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Purpose: This study investigated the prognostic potential of intra-treatment PET radiomics data in
patients undergoing definitive (chemo) radiation therapy for oropharyngeal cancer (OPC) on a
prospective clinical trial. We hypothesized that the radiomic expression of OPC tumors after 20 Gy
is associated with recurrence-free survival (RFS).
Materials and Methods: Sixty-four patients undergoing definitive (chemo)radiation for OPC were
prospectively enrolled on an IRB-approved study. Investigational 18F-FDG-PET/CT images were
acquired prior to treatment and 2 weeks (20 Gy) into a seven-week course of therapy. Fifty-five
quantitative radiomic features were extracted from the primary tumor as potential biomarkers of early
metabolic response. An unsupervised data clustering algorithm was used to partition patients into
clusters based only on their radiomic expression. Clustering results were naı̈vely compared to residual
disease and/or subsequent recurrence and used to derive Kaplan-Meier estimators of RFS. To test
whether radiomic expression provides prognostic value beyond conventional clinical features associ-
ated with head and neck cancer, multivariable Cox proportional hazards modeling was used to adjust
radiomic clusters for T and N stage, HPV status, and change in tumor volume.
Results: While pre-treatment radiomics were not prognostic, intra-treatment radiomic expression
was intrinsically associated with both residual/recurrent disease (P = 0.0256, χ2 test) and RFS
(HR = 7.53, 95% CI = 2.54–22.3; P = 0.0201). On univariate Cox analysis, radiomic cluster was
associated with RFS (unadjusted HR = 2.70; 95% CI = 1.26–5.76; P = 0.0104) and maintained sig-
nificance after adjustment for T, N staging, HPV status, and change in tumor volume after 20 Gy (ad-
justed HR = 2.69; 95% CI = 1.03–7.04; P = 0.0442). The particular radiomic characteristics
associated with outcomes suggest that metabolic spatial heterogeneity after 20 Gy portends complete
and durable therapeutic response. This finding is independent of baseline metabolic imaging
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characteristics and clinical features of head and neck cancer, thus providing prognostic advantages
over existing approaches.
Conclusions: Our data illustrate the prognostic value of intra-treatment metabolic image interroga-
tion, which may potentially guide adaptive therapy strategies for OPC patients and serve as a blue-
print for other disease sites. The quality of our study was strengthened by its prospective image
acquisition protocol, homogenous patient cohort, relatively long patient follow-up times, and unsu-
pervised clustering formalism that is less prone to hyper-parameter tuning and over-fitting compared
to supervised learning. © 2021 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.14926]
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1. INTRODUCTION

Despite major advances in understanding the pathophysiol-
ogy of oropharyngeal cancer (OPC) over the past two dec-
ades, including the favorable prognosis of human
papillomavirus (HPV)-associated disease,1–5

the overall treatment approach for this disease has
remained relatively unchanged. Standard non-operative man-
agement with radiation therapy or chemoradiation remains
based on universal prescription doses for all patients, regard-
less of whether they have HPV-associated or HPV-negative
disease. Many strategies are currently being investigated to
de-intensify treatment for patients with favorably prognostic
disease and intensify therapy for patients with prognostically
unfavorable disease. Most of these efforts are based on pre-
treatment tumor characteristics. Adaptive therapy represents
an alternative approach, in which the treatment program is
modified during therapy based on an indication of a favorable
or unfavorable response.6,7 Customized treatment based on
individual response represents a precision oncology para-
digm with the potential to improve efficacy, while also
improving acute and long-term toxicity profiles.8

Optimal methods to identify patients for adaptive therapy
have not yet been determined, however, and locoregional
recurrence is still a major driver for mortality from OPC.9,10

New diagnostic approaches that accurately capture the
appearance, development, and behavior of OPC are critical to
guide improved treatment strategies for this unmet clinical
need.11,12 Radiomic sequencing is a promising high-
throughput computational technique where medical images
are first transcribed into mineable data and then translated
into computational biomarkers. These biomarkers aim to cap-
ture the underlying phenotype of a disease, in an effort to pre-
dict disease progression and enable personalized therapy. In
recent years, pre-treatment radiomic analysis has been
applied to head and neck cancer to predict locoregional dis-
ease control,13–18 patient survival,13,19–21 and radiation-
induced normal tissue complications.22–27

This paper describes the results of a single-institution,
prospective study, where investigational pre- and intra-
treatment 18F-fluorodeoxyglucose positron emission tomog-
raphy (18F-FDG-PET)/computed tomography (CT) acquisi-
tion was performed as an imaging biomarker of early
therapeutic response. We hypothesized that tumor-specific

radiomic expression patterns on PET images acquired after
2 weeks (20 Gy) of definitive (chemo)radiation therapy were
intrinsically associated with recurrence free survival (RFS)
for patients with OPC. We tested this hypothesis with an
investigational intra-treatment PET acquisition protocol and
an unsupervised clustering technique to computationally
interrogate radiomic patterns of OPC tumors after 20 Gy.

2. MATERIALS AND METHODS

2.A. Overall research design

An overview of our study design is provided in Fig. 1.
Additional details pertaining to image acquisition, recon-
struction, and processing are provided in Table S1, following
the Image Biomarker Standardization Initiative (IBSI)
Reporting Guidelines for Radiomic Studies.28,29

2.B. Patients and treatment

Patients were enrolled onto a single-institution, prospec-
tive study (NCT01908504) approved by the institutional
review board at Duke University Medical Center. The current
research analyzes the subset of patients undergoing curative-
intent intensity modulated radiation therapy (IMRT) for
biopsy-proven OPC. Patients received definitive IMRT to a
total dose of 70 Gy in 35 fractions or 67.5 Gy in 30 fractions.
Although chemotherapy was not mandated, most patients
received concurrent modified bolus cisplatin (20 mg/m2 Days
1-5 and Days 29-33), weekly cisplatin, or weekly docetaxel
as per standard and long-standing institutional practice.
Patients were excluded from subsequent analysis if they (i)
had a diagnosis of p16-positive head and neck squamous cell
carcinoma of unknown primary; (ii) had prior surgical resec-
tion of primary tumor; (iii) presented with multiple syn-
chronous primary tumors; or (iv) received neoadjuvant
chemotherapy prior to definitive radiotherapy.

2.C. Patient follow-up and clinical outcomes

Patients were followed every 2-3 months after the comple-
tion of therapy with serial physical exam including fiberoptic
laryngoscopy, diagnostic PET/CT (3 months after completing
radiation therapy) and additional imaging as clinically
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indicated, and biopsy of any lesions suspicious for recur-
rence. The primary time-to-event clinical endpoint was
recurrence-free survival (RFS), defined as the time from RT
completion to residual or recurrent disease (local, regional,
and/or distant). Patients were censored at the date of last
follow-up and median follow-up time was calculated based
on the reverse Kaplan-Meier method.

2.D. Image acquisition and reconstruction

As per study protocol, 18F-FDG-PET/CT images were
acquired both prior to treatment and 2 weeks into the 7-week
course of treatment (i.e., after 20 Gy). All patients were
scanned in the Department of Radiation Oncology on the
same Siemens Biograph mCT PET/CT imaging system (Sie-
mens Medical Solutions, Knoxville, TN) with a consistent
imaging protocol. Total FDG activity was 8-15 mCi depend-
ing on patient weight and was administered intravenously
after 4 hours of fasting. For each patient, the time-delay from
FDG injection to image acquisition (~50-70 minutes) was
kept constant from pre-treatment to intra-treatment imaging.
PET images were acquired at a standard 54 cm field-of-view
(400 × 400 matrix size, 2 mm slice thickness) and recon-
structed based on an ordered subset expectation maximiza-
tion (OSEM) algorithm with time-of-flight correction and
CT-based attenuation correction. CT images were acquired at
an extended 65 cm field-of-view (512 × 512 matrix size,
3 mm slice thickness) and reconstructed based on standard
filtered back-projection.

2.E. High-throughput radiomic sequencing

To transcribe the unstructured PET images into structured,
mineable data, we implemented the following high-
throughput radiomic feature extraction process. A radiation

oncologist manually segmented the gross tumor volume at
the primary tumor site (GTVp) on CT, transferred it to PET,
visually confirmed the transfer, and made manual adjust-
ments, if necessary. The image was re-sampled to an isotropic
resolution of 1.17 mm using a tri-cubic spline interpolation
method and the dynamic range was re-binned to 64 gray
levels. This fixed bin number approach was adopted based on
IBSI recommendations for calibrated intensity units (i.e.,
SUV) where contrast resolution is considered important.28

Furthermore, 64 discretized gray levels were chosen based on
recommendations to avoid misleading relationships between
texture features and SUV.30

At time τ¼ τ0, a set of 55 radiomic features (Table S2)
were extracted from GTVp on pre-treatment PET images to
quantify the baseline metabolic characteristics of each
patient’s primary tumor. At time τ¼ τ2wk , the same radiomic
features were extracted from the 2-week PET images to quan-
tify potential early metabolic response to treatment. Thus,
given m features and n patients, we define a time-dependent
radiomic feature space as the matrix,

FðτÞ¼ f i,j
� �

∈m�n (1)

where, the i, jð Þth coordinate represents the measured value of
the ith radiomic feature as observed on the image of the jth

patient at time, τ. By definition, the jth column vector of F,

f jðτÞ¼ f i,j
� �m

i¼1
∈m, j¼ 1, 2, . . ., n, (2)

corresponds to the jth patient’s radiomic signature, and the ith

column vector ofF†,

f iðτÞ¼ f j,i

� �n
j¼1

∈n, i¼ 1, 2, . . ., m, (3)

corresponds to the ith feature measurement spanning the
patient cohort. In general, f jðτ0Þ and f jðτ2wkÞ represent shift-
invariant radiomic expression patterns derived from pre-

FIG. 1. Overall research design. (a) Prospective clinical trial design to evaluate 18FDG-PET/CT as an intra-treatment imaging biomarker. Patients undergoing
definitive radiation therapy (7 weeks, 70 Gy) for oropharyngeal cancer underwent 18FDG-PET/CT prior to treatment and approximately 2 weeks into treatment
(2 weeks, 20 Gy) on the same scanner. High-throughput radiomic features were extracted as potential biomarkers of early metabolic response and recurrence free
survival data were collected following treatment. (b) Radiomic feature extraction and analysis. The primary tumor gross tumor volume (GTV) was contoured and
radiomic features extracted to transcribe the unstructured images into mineable data. Unsupervised data clustering was used to group patients based on intrinsic
similarities of their radiomic expression. To test the prognostic value of radiomic expression, the clustering solutions were naı̈vely compared to recurrence-free
survival. [Color figure can be viewed at wileyonlinelibrary.com]
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treatment imaging and intra-treatment imaging, respectively,
for a given patient.

Each f jðτÞ was engineered to collectively capture tumor
intensity, fine texture, and coarse texture characteristics on
PET. Texture features were averaged over 13 unique directions
to approximate a rotationally invariant system. Prior to subse-
quent analysis, the column vectors in the matrix F were stan-
dardized to zero-mean and unit-variance. Feature extraction
was performed in Matlab using custom software previously
benchmarked on digital phantoms31 and tested for compliance
with IBSI standards.28,29 Complete details pertaining to radio-
mic feature extraction settings are provided in Table S1.

2.F. Unsupervised clustering of radiomic
expression patterns

Data clustering (i.e., a type of unsupervised machine
learning, where data objects are grouped together based on
their intrinsic properties) was used to partition patients into
groups based solely on their 18F-FDG-PET radiomic expres-
sion patterns prior to and during treatment. The clustering
mechanism we chose32 is motivated by an emerging branch
of computational intelligence that explores methodological
and structural similarities between quantum systems and
learning systems. It assumes thatF is sampled from a canon-
ical ensemble whose probability measure takes the form of a
Boltzmann distribution, and thus obeys the following second-
order stochastic differential equation,

d2f j
dt2

¼�rV f j
� ��df j

dt
þn tð Þ (4)

where, f j is an m-dimensional radiomic feature vector defined
via Eq. (2), n tð Þ is a random Gaussian process, and V is a
potential function reflecting the probability density of F. As
the system is computationally evolved in time according to
Eq. (4), the f j’s are stochastically propagated on the surface
of V, leading to different metastable states that are interpreted
as clusters.

The output of the algorithm is a partitioning of patients
into separate clusters based on their radiomic expression,
such that patients in the same cluster share intrinsic radiomic
properties that are different from patients in other clusters.
The optimal number of clusters is determined automatically
based on a data fidelity constraint set to achieve an equilib-
rium distribution between the stochastic (i.e., n tð Þ) and deter-
ministic (i.e., �rV f j

� �� df j
dt ) terms of Eq. (4). For more

details, including theory, proofs, experimental validation, and
benchmark results, we refer the reader to 32. Data clustering
was performed in Matlab (MathWorks, Natick, MA).

2.G. Association of clustered radiomic expression
patterns with clinical outcome

To test the potential association between the clustered
radiomic expression patterns and residual or recurrent dis-
ease, the distribution of cancer residual/recurrence events
was compared across different patient clusters. Chi-squared

tests were used to test for statistical significance, where
P≤ 0:05 was considered statistically significant. To assess
the potential association between the clustered radiomic
expression patterns and RFS, independent Kaplan-Meier
analyses were performed on different patient clusters. For a
given cluster, a Kaplan-Meier estimator was constructed
using only RFS data obtained from patients in that cluster.
The statistical separation between cluster-derived Kaplan-
Meier curves was evaluated using log rank tests, where
P≤ 0:05 was considered statistically significant. Kaplan-
Meier analysis was performed in Matlab (MathWorks, Nat-
ick, MA) using the MatSurv package.33

2.H. Low-dimensional dissection of clustering
mechanics

We implemented a bi-clustering procedure and unsuper-
vised data reduction technique to identify the principal radio-
mic features driving the clustering process. Here, the
columns of F (i.e., the set of patients, f j) and the rows of F
(i.e., the set of features, f i) were clustered simultaneously to
generate column-wise patient clusters and row-wise feature
clusters, respectively. For each row-wise feature cluster, the
top 4 features representing the largest median difference
between column-wise patient clusters were identified. These
features represent a subset of F that both maximizes the sep-
aration of patients into column-clusters and minimizes the
redundancy of those clusters by requiring selection across
different row-clusters. These radiomic characteristics were
investigated to generate low-dimensional, qualitative conclu-
sions about the otherwise high-dimensional signal.

2.I. Radiomic expression adjusted for conventional
prognostic clinical features

To test whether radiomic expression provides prognostic
value beyond conventional features commonly used for clini-
cal management of head and neck cancer, Cox proportional
hazards analysis was used to adjust radiomics for T stage, N
stage, HPV status, and change in tumor volume after 20 Gy.
Additionally, because some radiomic features are known to
demonstrate strong volume effects, we performed a Spearman
correlation analysis between the extracted features and tumor
volume. Due to the large m, small n nature of the problem,
individual radiomic features were not used as covariates, but
instead radiomic cluster (e.g., 1, 2, 3, etc.) was considered an
aggregate, low-dimensional measure of radiomic expression
and was treated as a Cox covariate.

T and N staging was scored according to the American
Joint Committee on Cancer (AJCC) 7th Edition criteria.
Change in tumor volume was calculated as the difference in
GTVp on intra-treatment CT imaging relative to pre-
treatment CT imaging. HPV status was considered as a
covariate because HPV-related and HPV-negative OPC
tumors are known to exhibit different biologic behaviors as
demonstrated by their disparate prognoses. In total, three Cox
models were studied: (1) a univariate radiomics-only model,
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where Radiomic Cluster was interpreted as the covariate; (2)
univariate models based on the four clinical features (i.e., T
Stage, N Stage, HPV-Status, and Change in Tumor Volume);
and (3) a multivariate model based on both radiomics and
clinical features. The log-likelihood, l, ratio statistic was
computed to compare the radiomics only model relative to
the radiomics model adjusted for the clinical features. Cox
analysis was performed in Matlab using the Coxphfit function
(p ≤ 0:05 was considered statistically significant).

3. RESULTS

3.A. Patient characteristics

Between February 2012 and May 2016, 110 head and neck
cancer patients were enrolled on the trial, including 82
patients with OPC. Eight OPC patients withdrew from the
study prior to receiving intra-treatment 18F-FDG-PET/CT, 1
died of cardiac arrest during treatment, and 1 was lost to
follow-up after completing treatment. Among the remaining
72 OPC patients who completed therapy, 8 patients were
excluded due to: diagnosis with p16-positive head and neck
squamous cell carcinoma of unknown primary (n = 4); prior
surgical resection of primary tumor (n = 2); presence of mul-
tiple synchronous primary tumors (n = 1); and receipt of
neoadjuvant chemotherapy prior to definitive radiotherapy

(n = 1). This left 64 patients who qualified for radiomic anal-
ysis. The median patient age at the time of treatment initiation
was 59.2 � 9.0 years. Patients were predominantly male
(n = 53). Regarding HPV status, 89% (n = 57) were HPV-
positive or p16-positive. Initial complete clinical response
was achieved in 92.2% (n = 59) of patients. On long-term
clinical follow-up, 21.9% (n = 14) of patients demonstrated
residual or recurrent disease. The median follow-up time was
3.9 years.

3.B. Intrinsic prognostic value of intra-treatment
radiomic expression

Different clustering solutions – driven by underlying
changes in radiomic expression pattern due to treatment –
were detected after 2 weeks of therapy (Fig. 2), relative to
baseline (Fig. 3). We identified a statistically significant asso-
ciation between three intra-treatment clusters and the pres-
ence of either residual disease or subsequent recurrence
(P¼ 0:0256, χ2 test). Furthermore, RFS differed for patients
in these clusters with a hazard ratio (HR) of 10.54 for the
high-risk group compared to the low-risk group (P¼ 0:0053,
log-rank test, 95% CI = 2.56–43.38).

Mathematically, Cluster 1 and Cluster 2 were represented
by nearly non-degenerate local minima of the optimization
function (V, Eq. 4) reflecting the probability density of the

FIG. 2. Unsupervised clustering of intra-treatment radiomic expression with corresponding disease status and cluster-derived Kaplan-Meier estimators of recur-
rence free survival. The heatmap represents the bi-clustered radiomic feature-space extracted from the primary tumor volume on intra-treatment 18F-FDG-PET
imaging. Column vectors denote patient-specific radiomic signatures measured after 20 Gy of initial therapy. Unsupervised clustering resulted in three groups of
patients sharing intrinsic similarities in radiomic expression. Disease status is indicated below the heatmap (black, no evidence of residual or recurrent disease
during follow-up; white, residual disease at completion of radiation therapy and/or subsequent disease recurrence). Residual/recurrent disease was associated with
the three intra-treatment radiomic clusters (p¼ 0:0256, χ2 test). Kaplan-Meier estimators of recurrence free survival, which were naı̈vely derived from the cluster-
ing partitions, demonstrate prognostic value of intra-treatment radiomic expression. Asterisks denote pair-wise statistical significance between two survival
curves. [Color figure can be viewed at wileyonlinelibrary.com]
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radiomic space.32 Conceptually, this implies that a larger,
more general group of patients with similar radiomic expres-
sion were defined by the combination of Cluster 1 and Clus-
ter 2. Kaplan-Meier analysis confirmed that this combined
cluster (i.e., Cluster 1 + Cluster 2 on Fig. 2) had significantly
shorter RFS relative to Cluster 3 (HR = 7.53, 95%
CI = 2.54–22.3; P¼ 0:0201, log-rank test). Thus, this sim-
plified bi-partitioning of patients based on intra-treatment
radiomic expression was found to encode prognostic value.

In contrast, pre-treatment radiomic expression was not
associated with clinical outcome (Fig. 3). Unsupervised clus-
tering applied independently to the pre-treatment radiomics
data resulted in different patients grouped together with nom-
inal separation in RFS: HR = 0.93 for Cluster 1 vs. Cluster 2
(95% CI = 0.27–3.29; P¼ 0:9162, log-rank test), HR = 0.73
for Cluster 1 vs. Cluster 3 (95% CI = 0.18–2.97; P¼ 0:6521,
log-rank test), and HR = 0.79 for Cluster 2 vs. Cluster 3
(95% CI = 0.21–2.10; P¼ 0:7076, log-rank test). These
results collectively indicate that radiomic expression after
20 Gy, but not at baseline, may indicate early response to
radiotherapy for OPC.

3.C. Low-dimensional dissection of intra-treatment
radiomic clustering mechanics

As summarized in Fig. 4a, intra-treatment clustering
results were primarily influenced by several key radiomic

features. Here, the resulting row-wise feature-clusters (de-
noted as A and B to differentiate them from their orthogonal
column-wise patient-cluster counterparts) represent the defin-
ing characteristics that influenced radiomic signal divergence
after 2 weeks of therapy. Both Cluster 1 and Cluster 2 were
enriched with features designed to capture fine image hetero-
geneities, overall image brightness, and high image intensity
(e.g., Cluster Tendency,34 Dissimilarity,34 Sum Average,34

and Short Run High Gray Emphasis35). This implies that
metabolic heterogeneity and high 18F-FDG uptake after
2 weeks of therapy was generally associated with a poor
prognosis. In contrast, Cluster 3 was enriched with features
designed to capture coarse image homogeneities and low
image intensity (e.g., Low Gray Run Emphasis,32 Long Run
Low Gray Emphasis,35 Large Zone Emphasis,36 and Large
Size Low Gray Emphasis36). This implies that metabolic
homogeneity and low 18F-FDG uptake after 2 weeks of ther-
apy was generally associated with a favorable prognosis.

These results demonstrate the magnitude of 18F-FDG
uptake, as well as the metabolic spatial heterogeneity of the
disease, correlate with treatment response to 20 Gy. A repre-
sentative case in Fig. 4b demonstrates this phenomenon by
comparing two images taken from Cluster 1 and Cluster 3.
Differences in metabolic heterogeneity are visually apprecia-
ble for images with a comparable maximum standard uptake
value (SUVmax), which is a radiomic feature on PET that
does not encode spatial information. This demonstrates the

FIG. 3. Unsupervised clustering of baseline radiomic expression with corresponding disease status and cluster-derived Kaplan-Meier estimators of recurrence
free survival. The heatmap represents the bi-clustered radiomic feature-space extracted from the primary tumor volume on pre-treatment 18F-FDG-PET imaging.
Column vectors denote patient-specific baseline radiomic signatures measured before therapy. Unsupervised clustering resulted in three groups of patients shar-
ing intrinsic similarities in radiomic expression. Disease status is indicated below the heatmap (black, no evidence of residual or recurrent disease during follow-
up; white, residual disease at completion of radiation therapy and/or subsequent disease recurrence). Residual/recurrent disease was not associated with the three
pre-treatment radiomic clusters (P¼ 0:9405, χ2 test). Kaplan-Meier estimators of recurrence free survival, which were naı̈vely derived from the clustering parti-
tions, demonstrate a lack of prognostic value of pre-treatment radiomic expression. [Color figure can be viewed at wileyonlinelibrary.com]
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importance of extending quantitative analyses beyond
SUVmax measurements and incorporating more complex fea-
tures such as image texture to develop computational
biomarkers that better correlate with outcome.

3.D. Radiomic expression adjusted for
conventional prognostic clinical features

Cox proportional hazards modeling results are summa-
rized in Tables I–IV, where radiomic expression is compared
to clinical features commonly used for management and
prognostication of head and neck cancer. Table I shows uni-
variate Cox analysis with Radiomic Cluster as a covariate,
which was significant for RFS (unadjusted HR = 2.70; 95%
CI = 1.26–5.76; P = 0.01; l = −49.6329). Table II shows
the univariate Cox model for each clinical feature, of which
Change in Tumor Volume and HPV-Status were both signifi-
cant for RFS on univariate analysis (HR = 1.08; 95% CI =-
1.01–1.17; P = 0.03 and HR = 0.25; 95% CI = 0.06–1.04;
P = 0.05, respectively).

Multivariate Cox modeling results are summarized in
Tables III and IV. As demonstrated in Table III, Radiomic
Cluster maintained significance with RFS when adjusted for
T and N tumor staging, HPV status, and change in primary
tumor volume (adjusted HR = 2.69; 95% CI = 1.03–7.04;
P = 0.04; l = −52.3653). Based on log-likelihood ratios,
Change in Tumor Volume, HPV-Status, and Tumor Stagewere
not statistically significant variables given the variable Radio-
mic Cluster in the extended multivariate Cox model. For

completion, Table IV summarizes multivariate Cox analysis
based on only clinical features, which was not significant for
RFS.

The average pre-treatment and intra-treatment tumor vol-
ume was 18.9 � 18.1 cm3 (range, 1–90.8 cm3) and

FIG. 4. Dissecting intra-treatment radiomic clustering mechanics. (a) Bi-clustering results demonstrating the most influential features responsible for cluster for-
mation. Each column vector represents a reduced (8-dimensional) patient-specific radiomic signature, whose feature basis is the dominating effect driving cluster
formation. This sub-set of features provided the largest separation between patient clusters. Clusters 1 & 2 were collectively associated with poor prognosis and
were enriched with features capturing metabolic heterogeneity and high 18F-FDG uptake. Cluster 3 was associated with favorable prognosis and was enriched
with metabolic homogeneity and low 18F-FDG uptake. (b) An illustrating example of two patient images from Clusters 1 and 3. Differences in metabolic hetero-
geneity are visually appreciated for two base of tongue tumors that share a comparable maximum standard uptake value (SUVmax), demonstrating the importance
of image texture to predicting treatment response. The color-coded bar graph demonstrates the relative difference in quantitative radiomic expression associated
with each tumor (yellow, tumor from Cluster 1; red, tumor from Cluster 3). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Univariate Cox proportional hazards model of recurrence free sur-
vival based on radiomic cluster as a covariate.

Univariate Cox Proportional Hazards Model (Radiomic Cluster)

Variable Unadjusted HR (95% CI) P value

Radiomic Cluster 2.70 (1.26-5.76) 0.01

Abbreviations: CI = confidence interval; HR = Hazard Ratio.

TABLE II. Univariate Cox proportional hazards model of recurrence free sur-
vival based on clinical features of head and neck cancer: T and N tumor stag-
ing, HPV status, and change in tumor volume after 20 Gy.

Univariate Cox Proportional Hazards Models
(Clinical Features of Head and Neck Cancer)

Variable Adjusted HR (95% CI) P value

T Stage 1.56 (0.94-2.58) 0.08

N Stage 1.08 (0.68-1.73) 0.74

Change in Tumor Volume 1.08 (1.01-1.17) 0.03

HPV Status 0.25 (0.06-1.04) 0.05

Abbreviations: CI, confidence interval; HR, Hazard Ratio.
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11.7 � 15.2 cm3 (range, 0.5–67.9 cm3), respectively. Twelve
radiomic features were correlated with intra-treatment tumor
volume and 2 features were correlated with change in tumor
volume (Table S3). None of these volume-associated radio-
mic features were major drivers of cluster formation as
reported in Fig. 4 and their exclusion did not affect clustering
results. This implies that FDG texture provides complemen-
tary information to CTvolumetry.

Collectively, these results demonstrate that intra-treatment
radiomic expression may provide complementary value above
and beyond what can be currently obtained with prognostic
indications commonly used for clinical management and
prognostication of head and neck cancer.

4. DISCUSSION

Phenotypic changes on cancer images are a hallmark of
treatment response assessment. Radiomic expression – which
may be linked to the appearance and behavior of disease –
may encode traces of therapeutic response that can be compu-
tationally measured in individual patients. This research devel-
oped an unsupervised machine learning approach to quantify
early metabolic response based on intrinsic radiomic expres-
sion patterns on 18F-FDG-PET images during radiation ther-
apy. Our decision to investigate PET radiomics in this
particular study was motivated by current clinical trial design
at our institution and others, where treatment de-intensification

is being considered based on changes in HPV-positive tumor
metabolism.8,37 We note, however, that the extension of our
approach to incorporate CT radiomics may potentially lead to
improved findings, which in turn may motivate new clinical
trial design based on multi-modal radiomic analysis.

In our study, a significant difference in cluster formation
was observed between pre-treatment and intra-treatment
imaging, indicating that the underlying radiomic signal chan-
ged after 2 weeks and 20 Gy. While the pre-treatment radio-
mic signature did not correlate with treatment outcome, intra-
treatment radiomic expression was significantly associated
with both residual/recurrent disease status and RFS. This
finding suggests that intra-treatment 18F-FDG-PET radiomic
expression may represent a noninvasive biomarker of early
treatment response in patients with OPC, regardless of base-
line metabolic imaging characteristics.

The formation of intra-treatment clusters was heavily
influenced by several key radiomic characteristics. In particu-
lar, clusters associated with poor prognosis were character-
ized by imaging features that represent aspects of spatial
heterogeneity at high intensity. In contrast, clusters associated
with favorable prognosis exemplified homogeneous, low
intensity image information. For example, the feature short
run high gray emphasis (SRHGE) is a measure of both image
intensity and coarse heterogeneity.35 In general, this feature
quantifies the joint-distribution between the magnitude of
18F-FDG uptake and its spatial dependence throughout the
tumor. On PET, high SRHGE values indicate metabolically
active, heterogeneous disease. In our data, SRHGE was
expressed in clusters linked to poor outcome. This indicates
that patients presenting with metabolically active, heteroge-
neous primary tumors after 2 weeks of radiation therapy typi-
cally resulted in a worse prognosis. In contrast, the feature
large zone emphasis (LZE) was commonly expressed in
patients with favorable outcome. LZE is a texture feature of
coarse image homogeneity36; on PET high values indicate
uniform 18F-FDG uptake throughout the tumor regardless of
intensity magnitude. This finding implies that patients with
metabolically homogeneous disease after 2 weeks of radia-
tion therapy typically presented with a better prognosis.

Our data therefore provide evidence that metabolic spatial
heterogeneity – in addition to the magnitude of 18F-FDG
uptake – is associated with long term treatment outcome.
From a biological perspective, metabolic heterogeneity and
increased overall 18F-FDG uptake may potentially be a surro-
gate for hypoxia.38 We hypothesize that necrotic tumor
regions consume less glucose, resulting in a spatial hetero-
geneity of the PET signal. This hypothesis is consistent with
the theoretical framework for glycolysis proposed by Alfar-
ouk et al.,39 as well as experimental data demonstrating that
preclinical tumor models of head and neck cancer exhibit
increased intratumoral metabolic heterogeneity.40 Evidence
also suggests that heterogeneous 18F-FDG texture may be
associated with hypoxia radiotracers such as 18F-
fluoromisonidazole.30,41–46 We note that because texture
analysis is particularly sensitive to image gray level dis-
cretization,30,47–50 caution is advised when calculating

TABLE III. Multivariate Cox proportional hazards model of recurrence free
survival based on radiomic cluster adjusted for conventional disease staging,
HPV status, and change in tumor volume after 20 Gy.

Multivariate Cox Proportional Hazards Model
(Radiomics Adjusted for Clinical Features of Head and Neck Cancer)

Variable Adjusted HR (95% CI) P value

Radiomic Cluster 2.69 (1.03-7.04) 0.04

T Stage 1.06 (0.54-2.07) 0.85

N Stage 1.26 (0.72-2.20) 0.42

Change in Tumor Volume 1.05 (0.99-1.12) 0.09

HPV Status 0.55 (0.12-2.57) 0.44

Abbreviations: CI, confidence interval; HR, Hazard Ratio.

TABLE IV. Multivariate Cox proportional hazards model of recurrence free
survival based on clinical features of head and neck cancer: T and N tumor
staging, HPV status, and change in tumor volume after 20 Gy.

Multivariate Cox Proportional Hazards Model
(Clinical Features of Head and Neck Cancer without Radiomics)

Variable Adjusted HR (95% CI) P value

T Stage 1.56 (0.91-2.69) 0.10

N Stage 1.13 (0.68-1.87) 0.64

Change in Tumor Volume 1.06 (0.99-1.13) 0.08

HPV Status 0.53 (0.10-2.91) 0.46

Abbreviations: CI, confidence interval; HR, Hazard Ratio.
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radiomic texture features. In fact, it has been suggested that
not all radiomic features should be calculated at the same dis-
cretized dynamic range and that texture optimization may
have a significant influence on prognostic potential.51

Since we did not observe any prognostic value in baseline
metabolism, our data suggests that early response is poten-
tially a threshold mechanism that depends on whether or not
hypoxia is resolved after initial treatment. While this conclu-
sion remains limited and warrants further investigation, the
lack of prognostic value that we observed on pre-treatment
imaging is consistent with a recent paper published by Ger
et al.52 In their study, they found that baseline PET/CT radio-
mic features were not associated with clinical outcomes in
the largest cohort of head and neck cancer patients to date.
However, several other studies have in fact demonstrated
associations between pre-treatment radiomics and outcomes
across a variety of head and neck cancer sites.14–17,19,20 Sev-
eral key differences in methodology may contribute to differ-
ent conclusions.

While most published radiomic studies rely on retrospec-
tive data, our results are based on a prospective clinical trial
where all images were acquired on the same scanner under
the same acquisition protocol. It is generally well-known that
radiomic features are susceptible to scanner variation and
inter-observer variability,53 which can often lead to inconsis-
tent downstream machine learning models.54,55 To the best of
our knowledge, our study is the first reported head and neck
cancer radiomic analysis based on prospectively acquired
intra-treatment 18F-FDG-PET images and long-term clinical
follow-up. Our findings are therefore strengthened by a high-
fidelity dataset representing a homogenous patient cohort
without inter-scanner variability across different vendors,
models, or acquisition protocols.

Furthermore, while previous studies have typically utilized
supervised machine learning models, we focused instead on
unsupervised machine learning. Unlike supervised tech-
niques – which rely on a training dataset to map the relation-
ship between features and depend variables based on explicit
observation – unsupervised learning instead investigates the
intrinsic properties of data with fewer assumptions. Such
approaches have demonstrated meaningful non-parametric
associations between radiomics data and various clinical and/
or biological endpoints.13,56,57

When adjusted for conventional prognostic factors, includ-
ing T and N staging, changes in tumor volume, and HPV sta-
tus, the relationship between RFS and intra-treatment
radiomic expression was preserved. This is an important con-
clusion because studies have reported that radiomic texture
features are sometimes biased by tumor volume.58–60 Further-
more, this finding also suggests that radiomic expression after
20 Gy may provide complementary prognostic value for
patients with HPV-related disease. This may have potential
for high clinical impact, as approximately 20% of patients
with HPV-positive OPC still experience disease recurrence
within 5 years following treatment.61 Identification of
patients with HPV-related disease and poor prognosis is
essential in light of ongoing efforts to safely de-escalate

therapy for this patient population with generally favorable
treatment outcomes.6–8 Radiomics may facilitate a finer strat-
ification of HPV-positive OPC patients into candidate risk
groups for novel adaptive therapy regimens. For example,
patients with radiomic signatures indicative of favorable early
response may be candidates for therapeutic de-escalation pro-
tocols that reduce acute and long-term toxicity profiles. Simi-
larly, high-risk patients may benefit from therapeutic
intensification and closer follow-up, potentially including
monitoring HPV circulating tumor DNA62 and similar radio-
genomic analyses of liquid biopsies.63,64

This paper presents a novel approach to quantifying early
metabolic response of OPC, but it has several limitations.
First, we chose to study radiomic expression of the primary
disease site and excluded imaging features of the nodal dis-
ease. This is a limitation because lymph node status is an
important staging/prognostic parameter for patients with head
and neck cancer. While prior radiomic studies have histori-
cally focused on the primary disease site due to technical lim-
itations, a recent study did demonstrate the prognostic value
of radiomic features derived from the lymph nodes.65 Never-
theless, our results demonstrate that radiomic expression of
the primary tumor is prognostic, even when adjusted for T
and N stage, HPV status, and tumor volume. This implies
that intra-treatment radiomic expression provides added value
above and beyond what can be obtained with conventional
disease stage prognostication.

A second limitation of this study is that it did not account
for either intra- or inter-observer variability in tumor segmen-
tation. This represents a clear challenge in radiomics, as some
features may be highly sensitive to segmentation differ-
ences.47,48 Reproducibility of results should therefore be stud-
ied in future work, either through observer studies or using
deep learning segmentation algorithms that may reduce vari-
ability.66

Finally, the most important limitation of this study is the
absence of an independent dataset with which to evaluate the
generalization of our results. Since our analysis is based on
an investigational imaging protocol within the context of a
prospective clinical trial, external evaluation is non-trivial at
this time. To compensate for this limitation methodologically,
we strategically chose an unsupervised clustering formalism
that is less prone to hyper-parameter tuning and over-fitting
compared to supervised learning, which would likely be over-
fit given our limited sample size. Nevertheless, the lack of
external testing represents a significant limitation to the con-
clusions drawn from this study.

5. CONCLUSIONS

This study demonstrated the prognostic value and clinical
utility of intra-treatment metabolic image interrogation,
which may guide adaptive therapy strategies for OPC and
serve as a blueprint for other disease sites. The quality of our
study is strengthened by its prospective image acquisition
protocol, homogenous patient cohort, relatively long patient
follow-up times, and unsupervised clustering formalism that
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is less prone to hyper-parameter tuning and over-fitting com-
pared to supervised learning. Our results suggest that intra-
treatment 18F-FDG-PET radiomic expression serves as an
early marker of radiation resistance and is intrinsically associ-
ated with both recurrence/residual disease and RFS. The par-
ticular radiomic characteristics that correlate with clinical
outcomes suggest that metabolic spatial heterogeneity after
20 Gy portends complete and durable therapeutic response.
This finding was independent of baseline metabolic imaging
characteristics and conventional clinical prognostic factors,
thus providing an advantage over existing approaches.
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