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Abstract. We prove the existence of solutions for a coupled system modeling

the flow of a suspension of fluid and negatively buoyant non-colloidal particles
in the thin film limit. The equations take the form of a fourth-order non-

linear degenerate parabolic equation for the film height h coupled to a second-

order degenerate parabolic equation for the particle density ψ. We prove the
existence of physically relevant solutions, which satisfy the uniform bounds

0 ≤ ψ/h ≤ 1 and h ≥ 0.

1. Introduction

In lubrication theory, the free surface height of a thin liquid film is governed by
a degenerate fourth-order parabolic equation which in one dimension typically has
the form

(1) ht + (f0(h))x = −(f1(h)hxxx)x + (f2(h)hx)x,

where the coefficients f0, f1, f2 depend on the relevant physics (e.g. f0 = f1 = f2 =
h3 for the flow of a fluid driven by gravity down an incline) [16]. Equations of this
type have been the subject of considerable theoretical study; the tools for analysis
can provide insight into important phenomena such as instabilities in spreading
films [7, 9, 17, 4], and can be utilized to design efficient numerical schemes [20].
Bernis and Friedman [5] first demonstrated existence and positivity of solutions to
the equation ht = −(hnhxxx)x through the use of energy and entropy estimates.
In later work, Bertozzi and Pugh explicated the theory for the equation (1) with
f0 = 0, using different choices of regularization and entropy functions to study
regularity, long-time behavior [3] and the growth of singularities [4].

There are a wide variety of problems in multiphase thin-film flows that lead
to more complicated systems. Lubrication models of such flows reduce to coupled
systems for the film height and a quantity tracking the second phase, whose complex
dynamics have been the subject of considerable interest in recent research [11]. Here
we consider one such model for gravity-driven suspension flow in one dimension that
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accounts for the non-uniform distribution of particles within the bulk of the fluid,
proposed in [15] and recently extended to include surface tension in [18]. The model
equations [18] for the film height h(x, t) and depth-integrated particle density ψ(x, t)
have the form

ht + (h3f0(φ))x = −β(h3f1(φ)hxxx)x + (h3(f2(φ)hx + f3(φ)ψx))x,

ψt + (h3g0(φ))x = −β(h3g1(φ)hxxx)x + (h3(g2(φ)hx + g3(φ)ψx))x,
(2)

where φ = ψ/h is the depth-averaged concentration of particles that cannot exceed
a maximum packing fraction φm, normalized here so that φm = 1. The fluxes vanish
at the maximum packing fraction (i.e. fi(1) = gi(1) = gi(0) = 0), where flow of
the suspension is completely inhibited by the particles. This adds an additional
degeneracy into the equations (along with the standard degeneracy for thin films
as h → 0), which has been studied in the related problem of non-linear diffusion
equations for sedimenting particles [2].

The flux functions in the model equations (2) have a particular behavior in the
dilute limit (φ → 0) and the high-concentration limit (φ → 1). In particular, for
negatively buoyant particles,

fi(φ) ∼ 1

3
, gi(φ) ∼ biφ3/2 as φ→ 0, i = 0, 1, 2

f3 ∼ a3φ, g3 ∼ b3φ2 as φ→ 0,

fi(φ) ∼ ci(1− φ)2, gi(φ) ∼ di(1− φ)2 as φ→ 1, i = 0, 1, 2, 3

(3)

for constants ai, bi, ci, di > 0 [19]. These fluxes arise from depth-integrating the fluid
(f) and particle (g) volume fluxes, which depend on the distribution of particles in
the fluid depth. The exponents of φ in the dilute limit are a consequence of the
particle accumulation towards the substrate of the fluid [18]. The quadratic decay
in the high concentration limit is due to the singularity in the suspension viscosity
µ ∼ (1 − φ)−2, a law that captures the inhibiting of the flow near the maximum
packing fraction [6].

The system (2) is closely related to the equations governing transport of insol-
uble surfactant on the fluid surface [11], for which the concentration Γ satisfies an
equation with a non-degenerate diffusion term. Existence and positivity of weak
solutions was established in [13, 1] using a finite element approach and studied for
more general systems in later work by [8, 14, 10]. The techniques employed there
are almost applicable to (2), but must be modified to account for a few key differ-
ences in the structure of the equations. First, we do not include the non-degenerate
Brownian diffusion term for ψ, leaving only the degenerate diffusion term for the ψ
equation which vanishes when φ = 0, φ = 1 or h = 0. Second, the fluxes depend on
the ratio ψ/h of the conserved variables h and ψ and vanish when ψ/h ≥ 1, so it is
critical to establish this bound.

Here we are concerned with the existence of physically relevant solutions in the
sense that h > 0 and 0 6 ψ/h ≤ 1 when the initial data satisfies the same, with
periodic boundary conditions. Under assumptions on the behavior of the flux coef-
ficients fi and gi compatible with the properties (3) of the physical model, we prove
existence of such solutions and the bound φ ≤ 1 when fi = gi = 0 for φ ≥ 1. In
Section 2, the governing system and assumptions used in the existence result are
introduced. In Section 3 the relevant notion of a weak solution is defined and the
main result is stated, which is proven in Section 4.
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2. System and assumptions

Next, we assume that f2 = g2 = 0 for simplicity (due to the fourth order diffusion,
this second order term is not important to the existence result). Let us consider
the following system of equations:

(4) ht + (|h|3[βf1(ψh )hxxx + f0(ψh )])x = (D1(h, ψ)ψx)x,

(5) ψt + (|h|3[βg1(ψh )hxxx + g0(ψh )])x = (D2(h, ψ)ψx)x

in QT = (0, T )× Ω with periodic boundary conditions

(6) ∂ih
∂xi (−a, t) = ∂ih

∂xi (a, t),
∂kψ
∂xk

(−a, t) = ∂kψ
∂xk

(a, t) ∀ t > 0,

i = 0, 3, k = 0, 1, and initial conditions

(7) h(x, 0) = h0(x), ψ(x, 0) = ψ0(x),

where Ω := (−a, a) ⊂ R1 is bounded domain,

(8) h0(x) ∈ H1(Ω), ψ0(x) ∈ L2(Ω), 0 6 ψ0(x) 6 h0(x),

and Di, fi, gi are continuous functions such that

(9) 0 6 f1(z) 6 a0(1 + |z|)−m, |f0(z)| 6 a1f
1
2

1 (z), where m > 0,

(10) |g1(z)| 6 b0f
1
2

1 (z)|z| 32 , |g(z)| 6 b1|z|
3
2 ∀ |z| 6 1,

(11) |f2(z)| 6 a2f
1
2

1 (z)|z| 32 , b2|z|3 6 g2(z) ∀ |z| 6 1,

(12) D1(a, b) := |a|3f2( ba ), D2(a, b) := |a|3g2( ba ),

(13) fi(z) = gi(z) = 0 ∀ |z| > 1, i = 0, 1, 2,

where a2, b0, b2 satisfy the following restrictions:

a2
2

4βb2
<

√
1−

√
βb20
4b2

and
βb20
4b2

< 1, or
a2

2

4βb2
> max

{
βb20
4b2
− 1,

√
1 +

√
βb20
4b2

}
.

While these restrictions are technical, the upper bounds on f0, f1, g0, g1 and lower
bound on g2 are physically relevant, as is evident in comparing to the behavior of
the coefficients (3) in the physical model.

Integrating (4) on Ω, due to periodic boundary conditions (6), we obtain the
mass conservation

(14)

∫
Ω

h dx =

∫
Ω

h0 dx.
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3. Main result

Definition 3.1. [weak solution] A generalized weak solution of the problem (4)–(7)
with initial data (h0, ψ0) satisfying (8) is a pair (h, ψ) has the following regularity
properties

h > 0 in QT , 0 6 ψ 6 h a. e. in QT ,

h ∈ C
1
2 ,

1
8

x,t (Q̄T ) ∩ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗),

ψ ∈ L∞(0, T ;L2(Ω)) ∩W 1
3
2
(0, T ; (W 1

3 (Ω))∗),

I := βf1(φ)h3hxxx + f0(φ)h3 −D1(h, ψ)ψx ∈ L2({h > 0}),

βg1(φ)h3hxxx −D2(h, ψ)ψx ∈ L
3
2 ({ψ > 0}), g0(φ)h3 ∈ L6({h > 0}),

where φ := ψ
h . Furthermore, (h, ψ) satisfies (4)–(5) in the following sense:

T∫
0

〈ht(t), ξ(t)〉dt−
∫∫
{h>0}

Iξxdxdt = 0,

T∫
0

〈ψt(t), ζ(t)〉dt−
∫∫
{h>0}

g0(φ)h3ζxdxdt−
∫∫
{ψ>0}

(βg1(φ)h3hxxx −D2(h, ψ)ψx)ζxdxdt = 0

for all ξ ∈ L2(0, T ;H1(Ω)) and ζ ∈ L3(0, T ;W 1
3 (Ω)): ξ(−a, t) = ξ(a, t), ζ(−a, t) =

ζ(a, t) for all t ∈ (0, T ). Moreover, the initial conditions for h and ψ are attained
in the sense of traces in the spaces H1(0, T ; (H1(Ω))∗) and W 1

3
2

(0, T ; (W 1
3 (Ω))∗),

respectively.

Theorem 3.2. [existence] Let (9)–(13) hold. Assume that the initial data (h0, ψ0)
satisfy (8) and (14). Then, for any time T > 0, there exists a weak solution (h, ψ)
of the problem (4)–(7) in the sense of Definition 3.1.

4. Proof of Theorem 3.2

4.1. Auxiliary problems. We regularize the degeneracy which is apparent for
h = 0, ψ = 0 and ψ = h. For this purpose we approximate the system by a family
of non-degenerate equations:

ht + (βFδε(h)f1,δ(
ψ
h )hxxx + Fδ(h)f0(ψh ))x = (D1,δ(h, ψ)ψx)x,(15)

ψt + (Fδ(h)[βg1,δ(
ψ
h )hxxx + g0(ψh )])x = (D2,ε(h, ψ)ψx)x,(16)

in QT = (0, T )× Ω with periodic boundary conditions

(17) ∂ih
∂xi (−a, t) = ∂ih

∂xi (a, t),
∂kψ
∂xk

(−a, t) = ∂kψ
∂xk

(a, t) ∀ t > 0,

i = 0, 3, k = 0, 1, and initial conditions

(18) h(x, 0) = h0,δ(x) > h0 + δθ, ψ(x, 0) = ψ0,ε(x) > ψ0 + εµ

for all θ ∈ (0, 2
s+4 ) and µ ∈ (0, 1), where ε > 0, δ > 0, and

Fδε(z) := Fδ(z) + ε = |z|s+3

|z|s+δ|z|3 + ε, s > 8, f1,δ(z) := f1(z) + δ;

|g1,δ(z)| 6 b0f
1
2

1,δ(z)|z|
3
2 if |z| 6 1, g1,δ(z) = δ if |z| > 1;

D1,δ(h, ψ) = Fδ(h)f2(ψh ), D2,ε(h, ψ) = D2(h, ψ) + ε.
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Here h0,δ and ψ0,ε are smooth enough approximation functions. Integrating (15)
and (16) in QT by (17), we get the mass conservation

(19)

∫
Ω

h(x, t) dx =

∫
Ω

h0,δ(x) dx,

∫
Ω

ψ(x, t) dx =

∫
Ω

ψ0,ε(x) dx.

Let us denote by φ := ψ
h , and

χφ = 1 if |φ| 6 1, χφ = 0 if |φ| > 1.

Note that

D1,δ(h, ψ) = 0 ∀ |φ| > 1,

D2,ε(h, ψ) > D2,ε(ψ) := b2|ψ|3 + ε ∀ |φ| 6 1, and D2,ε(h, ψ) = ε ∀ |φ| > 1.

4.2. Galerkin approximation. Now we use a Galerkin approximation which trans-
forms the system of partial differential equations into a system of ordinary differ-
ential equations. As basis functions for the finite dimensional space we select an
L2-orthonormal basis of eigenfunctions which are solutions of the periodic boundary
value problem:

−v′′i = λivi in Ω, vi(−a) = vi(a).

We make a Galerkin ansatz for hNεδ(x, t) and ψNεδ(x, t) of the form

hNεδ =

N∑
i=0

ai(t)vi(x), ψNεδ =

N∑
i=0

bi(t)vi(x).

According to (15) and (16) the functions ai(t) and bi(t) are subject to the following
Galerkin equations which have to hold for j = 0, N :

ȧj(t) = −βδελj‖v′j‖22aj(t)−

β

N∑
i=0

λiai(t)

∫
Ω

(Fδ(h
N
εδ)f1,δ(

ψNεδ
hNεδ

) + εf1(
ψNεδ
hNεδ

))v′iv
′
jdx+

∫
Ω

Fδ(h
N
εδ)f0(

ψNεδ
hNεδ

)v′jdx−
N∑
i=0

bi(t)

∫
Ω

D1,δ(h
N
εδ, ψ

N
εδ)v

′
iv
′
jdx,

ḃj(t) = −ελjbj(t)−
N∑
i=0

bi(t)

∫
Ω

D2(hNεδ, ψ
N
εδ)v

′
iv
′
jdx−

β

N∑
i=0

λiai(t)

∫
Ω

Fδ(h
N
εδ)g1,δ(

ψNεδ
hNεδ

)v′iv
′
jdx+

∫
Ω

Fδ(h
N
εδ)g0(

ψNεδ
hNεδ

)v′jdx

with

aj(0) = (h0,δ, vj)L2(Ω), bj(0) = (ψ0, vj)L2(Ω).

Due to (9)–(12), the right-hand side of this system is Lipschitz continuous on aj
and bj . Thus, by the Picard-Lindelöf theorem a unique local solution of the sys-
tem exists. Solvability for some T > 0 can be proved by using a priori estimates
(uniformly in N , ε and δ).
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For brevity, we denote by h := hNεδ, ψ := ψNεδ and φ = ψ
h . Multiplying (15) by

h− hxx and integrating on Ω, we deduce that

(20) 1
2
d
dt‖h‖

2
H1(Ω) + β

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx =

β

∫
Ω

f1,δ(φ)Fδε(h)hxhxxxdx−
∫
Ω

f0(φ)Fδ(h)hxxxdx+

∫
Ω

f0(φ)Fδ(h)hxdx+

∫
Ω

D1,δ(h, ψ)ψxhxxxdx−
∫
Ω

D1,δ(h, ψ)ψxhxdx 6

β
(∫

Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2
(∫

Ω

f1,δ(φ)Fδε(h)h2
xdx

) 1
2

+

(∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2
(∫

Ω

Fδ(h)
f2
0 (φ)

f1,δ(φ)dx
) 1

2

+

(∫
Ω

f2
0 (φ)F 2

δ (h)dx
) 1

2
(∫

Ω

h2
xdx

) 1
2

+

(∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2
(∫

Ω

D2
1,δ(h,ψ)

f1,δ(φ)Fδε(h)ψ
2
xdx

) 1
2

+

(∫
Ω

D2
1,δ(h,ψ)

Fδ(h) ψ2
xdx

) 1
2
(∫

Ω

Fδ(h)h2
xdx

) 1
2

6

C(β(a0 + δ)
1
2 (‖h‖

5
2

H1(Ω) + ‖h‖H1(Ω)) + a1χφ‖h‖
3
2

H1(Ω))
(∫

Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2

+

Ca1a
1
2
0 χφ‖h‖4H1(Ω) +

(∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2
(∫

Ω

D2
1,δ(h,ψ)

f1,δ(φ)Fδε(h)ψ
2
xdx

) 1
2

+

C‖h‖2H1(Ω)

(∫
Ω

D2
1,δ(h,ψ)

Fδ(h) ψ2
xdx

) 1
2

,

whence we find that

1
2
d
dt‖h‖

2
H1(Ω) + (β − ε1 − ε2)

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx

6 C2

2ε1
(β2(a0 + δ)(‖h‖5H1(Ω) + ‖h‖2H1(Ω)) + a2

1χφ‖h‖3H1(Ω)) + Ca1a
1
2
0 χφ‖h‖4H1(Ω)

+ 1
4ε2

∫
Ω

D2
1,δ(h,ψ)

f1(φ)Fδ(h)ψ
2
xdx+ ε3

∫
Ω

D2
1,δ(h,ψ)

Fδ(h) ψ2
xdx+ C2

4ε3
χφ‖h‖4H1(Ω)

6 C1 max{1, ‖h‖5H1(Ω)}+ a2
2χφ( 1

4ε2
+ ε3)

∫
Ω

|ψ|3ψ2
xdx,

(21)

where C1 > 0 is independent of N, ε and δ < δ0.
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Next, multiplying (16) by Φ′ε(ψ), we deduce that

d
dt

∫
Ω

Φε(ψ)dx+

∫
Ω

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx =

β

∫
Ω

Fδ(h)hxxxg1,δ(φ)Φ′′ε (ψ)ψxdx+

∫
Ω

Fδ(h)g0(φ)Φ′′ε (ψ)ψxdx 6

β
(∫

Ω

Fδ(h)
g2
1,δ(φ)Φ′′ε (ψ)

f1,δ(φ)D2,ε(h,ψ)D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx

) 1
2
(∫

Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2

+

(∫
Ω

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx

) 1
2
(∫

Ω

F 2
δ (h)g2(φ)

Φ′′ε (ψ)
D2,ε(h,ψ)dx

) 1
2

,

where Φ′′ε (z) = |z|−3D2,ε(z) = b2χφ + ε|z|−3 > 0, i. e. Φε(z) = b2
2 χφz

2 + ε
2 |z|
−1.

Note that

Fδ(h)
g2
1,δ(φ)Φ′′ε (ψ)

f1,δ(φ)D2,ε(h,ψ) 6 |h|3 δ
2Φ′′ε (ψ)
δε 6 δ

ε |ψ|
3Φ′′ε (ψ) 6 δ if |φ| > 1,

Fδ(h)
g2
1,δ(φ)Φ′′ε (ψ)

f1,δ(φ)D2,ε(h,ψ) 6 |h|3 g
2
1,δ(φ)|ψ|−3(b2|ψ|3+ε)

f1,δ(φ)(b2|ψ|3+ε) =
g2
1,δ(φ)|φ|−3

f1,δ(φ) 6 b20 if |φ| 6 1.

Then, due to (9)–(13), we obtain that

(22) d
dt

∫
Ω

Φε(ψ)dx+ (1− ε4 − ε5)

∫
Ω

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx 6

β2(b20+δ)
4ε4

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx+

b21χφ
4ε5

∫
Ω

|h|3dx 6

β2(b20+δ)
4ε4

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx+ C2‖h‖3H1(Ω),

where C2 > 0 is independent of N, ε and δ < δ0.
Summing (21) and (22), we have

(23)

1
2
d
dt‖h‖

2
H1(Ω) + d

dt

∫
Ω

Φε(ψ)dx+ (β − ε1 − ε2 − β2(b20+δ)
4ε4

)

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx+

(1− ε4 − ε5 − χφ a
2
2

b22
( 1

4ε2
+ ε3))

∫
Ω

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx 6

C3 max{1, ‖h‖5H1(Ω)},

where C3 = max{C1, C2} > 0. Choosing εi such that

β − ε1 − ε2 − β2(b20+δ)
4ε4

> 0, 1− ε4 − ε5 − χφ a
2
2

b22
( 1

4ε2
+ ε3) > 0,

namely,

0 < ε1, ε3, ε5 � 1, χφ
a2

2

4b22(1−ε4)
< ε2 < β − β2(b20+δ)

4ε4
,
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max{β(b20+δ)
4 , 1

8β (4β + β2(b20 + δ)− χφ a
2
2

b22
−√

(4β + β2(b20 + δ)− χφ a
2
2

b22
)2 − 16β3(b20 + δ)} < ε4 <

min{1, 1
8β (4β+β2(b20 + δ)−χφ a

2
2

b22
+

√
(4β + β2(b20 + δ)− χφ a

2
2

b22
)2 − 16β3(b20 + δ)}

provided

|4β + β2(b20 + δ)− χφ a
2
2

b22
| > 4(b20 + δ)

1
2 β

3
2 ,

we get

(24) 1
2
d
dt‖h‖

2
H1(Ω) + d

dt

∫
Ω

Φε(ψ)dx+ C

∫
Ω

f1,δ(φ)Fδε(h)h2
xxxdx+

C

∫
Ω

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdx 6 C3 max{1, ‖h‖5H1(Ω)}.

Applying Grönwall’s lemma to (24) with y(t) = max{1, ‖h‖2H1(Ω)}+ 2‖Φε(ψ)‖1, we

obtain that

(25) ‖h‖2H1(Ω) 6
max{1,‖hN0ε‖

2
H1(Ω)

}+2‖Φε(ψN0ε)‖1

(1−3C3(max{1,‖hN0ε‖2H1(Ω)
}+2‖Φε(ψN0ε)‖1)

3
2 t)

2
3

for all t < TN := [3C3(max{1, ‖hN0ε‖2H1(Ω)}+ 2‖Φε(ψN0ε)‖1)
3
2 ]−1. Because hN0ε → h0

strongly in H1(Ω) and Φε(ψ
N
0ε)→ Φ0(ψ0) strongly in L1(Ω) as N → +∞ and ε→ 0

then we can select a time T0 := [6C3(max{1, ‖h0‖2H1(Ω)} + 2‖Φ0(ψ0)‖1)
3
2 ]−1 < TN

which is independent of N, ε and δ. As a result, we have the following a priori
estimate

(26) ‖h‖2H1(Ω) +

∫
Ω

Φε(ψ)dx+ C

∫∫
QT

f1,δ(φ)Fδε(h)h2
xxxdxdt+

C

∫∫
QT

D2,ε(h, ψ)Φ′′ε (ψ)ψ2
xdxdt 6 C4

for all T 6 T0, where C4 is independent of N , ε and δ.
Hence, from (26) we obtain that the solution (ai(t), bi(t)) can be extended up to

T0. As a conclusion, we have shown that the Galerkin equations have solutions

hNεδ, ψ
N
εδ ∈ C1(0, T ;C∞(Ω)) for all T 6 T0.

4.3. Limit processes.

4.3.1. Limits of N → +∞ and ε→ 0. Let φNεδ =
ψNεδ
hNεδ

. Next, we have to show that

in the following weak formulation we can pass to the limit for N → +∞:

(27)

T∫
0

〈hNεδ,t(t), ξN (t)〉dt− β
∫∫
QT

f1,δ(φ
N
εδ)Fδε(h

N
εδ)h

N
εδ,xxxξ

N
x dxdt−

∫∫
QT

f0(φNεδ)Fδ(h
N
εδ)ξ

N
x dxdt = −

∫∫
QT

D1,δ(h
N
εδ, ψ

N
εδ)ψ

N
εδ,xξ

N
x dxdt,
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(28)

T∫
0

〈ψNεδ,t(t), ζN (t)〉dt− β
∫∫
QT

g1,δ(φ
N
εδ)Fδ(h

N
εδ)h

N
εδ,xxxζ

N
x dxdt−

∫∫
QT

g0(φNεδ)Fδ(h
N
εδ)ζ

N
x dxdt = −

∫∫
QT

D2,ε(h
N
εδ, ψ

N
εδ)ψ

N
εδ,xζ

N
x dxdt

for all ξN ∈ L2(0, T ;H1(Ω)) and ζN ∈ L3(0, T ;W 1
3 (Ω)) such that ξN → ξ in

L2(0, T ;H1(Ω)) and ζN → ζ in L3(0, T ;W 1
3 (Ω)) with ξ(−a, t) = ξ(a, t), ζ(−a, t) =

ζ(a, t) for all t ∈ (0, T ).
To ensure convergence we have to establish appropriate convergence properties.

By (26) we have the following (uniformly in N , ε and δ) boundedness for all T 6 T0

(29) {hNεδ} in L∞(0, T ;H1(Ω)),

(30) {Φε(ψNεδ)} in L∞(0, T ;L1(Ω)),

(31) {(f1,δ(φ
N
εδ)Fδε(h

N
εδ))

1
2hNεδ,xxx} in L2(QT ),

(32) {D1,δ(h
N
εδ, ψ

N
εδ)ψ

N
εδ,x} in L2(QT ),

(33) {(D2,ε(h
N
εδ, ψ

N
εδ)Φ

′′
ε (ψNεδ))

1
2ψNεδ,x} in L2(QT ),

(34) {(δε) 1
2hNεδ,xxx} in L2(QT ).

By (29) and the embedding theorem, we have

(35) {hNεδ} is uniformly bounded in L∞(QT ).

Note that from (30) it follows

(36) {χφψNεδ} in L∞(0, T ;L2(Ω)),

and from (33), (36) we have

(37) {χφ|ψNεδ|
5
2 } in L2(0, T ;H1(Ω)),

By (37) and (36), due to the embedding theorem for parabolic function spaces

from [12, Proposition 3.2, p. 8] applied to w = χφ|ψNεδ|
5
2 ∈ L2(0, T ;H1(Ω)) ∩

L∞(0, T ;L
4
5 (Ω)), we can derive the following estimate for ψNεδ:

(38) {χφψNεδ} in L9(QT ).

The previous statements allow us to prove that

(39) INεδ := β(Fδ(h
N
εδ) + ε)f1,δ(φ

N
εδ)h

N
εδ,xxx+

Fδ(h
N
εδ)f0(φNεδ)−D1,δ(h

N
εδ, ψ

N
εδ)ψ

N
εδ,x is u. b. in L2(QT ),

(40)

JNεδ := Fδ(h
N
εδ)[βg1,δ(φ

N
εδ)h

N
εδ,xxx+g0(φNεδ)]−D2,ε(h

N
εδ, ψ

N
εδ)ψ

N
εδ,x is u. b. in L

3
2 (QT ),
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and therefore by (29), (31) and (34), we find that

(41) {hNεδ,t} is uniformly bounded in L2(0, T ; (H1(Ω))∗),

and by (36) and (33), we deduce that

(42) {ψNεδ,t} is uniformly bounded in L
3
2 (0, T ; (W 1

3 (Ω))∗).

By (29) and (41) we find (see [5]) that

(43) {hNεδ} is uniformly bounded in C
1
8 ,

1
2

t,x (Q̄T ).

Therefore, we conclude that there exists a subsequence N = Nk, ε = εl such that

(44) hNεδ → hδ uniformly as N → +∞, ε→ 0.

Moreover, by (34) we have

(45) hNεδ → hεδ weakly in L2(0, T ;W 3
2 (Ω)) as N → +∞.

From (36), (19) and (37) it follows that there exists a subsequence such that

(46) ψNεδ → ψδ *-weakly in L∞(0, T ;L1(Ω)) and a. e. in QT ,

(47) χφψ
N
εδ → χφψδ *-weakly in L∞(0, T ;L2(Ω)) and a. e. in QT ,

(48) χφ(ψNεδ)
5
2 → χφ(ψδ)

5
2 weakly in L2(0, T ;H1(Ω))

as N → +∞, ε → 0. Thus, by (41) and (42), we have for correspondent subse-
quences

(49) hNεδ,t → hδ,t *-weakly in L2(0, T ; (H1(Ω))∗),

(50) ψNεδ,t → ψδ,t *-weakly in L
3
2 (0, T ; (W 1

3 (Ω))∗).

In particular, by (44) and (46) we get

(51) φNεδ :=
ψNεδ
hNεδ
→ φδ := ψδ

hδ
a. e. on {|hδ| > µ}

for all µ > 0 as N → +∞ and ε → 0. Due to (51), we can take limit in all terms
of (27)–(28), connected with φNεδ, as N → +∞ and ε → 0 on the set {|hδ| > µ}.
On the next subsections, we will prove that hδ > 0 and ψδ > 0. For this reason,
instead of convergence (51) on the set {|hδ| > µ}, we obtain this convergence a. e.
in QT .

Applying these convergence results to (27)–(28) we get that the Galerkin so-
lutions (hNεδ, ψ

N
εδ) converge for any fixed δ > 0 to a weak solution (hδ, ψδ) of the

degenerate problem

(52)

T∫
0

〈hδ,t(t), ξ(t)〉dt− β
∫∫
QT

f1,δ(φδ)Fδ(hδ)hδ,xxxξxdxdt−

∫∫
QT

f0(φδ)Fδ(hδ)ξxdxdt = −
∫∫
QT

D1,δ(hδ, ψδ)ψδ,xξxdxdt,
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(53)

T∫
0

〈ψδ,t(t), ζ(t)〉dt− β
∫∫
QT

g1,δ(φδ)Fδ(hδ)hδ,xxxζxdxdt−

∫∫
QT

g0(φδ)Fδ(hδ)ζxdxdt = −
∫∫
QT

D2(hδ, ψδ)ψδ,xζxdxdt

for all T 6 T0 and ξ ∈ L2(0, T ;H1(Ω)), and ζ ∈ L3(0, T ;W 1
3 (Ω)) with ξ(−a, t) =

ξ(a, t), ζ(−a, t) = ζ(a, t) for all t ∈ (0, T0).

4.3.2. Positivity of hδ. Next, we show hδ > 0 for all δ < δ0. This allows us to
extend the corresponding integrals in (52), (53) on all QT . Multiplying (15) by
G′δε(h), we get

d
dt

∫
Ω

Gδε(h)dx = β

∫
Ω

f1,δ(φ)Fδε(h)G′′δε(h)hxhxxxdx+

∫
Ω

f0(φ)Fδ(h)G′′δε(h)hxdx−
∫
Ω

D1,δ(h, ψ)ψxG
′′
δε(h)hxdx =

β

∫
Ω

f1,δ(φ)|h|αhxhxxxdx+

∫
Ω

f0(φ)Fδ(h)
Fδε(h) |h|

αhxdx−
∫
Ω

f2(φ)Fδ(h)
Fδε(h) |h|

αhxψxdx,

where G′′δε(z) = |z|α
Fδε(z)

. Using (9), we have

d
dt

∫
Ω

Gδε(h)dx 6 a1

(∫
Ω

h2
xdx

) 1
2
(∫

Ω

f1,δ(φ)|h|2αdx
) 1

2

+

β
(∫

Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2
(∫

Ω

f1,δ(φ) |h|
2α

Fδε(h)h
2
xdx

) 1
2

+

a2χφ

(∫
Ω

|h|2α−3h2
xdx

) 1
2
(∫

Ω

|ψ|3ψ2
xdx

) 1
2

.

Choose α > s
2 and s > 3. Then

d
dt

∫
Ω

Gδε(h)dx 6 Ca1a
1
2
0 ‖h‖

α+1
H1(Ω)+

Cβ(a0 + δ)
1
2 (‖hx‖

2α+1
2

2 + δ
1
2 ‖hx‖

2α−s+2
2

2 )
(∫

Ω

f1,δ(φ)Fδε(h)h2
xxxdx

) 1
2

+

Ca2χφ‖hx‖
2α−1

2
2

(∫
Ω

|ψ|3ψ2
xdx

) 1
2

.

Integrating this inequality in time, taking into account (26), we deduce that

(54)

∫
Ω

Gδε(h)dx 6
∫
Ω

Gδε(h0,δ)dx+ C4(T )



12 R. M. TARANETS AND J. T. WONG

for all T 6 T0, where C4(T ) is independent of N, ε and δ < δ0. By Fatou’s
lemma, (44) and from the uniform (in N, ε, δ) bound of

∫
Ω

Gδε(h0,δ)dx we deduce

that
∫
Ω

Gδ(h)dx dx is uniformly bounded in N, ε and δ.

First of all, we show that hδ > 0 in QT0
when s > 4. If this is not true, then

there is a point (x0, t0) ∈ QT0
such that hδ(x0, t0) < 0. Since convergence hδε to hδ

is uniform as ε→ 0 then there exist γ > 0 and ε0 > 0 such that hδε(x, t0) < −γ if
|x− x0| < γ and ε < ε0. But for such x, by the monotone convergence theorem

Gδε(hδε(x, t0)) =

hδε(x,t0)∫
A

v∫
A

|z|α
Fδε(z)

dzdv >

0∫
−γ

v∫
A

|z|α
Fδε(z)

dzdv →
ε→0

0∫
−γ

v∫
A

|z|α
Fδ(z)

dzdv = +∞ for s > 4, α ∈ [ s2 , s− 2],

where A > max |hδε| for all small δ, ε. Hence, lim
ε→0

∫
Ω

Gδε(hδε)dx =∞ and this is in

contradiction with (54).
Next, we show that hδ > 0 on Ω̄ when s > 8. Indeed, if hδ is not positive

everywhere in QT0
, then there exists a point (x0, t0) in QT0

such that hδ(x0, t0) =

0. Then by the Hölder continuity of hδ ∈ C
1/2
x , we have |hδ(x, t)| = |hδ(x, t) −

hδ(x0, t)| 6 C|x − x0|1/2. Hence, taking into account Gδ(z) ∼ δ|z|α−s+2

(α−s+1)(α−s+2) for

|z| � 1, we come to a contradiction

∞ >

∫
Ω

Gδ(hδ)dx > C

∫
Ω

|x− x0|
α−s+2

2 dx =∞ if s > 8, α ∈ [ s2 , s− 4].

As Gδ(z) − G0(z) = δzα−s+2

(α−s+1)(α−s+2) for all z > 0 then, due to (18), Gδ(h0,δ) −
G0(h0,δ) 6 δ1+θ(α−s+2)

(α−s+1)(α−s+2) as δ → 0. Hence,
∫
Ω

G0(h)dx is bounded provided∫
Ω

hα−1
0 dx <∞, hence it follows that h > 0 if h0 > 0 in Ω̄.

4.3.3. Nonnegativity of ψδ. Now, we can use the bound for
∫
Ω

Φε(ψεδ)dx (see (26))

to derive the lower bound ψδ > 0. If z < 0 and 0 < ε < ε0, then, due to Φ′′ε (z) =

χφb2 + ε|z|−3 and Φε(z) =
b2χφ

2 z2 + ε
2 |z|
−1, we have

Φε(z) > Φε(ε) + Φ′ε(ε)(z − ε) + 1
2Φ′′ε (ε)(z − ε)2 > Φ′ε(ε)(z − ε) +

χφb2ε
2+1

2ε2 z2.

It follows that

z2 6 2ε2

χφb2ε2+1 (Φε(z)− Φ′ε(ε)(z − ε)).

This implies∫
Ω

(−ψεδ)2
+dx 6 2ε2

χφb2ε2+1

∫
Ω

Φε(ψεδ)dx− 2ε2Φ′ε(ε)
χφb2ε2+1

∫
Ω

(ψεδ − ε)dx 6

2ε2

∫
Ω

Φε(ψεδ)dx+ ε

∫
Ω

ψ0,ε dx+ 2|Ω|ε2.
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Then, taking into account (30) and (19), passing to the limit in this inequality as
ε→ 0 yields ψδ > 0 a.e. in QT0 .

4.3.4. Estimate ψδ 6 hδ. Let us denote by

v := hδ − ψδ.

We want to show that v > 0. Subtracting (16) from (15) with ε = 0, we arrive at

(55) vt + (Lδ)x = (D̃δ(h, ψ)vx)x in QT0
,

(56) v(x, 0) = v0,δ(x) := h0,δ − ψ0 > 0,

(57) v(−a, t) = v(a, t), vx(−a, t) = vx(a, t) ∀ t ∈ (0, T0),

where

Lδ := βFδ(h)(f1,δ(φ)− g1,δ(φ))hxxx + Fδ(h)(f0(φ)− g0(φ)) + D̃δ(h, ψ)hx,

D̃δ(h, ψ) := D2(h, ψ)−D1,δ(h, ψ) = h3g2(φ)− Fδ(h)f2(φ).

By (13) we find that

(58) Lδ = D̃δ = 0 if v < 0, i. e. φδ = ψδ
hδ
> 1.

Choose

r ∈ C1(R) : r(z) > 0, r′(z) 6 0 if z < 0, r(z) = 0 if z > 0.

Then

R(z) :=

z∫
0

r(s) ds = 0 if z > 0, R(z) > 0 if z < 0,

and in particular, ∫
Ω

R(v0,δ(x)) dx = 0.

Multiplying (55) by R′(v) = r(v), we deduce that

d
dt

∫
Ω

R(v)dx+

∫
Ω

D̃δ(h, ψ)r′(v)v2
xdx = −

∫
Ω

r(v)(Lδ)xdx,

whence by (58) we have

0 6
∫
Ω

R(v)dx 6
∫
Ω

R(v0,δ)dx = 0.

This implies that R(v) = 0, thus

(59) v > 0, i. e. ψδ 6 hδ ⇔ φδ 6 1, a. e. in Ω for any t ∈ [0, T0].

Passing to the limit in (59) as δ → 0 yields

(60) 0 6 ψ 6 h a. e. in QT0 .
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4.3.5. Global existence. Using the mass conservation (19), we can extend our local
solution for all times. We consider the approximation solutions (hδ, ψδ), where
hδ > 0. Next, instead of (26), taking into account (59), we obtain more exact
a priori estimates for (hδ, ψδ). For brevity, we denote by h := hδ, ψ := ψδ and
φ := φδ.

Multiplying (15) with ε = 0 by −hxx, we deduce

1
2
d
dt

∫
Ω

h2
xdx+ β

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx =

−
∫
Ω

f0(φ)Fδ(h)hxxxdx+

∫
Ω

D1,δ(h, ψ)ψxhxxxdx 6

(∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2
(∫

Ω

Fδ(h)
f2
0 (φ)

f1,δ(φ)dx
) 1

2

+

(∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2
(∫

Ω

D2
1,δ(h,ψ)

f1,δ(φ)Fδ(h)ψ
2
xdx

) 1
2

6

(∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2
(
a2

1

∫
Ω

h3dx
) 1

2

+

(∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2
(
a2

2

∫
Ω

ψ3ψ2
xdx

) 1
2

,

whence we find that

(61)

1
2
d
dt

∫
Ω

h2
xdx+(β−ε1−ε2)

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx 6 a2

1

4ε1

∫
Ω

h3dx+
a2

2

4ε2

∫
Ω

ψ3ψ2
xdx.

Using the Nirenberg-Gagliardo interpolation inequality

(62) ‖v‖p 6 c0‖vx‖
2(p−1)

3p

2 ‖v‖
p+2
3p

1 + c1‖v‖1

for all v ∈ H1(Ω) with v = h ≥ 0, p = 3 and the mass conservation
∫
h dx = ‖h0,δ‖1,

we arrive at

(63) 1
2
d
dt

∫
Ω

h2
xdx+ (β − ε1 − ε2)

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx 6

Ca2
1

4ε1

(∫
Ω

h2
xdx

) 2
3

+
a2

2

4ε2b2

∫
Ω

D2(h, ψ)ψ2
xdx,

where the C ′s is independent of δ < δ0.
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Next, multiplying (16) with ε = 0 by ψ, we deduce that

1
2
d
dt

∫
Ω

ψ2dx+

∫
Ω

D2(h, ψ)ψ2
xdx =

β

∫
Ω

Fδ(h)hxxxg1,δ(φ)ψxdx+

∫
Ω

Fδ(h)g0(φ)ψxdx 6

β
(∫

Ω

Fδ(h)
g2
1,δ(φ)

f1,δ(φ)ψ
2
xdx

) 1
2
(∫

Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2

+

(∫
Ω

D2(h, ψ)ψ2
xdx

) 1
2
(∫

Ω

F 2
δ (h)g2

0(φ)
D2(h,ψ) dx

) 1
2

6

β
(
b20
b2

∫
Ω

D2(h, ψ)ψ2
xdx

) 1
2
(∫

Ω

f1,δ(φ)Fδ(h)h2
xxxdx

) 1
2

+

(∫
Ω

D2(h, ψ)ψ2
xdx

) 1
2
(
b21
b2

∫
Ω

h3dx
) 1

2

.

Then we obtain that

(64) 1
2
d
dt

∫
Ω

ψ2dx+ (1− ε3 − ε4)

∫
Ω

D2(h, ψ)ψ2
xdx 6

β2b20
4ε3b2

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx+

b21
4ε4b2

∫
Ω

h3dx 6

β2b20
4ε3b2

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx+

Cb21
4ε4b2

(∫
Ω

h2
xdx

) 2
3

+
Cb21

4ε4b2
.

Summing (63) and (64), we have

(65) 1
2
d
dt (‖hx‖

2
L2(Ω) + ‖ψ‖2L2(Ω)) + (β − ε1 − ε2 − β2b20

4ε3b2
)

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx+

(1− ε3 − ε4 − a2
2

4ε2b2
)

∫
Ω

D2(h, ψ)ψ2
xdx 6 C4‖hx‖

4
3

L2(Ω) + C5.

Choosing εi such that

β − ε1 − ε2 − β2b20
4ε3b2

> 0, 1− ε3 − ε4 − a2
2

4ε2b2
> 0,

namely,

0 < ε1, ε4 � 1,
β2b20

4b2(β−ε2) < ε3 < 1− a2
2

4b2ε2
,

β
2 [

a2
2

4βb2
− βb20

4b2
+ 1−

√
(
a2

2

4βb2
− βb20

4b2
+ 1)2 − a2

2

βb2
] < ε2 <

β
2 [

a2
2

4βb2
− βb20

4b2
+ 1 +

√
(
a2

2

4βb2
− βb20

4b2
+ 1)2 − a2

2

βb2
]



16 R. M. TARANETS AND J. T. WONG

provided

a2
2

4βb2
<

√
1−

√
βb20
4b2

and
βb20
4b2

< 1 or
a2

2

4βb2
> max

{
βb20
4b2
− 1,

√
1 +

√
βb20
4b2

}
,

we have

(66) d
dt (‖hx‖

2
L2(Ω) + ‖ψ‖2L2(Ω)) + C

∫
Ω

f1,δ(φ)Fδ(h)h2
xxxdx+

C

∫
Ω

D2(h, ψ)ψ2
xdx 6 C6 max{1, ‖hx‖

4
3

L2(Ω)},

where C6 > 0 is independent of δ > 0.
By Grönwall’s lemma applied to y(t) := max{1, ‖hx‖2L2(Ω)}+‖ψ‖

2
L2(Ω), we obtain

that

(67) ‖hx‖2L2(Ω) + ‖ψ‖2L2(Ω) 6
[
(max{1, ‖h0δ,x‖2L2(Ω)}+ ‖ψ0‖2L2(Ω))

1
3 + 1

3C6 t
]3

for all t > 0. As a result, we have

(68) ‖hx‖2L2(Ω) + ‖ψ‖2L2(Ω) + C

∫∫
QT

f1,δ(φ)Fδ(h)h2
xxxdxdt+

C

∫∫
QT

D2(h, ψ)ψ2
xdxdt 6 C7(T ) ∀T > 0,

where C7(T ) is independent of δ < δ0. The a priori estimate (68) allows us to
construct the limit solution (h, ψ) as δ → 0 for all T > 0.

4.3.6. Limit process for δ → 0. Similar to (51), in view of (59) and (60), we can

take limit in all terms of (52)–(53), connected with φδ = ψδ
hδ

, as δ → 0 on the set

{h > µ}. On the sets {ψ 6 h 6 µ} and {ψ 6 µ < h}, we show smallness of the
corresponding integrals on this set. Really, if δ is sufficiently small, depending on
µ, then∣∣∣∫∫
{h6µ}

f1,δ(φδ)Fδ(hδ)hδ,xxxξxdxdt
∣∣∣ 6

(∫∫
QT

f1,δ(φδ)Fδ(hδ)h
2
δ,xxxdxdt

) 1
2
(∫∫
{h6µ}

f1,δ(φδ)Fδ(hδ)ξ
2
xdxdt

) 1
2

6 C µ
3
2 ,

∣∣∣∫∫
{h6µ}

f0(φδ)Fδ(hδ)ξxdxdt
∣∣∣ 6 (∫∫

QT

ξ2
xdxdt

) 1
2
(∫∫
{h6µ}

(f0(φδ)Fδ(hδ))
2dxdt

) 1
2

6 C µ3,

∣∣∣∫∫
{h6µ}

D1,δ(hδ, ψδ)ψδ,xξxdxdt
∣∣∣ 6 (∫∫

QT

D2(hδ, ψδ)ψ
2
δ,xdxdt

) 1
2×

(∫∫
{h6µ}

D2
1,δ(hδ,ψδ)

D2(hδ,ψδ)
ξ2
xdxdt

) 1
2

6 C µ
3
2 ,
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{ψ6µ}

g1,δ(φδ)Fδ(hδ)hδ,xxxζxdxdt
∣∣∣ 6

(∫∫
QT

f1,δ(φδ)Fδ(hδ)(hδ,xxx)2dxdt
) 1

2
(∫∫
QT

|ζx|3dxdt
) 1

3×

(∫∫
{ψ6µ}

(
Fδ(hδ)

g2
1,δ(φδ)

f1,δ(φδ)

)3
dxdt

) 1
6

6 C
(∫∫
{ψ6µ}

ψ9
δdxdt

) 1
6

6 Cµ
3
2 ,

∣∣∣∫∫
{h6µ}

g0(φδ)Fδ(hδ)ζxdxdt
∣∣∣ 6 (∫∫

QT

|ζx|3dxdt
) 1

3
(∫∫
{h6µ}

|g0(φδ)Fδ(hδ)|
3
2 dxdt

) 2
3

6

C
(∫∫
{h6µ}

(ψδhδ)
9
4 dxdt

) 2
3

6 Cµ
3
2

(∫∫
QT

ψ
9
4

δ dxdt
) 2

3

6 Cµ
3
2 ,

∣∣∣ ∫∫
{ψ6µ}

D2(hδ, ψδ)ψδ,xζxdxdt
∣∣∣ 6 (∫∫

QT

D2(hδ, ψδ)ψ
2
δ,xdxdt

) 1
2×

(∫∫
QT

|ζx|3dxdt
) 1

3
(∫∫
{ψ6µ}

(D2(hδ, ψδ))
3dxdt

) 1
6

6 C
(∫∫
{ψ6µ}

ψ9
δdxdt

) 1
6

6 C µ
3
2 .

Applying these convergence results to (52)–(53), we get that the solutions (hδ, ψδ)
converge to a weak nonnegative solution (h, ψ) of the degenerate problem

T∫
0

〈ht(t), ξ(t)〉dt−
∫∫
{h>0}

(βf1(φ)h3hxxxξx + f0(φ)h3 −D1(h, ψ)ψx)dxdt = 0,

T∫
0

〈ψt(t), ζ(t)〉dt−
∫∫
{h>0}

g0(φ)h3ζxdxdt−
∫∫
{ψ>0}

(βg1(φ)h3hxxx −D2(h, ψ)ψx)ζxdxdt = 0

for all T > 0.

5. Conclusions

We have obtained an existence result for a coupled system of degenerate par-
abolic equations governing the height h and particle concentration ψ of a viscous
suspension under the effect of surface tension. The solution satisfies the physical
bounds h ≥ 0 and 0 ≤ ψ/h ≤ 1 corresponding to the boundedness of the particle
concentration. The existence result depends on certain bounds on the flux coeffi-
cients, particularly on the degeneracy in the ψ-diffusion term as ψ → 0, that are
consistent with the asymptotic results obtained for the physical system. The result
established here may be useful in future study of this system, for example in devel-
oping numerical methods that preserve the bounds on the solution as done for other
equations from lubrication theory [20] or in studying the growth of singularities and
long-time behavior of advancing fronts.
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