑚𝑖𝑛(𝑖 ∗ 𝑘 + 1, 𝑠𝑖𝑧𝑒(𝑃 )) in 𝑃𝑠𝑜𝑟𝑡𝑒𝑑
𝑏𝑎𝑡𝑐 ℎ𝑖_𝑝𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡 ← [𝑀(𝑝) for 𝑝 in 𝑏𝑎𝑡𝑐 ℎ𝑖]
𝑤𝑒𝑖𝑔 ℎ𝑡𝑠 ← [𝐿𝑝𝑟𝑒𝑑 (𝑝, 𝑀(𝑃 𝑂 𝐼)) for 𝑝 in 𝑏𝑎𝑡𝑐 ℎ𝑖_𝑝𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡]
𝑤𝑒𝑖𝑔 ℎ𝑡𝑠 ← 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(−𝑤𝑒𝑖𝑔 ℎ𝑡𝑠)
𝑝𝑟𝑒𝑑𝑏 ← dot product(𝑤𝑒𝑖𝑔 ℎ𝑡𝑠, 𝑏𝑎𝑡𝑐 ℎ𝑖_𝑝𝑟𝑒𝑑_𝑙 𝑖𝑠𝑡)
𝐿𝑝𝑟𝑒𝑑 (𝑃 𝑂 𝐼 , 𝑏𝑎𝑡𝑐 ℎ𝑖) ← ||M(𝑃 𝑂 𝐼) − 𝑝𝑟𝑒𝑑𝑏||2
Append 𝐿𝑝𝑟𝑒𝑑 (𝑃 𝑂 𝐼 , 𝑏𝑎𝑡𝑐 ℎ𝑖) to 𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑚𝑜𝑑 𝑒𝑙_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑙 𝑜𝑠𝑠_𝑙 𝑖𝑠𝑡

𝑚𝑜𝑑 𝑒𝑙_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑟𝑎𝑛𝑘 ← argsort(𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑚𝑜𝑑 𝑒𝑙_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑙 𝑜𝑠𝑠_𝑙 𝑖𝑠𝑡)
CPU-Index ← 1 − concordance index(𝑏𝑎𝑡𝑐 ℎ𝑒𝑑_𝑠𝑢𝑏𝑔 𝑟𝑜𝑢𝑝_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑟𝑎𝑛𝑘, 𝑚𝑜𝑑 𝑒𝑙_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦_𝑟𝑎𝑛𝑘)
return CPU-Index
calibrated model prediction, which we use to calculate the predic-
tion similarity between the POI and the calibrated in-batch subset of
patients as shown in Step 3 of Fig. 2. Finally, the personalized CPU-
Index associated with the POI is defined as the complement of the
concordance index between subgroup analysis-based similarities and
model-prediction-based similarities as illustrated in Step 4-5 of Fig. 2.

3.1.1. Subgroup analysis-based similarity loss and model prediction similar-
ity loss

Subgroup analysis-based similarity is defined based on a clinically
relevant lexicon. In this work particularly, subgroup analysis-based sim-
ilarity was defined based on the lung imaging reporting and data system
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(Lung-RADS), which is a classification system used by radiologists to
report LDCT LCS results on a scale of 0–4. An important limitation
of this nomogram is that closer scores may represent different feature
combinations, and in some circumstances, the same score is given for
different imaging findings. For example, patients with no lung nodules
and patients with nodules with benign features will receive the same
score. Therefore, we modified the subgroup analysis-based similarity
by adding an entry-level zero–one loss term. Thus, the loss function of
patient similarity for the patient of interest POI and any patient p in
the training set P is defined in Eq. (6),
𝐿𝑝𝑎𝑡𝑖𝑒𝑛𝑡(𝑝, 𝑃 𝑂 𝐼) = 𝐿𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑝, 𝑃 𝑂 𝐼) + 𝐿𝑒𝑛𝑡𝑟𝑦(𝑝, 𝑃 𝑂 𝐼), (6)
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Fig. 2. Workflow of the proposed personalized uncertainty quantification framework. Step 1: Step 1: Given a patient of interest (POI), subgroup analysis-based similarity
is calculated by comparing the POI to the remaining patients in the training set. We define the loss as the sum-of-the-difference between a clinically relevant lexicon and the
feature-level 0-1 loss. Patients are then ranked based on their similarity score. Step 2: Patients in the training set are split into batches based on their subgroup analysis-based
similarity loss (Step 1) to determine a batch-level patient similarity rank. Step 3: Batch-level calibrated model predictions are obtained by calculating the weighted average of all
predictions within the batch. Step 4: Prediction similarity is measured by calculating the squared loss between each in-batch calibrated prediction and the prediction of the POI.
The batches are then ranked based on model prediction loss. Step 5: A personalized CPU-Index for POI is defined as the complement of the concordance index of the subgroup
analysis-based similarity rank (Step 2) and the model-prediction-based similarity rank (Step 4).
where

𝐿𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑝, 𝑃 𝑂 𝐼) = |𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑃 𝑂 𝐼) − 𝑐 𝑙 𝑖𝑛𝑖𝑐 𝑎𝑙_𝑙 𝑒𝑥𝑖𝑐 𝑜𝑛(𝑝)|, (7)

and

𝐿𝑒𝑛𝑡𝑟𝑦(𝑝, 𝑃 𝑂 𝐼) = ‖𝑃 𝑂 𝐼 ⊕ 𝑝‖0. (8)

Next, we sort 𝑝 within 𝑃 in increasing order of 𝐿𝑝𝑎𝑡𝑖𝑒𝑛𝑡 and define the
subgroup analysis-based similarity rank 𝑠𝑠𝑟 for 𝑝 as the sorted index.
Eqs. (6), (7), and (8) mathematically described Step 1 of Fig. 2. To
reduce the effect of potential hazards that are not reflected within the
data and the noise inside the data [22], instead of considering the
similarity between individuals, as shown in Step 2 of Fig. 2, we split
𝑃 into 𝑘 (𝑘 = 10 in our experiment) batches 𝐵 and assign the batched
subgroup analysis-based similarity rank 𝑏𝑠𝑟 as,
(𝑏|𝑏𝑠𝑟(𝑏)) = ({𝑃𝑠𝑠𝑟, 𝑠𝑠𝑟 ∈

[(𝑖 − 1) ∗ 𝑠𝑖𝑧𝑒𝑏 + 1, 𝑖 ∗ 𝑠𝑖𝑧𝑒𝑏]}|𝑖), 𝑖 ≤ 𝑘, 𝑖 ∈ N,
(9)

where 𝑠𝑖𝑧𝑒𝑏 is the size of each batch,

𝑠𝑖𝑧𝑒𝑏 =
𝑠𝑖𝑧𝑒(𝑃 )

𝑘
.

As for the model prediction similarity, we define the model-
prediction-level loss between 𝑝𝑟𝑒𝑑𝑏 and 𝑝𝑟𝑒𝑑𝑃 𝑂 𝐼 as the prediction of
each batch and 𝑃 𝑂 𝐼 using squared error,

𝐿𝑝𝑟𝑒𝑑 (𝑝𝑟𝑒𝑑𝑃 𝑂 𝐼 , 𝑝𝑟𝑒𝑑𝑏) = ‖𝑝𝑟𝑒𝑑𝑃 𝑂 𝐼 − 𝑝𝑟𝑒𝑑𝑏‖2, (10)

where 𝑝𝑟𝑒𝑑𝑏 is the prediction of each batch defined as the weighted
average of all predictions within the batch,

𝑝𝑟𝑒𝑑𝑏 =
∑

𝑝∈𝑏
𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(−𝐿𝑝𝑟𝑒𝑑 (𝑝, 𝑃 𝑂 𝐼)) ∗ 𝑝𝑟𝑒𝑑𝑝. (11)

With the in-batch calibrated prediction defined in Eq. (11) and
illustrated in Step 3 of Fig. 2, the model-prediction similarity rank 𝑚𝑠𝑟
shown in Step 4 of Fig. 2 is then acquired by assigning the index of the
increasingly sorted 𝐿𝑝𝑟𝑒𝑑 .

3.1.2. CPU-index
The personalized CPU-Index shown in Step 5 of Fig. 2 is defined as

the complement of the concordance index between the batched patient
similarity rank 𝑏𝑠𝑟 and the model prediction similarity rank 𝑚𝑠𝑟,
CPU-Index𝑃 𝑂 𝐼 = 1 − 𝑐 𝑜𝑛𝑐 𝑜𝑟𝑑 𝑎𝑛𝑐 𝑒_𝑖𝑛𝑑 𝑒𝑥(𝑔 𝑠𝑟, 𝑚𝑠𝑟)

(12)

= 𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑡𝑦(𝑚𝑠𝑟𝑖 < 𝑚𝑠𝑟𝑗 |𝑏𝑠𝑟𝑖 < 𝑏𝑠𝑟𝑗 ).
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Fig. 3. Visualization of the final risk group prediction from combining the model’s
prediction with the CPU-Index.

3.2. CPU-index guided correction

For each case, the final outcome prediction is based on two values:
the risk probability prediction from machine learning models and the
CPU-Index representing this prediction’s uncertainty. In the context of
LDS prediction, where false negatives are more detrimental than false
positives, we classify a case as negative only when it exhibits both a
low predicted risk and a low CPU-Index, as illustrated in Fig. 3.

4. Materials and applications

In the following section, we demonstrated the proof of concept by
illustrating how the CPU-Index improves the specificity of lung cancer
detection in low-dose CT screening CT.

4.1. Data acquisition

We evaluated our approach on a dataset comprising 3,326 patients
who underwent LCS from January 1, 2015, to June 30, 2020 [32].
Cases with incomplete electronic health records (EHR), unremarkable
images with no discernible lesions, and diagnosed lung cancer ear-
lier than the screening were excluded, and only one LDCT series per
patient was selected. As a result, 1,767 patients were included and
m ClinicalKey.com by Elsevier on December 26, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Fig. 4. The workflow of the improving specificity of lung cancers on low dose screening CT.
each patient’s dataset consists of seven EHR features, including both
demographics (i.e., gender, race, ethnicity, and age) and smoking status
(i.e., tobacco used years, tobacco packs per day, and years since quit-
ting), one LDCT series, a corresponding Lung-RADS score, subsequent
lung cancer diagnosis outcomes, and the diagnosis or last follow-up
time. Among these patients, 113 were diagnosed with lung cancer
during the entire tracking period, with 90 diagnosed within one year
of the LCS.

4.2. Experimental design

As shown in Fig. 4, in Step 1, we begin by detecting LDCT nodules
using the MONAI lung nodule CT detection model [25]. Since the
MONAI model does not guarantee complete accuracy in nodule identi-
fication, all detection results were reviewed and quality-controlled by
a chest radiologist to ensure reliability. In Step 2, radiomics features-
including nodule size-based, spatial statistics-based, intensity-based,
texture-based, and wavelet transform-based-were extracted [33]. Fea-
tures with a correlation higher than 0.95 were clustered, and only the
one most correlated with the clinical outcome was retained, result-
ing in 172 selected radiomics features. Concurrently, low-dimensional
EHR features were encoded into higher dimensions using positional
encoding. We selected a series of dimensional ratios (0.5, 1.0, and 2.0)
between the positionally encoded low-dimensional EHR features and
high-dimensional radiomics features. The dataset was then split into
training, validation, and test datasets at a ratio of 7:1:2 using Monte
Carlo stratified sampling, as shown in Step 3. A time-to-event model
was trained on the NMTLR model. In Step 4, after training, the CPU-
Index for each case in the test set was calculated. With the model
prediction at the one-year time point and the calculated CPU-Index for
each case, the final CPU-Index corrected outcome was determined in
Step 5.

To validate our approach, we subjected it to a 1000-permutation test
(Steps 3 to 5) for robust evaluation. We compared the results with lung
cancer predictions based on the Lung-RADS score alone, the NMTLR
model alone, and our method at its optimal operating point. Lung-
RADS scores of 3 or higher were categorized as predicting a lung cancer
diagnosis within a year, while scores below 3 predicted no diagnosis.
For the NMTLR model, we evaluated its performance using traditional
metrics, such as the concordance index (C-index) and integrated Brier
score (IBS). Additionally, at the one-year mark from the initial scan,
we assessed model classification performance using metrics such as the
area under the receiver operating characteristic curve (AUC), accuracy
(ACC), false positive rate (FPR), and false negative rate (FNR). For
Lung-RADS, serving as a baseline, we reported ACC, FPR, and FNR. To
estimate the variance of each procedure, we performed permutation
tests with 1000 iterations. To evaluate statistically significant differ-
ences in performance metrics across these permutations, we utilized
Wilcoxon signed-rank tests, where 𝑝 < 0.05 was considered statistically
significant.
6 
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Fig. 5. The average ROC curves for the time-to-event model with and without UQ
correction of 1000 permutation tests, comparing with Lung-RADS operating point. The
blue line represents the ROC curve for the NMTLR model performance without CPU-
Index correction, while the orange curve represents the overall performance adding
CPU-Index correction.

4.3. Results

The average ROC curves from the 1000 permutation tests are shown
in Fig. 5, with the Lung-RADS operating point included for comparison.
Table 1 summarizes the key performance metrics.

Positional encoding appears to moderately enhance the model’s
performance, with a 𝛾 ratio of 1.0 yielding slightly better results across
multiple metrics. This suggests that a 𝛾 ratio of 1.0 may be near
optimal for balancing the predictive capabilities of the model, as shown
in Table 1. As shown in Fig. 5, under this input setting, the UQ
algorithm increased the model’s AUC from 0.81±0.04 to 0.89±0.02.
Compared with the Lung-RADS lexicon, the pipeline could improve
the operating point by lowering the FPR from 0.41±0.02 to 0.30±0.13
while maintaining a nearly zero FNR.

5. Discussion

Our proposed CPU-Index assumes that predictions are more un-
certain at high discordance of similarity metrics between subgroup
m ClinicalKey.com by Elsevier on December 26, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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Table 1
Statistical results of the 1000 permutation tests.

Model C-index IBS AUC ACC FPR FNR

Lung-RADS N/A N/A N/A N/A 0.615 ± 0.023 0.406 ± 0.024 0.01 ± 0.021

radiomics only NMTLR 0.747 ± 0.058 0.065 ± 0.006 0.815 ± 0.045 0.744 ± 0.083 0.261 ± 0.092 0.173 ± 0.104
NMTLR with CPU-Index N/A N/A 0.889 ± 0.02 0.707 ± 0.119 0.309 ± 0.126 0.0 ± 0.0

radiomics + EHR NMTLR 0.746 ± 0.061 0.065 ± 0.007 0.814 ± 0.048 0.749 ± 0.085 0.255 ± 0.093 0.179 ± 0.106
NMTLR with CPU-Index N/A N/A 0.888 ± 0.021 0.7 ± 0.126 0.316 ± 0.134 0.0 ± 0.0

radiomics + PE EHR (PE ratio = 0.5) NMTLR 0.754 ± 0.057 0.065 ± 0.007 0.820 ± 0.045 0.766 ± 0.082 0.237 ± 0.090 0.188 ± 0.101
NMTLR with CPU-Index N/A N/A 0.888 ± 0.021 0.704 ± 0.127 0.312 ± 0.134 0.0 ± 0.0

radiomics + PE EHR (PE ratio = 1.0) NMTLR 0.755 ± 0.056 0.068 ± 0.007 0.813 ± 0.044 0.753 ± 0.081 0.250 ± 0.089 0.185 ± 0.100
NMTLR with CPU-Index N/A N/A 0.888 ± 0.021 0.716 ± 0.119 0.3 ± 0.126 0.0 ± 0.0

radiomics + PE EHR (PE ratio = 2.0) NMTLR 0.744 ± 0.056 0.069 ± 0.007 0.806 ± 0.047 0.741 ± 0.088 0.263 ± 0.097 0.184 ± 0.102
NMTLR with CPU-Index N/A N/A 0.886 ± 0.021 0.712 ± 0.12 0.304 ± 0.127 0.0 ± 0.0

Note: Metrics including AUC, ACC, FPR, and FNR were compared using the Wilcoxon signed-rank test, with 𝑝 < 0.001 for all comparisons.
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analysis conclusions and personalized AI model predictions. Our ap-
roach enables us to provide each patient an uncertainty quantification
core of the personalized AI model predictions, without knowing the

ground truth event status. Our method conceptually works by combin-
ng a naive data-driven model with clinically relevant domain knowl-
dge, which serve as orthogonal axes of model response. Uncertainty
s estimated as high when these axes are adversarial. By applying

PE to balance the dimension between high-dimensional radiomics and
low-dimensional demographics, we demonstrated an improvement in
prediction performance [23].

In comparison to previous work, our proposed CPU-Index addresses
several limitations in existing diagnostic approaches based solely on
ither subgroup analysis [1–3] or personalized AI time-to-event models

[7–9]. In the context of the LCS problem, subgroup analysis-based
ung-RADS encounters challenges such as accurately representing in-

dividual variations, an over-reliance on a restricted set of predefined
characteristics, and insufficient temporal granularity, resulting in ex-
lainable yet highly variable predictions [6]. To address these chal-

lenges, subgroup analysis features for LCS are evolving, with alternative
criteria to the U.S. Preventive Services Task Force (USPSTF) guidelines
demonstrating improved sensitivity and specificity for identifying high-
isk populations, including racial and ethnic minorities [34]. Further
efinements in socio-demographic criteria also aim to improve adher-

ence to follow-up screening and better target underrepresented groups
35], which may help combat social determinants of health and other

disparities. In addition, improvements in liquid biopsy technology are
on the rise [36], in particular, cell-free DNA and circulating tumor DNA,
which have been linked to treatment response dynamics [37] and CT
maging [38] for lung cancer. As these technologies improve, they will

enable better similarity metrics to improve the fidelity of our CPU-Index
formalism.

Personalized AI time-to-event models suffer from uncertainties aris-
ing from their lack of transparency and biases stemming from censored
data, hindering their applicability in real-world scenarios [16–18,39].
By combining insights from both AI modeling and domain expertise,
the CPU-Index framework offers a nuanced evaluation of this bias and
ariance trade-offs. Additionally, from the data perspective, viewing
ubgroup analysis-based predictions as reflections of conclusions drawn
rom distinct datasets complements the training data used for AI model
evelopment.

In clinical practice, the CPU-Index provides actionable guidance
for interpreting AI model predictions. Importantly, we note that the
CPU-Index complements clinical judgment by a trained radiologist and
an help them better interpret the diagnostic scenario. For example,
igher CPU-Index values indicate greater concordance between clini-
al features (i.e., based on Lung-RADS and demographics) of patient
imilarity and the AI model’s predictions, suggesting more reliable
redictions. Conversely, lower CPU-Index values signal potential dis-

crepancies between clinical features and AI predictions, warranting
additional scrutiny by a human in the loop. Our findings suggest that an
mprovement in AUC from 0.81 to 0.89 indicates that the model is bet-

ter at distinguishing between positive and negative cases. A reduction
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in FPR from 0.41 to 0.30 means about 110 fewer false positive results
per 1000 screenings, assuming the prevalence and screening threshold
remain constant. This is important for the efficacy of LCS programs,
because reductions in false positives could significantly reduce unnec-
ssary follow-up procedures, patient anxiety, and healthcare costs. We
ote that this initial FPR is slightly higher than previously reported
32], which is due to our exclusion of unremarkable images with no

discernible lesions from which to define radiomic expression.
Regarding the UQ problem in time-to-event analysis, while previous

ethods predominantly focus on non-sampling or Monte Carlo sam-
ling techniques to estimate uncertainty at a population level [16–

18,39], our approach uniquely provides individualized UQ. This inno-
vation is particularly relevant in clinical settings where personalized
predictions are crucial but ground truth data may be unavailable or
incomplete. By integrating subgroup analysis-based similarity metrics
with personalized AI time-to-event models, our framework leverages
both data-driven modeling and clinical domain knowledge, enhancing
the interpretability and reliability of predictions. Moreover, the par-
titioning of patients into batches for concordance index calculation
mitigates noise and improves the robustness of uncertainty estimates
[22].

While our CPU-Index framework advances toward more transparent
nd clinically relevant UQ tailored for time-to-event analysis, it is

not without limitations. First, the reliance on subgroup analysis-based
conclusions may introduce biases or inaccuracies, particularly if the
ubgroup characteristics are not sufficiently diverse or representative of
he broader population. Additionally, this reliance may limit the frame-
ork’s applicability to true time-to-event predictions. In this study,
lthough we employed a time-to-event model, we focused on event-at-
ime predictions, specifically assessing the probability of lung cancer
ccurrence within one year. This focus was driven by the clinical need
o evaluate short-term risk for prioritizing follow-up screening and
arlier intervention. Extending the framework to true time-to-event
redictions would require two key conditions: (1) A model capable of
redicting the survival function or cumulative hazard function over
ontinuous or discrete time horizons; and (2) a clinically relevant
ubgroup analysis formalism from which to measure similarity. The
ime-to-event model we used (NMTLR) satisfies the first condition and
an estimate time-to-event probabilities. However, the second condi-
ion is currently non-trivial for this application. Lung-RADS, which
e used for uncertainty estimation, focuses on short-term event-at-

ime risk evaluation and does not directly estimate long-term risk.
herefore, while our CPU-Index framework may not directly apply to
ime-to-event predictions for the application studied in this paper, it is
 generalized concept that could be extended to other scenarios where
ong-term subgroup similarity measures are more readily-available in
linical practice.

Second, the CPU-Index framework’s computational complexity and
resource requirements may limit its applicability. Specifically, the
framework requires evaluating all cases in the training set for each
test case, which can pose challenges in resource-constrained healthcare
settings or with large, incomplete training datasets. Future work could
m ClinicalKey.com by Elsevier on December 26, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.
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explore optimization strategies, such as reducing computational over-
head through customizing a subset of representative samples instead
of spanning all samples in the training set or leveraging parallel
processing and cloud computing. Additionally, developing efficient pre-
processing pipelines tailored to specific clinical datasets may enhance
its scalability and practicality.

Third, while the framework aims to enhance transparency and
interpretability, the complexity of its algorithms and calculations may
hinder its usability for non-expert users. Simplifying the interpretive
framework while maintaining transparency and predictive accuracy is
critical to bridging this gap. For example, future work could focus on
creating visual decision-support tools [40] or integrating interpretable
AI techniques [41] to present CPU-Index outputs in a more intuitive
nd actionable format for clinical use.

Finally, the performance of CPU-Index is influenced by various
yperparameters, for example, the choice of the number of batches.

In our implementation, we heuristically set the number of batches to
reate batches of approximately 100 patients each (given our training

set of 1237 samples divided into 10 groups). While this choice yielded
reasonable results, it was based on practical considerations rather than
systematic optimization. The batch partitioning involves an inherent
trade-off: too small a group may lead to unstable concordance calcu-
lations and high variance in uncertainty estimates, while too large a
roup may smooth over important local patterns and reduce sensitivity

to individual patient characteristics. Future work could explore adap-
tive methods or develop theoretical frameworks for optimal batch size
selection based on data characteristics and clinical requirements.

6. Conclusion

In summary, we developed a CPU-Index to estimate the uncer-
tainty of individual predictions by AI models without knowing the true
labels by incorporating subgroup analysis conclusions. Our method con-
tributes to improved lung cancer risk assessment, and the incorporation
f positional encoding further enhances overall performance.
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