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Abstract. We consider a multi-dimensional scalar wave equation with memory corresponding to
the viscoelastic material described by a generalized Zener model. We deduce that this relaxation system
is an example of a non-strictly hyperbolic system satisfying Majda’s block structure condition. Well-
posedness of the associated Cauchy problem is established by showing that the symbol of the spatial
derivatives is uniformly diagonalizable with real eigenvalues. A long-time stability result is obtained
by plane-wave analysis when the memory term allows for dissipation of energy.
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1. Introduction

The theory of viscoelasticity describes materials exhibiting a combination of both
elastic solid (deformation eventually disappears when the load is removed) and viscous
(Newtonian) fluid characteristics. Wave propagation in viscoelastic unbounded or semi-
bounded media is a relevant idealization in some important real-world problems arising
in different fields: geophysics, applied mechanics, material science, acoustics etc.

Viscoelastic materials are modeled by constitutive laws relating the stress to the
history of the strain and entering the equation of motion in the form of a convolution
integral in time. The resulting integro-differential equation can be written as a system
of partial differential equations with a relaxation term and described in Fourier space
as an exponential evolution operator acting on a vector representing the initial condi-
tions. The system is hyperbolic when the matrix appearing in the evolution operator is
diagonalizable with real eigenvalues and its eigenspace is complete. If, in addition, all
eigenvalues are distinct, the system is said to be strictly hyperbolic. One of the impor-
tant motivations to study strictly hyperbolic systems is that they are invulnerable to
perturbations by lower order terms. Unfortunately, many interesting examples of hy-
perbolic systems describing various physical phenomena are not strictly hyperbolic and
it is not known in general whether such systems remain well-posed under perturbations
by lower order terms.
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Majda and Osher [12] proved that the strict hyperbolicity assumption used in the
construction of Kreiss’ symmetrizer could be replaced by a weaker assumption called
the “block structure condition” which is satisfied by several non-strictly hyperbolic
systems including Maxwell’s equations of electrodynamics, the linearized shallow water
equations and the Euler equations of gas dynamics. However, each system of interest
required a separate verification of this property due to the lack of a universal criterion.
This was the state of affairs until Métivier [14] extended Majda’s work establishing
the block structure condition for a class of hyperbolic systems with characteristic fields
of constant multiplicity. It is common to refer to such systems simply as “constantly
hyperbolic”, to wit,

Definition 1.1. The operator

L=∂t+

d∑
j=1

Aj(x,t)∂xj

with Aj ,B :Rd×(0,T )→MN×N (R) is called constantly hyperbolic if there exist an inte-
ger m≥1, natural numbers l1,. ..,lm and real valued functions λ1,. ..,λm analytic away
from the origin such that for any ξ∈Sd−1 it holds that

det

λIN +

d∑
j=1

ξjAj

=

m∏
i=1

(λ+λi(ξ))
li , l1 + .. .+ lm=N

where all the eigenvalues λi(ξ) of the symbol A(ξ) =
∑d
j=1 ξjAj are real, semi-simple

and satisfy λ1(ξ)<...<λm(ξ).
Let us reiterate: If the eigenvalues are semi-simple instead of being simple as in

the case of strict hyperbolicity, and their multiplicities remain constant as (ξ1,. ..,ξd)∈
Rd \{0} varies, then the corresponding system is called constantly hyperbolic. The
notion of constant hyperbolicity is a slight generalization of the concept of strict hy-
perbolicity where the analysis is technically simpler and had allowed more extensive
studies in the past. In Section 3 we demonstrate the hyperbolicity of our relaxation
system by proving that A(ξ) is diagonalizable with real eigenvalues and verify that the
diagonalization is well-conditioned on Sd−1. More straightforwardly, hyperbolicity can
be shown by appealing to the general structure of the eigenvalues of the system since
constant hyperbolicity implies hyperbolicity (see Remark 3.1).

In a bounded domain, existence and uniqueness of solutions can be established using
the treatment of Lions and Magenes [10] under minimal assumptions on the regularity
of the coefficient functions. A classical analysis regarding equations of the type (2.4) is
attributed to Dafermos [5]. Here, the domain can be the whole space, but the require-
ments on the initial conditions exclude plane waves. Blazek et al. [3] proved the same
result for systems of equations. Kim [9] obtained existence and uniqueness of solutions
using Friedrichs mollifier techniques assuming that the coefficient functions are smooth
in space and time while allowing plane-wave initial conditions. Kim’s analysis also mo-
tivates the development of a microlocal analogue of the correspondence principle [16] in
a parametrix construction starting from plane-wave initial values.

Following Bécache et al. [1] we rewrite the system with relaxation based on a gener-
alized Zener solid in first-order partial-differential form. They obtained well-posedness
under minimal assumptions on the regularity of the coefficient functions, again, ex-
cluding plane-wave initial conditions. Here, we study well-posedness of solutions of
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such a system with constant (time- and space-independent) coefficients in the whole
space through a plane-wave synthesis and analysis. This is motivated by the calcu-
lations carried out by Richards [21] pertaining to plane-wave reflection in bimaterials
with relaxation. Richards observed that in a configuration of two distinct homogeneous
isotropic viscoelastic solids separated by a plane interface, at particular scattering angles
plane waves will exhibit an exponentially growing behavior. We will study the stability
of solutions in a generalized Zener solid with an explicit dependence on the parameters
controlling the relaxation.

Solem et al. [23] considered one-dimensional linear hyperbolic systems with a stable
relaxation term of rank 1 and pointed out a connection between stability properties
of such systems and the theory describing general properties of polynomial roots. In
particular, it was shown in [23] that strictly hyperbolic relaxation systems are linearly
stable if and only if the roots of the homogeneous and equilibrium characteristic poly-
nomials interlace on the imaginary axis. In Section 4 we invoke the Routh-Hurwitz
theorem to determine the number of roots of the characteristic polynomial in the right
half-plane and mention in Section 5 how the location and multiplicity of roots influence
stability.

In [1], Bécache et al. defined the following quantity as the energy of the model

E(q,σ,t) =
1

2
‖q̇‖2ρ+

1

2
‖ε(q)‖2C +

1

2
‖s‖2(D−C)−1 . (1.1)

The sum of the first two terms in (1.1) corresponds to the standard energy in the purely
elastic case and the final term is the norm of the difference between viscoelastic and
elastic stresses. It turns out that in the absence of the source term the energy decreases
in time if the absorption condition holds, i.e. D−C is positive definite where D and C
are two symmetric tensors of order four that define the constitutive law (see Ref. [1] for
details and notation). In Section 5 we perform a similar analysis in Fourier space and
comment on the conditions of energy dissipation.

2. Memory kernels and relaxation
For an arbitrary point x∈Rd in the medium let the vector-valued displacement of

the point from its position in an undeformed state be q(x,t), let σij(x,t) be the stress

tensor with (∇·σ)i=
∑d
j=1

∂σij
∂xj

, let F (x,t) represent the external forces per unit volume

and ρ(x) denote the density. The description of wave propagation in a general medium
is expressed by the equation of motion

ρq̈i= (∇·σ)i+Fi, i= 1,. ..,d (2.1)

which follows from the conservation of linear momentum.
The so-called Zener or standard linear solid model provides the most general linear

constitutive law between the stress, strain and their rates of change

σ+τσσ̇=MR(ε(q)+τεε̇(q)), (2.2)

relating them by three parameters: the deformation modulus MR, the stress relaxation
time τσ and the strain relaxation time τε [11].

Rewriting Equation (2.2) in the following equivalent form

∂t

(
et/τσσ

)
=MR

τε
τσ
∂t

(
et/τσε

)
+
MR(τσ−τε)

τ2
σ

et/τσε
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and integrating it choosing the initial condition σ0 =MR
τε
τσ
ε0 results in the stress-strain

relation

σ=MR
τε
τσ
ε+

MR(τσ−τε)
τ2
σ

∫ t

0

e−(t−s)/τσε(s)ds. (2.3)

The first term on the right-hand side of (2.3) represents Hooke’s law and the second
term indicates that the stress at any given instance depends upon the strain at all
preceding times. The idea that stress depends both on the present and past value of
strain is attributed to Boltzmann. Early contributions are also due to Maxwell, Kelvin
and Voigt [20].

Dividing both sides of (2.1) by the density and taking the divergence results in

φtt=∇·
(

1

ρ
∇·σ

)
+f

where f =∇·(F/ρ) and φ=∇·q are scalar-valued functions. Substituting Equation
(2.3) into to the above equation and remembering that the strain tensor and the displace-
ment vector satisfy εij = 1/2(∂qi/∂xj+∂qj/∂xi) we arrive at the second-order integro-
differential equation modeling viscoelastic motion

φtt=∇·
(
c2(x)∇φ

)
+

∫ t

0

∇·
(
a(x)e−(t−s)/τσ∇φ(x,s)

)
ds+f, (2.4)

where c2(x) = 2µ+λ
ρ

τε
τσ

, a(x) = 2µ+λ
ρ

(τσ−τε)
τ2
σ

and deformation modulus is written in terms

of the Lame parameters, that is MR= 2µ+λ.
When an elastic body is under the effect of hydrostatic pressure, i.e. when a pressure

of the same magnitude acts on every unit area on the surface of the body, both the strain
and stress tensors are determined by their diagonal components. In fact, if p(x,t) is the
pressure field, then σij =−pδij . In this case a derivation similar to the one carried
out above yields a scalar wave equation for p=−1/3tr(σ) describing the propagation of
acoustic waves in a viscoelastic fluid [18] (see also [4] for the derivation of a scalar wave
equation for the trace of the strain tensor or the dilatation).

Quite often a combination of weightless springs and dashpots filled with viscous
fluids is used as a good mechanical model that describes anelastic phenomena and the
behavior of a variety of materials. A spring and a dashpot connected in series yield the
Maxwell model, while being connected in parallel give the Kelvin-Voigt model. These
models can be obtained from the Zener model in (2.2) by taking the limits τε→∞ and
τσ→0, respectively.

The generalized Zener model consists of a number of Zener elements combined in
parallel and takes into account multiple relaxation times. The total stress acting on the
system is the sum of the stresses experienced by each element σ=

∑k
i=1σi. Denoting

the deformation moduli and relaxation times by

MRi=
E1iE2i

E1i+E2i
,τσi=

ηi
E1i+E2i

=
1

bi
,τεi=

ηi
E2i

,i= 1,2,. ..,k,

where E1i,E2i are the Young moduli of the springs in the ith element and ηi is the
viscosity of the corresponding dashpot, we arrive at the generalization of Equation (2.4)

with c2 =
∑k
i=1MRiτεiτ

−1
σi

φtt=∇·
(
c2(x)∇φ

)
+

k∑
i=1

∫ t

0

∇·
(
ai(x)e−bi(x)(t−s)∇φ(x,s)

)
ds+f. (2.5)
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We will assume that

[A1] c2 is positive bounded away from zero, bi>0 are pairwise distinct and no
sign condition is imposed on the coefficients ai 6= 0, unless otherwise stated.

Since (2.5) is linear, by considering the difference of solutions we can study the
effect of the sufficiently regular external force separately with zero initial conditions.
Therefore, in what follows, we put f = 0.

Initial value problem. Let d≥1 be the space dimension and x= (x1,x2,. ..,xd)∈
Rd be the space and t∈R the time variables. It is convenient to formulate the equation
of motion derived in the previous section as a Cauchy initial value problem

L(∂t,∇)U =∂tU+

d∑
j=1

Aj(x,t)∂xjU+B(x,t)U = 0,

U(x,0) =U0, (2.6)

where U :Rd×(0,T )→Rn is the unknown vector, Aj ,B :Rd×(0,T )→Mn×n are matrix
coefficients with n=kd+d+1≥3 being the size of the system, and the initial datum
U0 :Rd→Rn is given in a suitable function space. Using the substitution

u=−φt(x,t),

v= c2(x)∇φ+

k∑
i=1

∫ t

0

ai(x)e−bi(x)(t−s)∇φ(x,s)ds,

wi=−ai(x)∇φ+bi(x)

∫ t

0

ai(x)e−bi(x)(t−s)∇φ(x,s)ds, i= 1,2,. ..,k,

v= (v1,v2,. ..,vd), wi= (wi1 ,wi2 ,. ..,wid)

Equation (2.5) can be recast as a system

ut+∇·v= 0,

vt+c2(x)∇u+

k∑
i=1

wi= 0,

(wi)t−ai(x)∇u+bi(x)wi= 0, i= 1,2,. ..,k,

which can be written as
u
v
w1

...
wk


t

+


0 ∇· 0 ·· · 0
c2∇ 0 0 ·· · 0
−a1∇ 0 0 ·· · 0

...
...

...
...

...
−ak∇ 0 0 ·· · 0


︸ ︷︷ ︸

A(∇)


u
v
w1

...
wk

+


0∑k
i=1wi
b1w1

...
bkwk


︸ ︷︷ ︸
B(u,v,w1,...,wk)T

= 0.

Expanding A(∇) as A(∇) =
∑d
j=1Aj(x,t)∂xj we arrive at (2.6) with U =

(u,v1,. ..,vd,w11
,w12

,. ..,wkd) and U0 = (u0,v0
1 ,. ..,v

0
d,w

0
11
,w0

12
,. ..,w0

kd
).

One can recover φ(x,t) by first noting that

φt(x,t) =−u,
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∇φ(x,t) =
v−
∑k
i=1

wi
bi

c2 +
∑k
i=1

ai
bi

and then using the fundamental theorem for gradients. The condition c2 +
∑k
i=1

ai
bi
>0

is motivated on physical grounds (see assumption [A2] and Remark 4.1) and bi>0 by
assumption [A1], so ∇φ in the second equality is well-defined.

3. Well-posedness of the initial value problem
For the rest of the paper we shall consider the constant-coefficient systems, i.e.

assume that Aj ,B are independent of (x,t) and denote the principal part of L given in
(2.6) by

L=∂t+

d∑
j=1

Aj∂xj .

The Fourier transform of (2.6) in the spatial directions gives

Ût+ i

d∑
j=1

ξjAjÛ+BÛ = 0, Û(ξ,0) = Û0 (3.1)

where ξ= (ξ1,ξ2,. ..,ξd)∈Rd is a vector dual to x. Using the notation A(ξ) =∑d
j=1 ξjAj we can write the solution of this ordinary differential equation as Û(ξ,t) =

e−t(B+iA(ξ))Û0(ξ). When U0∈Hs
(
Rd
)n

, by taking the inverse Fourier transform one
can show that the Cauchy problem (2.6) admits a continuous solution

U(x,t) =
1

(2π)d/2

∫
Rd
eix·ξÛ(ξ,t)dξ (3.2)

with values in Hs if

sup
ξ∈Rd,0≤t≤T

∥∥∥e−t(B+iA(ξ))
∥∥∥<∞

which is equivalent (see, for example, proposition 2.I.1 in [19]) to

sup
ξ∈Rd

∥∥∥e−iA(ξ)
∥∥∥≤CT <∞ (3.3)

with some constant CT . Throughout this paper, we will use the matrix norm ‖M‖=
sup|x|=1 |Mx| induced by the Euclidean norm. Notice that the property (3.3) does not
depend on time once t 6= 0 since tA(ξ) =A(tξ). We can also absorb the minus sign by
virtue of the change ξ→−ξ.

Definition 3.1. The operator L is called hyperbolic if the corresponding symbol A(ξ)
satisfies (3.3).

Proposition 3.1. Assume that [A1] holds. The matrix A(ξ) is uniformly diagonal-
izable with real eigenvalues: There exists P (ξ) such that P (ξ)A(ξ)P−1(ξ) is diagonal
and real for all ξ∈Rd and

sup
ξ∈Sd−1

∥∥P−1(ξ)
∥∥‖P (ξ)‖<∞.
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Proof. A simple computation shows that the characteristic equation of A splits as

λkd+d−1
(
λ2−c2|ξ|2

)
=pkd+d−1

1 (λ,ξ)p±(λ,ξ).

where p1(λ,ξ) =λ and p±(λ,ξ) =λ2−c2|ξ|2. Observe that p± and p1 are homogeneous
polynomials in λ,|ξ| and λ, respectively, with real and simple roots, and they have no
common root for ξ∈Rd\{0}. Let

Ej =
∏
i6=j

A−λiIn
λj−λi

, for j= 1,2,3 and n=kd+d+1

with λ1 = 0 and λ2,3 =±c|ξ|. One can check that Ej ’s are mutually orthogonal and

complete in the sense that EiEj = δijEj and
∑3
j=1Ej = In and verify that the following

decomposition takes place

A(ξ) =

3∑
j=1

λjEj .

Next we define a positive-definite matrix H(ξ) =
∑
jE

T
j Ej which admits a unique

square root. Then, since A(ξ)T =
∑3
j=1λjE

T
j , it follows that H(ξ)A(ξ) =A(ξ)TH(ξ)

which implies that H1/2(ξ)A(ξ)H−1/2(ξ) is symmetric and diagonalizable in an or-
thonormal basis. Hence A(ξ) =P−1(ξ)D(ξ)P (ξ) where D(ξ) is diagonal with real eigen-
values and P (ξ) =O(ξ)H1/2(ξ) with an orthogonal matrix O(ξ).

It remains to show that P (ξ) is uniformly bounded. We note that

|y|2 =

∣∣∣∣∣∣
3∑
j=1

Ejy

∣∣∣∣∣∣
2

≤3

3∑
j=1

|Ejy|2 = 3|H1/2y|2

and thus
∥∥H−1/2(ξ)

∥∥≤√3.
Using the Lagrange multiplier method with the constraint |x|= 1 or calculating the

largest eigenvalue of ETj Ej we find that

‖E1‖2 = 1+
1

c4

k∑
i=1

a2
i ,

‖E2‖2 =‖E3‖2 =
1+c2

4

(
1

c2
+1+

1

c4

k∑
i=1

a2
i

)
,

are independent of ξ, and therefore

|H1/2y|2 =

3∑
j=1

|Ejy|2≤
(
‖E1‖2 +‖E2‖2 +‖E3‖2

)
|y|2≤ C

2

3
|y|2.

We conclude that the diagonalization is well-conditioned because∥∥P−1(ξ)
∥∥‖P (ξ)‖=

∥∥∥H−1/2(ξ)
∥∥∥∥∥∥H1/2(ξ)

∥∥∥≤C
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independently of ξ.

Definition 3.2. The Cauchy problem for a constant coefficient operator L is weakly
(strongly) well-posed if for any initial data U0∈Hs

(
Rd
)

with s>0 (s= 0), there is a

unique solution U(t)∈C
(
R+,Hs(Rd)

)
that satisfies

‖U(t)‖L2(Rd)≤Ke
αt‖U0‖Hs(Rd) , t≥0,

with K>0 and α∈R independent of time.

Lemma 3.1 (Strang, [25]). If
∥∥etA∥∥≤C for t≥0, then

∥∥et(A+B)
∥∥≤CetC‖B‖.

Proof. This is an exponential analogue of another lemma due to Strang [24] which
states that if ‖Mn‖≤C for n≥0, then ‖(M+R)n‖≤CenC‖R‖. Setting M =eεA and
R=eε(A+B)−M with sufficiently small ε we have ‖Mn‖≤C for n≥0 and hence

‖(M+R)n‖=
∥∥∥enε(A+B)

∥∥∥≤CenC‖R‖
Let n tend to infinity, while keeping t=nε fixed. In this limit we have nR→ tB and the
lemma follows.

Theorem 3.1. Assume that [A1] holds. The operator L is hyperbolic and the Cauchy
problem for a constant coefficient operator L is strongly well-posed.

Proof. By Proposition 3.1, we have that for all ξ∈Rd and t≥0∥∥∥eitA(ξ)
∥∥∥≤∥∥P−1eitDP

∥∥≤C,
where D is diagonal with real entries, eitD is unitary and therefore leaves the matrix
norm invariant. Hence L is hyperbolic.

Using (3.2), Parseval’s relation and hyperbolicity of L we obtain the following esti-
mate

‖U(t)‖L2(Rd) =
∥∥∥e−t(B+iA(ξ))Û0(ξ)

∥∥∥
L2(Rd)

≤
∥∥∥e−t(B+iA(ξ))

∥∥∥∥∥∥Û0(ξ)
∥∥∥
L2(Rd)

≤CetC‖B‖‖U0‖L2(Rd)

completing the claim. The last inequality follows from Lemma 3.1. Note that since A
and B do not commute, it does not hold that

∥∥et(A+B)
∥∥=

∥∥etAetB∥∥ for t>0.

Remark 3.1.
(1) If L is hyperbolic and U0∈Hs

(
Rd
)n

, then application of Grönwall’s inequality shows
that there is a continuous solution with values in Hs if one has a variable-coefficient
lower order term B(x)∈L∞

(
Rd
)
. In this case the Cauchy problem for L+B is also

strongly well-posed. Hyperbolicity and well-posedness is a property of A alone.

(2) In the notation of Def. 1.1 we have λ1 =−c|ξ|, λ2 = 0 and λ3 = c|ξ| with l1 = 1, l2 =
kd+d−1 and l3 = 1. Operator L is constantly hyperbolic, that is, the symbol A(ξ) is
diagonalizable with real eigenvalues and the algebraic multiplicities of eigenvalues
remain constant as ξ ranges along Sd−1. Strict or constant hyperbolicity implies
hyperbolicity [2].
In [14], Métivier provided a few examples of systems satisfying the block struc-
ture condition, including the equations of linear elasticity. Our results show that
this important class of systems can be enlarged by the generalized Zener model of
viscoelasticity.
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(3) The matrices Aj do not commute, i.e. AjAi 6=AiAj for i 6= j. Hence they cannot be
simultaneously diagonalized and Equation (3.1) cannot be transformed to a system
consisting of n uncoupled scalar equations.

(4) Equation (3.1) can be viewed as a linearization of a system with a non-linear source
term Q(U) about a constant state in equilibrium. Typically, the source term is
divided by a small parameter that determines the rate of relaxation towards equi-
librium. To ensure the existence of a well-behaved zero relaxation limit, Yong [26]
introduced the so-called stability criterion which necessitates that for any t>0 there
is C(U)>0 such that ∥∥∥eδQU (U)+iA(ξ)

∥∥∥≤C(U)

for all δ≥0, ξ∈Rd with {U :Q(U) = 0} 6=∅. Here, QU (U) denotes the Jacobian ma-
trix of the source term. This criterion is somewhat stronger than the hyperbolicity
condition and reduces to that when δ= 0 (cf. Equation (3.3) and the inequality
preceding it).

4. Plane-wave analysis
Waves at a sufficiently large distance from the source behave locally like plane waves.

This motivates one to study the behavior of plane waves as possible growth modes in
the system under consideration.

Theorem 4.1. Let Aj, B be constant-coefficient matrices and d≥1. The eigenvalues
of Φ(iξ) =−(B+ iA(ξ)) are roots of the characteristic polynomial

p̃(λ,ξ1,. ..,ξd) =p(λ,|ξ|)λd−1
k∏
i=1

(λ+bi)
d−1 (4.1)

where p(λ,|ξ|) is the characteristic polynomial corresponding to the system derived from
the one-dimensional wave equation with k memory terms and ξ∈R replaced by |ξ|=√
ξ2
1 + ·· ·+ξ2

d ∈R:

p(λ,ξ) = (−1)k

(
λ2 +c2ξ2 +ξ2

k∑
i=1

ai
λ+bi

)
k∏
i=1

(λ+bi).

Proof. Perform the following similarity transformation: pre-multiply λIkd+d+1−
Φ(iξ) by the block diagonal matrix

S=



|ξ| 0 .. . . .. 0
0 Ξ1 0 .. . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 .. . 0 Ξk+1

, where Ξj =



ξ1 ξ2 ξ3 .. . ξd
0 ξ2 ξ3 .. . ξd

0 0
. . .

. . .
...

...
...

. . .
. . . ξd

0 0 .. . 0 ξd


are identical for all 1≤ j≤k+1, and post-multiply by its inverse S−1. Successively
develop the resulting determinant by the columns containing a single non-zero element,
thereby accounting for the factor λd−1

∏k
i=1(λ+bi)

d−1 in Equation (4.1).

Without loss of generality, we assume that 0<b1<b2< ·· ·<bk and consider g(λ) =
(−1)kp(λ,ξ). Since the characteristic polynomial in higher dimensions splits as in (4.1),
it suffices to analyze the roots of p(λ,ξ).
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Proposition 4.1 (All a’s are negative). Let d= 1, ξ 6= 0 and ai<0 for all 1≤ i≤k,
then i) if g(0)>0, all eigenvalues of Φ(iξ) have negative real parts; ii) if g(0) = 0, then
one eigenvalue is zero and the rest have negative real parts; iii) if g(0)<0, then only
one eigenvalue of Φ(iξ) is positive and all other eigenvalues have negative real parts.

Proof. If ξ= 0, the eigenvalues are −bi<0 and 0 with multiplicity 2.
If ξ 6= 0, the function g(λ)/

∏k
i=1(λ+bi) has k simple poles at −bi and since all ai’s

have the same sign, there are k−1 real roots ri of p(λ,ξ) between these poles.

i) Assume that g(0)>0, then a further real root lies between 0 and −b1, as follows
from

g(−b1)g(0) = ξ2a1

∏
i 6=1

(bi−b1)g(0)<0

and the Intermediate value theorem. The function g(λ) can now be factored as

(λ2 +αλ+β)

k∏
i=1

(λ−ri) = 0.

The coefficients α,β are real since ri’s are real for all 1≤ i≤k. Denote by rk+1 and rk+2

the two roots (real or complex conjugate) of λ2 +αλ+β, then by Vieta’s theorem,

rk+2 +rk+1 =−
k∑
i=1

bi−
k∑
i=1

ri<0,

rk+2 ·rk+1 =g(0)/

k∏
i=1

|ri|>0.

If rk+1 and rk+2 are complex conjugate, then <(rk+1) =<(rk+2)<0. If rk+1 and rk+2

are real, then rk+1<0 and rk+2<0. The same result was obtained in [13].

ii) If g(0) = 0, then in addition to a real root ri between each consecutive −bi’s,
there is a zero eigenvalue since the constant term in p(λ,ξ) is absent and therefore one
can factor out λ:

λ(λ2 +αλ+β)

k−1∏
i=1

(λ−ri) = 0.

By Vieta’s theorem

rk+2 +rk+1 =−
k∑
i=1

bi−
k−1∑
i=1

ri<0,

rk+2 ·rk+1 =g′(0)/

k−1∏
i=1

|ri|=−ξ2

(
k∑
i=1

ai
b2i

)
k∏
i=1

bi/

k−1∏
i=1

|ri|>0

where rk+1 and rk+2 are roots (real or complex conjugate) of λ2 +αλ+β and we used
g(0) = 0 in the expression for g′(0). As in case i) above, rk+1 and rk+2 have negative
real parts.

iii) Now assume that g(0)<0. Since there are k−1 real roots ri between k simple
poles −bi, g(λ) can be written as

(
λ3 +αλ2 +βλ+γ

)k−1∏
i=1

(λ−ri) = 0.
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By Vieta’s theorem

rk+1 +rk+2 +rk =−
k∑
i=1

bi−
k−1∑
i=1

ri<0,

rk+1 ·rk+2 ·rk = (−1)k+2g(0)/

k−1∏
i=1

ri=−g(0)/

k−1∏
i=1

|ri|>0 (4.2)

where rk,rk+1,rk+2 are roots of the cubic equation. An algebraic equation of an odd
degree and real coefficients must posses at least one real root. Equation (4.2) implies
that this root is positive. The other two roots of the cubic equation have negative real
parts.

Proposition 4.2 (All a’s are positive). Let d= 1, ξ 6= 0 and ai>0 for all 1≤ i≤
k, then two eigenvalues of Φ(iξ) have positive real parts and the others are real and
negative.

Proof. If ξ= 0, the eigenvalues are −bi<0 and zero (two-fold).
If ξ 6= 0, then the k−1 real roots ri of p(λ,ξ) strictly interlace −bi for 1≤ i≤k. By

the Intermediate value theorem there is also a root to the left of −bk =−maxi bi since
limλ→−∞p(λ,ξ) = +∞ and p(−bk,ξ) =−ξ2ak

∏
i 6=k(bk−bi)<0. Thus for some real α,β

we have the factorization

(λ2 +αλ+β)

k∏
i=1

(λ−ri) = 0.

By Vieta’s theorem the roots rk+1,rk+2 of λ2 +αλ+β satisfy

rk+2 +rk+1 =−
k∑
i=1

bi−
k∑
i=1

ri>0,

rk+2 ·rk+1 =g(0)/

k∏
i=1

|ri|>0

where g(0)>0, since ai>0 for all 1≤ i≤k. In fact, g(λ)>0 holds for λ≥0, so rk+1 and
rk+2 cannot be real and positive. Hence they are complex conjugate with positive real
parts.

For each 1≤ i≤k−1, the signs of ai and ai+1 determine the number of jumps of

the rational function g(λ)/
∏k
i=1(λ+bi) from ±∞ to ∓∞ as the argument changes from

−bi+1 to −bi. If the signs of ai and ai+1 are the same as in Propositions 4.1 and 4.2,
then there is a real root between −bi+1 and −bi corresponding to a jump from ±∞ to
∓∞. This greatly simplifies the problem of root location which becomes increasingly
complicated if the signs of the ai’s are arbitrary, as can already be seen from the simplest
example with k= 2. In this case, the characteristic polynomial takes the form

g(λ) =p(λ,ξ) =λ4 +(b1 +b2)λ3 +(c2ξ2 +b1b2)λ2

+ξ2(a1 +c2b1 +a2 +c2b2)λ+ξ2(c2b1b2 +a1b2 +a2b1).

Let ∆i denote the ith Hurwitz determinant obtained from the coefficients of the
characteristic equation, so that

∆1 = b1 +b2, ∆2 =

∣∣∣∣ b1 +b2 g′(0)
1 c2ξ2 +b1b2

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
b1 +b2 g′(0) 0

1 c2ξ2 +b1b2 g(0)
0 b1 +b2 g′(0)

∣∣∣∣∣∣ ,
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∆4 =

∣∣∣∣∣∣∣∣
b1 +b2 g′(0) 0 0

1 c2ξ2 +b1b2 g(0) 0
0 b1 +b2 g′(0) 0
0 1 c2ξ2 +b1b2 g(0)

∣∣∣∣∣∣∣∣=g(0)∆3.

Proposition 4.3. Let d= 1, ξ 6= 0 and a1a2<0, then

• i) when g(0)>0 all eigenvalues have negative real parts if ∆2>0 and ∆3>0,
otherwise two roots have negative real parts and two roots have non-negative
real parts;

• ii) a) when g(0) = 0 and g′(0)>0, one root is zero and three have negative
real parts if ∆2>0, otherwise there is one zero and one negative root and two
roots with non-negative real parts; b) when g(0) = 0 and g′(0) = 0, two roots with
negative real parts and zero (two-fold); c) when g(0) = 0 and g′(0)<0, there is
a zero and a positive root and two roots with negative real parts;

• iii) when g(0)<0, one root is negative and three roots have positive real parts
if ∆2<0 and ∆3<0, otherwise one root is positive and three roots have non-
positive real parts.

Proof. If ξ= 0, the eigenvalues are −b1,−b2 and zero (two-fold).

i) Let ξ 6= 0 and assume g(0)>0. If ∆4 6= 0, according to the Routh-Hurwitz theorem
[6] the number of roots of g(λ) in the right half-plane <(λ)>0 is determined by the
number of variations of sign in the sequence{

1,∆1,
∆2

∆1
,
∆3

∆2
,
∆4

∆3

}
=

{
1,b1 +b2,

∆2

b1 +b2
,
∆3

∆2
,g(0)

}
.

Hence all the roots of g(λ) have negative real parts if and only if ∆2>0 and ∆3>0.
As long as ∆4 6= 0, in all other cases including the singular case ∆2 = 0 there are exactly
two variations of sign and therefore two roots with positive real parts, say r1 and r2.
For some real α,β we can write

(λ2 +αλ+β)

2∏
i=1

(λ−ri) = 0.

By Vieta’s theorem the roots r3,r4 of λ2 +αλ+β satisfy

r3 +r4 =−(b1 +b2 +r1 +r2)<0,

r3 ·r4 =g(0)/r1r2>0

i.e. r3 and r4 have negative real parts. Moreover, if a1<0 and a2>0, these roots are
real: one root lies between −b1 and 0 since g(−b1)g(0) = ξ2a1(b2−b1)g(0)<0 and the
other is to the left of −b2 because g(−b2) =−ξ2a2(b2−b1)<0 and limλ→−∞g(λ) = +∞.

If ∆4 = 0, then ∆3 = 0 =g′(0)∆2−g(0)(b1 +b2)2. Evaluating ∆2 from the latter
equation and comparing it with the original definition of ∆2, we can conclude that
∆2>0 and g′(0)>0. In this case the polynomial enjoys the following factorization(

λ2 +
g′(0)

b1 +b2

)(
λ2 +(b1 +b2)λ+

∆2

b1 +b2

)
= 0.

Hence there is a pair of conjugate pure imaginary roots ±i
√
g′(0)/(b1 +b2) and two

roots with negative real parts.
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ii) Assume g(0) = 0 and ξ 6= 0. Since the constant term is absent, we can factor out
λ and reduce the problem of root location for g(λ) to that for which the last Hurwitz

determinant is ∆3 =g′(0)∆2. a) When g′(0)>0 the sequence
{

1,b1 +b2,
∆2

b1+b2
,g′(0)

}
has no sign variation if ∆2>0 and hence no roots of λ3 +(b1 +b2)λ2 +(c2ξ2 +b1b2)λ+
g′(0) = 0 are in the right-half plane. If ∆2<0, there are two sign variations and hence two
roots with positive real parts and one negative root. If ∆2 = 0, the roots are −(b1 +b2)
and ±i

√
g′(0)/(b1 +b2); b) When g′(0) = 0, one can factor out λ again and obtain a

quadratic equation whose roots have negative real parts; c) When g′(0)<0, then ∆2>0.
There is one positive root, say r1, corresponding to a single sign variation in the sequence{

1,b1 +b2,
∆2

b1+b2
,g′(0)

}
. By Vieta’s theorem the remaining two roots satisfy

r2 +r3 =−(b1 +b2 +r1)<0,

r2 ·r3 =−g′(0)/r1>0

i.e. r2 and r3 have negative real parts.

iii) Assume that g(0)<0 and ξ 6= 0. If ∆4 6= 0, ∆2<0 and ∆3<0, by the Routh-
Hurwitz theorem there are three roots in the right-half plane. Since in this case we also

have g′(0) = ∆3+g(0)(b1+b2)2

∆2
>0, it follows from the Descartes’ rule of signs that only

one of those three roots is real. In other cases where ∆4 6= 0, including the singular case

∆2 = 0, there is only one variation of sign in the sequence
{

1,∆1,
∆2

∆1
, ∆3

∆2
, ∆4

∆3

}
and hence

only one root in the right-half plane.
If ∆4 = 0, then ∆3 = 0 and g′(0)∆2<0. From the factorization(

λ2 +
g′(0)

b1 +b2

)(
λ2 +(b1 +b2)λ+

∆2

b1 +b2

)
= 0

we conclude that there is a pair of conjugate pure imaginary roots ±i
√
g′(0)/(b1 +b2)

and a pair of real roots of opposite sign if g′(0)>0 and ∆2<0. If g′(0)<0 and ∆2>0
we have ±

√
|g′(0)|/(b1 +b2) and two roots with negative real parts.

Proposition 4.3 exhausts all the possibilities for the fourth-order monic polynomial.
When more than two ai’s have arbitrary signs, eigenvalues can be studied in a similar
manner using higher order Hurwitz determinants even if some of those determinants
vanish.

Remark 4.1.
(1) Requiring all the ai’s to be negative is equivalent to saying that the relaxation kernel

K(t) =−
∑k
i=1aie

−bit is a totally monotone function.

(2) Recall that when deriving the model equation we identified ai,bi and c2 with the

physical parameters of the system, namely, bi= τ−1
σi >0, c2 =

∑k
i=1MRiτεiτ

−1
σi >0

and ai=MRi(1−τεiτ−1
σi )bi<0. Since

g(0) = ξ2

(
c2 +

k∑
i=1

ai
bi

)
k∏
i=1

bi= ξ2
k∏
i=1

bi

k∑
i=1

MRi>0,

case iii) of Proposition 4.1 yielding a positive eigenvalue is unphysical. In contrast,
g(0)>0 is fulfilled in Proposition 4.2, but it is assumed that ai>0 (no dissipation),
so a pair of complex conjugate roots with positive real parts is also unphysical.
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(3) The Routh-Hurwitz theorem provides necessary and sufficient conditions for all of
the roots of a polynomial with real coefficients to lie in the left-half of the complex
plane. It allows one to locate the roots just by employing the coefficients of the
polynomial which are functions of the parameters controlling the relaxation.

(4) Algebraic multiplicities of eigenvalues λj(ξ) remain constant as ξ ranges along Sd−1

and λj(ξ) are analytic functions away from the origin, admitting a power series
expansion in ξ. This fact will be used in Proposition 4.4 below to investigate the
limiting behavior of the eigenvalues as |ξ|→0 and |ξ|→∞.

Proposition 4.4. Let d= 1 and λj(iξ) for 1≤ j≤k+2 be the eigenvalues of Φ(iξ),
then as |ξ|→0,

<(λj(iξ)) =


−bj−ξ2 aj

b2j
+O

(
ξ4
)

for j= 1,2,. ..,k

±<
(
iξ
√
c2 +

∑k
i=1

ai
bi

)
+ξ2

∑k
i=1

ai
2b2i

+O
(
ξ3
)

for j=k+1,k+2

if c2 +
∑k
i=1

ai
bi
6= 0 or

<(λj(iξ)) =


−bj−ξ2 aj

b2j
+O

(
ξ4
)

for j= 1,2,. ..,k

ξ2
∑k
i=1

ai
b2i

+O
(
ξ4
)

for j=k+1

0+O
(
ξ4
)

for j=k+2

otherwise, and as |ξ|→∞

<(λj(iξ)) =

{
<(rj)+O

(
ξ−1
)

for j= 1,2,. ..,k
1

2c2

∑k
i=1ai+O

(
ξ−2
)

for j=k+1,k+2

Proof. Let ζ= iξ∈C and recall that Φ(ζ) =−(B+ζA). Following Kato [7], [8]
we treat −B as an unperturbed matrix subjected to a small perturbation −ζA. The
characteristic equation of Φ(ζ) is an algebraic equation in λ of degree k+2 and its roots
are branches of analytic functions of ζ with only algebraic singularities. Hence, in the
neighborhood of ζ= 0 the following expansion is valid:

λj(ζ) =λ
(0)
j +ζλ

(1)
j +ζ2λ

(2)
j + .. .

for 1≤ j≤k+2. Here λ
(0)
j are the eigenvalues of the unperturbed matrix −B and satisfy

the equation

p(λ,−iζ)
∣∣∣
ζ=0

= (−1)k
(
λ(0)

)2 k∏
i=1

(
λ(0) +bi

)
= 0

so that

λ
(0)
j =

{
−bj for j= 1,2,. ..,k

0 for j=k+1,k+2

Solving

(−1)k
dp

dζ

∣∣∣∣
ζ=0

=λ(0)λ(1)
k∏
i=1

(
λ(0) +bi

)(
2+

k∑
i=1

λ(0)

λ(0) +bi

)
= 0 and

d2p

dζ2

∣∣∣∣
ζ=0

= 0
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one obtains

λ
(1)
j =

{
0 for j= 1,2,. ..,k

±
√
c2 +

∑k
i=1

ai
bi

for j=k+1,k+2.

The next order correction comes from solving d2p
dζ2

∣∣∣
ζ=0

= 0 and d3p
dζ3

∣∣∣
ζ=0

= 0, thus

λ
(2)
j =


aj
b2j

for j= 1,2,. ..,k

−
∑k
i=1

ai
b2i

for j=k+1

0 for j=k+2

or λ
(2)
j =

{aj
b2j

for j= 1,2,. ..,k

−
∑k
i=1

ai
2b2i

for j=k+1,k+2

depending on whether c2 +
∑k
i=1

ai
bi

= 0 or not, respectively. Equation d3p
dζ3

∣∣∣∣
ζ=0

= 0 also

implies that λ
(3)
j = 0 for 1≤ j≤k.

When |ξ|→∞ we can write Φ(ζ) =−(B+ζA) =−ζ
(
A+ζ−1B

)
and consider

−ζ−1B to be a small perturbation of −A. The eigenvalues µj
(
ζ−1

)
of A+ζ−1B are

related to those of Φ(ζ) by λj(ζ) = ζµj
(
ζ−1

)
. The characteristic polynomial of A+νB

is

q(µ,ν) = (−1)k

(
µ2−c2−

k∑
i=1

νai
µ+νbi

)
k∏
i=1

(µ+νbi)

where ν= ζ−1. In the neighborhood of ν= 0 we have

µj(ν) =µ
(0)
j +νµ

(1)
j +ν2µ

(2)
j + .. .

for 1≤ j≤k+2. The eigenvalues of −A satisfy q (µ,ν)
∣∣∣
ν=0

= 0, hence

µ
(0)
j =

{
0 for j= 1,2,. ..,k

±c for j=k+1,k+2

Computing dq
dν

∣∣∣∣
ν=0

= 0 we find

(−1)k
(
µ(0)

)k−1
(((

µ(0)
)2

−c2
) k∑
i=1

(
µ(1) +bi

)
+2
(
µ(0)

)2

µ(1)−
k∑
i=1

ai

)
= 0

so that

µ
(1)
j =

{
rj for j= 1,2,. ..,k

1
2c2

∑k
i=1ai for j=k+1,k+2

where rj are roots of dkq
dνk

∣∣∣∣
ν=0,µ

(0)
j =0

= 0. One can show that

µ
(2)
j =∓

 1

2c3

k∑
i=1

aibi+
3

8c5

(
k∑
i=1

ai

)2

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for j=k+1,k+2 by solving d2q
dν2

∣∣∣∣
ν=0

= 0.

In higher dimensions the analysis is similar but lengthier, remember that ξ should
be replaced by |ξ| therein.

5. Stability

Well-posedness of the Cauchy problem described in Definition 3.2 does not rule out
the possibility of exponential growth of solutions as time approaches infinity unless α
is arbitrarily small or negative. The following definition helps to eliminate exponential
instabilities.

Definition 5.1. The Cauchy problem for a constant coefficient operator L is weakly
(strongly) stable if it is weakly (or strongly) well-posed and the solution U(t) satisfies

‖U(t)‖L2(Rd)≤C(1+ t)s‖U0‖Hs(Rd) , t≥0

with C>0 and s>0 (s= 0).

A necessary and sufficient condition for weak stability is that all eigenvalues λj(ξ)
of Φ(iξ) =−(B+ iA(ξ)) satisfy <(λj(ξ))≤0. Furthermore, if the Jordan blocks corre-
sponding to the eigenvalues with <(λj(ξ)) = 0 are trivial, then the problem is strongly
stable (cf. Lemma 2.1 in [23]).

Theorem 5.1. Let d≥1, ξ 6= 0, ai<0 for all 1≤ i≤k and g(0)≥0, then the Cauchy
problem for a constant coefficient operator L is strongly stable.

Proof. By Proposition 4.1, all eigenvalues of Φ(iξ) satisfy <(λj(ξ))≤0.
Since the characteristic polynomial in higher dimensions splits as in Equation (4.1),

p̃(λ,ξ1,. ..,ξd) =p(λ, |ξ|)λd−1
∏k
i=1(λ+bi)

d−1, the algebraic multiplicity m of the zero
eigenvalue is m=d−1 when g(0)>0 and m=d if g(0) = 0. In both cases, m does
not change as ξ ranges along Sd−1 and moreover algebraic multiplicity is equal to

the geometric multiplicity. Note that λ(ξ) = 0 solves ∂m−1

∂λm−1 p̃(λ,ξ1,. ..,ξd) = 0, but

ξ ·∇ξ ∂m−1

∂λm−1 p̃(λ,ξ1,. ..,ξd) 6= 0 at λ= 0. Hence Φ(iξ) is of principal type at λ= 0 and the
Jordan blocks corresponding to zero eigenvalues are all trivial. By Parseval’s relation

‖U(t)‖L2(Rd) =
∥∥∥etΦ(iξ)Û0(ξ)

∥∥∥
L2(Rd)

=
∥∥∥P−1(ξ)etJP (ξ)Û0(ξ)

∥∥∥
L2(Rd)

≤
∥∥P−1(ξ)

∥∥‖P (ξ)‖‖U0‖L2(Rd) ,

where J is the Jordan matrix. By Theorem 3.1 the Cauchy problem for L is
strongly well-posed and Proposition 4.4 implies that <(λj(ξ))9+∞ as |ξ|→+∞, so∥∥P−1(ξ)

∥∥‖P (ξ)‖ is bounded by a constant C>0 and the claim follows.

Remark 5.1. For Φ(iξ) to be of principal type at λ= 0, it is important that the
constant algebraic multiplicity is equal to the geometric multiplicity. Consider, for
example, case ii) (b) of Proposition 4.3: the geometric multiplicity of the zero eigenvalue
is less than its algebraic multiplicity in any dimension d≥1. Hence Φ(iξ) is not of
principal type at λ= 0 and the Jordan matrix contains a non-trivial block. The Cauchy
problem for L is only weakly stable in that case.

Métivier and Zumbrun [15] classify the multiple eigenvalues as algebraically reg-
ular, geometrically regular and nonregular. Eigenvalues of constant multiplicity are
algebraically regular. If in addition they are semi-simple, then they are geometrically
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regular. Simple roots are geometrically regular by definition. Geometric regularity im-
plies Majda’s block structure condition and provides an optimal characterization of this
condition.

Energy decay. Consider for a moment the following viscoelastic wave equation

φtt−c2∆φ+

∫ t

0

K(t−s)∆φ(s)ds= 0, x∈Rd, (5.1)

together with the associated standard energy in Fourier space

Ê(ξ,t) =
1

2
|φ̂t|2 +

1

2
c2|ξ|2|φ̂|2.

The following assumptions on the relaxation kernel K(t) are commonly accepted in the
literature:

[A2] K: R+→R+ is a non-increasing C1 function and l= c2−
∫∞

0
K(s)ds>0,

[A3] K(0)>0 and K ′(t)<0 for all t≥0.

Examples of kernels satisfying the above assumptions are K(0)(1+ t)
−ν

,
K(0)e−(1+t)ν with properly chosen ν >1 and K(0)>0.

Assumption [A2] has a physical origin: in statics, i.e. when σ(x,t) = σ̄(x) and
ε(x,t) = ε̄(x) Equation (2.3) reduces to

σ̄(x) =ρ

(
c2−

∫ ∞
0

K(s)ds

)
ε̄(x)

so [A2] states that in a viscoelastic medium the equilibrium stress modulus is positive
(cf. Equation (75) in Ref. [20] where the equilibrium stress function is considered).

Theorem 5.2. Assume that K(t) satisfies [A2] and [A3], then the energy of the
solution to (5.1) decreases in time.

Proof. Multiplying the Fourier transform of (5.1),

φ̂tt+c2|ξ|2φ̂−
∫ t

0

|ξ|2K(t−s)φ̂(s)ds= 0,

by φ̂∗t and taking the real part we compute

1

2

d

dt

(
|φ̂t|2 +c2|ξ|2|φ̂|2

)
= |ξ|2<

(
φ̂∗t

∫ t

0

K(t−s)φ̂(s)ds

)
= |ξ|2<

(
φ̂∗t (K ∗ φ̂)(t)

)
where we utilized the first of the following convolutions:

(K ∗f)(t) =

∫ t

0

K(t−s)f(s)ds,

(K~f)(t) =

∫ t

0

K(t−s)|f(s)−f(t)|2ds,

defined for any real or complex valued function f(t). Using the second definition one
can compute

d

dt

(
(K~ φ̂)(t)−|φ̂|2

∫ t

0

K(s)ds

)
= (K ′~ φ̂)(t)−2<

(
φ̂∗t (K ∗ φ̂)(t)

)
−K(t)|φ̂|2.
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Hence substituting the previously obtained expression for <
(
φ̂∗t (K ∗ φ̂)(t)

)
and using

[A2] and [A3] we have

1

2

d

dt

(
|φ̂t|2 + |ξ|2|φ̂|2

(
c2−

∫ t

0

K(s)ds

)
+ |ξ|2(K~ φ̂)(t)

)
=|ξ|2

(
(K ′~ φ̂)(t)−K(t)|φ̂|2

)
≤0. (5.2)

By introducing the following functional:

0≤Ê(ξ,t) =
1

2
|φ̂t|2 +

1

2

(
c2−

∫ t

0

K(s)ds

)
|ξ|2|φ̂|2 +

1

2
|ξ|2(K~ φ̂)(t)

then, by (5.2), Ê(ξ,t) is non-increasing and obeys Ê(ξ,t)≤Ê(ξ,0) = Ê(ξ,0), and on the
other hand Ê(ξ,t)≤ c2l−1Ê(ξ,t) so the uniform decay of Ê implies the uniform decay of
Ê.

In the present manuscript we have dealt with the kernel K(t) =−
∑k
i=1aie

−bit with
constant coefficients and in this case (2.5) reduces to (5.1). If we choose ai<0 and

c2−
∫ ∞

0

K(s)ds= c2 +

k∑
i=1

ai
bi

=g(0)>0,

then assumptions [A2], [A3] hold true and Theorem 5.2 shows that the energy of an
absorbing medium dissipates over time. Moreover, since −K ′(t)/K(t) is bounded from
below by a positive constant: −K ′(t)/K(t)>bk = maxi bi>0, it is possible to show that
the energy decays exponentially [17,22].

Finally note that the absorption condition, D−C>0, stated in Ref. [1] is equivalent
to ai<0. Indeed, by definition ai<0 holds whenever τεi>τσi (see Remark 4.1). In
the mono-dimensional Zener model C=µ and D=µτε/τσ, therefore, D−C>0 reduces
τε>τσ. In higher dimensions, τεi>τσi for all 1≤ i≤k, ensures that the tensor D−C is
positive definite.
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