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We propose in this work RBM-SVGD, a stochastic version of the Stein variational
gradient descent (SVGD) method for efficiently sampling from a given probability
measure, which is thus useful for Bayesian inference. The method is to apply
the random batch method (RBM) for interacting particle systems proposed by
Jin et al. to the interacting particle systems in SVGD. While keeping the behaviors
of SVGD, it reduces the computational cost, especially when the interacting
kernel has long range. We prove that the one marginal distribution of the particles
generated by this method converges to the one marginal of the interacting particle
systems under Wasserstein-2 distance on fixed time interval [0, T ]. Numerical
examples verify the efficiency of this new version of SVGD.

1. Introduction

The empirical measure with samples from some probability measure (which might
be known up to a multiplicative factor) has many applications in Bayesian infer-
ence [5; 3] and data assimilation [17]. A class of widely used sampling methods
is the Markov chain Monte Carlo (MCMC) methods, where the trajectory of a
particle is given by some constructed Markov chain with the desired distribution
invariant. The trajectory of the particle is clearly stochastic, and the Monte Carlo
methods take effect slowly for small number of samples. Unlike MCMC, the Stein
variational gradient method (proposed by Liu and Wang in [20]) belongs to particle-
based variational inference sampling methods (see also [22; 9]). These methods
update particles by solving optimization problems, and each iteration is expected
to make progress. As a nonparametric variational inference method, SVGD gives
a deterministic way to generate points that approximate the desired probability
distribution by solving an ODE system. Suppose that we are interested in some
target probability distribution with density π(x)∝ exp(−V (x)) (x ∈Rd ). In SVGD,
one sets V = − logπ , chooses some symmetric positive definite kernel K(x, y),
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and solves the following ODE system for given initial points {X i (0)}Ni=1 [20; 19]:

Ẋ i =
1
N

N∑
j=1

∇yK(X i , X j )−
1
N

N∑
j=1

K(X i , X j )∇V (X j ), i = 1, . . . , N , (1-1)

where N is the number of particles for the sampling purpose. The subindex “y” in
∇y means that the gradient is taken with respect to the second variable in K( · , · );
i.e., ∇yK(X i , X j ) :=∇yK(x, y)|(x,y)=(X i ,X j ). When t is large enough, the empirical
measure constructed using {X i (t)}Ni=1 is expected to be close to π , i.e.,

1
N

N∑
i=1

δ(x − X i (t))≈ π(x) dx, t � 1.

Below, in Section 2, we will explain why this is expected to be true. Theoretic
understanding of (1-1) is limited. For example, the convergence of the particle
system (1-1) is still open. Recently, there have been a few attempts at understanding
the limiting mean field PDE [19; 21]. In particular, Lu et al. [21] showed the
convergence of the mean field PDE to the desired measure π .

In practice, SVGD seems to perform quite well, better compared with some
typical Monte Carlo methods in some examples [19; 10]. It provides consistent
estimation for generic distributions as Monte Carlo methods do, but with fewer
samples. SVGD seems to be more efficient than some Monte Carlo methods in the
particle level for approximating the desired measure, when the number of particles
is small. Interestingly, it reduces to the maximum a posterior (MAP) method when
N = 1 [20].

Though (1-1) behaves well when the particle number N is not very big, one
sometimes still needs an efficient algorithm to simulate (1-1). For example, when
the dimension of the problem is not very high, in a typical MCMC method, the
number of particles is several millions, or N ≈ 106, while in SVGD, one may have
N ≈ 103. Simulating (1-1) needs O(N 2) work to compute the interactions for each
iteration, especially for interaction kernels that are not superlocalized or particles
that are not sparse. In fact, for such situations, to compute the interaction force
for one particle, one must consider all the other N − 1 particles to have enough
accuracy. There are N particles, so one must consider O(N 2) interactions, which
yields the O(N 2) complexity for one iteration. Though N ≈ 102–103 is not large,
the O(N 2) complexity makes the cost of SVGD for these cases comparable with
MCMC with larger number of particles. Hence, it is highly motivated to develop a
cheap version of SVGD.

In this work, we propose RBM-SVGD, a stochastic version of SVGD for sampling
from a given probability measure. The idea is very natural: we apply the random
batch method in [16] to the interacting particle system (1-1). Note that in the random
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batch method, the “batch” refers to the set for computing the interaction forces, not
to be confused with the “batch” of samples for computing gradient as in stochastic
gradient descent (SGD). Of course, if V is the loss function corresponding to many
samples, or the probability density in Bayesian inference corresponding to many
observed data, the data-mini-batch idea can be used to compute ∇V in SVGD as
well [20]. With the random batch idea for computing interaction, the complexity
for each iteration now is only O(N ). Moreover, it inherits the advantages of SVGD
(i.e., efficient for sampling when the number of particles is not large) since the
random batch method is designed to approximate the particle system directly. In
fact, we will prove that the one marginal of the random batch method converges to
the one marginal of the interacting particle systems under Wasserstein-2 distance on
a fixed time interval [0, T ]. Note that the behavior of randomness in RBM-SVGD
is different from that in MCMC. In MCMC, the randomness is required to ensure
that the desired probability is invariant under the transition. The randomness in
RBM-SVGD is simply due to the batch for computing the interaction forces, which
is mainly for speeding up the computation. Though this randomness is not essential
for sampling from the invariant measure, it may have other benefits. For example,
it may lead to better ergodic properties for the particle system.

2. Mathematical background of SVGD

We now give a brief introduction to the SVGD proposed in [20] and provide some
discussions. The derivation here is a continuous counterpart of that in [20].

Assume that random variable X ∈Rd has density p0(x). Consider some mapping
T : Rd

→ Rd , and we denote the distribution of T(X) by p := T# p0, which is
called the push-forward of p0 under T. The goal is to make T# p0 closer to π(x) in
some sense. The way to measure the closeness of measures in [20] is taken to be
the Kullback–Leibler (KL) divergence, which is also known as the relative entropy,
defined by

KL(µ ‖ ν)= EY∼µ log
(

dµ
dν
(Y )

)
, (2-1)

where dµ
dν is the well known Radon–Nikodym derivative. In [20, Theorem 3.1], it is

shown that the Gateaux differential of T 7→ G(T) := KL(p ‖ π) is given by〈
δG
δT
, φ

〉
=−EY∼p Sπφ(Y ) for all φ ∈ C∞c (R

d
;Rd) (2-2)

where Sq associated with a probability density q is called the Stein operator given by

Sqφ(x)=∇(log q(x)) ·φ(x)+∇ ·φ(x). (2-3)



40 LEI LI, YINGZHOU LI, JIAN-GUO LIU, ZIBU LIU AND JIANFENG LU

In fact, using the formula

d
dε
(T+ εφ ◦T)# p0|ε=0 =

d
dε
(I + εφ)# p|ε=0 =−∇ · (pφ)=−pSpφ, (2-4)

and δKL(p‖π)
δp = log p+ 1− logπ , one finds〈

δG
δT
, φ

〉
=

〈
δKL(p ‖ π)

δp
,−∇ · (pφ)

〉
=−

∫
Rd

pSπφ dx . (2-5)

The quantity
〈
δG
δT , φ

〉
can be understood as the directional derivative of G( · ) in the

direction given by φ. The paring in the second term above is in L2(Rd) sense.
Based on this calculation, we now consider a continuously varying family of

mappings Tτ with τ ≥ 0 and

d
dτ

Tτ = φτ ◦Tτ .

Here, “◦” means composition, i.e., for any given x , d
dτ Tτ (x)= φτ (Tτ (x)). In this

sense x 7→ X (τ ; x) := Tτ (x) is the trajectory of x under this mapping; x can be
viewed as the so-called Lagrangian coordinate as in fluid mechanics while φτ is the
flow field. We denote

pτ := (Tτ )# p0. (2-6)

The idea is then to choose φτ such that the functional τ 7→ G(Tτ ) decays as fast
as possible. Note that to optimize the direction, we must require the field to have
bounded magnitude ‖φτ‖H ≤ 1, where H is some subspace of the functions defined
on Rd . The optimized curve τ 7→ Tτ is a constant-speed curve (in some manifold).
Hence, the problem is reduced to the optimization problem

sup{EY∼p Sπφ(Y ) | ‖φ‖H ≤ 1}. (2-7)

It is observed in [20] that this optimization problem can be solved by a convenient
closed formula if H is the so-called (vector) reproducing kernel Hilbert space
(RKHS) [1; 2]. A (scalar) RKHS is a Hilbert space, denoted by H, consisting of
functions defined on some space � (in our case �= Rd) such that the evaluation
function f 7→ Ex( f ) := f (x) is continuous for all x ∈�. There thus exists kx ∈H

such that Ex( f ) = 〈 f, kx 〉H. Then the kernel K(x, y) := 〈kx , ky〉H is symmetric
and positive definite, meaning that

∑n
i=1

∑n
j=1 K(xi , x j )ci c j ≥ 0 for any xi ∈ �

and ci ∈R. Reversely, given any positive definite kernel, one can construct a RKHS
consisting of functions f (x) of the form f (x) =

∫
K(x, y)ψ(y) dµ(y) where µ

is some suitably given measure on �. For example, if µ is the counting measure,
choosingψ(y)=

∑
∞

j=1 a j 1x j (y) (a j ∈R) can recover the form of RKHS in [20]. All
such constructions yield isomorphic RKHS as guaranteed by the Moore–Aronszajn
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theorem [1]. Now, consider a given µ and H =Hd to be the vector RKHS:

H =
{

f =
∫

Rd
K( · , y)ψ(y) dµ(y)

∣∣∣∣ ψ : Rd
→ Rd ,∫∫

Rd×Rd
K(x, y)ψ(x) ·ψ(y) dµ(x) dµ(y) <∞

}
.

The inner product is defined as

〈 f (1), f (2)〉H =
∫∫

Rd×Rd
K(x, y)ψ (1)(x) ·ψ (2)(y) dµ(x) dµ(y)

=

d∑
j=1

∫∫
Rd×Rd

K(x, y)ψ (1)j (x)ψ (2)j (y) dµ(x) dµ(y). (2-8)

This inner product therefore induces a norm ‖ f ‖H =
√
〈 f, f 〉H . Clearly, H consists

of functions with ‖ · ‖H to be finite. The optimization problem (2-7) can be solved
by the Lagrange multiplier method

L=

∫
Rd
(Sπφ)pτ (y) dy− λ

∫∫
Rd×Rd

K(x, y)ψ(x) ·ψ(y) dµ(x) dµ(y),

where dy means Lebesgue measure and φ(x) =
∫

Rd K(x, y)ψ(y) dµ(y). Using
δL
δφ
= 0, we find

2λφ =
∫

Rd
K(x, y)(S∗π pt)(y) dy =: V(pt), (2-9)

where S∗π is given by

S∗π ( f )= f (y)∇(logπ)−∇ f (y)=− f (y)∇V (y)−∇ f (y). (2-10)

The ODE flow
d

dτ
Tτ =

1
2λ(τ)

V(pτ ) ◦Tτ

gives the constant-speed optimal curve, so that the velocity is the unit vector in H
along the gradient of G. Reparametrizing the curve t = t (τ ) so that dτ

dt = 2λ and
denoting ρt := pτ(t), then

d
dt

Tt = V(ρt) ◦Tt . (2-11)

Clearly, the curve of Tt is not changed by this reparametrization. Using (2-4), one
finds that ρ satisfies the equation

∂tρ =−∇ · (V(ρ)ρ)=∇ · (ρK ∗ (ρ∇V +∇ρ)). (2-12)
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Here, K ∗ f (x) :=
∫

K(x, y) f (y) dy. It is easy to see that exp(−V ) is invariant
under this PDE. According to the explanation here, the right-hand side gives the
optimal decreasing direction of KL divergence if the transport flow is measured by
RKHS. Hence, one expects it to be the negation of gradient of KL divergence in
the manifold of probability densities with metric defined through RKHS. Indeed,
Liu made the first attempt to justify this in [19, §3.4].

The above theory has a little trouble for empirical measures because the KL
divergence is simply infinity. For empirical measure,∇ρ must be in the distributional
sense. The good thing for RKHS is that we can move the gradient from ∇ρ onto the
kernel K(x, y) so that the flow (2-11) becomes (1-1), which makes perfect sense.
In fact, if (1-1) holds, the empirical measure is a measure solution to (2-12) (by
testing on smooth function ϕ) [21, Proposition 2.5]. Hence, the ODE system is
justified in this level, and one expects that (1-1) will give an approximation for the
desired density. The numerical tests in [20] indeed justify this expectation. In this
sense, the ODE system is formally a gradient flow of KL divergence, though the
KL divergence functional is infinity for empirical measures.

Typical examples of K(x, y) include K(x, y)= (αx · y+ 1)m , Gaussian kernel
K(x, y) = e−|x−y|2/(2σ 2) for Rd , and K(x, y) = (sin a(x − y))/(π(x − y)) for 1D
space R. By Bochner’s theorem [25], if a function K has a positive Fourier transform,
then

K(x, y)= K (x − y) (2-13)

is a positive definite kernel. With this kernel, (1-1) becomes

Ẋ i =−
1
N

N∑
j=1

∇K (X i − X j )−
1
N

N∑
j=1

K (X i − X j )∇V (X j ), (2-14)

as used in [21]. Both Gaussians and 1/|x |α with α ∈ (0, d) have positive Fourier
transforms. The difference is that the Gaussian has a short range of interaction
while the latter has a long range of interaction. One can smoothen 1/|x |α out by
mollifying with Gaussian kernels, resulting in positive definite smooth kernels but
with long-range interaction. Choosing localized kernels like Gaussians may have
some issues in very high-dimensional spaces [12; 10]. Due to its simplicity, when
the dimension is not very high, we choose Gaussian kernels in Section 4.

As a further comment, one may consider other metrics to gauge the closeness
of probability measures, such as Wasserstein distances. Also, one can consider
other norms for φ and get gradient flows in different spaces. These variants have
been explored by some authors already [18; 8]. In general, computing the Frechét
derivatives in closed form for these variants seems not that easy.



A STOCHASTIC VERSION OF STEIN VARIATIONAL GRADIENT DESCENT 43

Remark. If we optimize (2-7) for φ in L2(Rd
;Rd) spaces, the flow is then given by

d
dt

T= (S∗πρ) ◦T. (2-15)

The corresponding PDE is ∂tρ =∇ · (ρ(ρ∇V +∇ρ))=∇ · (ρ2
∇ log(ρ/π)). This

is in fact the case when we choose K(x, y)= δ(x − y). This PDE, however, will
not make sense for empirical measures since ρ∇ρ is hard to justify (clearly, the
equivalent ODE system has the same trouble). By using RKHS, the derivative
on ∇ρ can be moved onto the kernel and then the ODE system makes sense.

3. The new sampling algorithm: RBM-SVGD

In this section, we introduce the “random batch” or “mini-batch” idea, which has
already appeared in many places, and recall the random batch method for simulating
interacting particle systems in [16]. By applying the random batch method to (1-1),
we obtain a new algorithm, called RBM-SVGD. The proof that RBM-SVGD is
close to SVGD on finite time interval is given in Section 3.2.

3.1. The algorithms. Before we present the random batch method and RBM-
SVGD, let us briefly explain what the “random mini-batch” idea is. Let us consider
a typical optimization problem in machine learning:

min L(ω) :=min
1
M

M∑
j=1

`(g(z j ;ω), y j ), (3-1)

where (z j , y j )
M
j=1 are some given data set, g( · ;ω) is a model that takes z j as an

input and gives some prediction to y j , and `( · , · ) is some function to gauge the
discrepancy between g(z j ;ω) and y j . Hence, the problem is to find ω such that the
discrepancy is small enough. Often `( · , · ) is a neural network so that computing
the gradient is not easy. Hence, if one aims to find the minimizer using gradient
descent, the computation cost is high. The idea of “mini-batch” or “random batch”
is to choose a small random subset ξ of {1, 2, . . . , N }, and consider the unbiased
random estimate

Lξ (ω) :=
1
B

∑
j∈ξ

`(g(z j ;ω), y j ),

with B = |ξ |, the size of ξ . Using this unbiased estimation Lξ to replace the
original true gradient ∇Lξ ≈ ∇L , one can form the so-called stochastic gradient
descent (SGD) [4; 6]. Using a similar idea for Langevin dynamics, Welling and
Teh obtained a Markov chain Monte Carlo method, called the stochastic gradient
Langevin dynamics (SGLD), useful for Bayesian inference [29].
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for m in 1 : NT do
Divide {1, 2, . . . , pn} into n batches randomly.
for each batch Cq do

Update X i (i ∈ Cq ) by solving the equation for t ∈ [tm−1, tm):

Ẋ i =
1
N

F(X i , X i )+

(
1−

1
N

)
1

p− 1

∑
j∈Cq , j 6=i

F(X i , X j ). (3-4)

end for
end for

Algorithm 1. Random batch method without replacement.

Consider in general the interacting particle system of the form

Ẋ i =
1
N

N∑
j=1

F(X i , X j )=
1
N

F(X i , X i )+
1
N

∑
j : j 6=i

F(X i , X j ). (3-2)

Here, F(x, y) does not have to be symmetric, and also F(x, x) is not necessarily
zero. It is desirable to develop some cheap random approximation to the interacting
forces so that the one-step O(N 2) complexity can be reduced. One idea is to use
the “random batch” idea, but how to develop the concrete “random batch” algorithm
depends on the concrete applications. Regarding the interacting particle systems,
Jin et al. proposed some random grouping approach to achieve this goal in [16].

Here, we adopt the random batch method in [16] to (3-2) and then obtain a
stochastic version method for the SVGD ODE system (1-1). For this reason, we
explain the random batch method a little bit. Choose a time step η. We define time
grid points

tm = mη. (3-3)

At tm , one divides the particles into groups randomly, and each group is called a
“batch”, and then turns on interactions inside batches only. As indicated in [16], the
random division of the particles into n batches takes O(N ) operations (one can for
example use random permutation). Depending on whether one does batches without
or with replacement, one can have different versions (see Algorithms 1 and 2). For
the ODEs in the algorithms, one can apply any suitable ODE solver. For example,
one can use the forward Euler discretization if F is smooth like Gaussian kernels.
If K is singular, one may take p = 2 and apply the splitting strategy in [16].

For the SVGD ODE system (1-1), the kernel F takes the form

F(x, y)=∇yK(x, y)−K(x, y)∇V (y). (3-6)

Applying the random batch method to this special kernel and using any suitable ODE
solvers, we get a class of sampling algorithms, which we will call RBM-SVGD. In
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for m in 1 : NT ∗ (N/p) do
Pick a set C of size p randomly.
Update X i (i ∈ C) by solving the following with pseudotime s ∈ [sm−1, sm):

Ẋ i =
1
N

F(X i , X i )+

(
1−

1
N

)
1

p− 1

∑
j∈C, j 6=i

F(X i , X j ). (3-5)

end for

Algorithm 2. Random batch method with replacement.

for k in 0 : NT − 1 do
Divide {1, 2, . . . , pn} into n batches randomly.
for each batch Cq do

For all i ∈ Cq ,

X (k+1)
i ← X (k)

i +
1
N
(∇yK(X (k)

i , X (k)
i )−K(X (k)

i , X (k)
i )∇V (X (k)

i ))ηk +8k,iηk,

where

8k,i =
N − 1

N (p− 1)

∑
j∈Cq , j 6=i

(∇yK(X (k)
i , X (k)

j )−K(X (k)
i , X (k)

j )∇V (X (k)
j )). (3-7)

end for
end for

Algorithm 3. RBM-SVGD.

this work, we will focus on the ones without replacement. The one with forward
Euler discretization (with possible variant step size) is shown in Algorithm 3.
Clearly, the complexity is O(pN ) for each iteration.

Here, NT is the number of iterations and {ηk} is the sequence of time steps,
which play the same role as learning rate in SGD [4; 6]. For some applications,
one may simply set ηk = η� 1 to be a constant and get relatively good results.
However, in many high-dimensional problems, choosing ηk to be constant may
yield divergent sequences [23]. One may decrease ηk to obtain convergent data
sequences. For example, one may simply choose ηk = 1/k as in SGD. Another
frequently used strategy is the AdaGrad approach [11; 28].

3.2. Theoretic results. We now give convergence analysis regarding the time-
continuous version of RBM-SVGD on torus Td (i.e., choosing the particular force
(3-6) for Algorithm 1 and X i ∈ Td). The analysis in this section justifies the
expectation that RBM-SVGD should give similar performance as the original
SVGD, as confirmed by the numerical experiments in Section 4.
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By “torus”, we mean the domain is equipped with periodic boundary conditions.
The derivation of SVGD clearly stays unchanged for the torus. The reason we
consider a torus is that (1-1) is challenging to analyze in Rd because of the nonlocal
effect of the external force. On the torus, all functions are smooth and bounded.
Moreover, using bounded domains with periodic boundary condition can always
approximate the problem in Rd in practice.

Consider the random force for z = (x1, . . . , xN ) ∈ TNd defined by

fi (z) :=
(

1−
1
N

)
1

p− 1

∑
j : j∈C

F(xi , x j ), (3-8)

where C is the random batch that contains i in the random batch method. Corre-
spondingly, the exact force is given by

Fi (z)=
1
N

∑
j : j 6=i

F(xi , x j ).

Define the “noise” by

χi (z) :=
1
N

∑
j : j 6=i

F(xi , x j )− fi (z). (3-9)

We have the following consistency result regarding the random batch.

Lemma 1. For given z = (x1, . . . , xN ) ∈ TNd (or RNd ), it holds that

Eχi (z)= 0. (3-10)

Moreover, the second moment is given by

E|χi (z)|2 =
(

1−
1
N

)2( 1
p− 1

−
1

N − 1

)
3i (z), (3-11)

where

3i (z)=
1

N − 2

∑
j : j 6=i

∣∣∣∣F(xi , x j )−
1

N − 1

∑
k:k 6=i

F(xi , xk)

∣∣∣∣2. (3-12)

The proof is similar to that in [16], but we also attach it in Appendix A for
convenience.

We recall that the Wasserstein-2 distance is given by [26]

W2(µ, ν)=

(
inf

γ∈5(µ,ν)

∫
Td×Td

|x − y|2 dγ
)1/2

, (3-13)

where 5(µ, ν) is called the transport plan, consisting of all the joint distributions
whose marginal distributions are µ and ν, respectively: i.e., for any Borel set
E ⊂ Td , µ(E)=

∫∫
x∈E,y∈Td γ (dx, dy) and ν(E)=

∫
x∈Td ,y∈E γ (dx, dy).
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We now state the convergence result for the time-continuous version of RBM-
SVGD, where we recall that F(x, y) given by (3-6). We use X̃ to denote the process
generated by the random algorithm while X is the process by (1-1). The particles
are exchangeable if the initial values are sampled i.i.d. from the same distribution.
Hence, the distributions of X i are the same, and we call this one-particle distribution
the one marginal distribution, which is a probability measure in Td or Rd . We denote
it by µ(1)N for convenience. Similarly, we introduce the one marginal distribution
for the particles generated by the random algorithm, denoted by µ̃(1)N .

Theorem 2. Assume V and K are smooth on torus Td . The initial data X0
i are

drawn independently from the same initial distribution. Given T > 0, there exists
C(T ) > 0, such that

sup
t≤T

E|X i (t)− X̃ i (t)|2 ≤ C(T )
η

p− 1
.

Consequently, the one marginals µ(1)N and µ̃(1)N are close under Wasserstein-2
distance:

sup
t≤T

W2(µ
(1)
N (t), µ̃

(1)
N (t))≤ C(T )

√
η

p− 1
.

Proof. In the proof below, the constant C will represent a general constant indepen-
dent of N and p, but its concrete meaning can change for every occurrence.

Consider the corresponding two processes and t ∈ [tm−1, tm]:

d
dt

X̃ i =
1
N
(∇yK(X̃ i , X̃ i )−K(X̃ i , X̃ i )∇V (X̃ i ))

+
1− 1/N

p− 1

∑
j : j∈C

(∇yK(X̃ i , X̃ j )−K(X̃ i , X̃ j )∇V (X̃ j )) (3-14)

and

d
dt

X i =
1
N
(∇yK(X i , X i )−K(X i , X i )∇V (X i ))

+
1
N

∑
j : j 6=i

(∇yK(X i , X j )−K(X i , X j )∇V (X j )). (3-15)

Taking the difference and dotting with X̃ i − X i , one has

(X̃ i − X i ) ·
d
dt
(X̃ i (t)− X i (t))≤

C
N
|X̃ i (t)− X i (t)|2+ (X̃ i (t)− X i (t)) · (I1+ I2)



48 LEI LI, YINGZHOU LI, JIAN-GUO LIU, ZIBU LIU AND JIANFENG LU

where

I1 =
1− 1/N

p− 1

(∑
j : j∈C

(∇yK(X̃ i , X̃ j )−K(X̃ i , X̃ j )∇V (X̃ j ))

−

∑
j : j∈C

(∇yK(X i , X j )−K(X i , X j )∇V (X j ))

)
,

I2 =
1− 1/N

p− 1

∑
j : j∈C

(∇yK(X i , X j )−K(X i , X j )∇V (X j ))

−
1
N

∑
j : j 6=i

(∇yK(X i , X j )−K(X i , X j )∇V (X j )).

Hence, introducing

u(t)= E|X i (t)− X̃ i (t)|2 = E|X1(t)− X̃1(t)|2,

we have
d
dt

u ≤
C
N

u(t)+ E(X i − X̃ i ) · I1+ E(X i − X̃ i ) · I2.

Due to the smoothness of K and V on the torus, we easily find

|I1| ≤ C
1

p− 1

∑
j∈C, j 6=i

(|X i − X̃ i | + |X j − X̃ j |)

= C |X i − X̃ i | +C
1

p− 1

∑
j∈C, j 6=i

|X j − X̃ j |,

where C is independent of N . Note that C is not independent of X j (t) for t > tm−1,
so to continue we must consider conditional expectation. Let Fm−1 be the σ -
algebra generated by X i (τ ), X̃ i (τ ) for τ ≤ tm−1 (including the initial data drawn
independently) and the random division of the batches at tm−1. Then (3-14) directly
implies almost surely that

E(|X j (t)−X j (tm−1)| |Fm−1)≤Cη, E(|X̃ j (t)−X̃ j (tm−1)| |Fm−1)≤Cη. (3-16)

Thus, defining the error process

Yi (t)= X̃ i (t)− X i (t), (3-17)

we have E(|Yi (t)− Yi (tm−1)|)≤ Cη, yielding

|
√

u(t)−
√

u(tm−1)| ≤ Cη. (3-18)

Note that

E

(
|X i − X̃ i |

1
p− 1

∑
j∈C, j 6=i

|X j − X̃ j |

)
≤
√

u
(

1
p− 1

E
∑

j∈C, j 6=i

|X j − X̃ j |
2
)1/2

.
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The inside of the parentheses can be estimated as

1
p− 1

E
∑

j∈C, j 6=i

|X j − X̃ j |
2
=

1
p− 1

E
∑

j∈C, j 6=i

|X j (tm−1)− X̃ j (tm−1)|
2

+
1

p− 1
E(E((|X j − X̃ j |

2
− |X j (tm−1)− X̃ j (tm−1)|

2) | Fm−1)).

The first term on the right-hand side then becomes u(tm−1) by Lemma 1. By (3-16),
it is clear that

E((|X j − X̃ j |
2
− |X j (tm−1)− X̃ j (tm−1)|

2) | Fm−1)

≤ 2|X j (tm−1)− X̃ j (tm−1)|Cη+Cη2.

Hence,

E(X i − X̃ i ) · I1 ≤ Cu(t)+Cu(tm−1)+C
√

u(tm−1)η+Cη2,

where C is independent of N . Since u(tm−1)≤ Cu(t)+Cη2 by (3-18), then

E(X i − X̃ i ) · I1 ≤ Cu(t)+Cη2.

Letting Z = (X1, . . . , X N ), one sees easily that I2 = χi (Z(t)). Then, we find

Yi (t) · I2(t)= (Yi (t)− Yi (tm−1)) ·χi (Z(t))+ Yi (tm−1) ·χi (Z(t))=: J1+ J2.

In J2, Yi (tm−1) is independent of the random batch division at tm−1. Then, Lemma 1
tells us that

EJ2 = 0.

Using (3-14), we have

Yi (t)− Yi (tm−1)=−

∫ t

tm−1

χi (Z(s)) ds+
∫ t

tm−1

fi (Z̃(s))− fi (Z(s)) ds. (3-19)

Since χi is bounded,∣∣∣∣E ∫ t

tm−1

χi (Z(s)) ·χi (Z(t)) ds
∣∣∣∣≤ ‖3i‖∞η ≤ 2‖F‖∞

η

p− 1
, (3-20)

where C is related to the infinity norm of the variance of χi (t). This is the main
term in the local truncation error. Just as we did for I1,

| fi (Z̃(s))− fi (Z(s))| ≤ C
1

p− 1

∑
j∈C, j 6=i

(|X i − X̃ i | + |X j − X̃ j |)

= C |X i − X̃ i | +
C

p− 1

∑
j∈C, j 6=i

|X j − X̃ j |.
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Since

E
1

p− 1

∑
j∈C, j 6=i

|X j − X̃ j | ≤ E
1

p− 1

∑
j∈C, j 6=i

|X j (tm−1)− X̃ j (tm−1)|

+ E

(
1

p− 1

∑
j∈C, j 6=i

E(|X j (s)− X̃ j (s)− (X j (tm−1)− X̃ j (tm−1))| | Fm−1)

)
,

this is controlled by C
√

u(tm−1)+Cη. Hence,

EJ1 ≤ 2‖F‖∞
η

p− 1
+C

√
u(tm−1)η+Cη2.

Using the fact that u(tm−1)≤ u(t)+Cη, one eventually has that

d
dt

u ≤ Cu+ 2‖F‖∞
η

p− 1
+Cη2.

Applying Grönwall’s inequality, we find

sup
t≤T

u(t)≤ C(T )
η

p− 1
.

The last claim for W2 distance follows from the definition of W2. �

Note that the one marginal µ(1)N (t) is the distribution of X i (t) for any i , which
is deterministic. This should be distinguished from the empirical measure µN =

(1/N )
∑

i δ(x − X i (t)) which is random. As can be seen from the proof, the main
contribution in the local truncation error comes from the variance of the noise χi .

As can be seen, the error bound is given by the square root of variance of the
random force times

√
η =
√

T/NT with NT being the number of steps. Hence,
the result is a type of law of large number convergence result (see [16] for more
details). The bigness of the variance on one hand depends on the batch size as
1/(p − 1)− 1/(N − 1), while on the other hand depends on the bigness of the
interaction. As long as the variance is bounded, the convergence of random batch
method is ensured.

One crucial part is that the bigness of the variance depends on the bigness of
the interaction, instead of the range of the interaction. This means that the random
batch version of the algorithm is particularly useful when the interaction has long
range or when the particles are not sparse. In fact, if the interaction has short
range and the particles are sparse, one can use some data structure like cell-list [13,
Appendix F] to reduce the computation of the interactions from O(N 2) to O(N ).
However, when the interaction has long range or is not sparse (like the case in
the example in Section 4.2), those data structures cannot be used any more, and
RBM-SVGD becomes useful: it can still reduce the cost from O(N 2) to O(N ).
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As another observation, according to (3-11) and (3-12), the bigness of the
variance depends on the bigness of the interaction kernel. As long as the variance
stays controlled, the convergence of RBM-SVGD to SVGD is guaranteed. In this
sense, the range of the interaction kernel is not sensitive to RBM-SVGD, so it can
intrinsically be used for kernels that have long range. The choice of kernels clearly
affects the performance of SVGD, but it seems not so significant for RBM-SVGD to
approximate SVGD. In other words, we expect RBM-SVGD to work well when the
kernel is chosen such that SVGD behaves well. In fact, our experience in Section 4
confirmed this.

Remark. We believe the error bound in Theorem 2 can be made independent
of T due to the intrinsic structure of SVGD discussed above in Section 2. Then
RBM-SVGD can be used as the efficient sampling algorithm from the desired
distribution π . Such long time estimates are often established by some contracting
properties of the ODE flows, so one may want to find the intrinsic converging
structure of (1-1). However, rigorously establishing such results seems nontrivial
due to the nonlocal effects of the external forces (∇V terms).

4. Numerical experiments

We consider some test examples in [19] to validate RBM-SVGD algorithm and
compare with the original SVGD algorithm. In particular, in a toy example for
1D Gaussian mixture, RBM-SVGD is proved to be effective in the sense that the
particle system converges to the expected distribution with less running time than
the original SVGD method. A more practical example, namely Bayesian logistic
regression, is also considered to verify the effectiveness of RBM-SVGD on large
data sets in high dimension. Competitive prediction accuracy is presented by RBM-
SVGD, and less time is needed. Hence, RBM-SVGD seems to be a more efficient
method.

All numerical results in this section are implemented with Matlab R2018a and
performed on a machine with Intel Xeon CPU E5-1650v2 at 3.50 GHz with 64 GB
memory.

4.1. 1D Gaussian mixture. As a first example, we use the Gaussian mixture prob-
ability in [20] for RBM-SVGD. The initial distribution is N(−10, 1), Gaussian with
mean −10 and variance 1. The target density is given by the Gaussian mixture

π(x)=
1
3
·

1
√

2π
e−(x+2)2/2

+
2
3
·

1
√

2π
e−(x−2)2/2. (4-1)

The kernel for the RKHS is the Gaussian kernel

K (x)=
1
√

2πh
e−x2/2h, (4-2)
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Figure 1. Comparison between SVGD and RBM-SVGD with different batch sizes using
N = 100 particles. The first row reproduces results in [20]; the second row uses a fixed
bandwidth h = 2 with other settings being the same as in the first row; the third to fifth
rows apply RBM-SVGD with batch sizes 2, 5, and 20, respectively, and other settings are
the same as in the second row. In all figures, red dashed curves indicate target density
functions whereas blue curves are empirical density estimators (estimated using the kernel
density estimator).

where h is the bandwidth parameter. For a fair comparison with the numerical
results in [20], we first reproduce their results using N = 100 particles and dynamic
bandwidth parameter h=med2/(2 log N ), where med is the median of the pairwise
distance between the current points. Since dynamic bandwidth is infeasible for
RBM-SVGD, we produce the results with fixed bandwidth h= 2 for the comparison
between SVGD and RBM-SVGD. The RBM-SVGD uses Algorithm 3 with initial
step size 0.2 and the following step sizes generated from AdaGrad. Different batch
sizes are tested to demonstrate the efficiency of RBM-SVGD. Numerical results are
illustrated in Figure 1 with the same initial random positions of particles following
an N(−10, 1) distribution.
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As stated in [20], the difficulty lies in the strong disagreement between the
initial density function and the target density π(x). According to the first and
second rows in Figure 1, SVGD with and without the fixed bandwidth parameter
capture the target density efficiently and the corresponding convergence behaviors
are similar to each other. Reading from the last column of Figure 1, we observe
that RBM-SVGD inherits the advantage of SVGD in the sense that it can conquer
the challenge and also show compelling result with SVGD. When the batch size is
small, e.g., p = 2 or p = 5, the estimated densities differ from that of SVGD, and
according to our experience, the estimated densities are not very stable across several
executions while, in theory, RBM-SVGD runs N/p times faster than SVGD. Hence,
RBM-SVGD with p = 5 at the 500-th iteration costs the same as 50 iterations of
SVGD. According to Figure 1, RBM-SVGD(2) at the 500-th iteration significantly
outperforms the 50-th iteration of SVGD. As we increase the batch size, as in the
last two rows of Figure 1, more stable and similar behavior to SVGD is observed.

Provided the good performance of RBM-SVGD, we also check the sampling
power and its computational cost. We conduct the following simulations with
N = 256 particles for 500 iterations with the Gaussian kernel (4-2). For RBM-
SVGD, we use fixed bandwidth h = 2 whereas SVGD uses the aforementioned
dynamic bandwidth strategy. When we apply SVGD or RBM-SVGD with different
batch sizes, the same initial random positions of particles is used. For a given test
function h(x), we compute the estimated expectation h = (1/N )

∑N
i=1 h(X i (T ))

and the sampling accuracy is measured via the minimum square error (MSE) over
100 random initializations following the same distribution as before:

MSE=
1

100

100∑
j=1

(h j − EX∼πh(X))2,

where EX∼πh(X) denotes the underlying truth. Three test functions are explored,
h1(x)= x , h2(x)= x2, and h3(x)= cos 2x , with their corresponding true expecta-
tions being 2

3 , 5, and (cos 4)/e2. The reported run time is also averaged over 100
random initializations.

Figure 2 shows the MSE against different batch sizes for h1(x), h2(x), and h3(x),
respectively. The results of RBM-SVGD with different batch sizes are connected
by lines, whereas the results of SVGD are the isolated points with batch size
p = 256. In general, the estimations of h1(x) and h2(x) are better than that of
h3(x), which agrees with the difficulty of the problems. Table 1 shows the averaged
run time of RBM-SVGD and SVGD for different batch sizes under two different
implementations in Matlab. RBM-SVGD is faster than SVGD for all choices of
batch size. With respect to the two implementations in Matlab, for the first block
row, within each batch, a matrix operation is adopted in computing the kernel matrix
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Figure 2. MSEs of (left) h1(x) = x , (center) h2(x) = x2, and (right) h3(x) = cos 2x ,
against different batch sizes.

RBM-SVGD SVGD
Matlab batch size 2 4 8 16 32 64 128 256

matrix op. run time (s) 0.055 0.095 0.178 0.341 0.270 0.238 0.314 0.733
speedup (×) 13.3 7.7 4.1 2.1 2.7 3.1 2.3

row op. run time (s) 0.055 0.095 0.175 0.332 0.646 1.274 2.527 4.968
speedup (×) 91.0 52.5 28.4 15.0 7.7 3.9 2.0

Table 1. Averaged run time for different batch sizes.

whereas for the second block row, the kernel matrix is computed row by row. Matlab
naturally is more favorable in the first implementation, which hence achieves fastest
run time for all different batch sizes. For other programming languages, e.g., C++,
Fortran, etc., the speedup of the second block row is excepted, which is close to
ideal case as we predicted earlier.

4.2. Double banana. In this section, we will compare RBM-SVGD with MCMC,
specifically Metropolis–Hastings (MH) [15]. The algorithmic detail of Metropolis–
Hastings is available in Appendix B. The performance of RBM-SVGD and MH on
a Bayesian inference task is compared to illustrate the advantage of RBM-SVGD.
When the number of particles is not very large and desired accuracy is not high,
RBM-SVGD can be more efficient.

We run MH and RBM-SVGD on a Bayesian inference task which is exactly the
experiment in [10]. In this inference problem, our unknown parameter x is in R2.
The observational data y is a real number which is determined by the forward map
F(x) and the observational noise, i.e., y = F(x)+ ξ , where the forward map is a
scalar logarithmic Rosenbrock function [24] F(x)= log((1− x1)

2
+100(x2− x2

1)
2)

for x = (x1, x2) and the Gaussian noise ξ satisfies ξ ∼ N(0, σ 2) for σ = 0.3. The
relationship between parameter x and observation y implies that the likelihood
function is p(y | x)= N(F(x), σ 2). Finally, we set the prior distribution for x to
be Gaussian, i.e., π0(x)= N(0, τ 2 I2), where I2 is the identity matrix and τ will be
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specified later. Thus, the unnormalized posterior density is given by

π(x)= π0(x)p(y | x)= exp
(
−
‖x‖2

2τ 2 −
(y− F(x))2

2σ 2

)
. (4-3)

N = 512 particles are sampled in RBM-SVGD, and the maximum iteration
number is 800. Different batch sizes are tested for performance, and the bandwidth
parameter is fixed to be h= 0.1. To make MH comparable with RBM-SVGD regard-
ing the number of sampling points, we viewed MH as a method with batch size 1, so
the total number of iterations we performed for MH was N · 200. We apply burn-in
technique by only considering the second-half iterations. To reduce correlation, only
1 sample is drawn from every 100 iterations. Therefore, a total number of N samples
are selected from MH, which agrees with the number of particles we employ in RBM-
SVGD. According to the performance test in Appendix B, we compare RBM-SVGD
with MH by choosing τ = 5 · 10−3, which is tested to be convergent and presents
the best visual performance among different choices of τ . For both RBM-SVGD
and MH, the initial points are sampled from a Gaussian distribution N(0, 0.42). The
target distribution is double banana with centers near (0, 0.5) and (0,−0.5). Hence,
we adopt two test functions as h1(x1, x2)= exp(−(x2

1+ (x2−0.5)2)/(2 ·0.52)) and
h2(x1, x2)= exp(−(x2

1 + (x2+ 0.5)2)/(2 · 0.52)).
In Figure 3, we plotted the position of each particle after RBM-SVGD iteration

or MH together with the contour map of the target distribution. From the picture
we can tell that both MH and RBM-SVGD can recover the shape of the target
density and produce persuasive samplings. Although RBM-SVGD slightly harmed
the aggregation of particles around the true distribution (which also paid off with a
much shorter running time) compared to the original SVGD (RBM-SVGD with
batch size = 512), it can still provide a convincing sampling by almost recovering
the shape of the target density. In Table 2, we give further quantitative comparison.
All numbers in the table are averaged over 100 different initializations. The run
time for any RBM-SVGD with different batch sizes is faster than that of MH, and
RBM-SVGD with batch size 2 is more than 20× faster while, regarding the MSE
for both h1 and h2, RBM-SVGD is much better than MH for h1 and better than
MH for h2. Hence, we conclude, for this example, SVGD outperforms MH both in
run time and accuracy. RBM-SVGD further significantly reduces the run time of
regular SVGD without loss of accuracy.

4.3. Bayesian logistic regression. In this experiment, we apply RBM-SVGD to
conduct Bayesian logistic regression for binary classification for the Covertype
data set with 581012 data points and 54 features [14]. Under the same setting
as Gershman [14; 20], the regression weights w of dimension 54 are assigned
with a Gaussian prior p0(ω | α)= N(w, α−1), and the variance satisfies p0(α)=
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Figure 3. Comparison between RBM-SVGD and Metropolis–Hastings.

RBM-SVGD MH
batch size 2 8 32 128 512

run time (s) 0.1321 0.3960 0.8268 0.9732 1.6086 2.9459
h1 MSE ×103 0.0942 0.1862 0.2270 0.2910 0.3850 6.0689
h2 MSE ×103 0.9559 2.2466 2.0151 1.0617 0.5634 3.5240

Table 2. Run time and MSE of h1 and h2 for RBM-SVGD and Metropolis–Hastings.

0(α, 1, 0.01), where 0 represents the density of Gamma distribution. The inference
is applied on posterior p(x | D) with x = [w, logα] of dimension 55. The kernel
K ( · ) is taken again to be the same Gaussian kernel as (4-2).

Since the problem is in high dimension, we adopt N = 512 particles in this
experiment, which also create more space for the selection of batch sizes. The
training is done on 80% of the data set, and the other 20% is used as the test
data set. For particle system (1-1), the computation of −∇V = ∇ log p(x) is
expensive. Hence, we use the same strategy as mentioned in [20, §3.2], i.e., using
data-mini-batch1 of the data to form a stochastic approximation of p(x) with the
data-mini-batch size being 100. Since ∇ log p depends only on x as in Algorithm 3,

1To avoid confusion with our batch of particles, we call it data-mini-batch instead.
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Figure 4. Test accuracy under different batch sizes of RBM-SVGD.

RBM-SVGD SVGD
batch size 2 4 8 16 32 128 512

run time (s) 8.59 11.24 16.28 26.15 21.66 19.42 47.01
speedup (×) 5.5 4.2 2.9 1.8 2.2 2.4

Table 3. Average run time of 6000 iterations.

at each time step, we call this function only once and compute ∇ log p for all
particles, which means the same data-mini-batches are used for ∇ log p of all
particles. In this experiment, we use fixed bandwidth h = 256 for RBM-SVGD and
dynamic bandwidth strategy for SVGD. The RBM-SVGD uses Algorithm 3 with
initial step size being 0.05, and the following step sizes are generated from AdaGrad.
Large h is used here for the reason of high dimensionality. Different batch sizes are
tested to demonstrate the efficiency of RBM-SVGD. Each configuration is executed
on 50 random initializations. The averaged test accuracies for different batch sizes
are illustrated in Figure 4.

As shown in Figure 4, RBM-SVGD is almost as efficient as SVGD even for
small batch sizes. When p = 2, the test accuracy converges to a value slightly
off that of SVGD. RBM-SVGD with p = 4 converges to the same accuracy as
SVGD but at a slower convergent rate. For RBM-SVGD with batch size greater
than 4, we observe similar convergence behavior as that of SVGD. The run time
of RBM-SVGD, as shown in Table 3, is lower than that of SVGD, where the run
time of 6000 iterations is reported. Comparing to the similar run time table for the
1D Gaussian mixture example (Table 1), the acceleration of RBM-SVGD is not as
significant as before. This is due to the linear but expensive evaluation of ∇ log p,
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iteration 1000 2000 3000 4000 5000 6000

RBM-SVGD mean 0.7090 0.7349 0.7409 0.7446 0.7457 0.7471
p = 2 std 0.0045 0.0040 0.0040 0.0034 0.0034 0.0038

RBM-SVGD mean 0.7342 0.7470 0.7508 0.7518 0.7527 0.7534
p = 8 std 0.0073 0.0056 0.0041 0.0045 0.0039 0.0033

SVGD mean 0.7347 0.7530 0.7523 0.7529 0.7504 0.7511
std 0.0068 0.0048 0.0071 0.0048 0.0061 0.0062

Table 4. Statistics of RBM-SVGD and SVGD.

where RBM-SVGD and SVGD spend the same amount of time in the evaluation
each iteration. Although the evaluation of ∇ log p is expensive, it is linear in N . As
N increases, the advantage of RBM-SVGD would be more significant. In Table 4,
we list the mean and standard deviation of RBM-SVGD with p = 2 and p = 8 and
SVGD of different iterations. Based on the statistics, we conclude that RBM-SVGD
and SVGD are of similar prediction power and RBM-SVGD is efficient also in
high-dimensional particle systems as well.

5. Conclusion

We have applied the random batch method for interacting particle systems to SVGD,
resulting in RBM-SVGD, which turns out to be a cheap sampling algorithm and
inherits the efficiency of the original SVGD algorithm. Theory and numerical
experiments have validated the algorithm, and hence, it can potentially have many
applications, like Bayesian inference. Moreover, as a hybrid strategy, one may
increase the batch size as time goes on to increase the accuracy, or apply some
variance reduction approach.

Appendix A: Proof of Lemma 1

Proof of Lemma 1. The proof is pretty much like the one in [16]. We use the random
variable I (i, j) to indicate whether i and j are in a common batch. In particular,
I (i, j)= 1 if i and j are in a common batch while I (i, j)= 0 otherwise. Then it
is not hard to compute [16]

E1I (i, j)=1 =
p− 1
N − 1

,

P(I (i, j)I ( j, k)= 1)=
(p− 1)(p− 2)
(N − 1)(N − 2)

.

(A-1)

We note

χi (x)=
1
N

∑
j : j 6=i

(
1−

N − 1
p− 1

I (i, j)
)

F(xi , x j ). (A-2)
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The first equation in (A-1) clearly implies that Eχi (x) = 0. Using (A-1), we can
compute directly that

E|χi (x)|2 =
1

N 2

(∑
j : j 6=i

(
N − 1
p− 1

− 1
)
|F(xi , x j )|

2

+

∑
j,k: j 6=i, k 6=i, j 6=k

(
(N − 1)(p− 2)
(N − 2)(p− 1)

− 1
)

F(xi , xk) · F(xi , x j )

)
.

Rearranging this, we get the claimed expression. �

Appendix B: Metropolis–Hastings method and performance

Metropolis–Hastings (MH) is a method of MCMC which produces a reversible
Markov chain where the unnormalized target distribution π is invariant. This
reversibility is realized by its “accept or reject” machinery. Roughly speaking, MH
first generates a candidate according to a proposal distribution (which is always
chosen as a normal distribution) and then determines whether to accept or reject
the candidate according to the unnormalized target distribution π [15]. In detail,
the algorithm has four steps:

(1) initialization. Draw X0 according to a given prior distribution π0.

(2) generate a candidate. Given Xn , draw candidate X ′ through a normal distribu-
tion with mean Xn and covariance C , i.e.,

X ′ = Xn +N(0,C).

(3) calculate the acceptance rate. Acceptance rate α is set as

α =min
{

1,
π(X ′)
π(X)

}
.

(4) accept or reject. Then we accept X ′ with probability α and reject it with
probability 1− α, i.e., Xn+1 = X ′ with probability α and Xn+1 = Xn with
probability 1−α.

The Markov chain constructed in this algorithm has transition kernel h(x, y) which
can be written as

h(x, y)= exp
(
−
(x − y)T C−1(x − y)

2

)
·min

{
1,
π(y)
π(x)

}
.

Direct calculation indicates that h(x, y)π(x) = h(y, x)π(y). Thus, this Markov
chain satisfies the detailed balance condition and hence has invariant measure π .
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Figure 5. Samples from MH with different τ .

Given the prior and target distribution as in (4-3), we first test the performance
of MH among different values of parameter τ , which represents the variance of the
proposal distribution.

Figure 5 illustrates the samples together with the contour map of target distribution
for τ = 5 · 10−1, 5 · 10−2, 5 · 10−3, 5 · 10−4. Clearly, the best performance was
attained when τ = 5 · 10−3. For τ greater than 5 · 10−3, samples are still wandering
around the true distribution without accumulating due to a high variance, whereas
for smaller τ , samples are merely aggregating around the “lower” banana rather
than the “upper” banana. This phenomenon can be explained by the small variance
of proposal distribution, which confines the particles around upper banana.

Moreover, a convergence diagnosis for MCMC was also conducted by computing
the auto-correlation [7]. A lower auto-correlation always implies better convergence
because a higher auto-correlation indicates that effective sampling size is smaller
and more iteration is necessary [27]. Figure 6 plots the auto-correlation of the
first coordinate of samples at different time lag κ . For τ = 5 · 10−1, 5 · 10−2,
auto-correlation at κ ≤ 5 · 103 (2.5% of the number of samples) is plotted, while
for τ = 5 · 10−3, 5 · 10−4, auto-correlation at κ ≤ 5 · 104 (25% of the number of
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Figure 6. Auto-correlation curve of samples from MH with different τ .

samples) is plotted. This figure shows that auto-correlation decays rapidly for
τ = 5 ·10−1, 5 ·10−2 and oscillates around 0 with small magnitude. For τ = 5 ·10−3,
although it decays quickly, its oscillation has a greater magnitude. For τ = 5 · 10−4,
it does not converge to 0 at all. In conclusion, the convergence of MH with
τ = 5 · 10−1, 5 · 10−2, 5 · 10−4 is acceptable. Hence, in this paper, we use MH with
τ = 5 · 10−3 as a reference.
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