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Connection between corner vortices and shear layer instability in flow past
an ellipse
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We investigate, by numerical simulation, the shear layer instability associated with the outer layer
of a spiral vortex formed behind an impulsively started thin ellipse. The unstable free shear layer
undergoes a secondary instability. We connect this instability with the dynamics of corner vortices
adjacent to the tip of the ellipse by observing that the typical turnover time of the corner vortex
matches the period of the unstable mode in the shear layer. We suggest that the corner vortex acts
as a signal generator, and produces periodic perturbation which triggers the instabiliy29%
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Introduction. Vortex roll-up behind a sharp-edged body Flow setup and computational methodlge consider an
is a familiar phenomenon. In laboratory experiments, onémpulsively started uniform flow normal to a thin ellipse of
finds that at high Reynolds numbers secondary vortices forrthickness ratich=1/8. The Reynolds number based on the
along the outer layer of the primary vortex. A classical ex-major axisL and flow velocity at infinityU, is Re=UglL/v,
ample of these beautiful secondary vortices can be found iwhere v is the kinematic viscosity. In our computatioh,
the work of Piercé. =2, Uy=1, and Re=10000.

However in those classical studies the origin of these  To simulate flow past an ellipse, we solved the Navier—
secondary vortices was not clear. In an early work, PullinStokes equation in elliptic coordinateg,6). Elliptic coor-
and Perr¢ argued that the secondary vortices were the condinates can be mapped onto Cartesian coordinates via a con-
sequence of a shear layer instability, which could be trigformal transformationx+iy=coshfu+i6). Consequently,
gered by oscillations in the experimental device. Using lineafh® Poisson equation appearing in the Navier—Stokes solver
stability results for an exponentially stretching vortex sheef1@s constant coefficients in the coordinated,of), and it
in an inviscid fluid and numerical studies of a self-similar ¢@n be solved efficiently via Fast Fourier transform. The
vortex sheed? they further predicted that the primary vortex tWo-dimensional Navier—Stokes equation for vorticity has
should be stable in a viscous flow. the following form in (x,0);

Recently, Koumotzakos and Shiekimulated accelerat- A(Sw)ldt +(Su-V)w=rAw, )
ing flows behind a plate using a vortex method, and they
observed secondary structures similar to those seen in V-(\/Su)=0, (2
Pierce’s experiment. These authors argued that the instabilityerey is the velocity field,w the vorticity field, andS the
is intrinsic to accelerating flows. scaling factorS(u, #) = cosi u—co 6.

There is also the possible contamination by numerical  our Navier—Stokes solver is based on an explicit fourth-
noise. For example, Krashyias shown that both the round- order compact finite difference scheme, recently developed
off error and insufficient spatial resolution can introduce eX-py Liu and Liu A detailed description of the method can be
traneous vortices, as have Brown and Minfon. found in Ref. 8. At the far field boundary, we impose the

In this work, we reexamine, by direct numerical simula- standard outer flow boundary condition for vorticity and use
tion, the shear layer instability which produces the secondanhe potential solution of flow past an ellipse for the stream
vortices. We consider a special case of impulsively startedunction. The numerical convergence study of the method
uniform flow normal to a thin ellipse, as opposed to accelerhas been established in Ref. 9.
ating flows studied by previous authcrSecondary vortices To resolve the flow, we keep at least 10 grid points along
are observed at sufficiently high Reynolds numbers, withthe radial direction in the boundary layer, and at least 30
Re=10000 in our case. The periodicity associated with thepoints in the azimuthal direction around each tip, whose
secondary vortices is found to be independent of the numeriength scale is estimated by its radius of curvature. Because
cal resolution. More interestingly, we also find a connectionthe elliptic coordinates stretch exponentially at the far field,
between the instability and the dynamics of small cornemwe can afford a large computational domain. In our studies,
vortices? which are adjacent to the tips of the ellipse and arewe chose the outer radius to be ten times the semimajor axis,
induced by the primary vortices. which is sufficiently far away from the region of vorticity
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FIG. 1. Vortex growth as a function of time. Re
=10 000. Grid resolution 5121024, with 1024 in the

X : azimuthal direction. The gray scale corresponds to the
strength of the vorticity. To save space, only the upper-
right quarter of the region of the whole computation is

2k shown. The detailed structure of the corner vortex in-
175k side the black box marked in platd) is shown in Fig.
£ 2.

15F
125
> 1
0.75F
0.5
0.25}

structure during the time of intereste (0,2.5). We also backflow of the primary vortex. The corner vortex system
monitored the vorticity field near the far field to ensure that ithas been observed in previous experiméritewever its in-

was sufficiently small. For our computations its magnitudefluence on the shear layer instability has not been studied.
was on the order of the machine error. The computation was In Fig. 2 we present the detailed structure of the second-
carried out using double precision for two resolutions: 512ary corner vortex. After an impulsive start, the corner vortex
X 1024 and 1024 2048. Finally, a single precision compu- grows and reaches a quasisteady state. The elliptical asym-
tation was performed to evaluate the effect of the round-ofimetry of this vortex can result in a periodic variation in the
errors. local vorticity field.

Resultsln plates(a)—(d) of Fig. 1, we show the vorticity We plot the time series of the vorticity at various loca-
contour plot as time evolves up te=2.5. The vortex devel- tions, marked by letters A—G in Fig. 2, inside the corner
opment consists of two staggd) initial roll-up and growth  vortex. The results show periodic oscillations after an initial
of a primary vorteXplate(a)], and(2) formation and growth transient time. Fourier transforming the time series, we iden-
of periodic secondary vortices along the shear ldpéates tify a period of oscillation, corresponding t6~0.2. This
(b)—(d)]. period turns out to match the temporal periodicity of the

In addition to the primary vortex, we observe a hierarchyshear layer as we show below.
of small vortices at the corner bounded by the ellipse and the To estimate the temporal periodicity of the secondary
shear layer, as shown inside the marked box in gldteThe  vortex structure along the shear layer, we animated the com-
hierarchy resembles the corner vortices in driven flows insid@uted time-dependent vorticity field. When playing back the
a box® In our case, the small vortices are induced by theanimation, we placed a marker at a fixed point in the frame

—e— A
—v— B
0.06 - FIG. 2. The left-hand panel shows the
0.05 ——E zoom-in view of the vorticity contour
: - plot near the tip of the ellipse. The
0.04 computation mesh is also shown. The

right-hand panel shows the time evo-
lution of the stream function at various

points near the tip. The same types of
oscillations are seen in the vorticity

field. However because the vorticity

field is large inside the corner vortex,

the superposed oscillations are not as
obvious visually. We therefore chose

to use the stream functioW for our

R T TR diagnostics.
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b FIG. 3. (&) Comparison of the vorticity field

a 2500
i 512x1024 1 with different resolutions: 5121024, and
Of 1024x2048 2000 1024x2048. The inset shows the zoom-in
[ view in the time window[0.15,0.4. The
vorticity is measured at the tip of the ellipse,
which is most sensitive to the resolutidin)
Contamination due to round-off errors in
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and counted the number of frames between two successiflows, and when it exceeds a critical Reynolds number, the
secondary vortices passing by the marker. This interval corsecondary vortices appear.
responds to the period. We repeated the same procedure for Summary.We have computed flow past an ellipse at
three consecutive vortex pairs, and the measurements weRe=10000 to investigate the secondary vortex structure
consistent. The estimated period is 0.21, approximately thalong the free shear layer of the primary vortex. We found
same as the oscillation period of the corner vortex as showthat this secondary structure is connected with the dynamics
previously. of the corner vortex. Our study does not yet rule out the

To get an intuitive estimate of wheth@f~0.2 is a  possibility that the oscillation in the corner vortex is simply
physical time scale, we note that in the corner vortex and theesponding to the shear layer instabilities. Future work is
shear layer|w|~30-58, which corresponds to a rotational required to further distinguish these two possibilities.
rate O =w/2~15-29. This then gives a periot= 2/}
~0.2-0.4. Thus the observed period is consistent with the
rotational rate of fluids in the corner vortex. ACKNOWLEDGMENTS
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