
Math 260: Python programming in math

Fall 2020

Fundamentals (Part 1):
Course intro, language essentials

1 / 32

Section 0: Course intro

2 / 32

About the class

• Instructor: Jeffrey Wong

• Office: on Zoom (OH/ask for appt)

My interests:

• Applied math - modeling

• Thin liquid films and instabilities

• Numerical simulation (PDEs)

3 / 32

About the class

What is scientific computing?

• mix of modeling/math/computing

• Identify a computational problem

• Use this as an ‘experiment’ to get
insight into problem

• Or, computation may be the goal

Our focus:

• Translating algorithm to code

• Using python to compute

4 / 32

About the class

Discussion question: what are some applications of interest?
Interesting examples of programming in math you’ve encountered

Break: introductions

5 / 32

What is (good) programming?

Programming languages are languages!

• syntax (vocabulary/grammar) is a first step

• Fluency: Learn to write elegant, effective code

• Ask: Could colleagues and future you understand/use your code?

Other points:

• Code often has to adapt - write so this is not painful

• Expect bugs - write to protect yourself from errors

What matters for scientific computing?

• Often smaller, specialized code

• Efficiency and accuracy really matter

• Usability: code shared/used by a team of scientists

• Intertwined with numerical analysis, mathematics

6 / 32

How to get started

Set up python:

• Follow getting started guide (install python etc.)

• jupyter (allows text/code together)

Practical advice:

Bugs happen; code is hard to fix!

• Expect things to go wrong; plan for time to fix them.

• Use other students/me as resources (ask for help!)

Review course guidelines: Some highlights...

• Collaboration is good! You may work with others on code.

• Write the ‘final product’ yourself. (list who you worked closely with)

• Okay to use outside sources (typical thing to do for coding!)...

...but avoid looking up ‘the answer’ online

• If using (direct) code from outside sources, cite briefly in a comment

7 / 32

What is Python?

Advantages:

• Easy to use, elegant by design

• Good support for computation (numpy, scipy, pandas)

• ‘interactive’ output

• popular, free (good for collaboration)

Disadvantages:

• Not as fast as C, FORTRAN (compiled)

• Less ‘low-level’ control: memory management...

• Less structure for building ‘big’ software (vs. C#, C++...)

8 / 32

Section 1: Language basics

9 / 32

A first program

Fibonacci numbers:

Fk = Fk−1 + Fk−2, F0 = F1 = 1

Goal: write a function fib list(n):

• Input: integer n ≥ 2

• output: list of values (F0, · · · ,Fn)

def fib_list(n):
seq = ...
... code ...

return seq

• Running code defines the function

• Call using f = fib list(n)

10 / 32

A first program

File fib.py:

def fib_list(n):
'''Computes F_0, F_1, ..., F_n'''
fibs = [0]*n
fibs[0] = 1
fibs[1] = 1

for k in range(2, n):
fibs[k] = fibs[k-1] + fibs[k-2]

return seq

if __name__ == '__main__':
n = 10
f = fib_list(n)
print(f)
print('F_{} = {}'.format(n, f[n-1]))

fib list:

• Initializes fibs = [0, 0, · · · , 0]

• For loop: sets k-th element of fibs

• returns the list

main:

• python executes ‘main’ when run

• Simple print of list f ([1, 1, · · · , 55])

• Formatted print: string plus variables

11 / 32

Functions and main

• Python console tracks current session

• Use code by (i) manual console entry or (ii) writing functions to call

>>> n = 10
>>> f = fib_list(n)
...etc...

⇐⇒

def foo():
n = 10
f = fib_list(n)
...etc...

>>> foo()

• main: defines what python does when the program is run

if __name_ _== '__main__':
code for main...

• ‘Running’ code (python myfile.py) defines functions, calls main

Best practices:

• Algorithm code goes in non-main functions; main ‘calls’ the code

• Best practice: avoid ‘global’ variables (outside functions)

• (Almost) all code should live in a function

12 / 32

For loops

• For loop: iterate over a list

for item in list:
do_stuff(item)
...

• For loops can loop over any list:

names = ['apple','tomato','carrot']
for name in names:

if is_vegetable(name):
print('{} is a vegetable!'.format(name))

Looping over an integer range:

• range(m,n) represents (m,m + 1, · · · , n − 1)
(**not inclusive on the right**)

• range(m,n,k) keeps every k-th number

• k < 0→ reverse order

def countdown(n):
for k in range(n, 0, -1):

print(k)
print('Go!')

13 / 32

For loops

• range 6= list (smarter representation!)

• Key point: range is more efficient

r = list(range(2,10000,2))
sum = 0
for j in r:

sum += j

vs. sum = 0
for j in range(2,10000,2):

sum += j

Best practices

• use range when possible

• Common ‘integer’ loop vars: i, j, k, m, n

14 / 32

Conditionals

• boolean variable: true or false (python: True, False)

(as integers: True = 1 and False = 0)

• Basic if structure:

if condition:
...

elif condition
...

(more elifs)
...

else
...

if n > 10:
print('too large'!)

elif 5 < n and n < 9
print('not too large!')

else
print('too small!')

Boolean operations:

• Equality: a==b returns True iff a, b have equal values

• Others: <, > and <=, >= and != (not equal)

• operators: x and y, x or y, not x

• Be careful with order of operations:

not n>=1 or n<0 vs. not(n>=1 or n<0)

15 / 32

While loops

• While loop: iterate while condition is true

while condition:
...

• while vs. for =⇒ use for when the range is known
• break (ends loop) and continue (skips to next iteration)

i = 1
sum = 0
while sum < 10 and i <= n:

sum += i**2
i += 1

for obj in dataset:
if already_processed(obj):

continue
process(obj)
... more code ...

Best practices

good while conditions are preferred over break:

no break
i = 1
sum = 0
while sum < 10 and i <= n:

sum += i**2
i += 1

with break
while i <= n:

sum += func(i)
if sum >= 10:

break
i += 1

16 / 32

What is a list?

• List: array-like object in python (indexed ‘list’ of items)

• arr[j] is the j-th item; arr[-1] returns last

• arr[j] = x sets j-th item to x

• Can hold any type of object: [1,’snake’,[1,2]]

• [1,2]*2 → [1,2,1,2] and [1,2] + [3,4] → [1,2,3,4]

• and much more...

Initialization:

• Allocates space in memory, sets initial values

• Explicit: arr = [1,177,3]

• Length n: arr = [x]*n (length n, all entries x)

• list comprehensions (more later): arr = [2*x for x in range(n)]

17 / 32

Resizing lists

Lists do not have a fixed size:

• Size of a list: len(arr)

• Add items with append (one element)

• use extend for multiple elements

x = [1,2,3]
x.append(4)
x.extend([5,6]) # x is [1,2,3,4,5,6]

• Beware: resizing a list is not free!

• Resize must ‘re-allocate’ (reserve new space) and move the data!
• (Python lists are a bit smarter than this)

Best practices

Pre-allocate: initialize with correct size, once (avoid resizing!)

x = [0]*n # fast!
for k in range(n):

x[k] = k
vs.

x = []
for k in range(n):

x.append(k) # slow!

18 / 32

Variables: primitive types

Each variable has a type (check with type(x))

‘Primitive’ (fundamental) types:

int: integer (*)

float: floating point number (more on this later) (*)

boolean: True (1) or False (0)

string: sequence of characters (’blah’ or "blah")

• Be careful with explicit ints vs. floats:

>>> type(1) # returns: int
>>> type(1.0) # returns: float
>>> type(2*3) # returns: int
>>> type(2*1.0) # returns: float

• int times float returns a float; a//b is always a float

• ‘int’ division: a//b returns a/b rounded down to an int

• (*) int has no max size; float has a min/max size

19 / 32

Variables and references

What is a variable?

• Analogy: a ‘cookie’ is that thing

A box of cookies may have a label indicating it
contains cookies

• Two perspectives on variables:

The variable ‘is’ that thing

a = 1 means that a ‘is’ one

• or the variable ‘refers to’ or ‘points to’ the thing:

a = [1,2] means a refers to the data [1,2]

What does this mean for python?

• A variable in python is a name that refers to data

• the data is the actual information in memory

• A reference is a thing that points to data

(but is not the data itself, e.g. a in a = [1,2])

Fundamental point: when does python use each perspective?

20 / 32

Variables: mutability

Definition (mutability)

An object is mutable if its contents can be modified using that object.
Otherwise, it is is called immutable.

• Primitive types are immutable

• Lists are mutable (contents can change)

• ‘mutable objects act as references to data

(they point to some location in memory)

• Data with no reference is ‘freed’ (memory can be re-used)

Mutable: arr[1] = 2 changes the contents of arr

Immutable: if a=2 then it cannot be changed to three...
...unless it is replaced entirely (a=3)

21 / 32

Variables: mutability

What does a=b (‘assignment’) do?

- assigns the RHS to the LHS

- different behavior for immutable/mutable objects!

immutable assignment:

b = 1
c = 2
b = c
c = 3

Result: b is 2 and c is 3

mutable assignment:

b = [1]
c = [2]
b = c
c[1] = 3

Result: b and c both [3]
22 / 32

Variables: mutability

Rules for a=b:

• mutable objects are assigned ‘by reference’

- The LHS is set to point to the same data is b

- a and b become two names for the same data in memory

• immutable objects are assigned ‘by value’

A copy of the RHS data is created; LHS now is set to it

Rules for functions are similar (how are inputs passed?):

def func(a):
return 2*a

b = 3
c = func(b) # c is 6, b is 3

• mutable: ‘passed by reference’

- func gets a local reference
to the input data

-func can modify the data

def func(arr):
arr[0] = 3

a = [1, 2]
func(a) # a is now [3, 2]

• immutable: ‘passed by value’

-func gets a new copy of the data

- changes do not modify the input

23 / 32

Functions and mutability

• Key point: mutable types are passed ‘by reference’

• Immutable types (int, float, ...) are (effectively) copied (local values)

def doubler(x):
x *= 2
value of `local' x lost

y = 5
doubler(y)
y is still 4

x has y’s value (not data)

def doubler(arr):
for k in range(len(arr)):

arr[k] *= 2

v = [1,2]
doubler(v)
v now [2,4]

doubler has reference to v’s data

Caution: shadowing

• ‘Shadowing’: using the same name
for both outer/inner variable

• Common shorthand...
...sometimes a bad idea

• More on this later (scope rules)

def doubler(x):
x *= 2

in another part...
x = 4
y = doubler(x)

24 / 32

Variables: mutability

More examples:

#Example 1:
b = [1]
c = [2]
b = c
c = [3]
What are b and c?

#Example 2:
row = [1,2]
b = [row,row]
b[0][0] = 7
#what is b?

#Bonus example:
b = [1,2]
b[0] = b
b[0][1] = b[0]
#what is b?

#Example 3:
row = [1,2]
b = [[0,0],[0,0]]
for k in range(2):

b[0][k] = row[k]
b[1][k] = row[k]

b[0][0] = 7
#what is b?

25 / 32

Scope

Definition

A variable’s scope is the region of the code where it can be accessed.
Such a region is called a namespace.

• A program loads into a global namespace (the largest)

the python console has access to this namespace

• Functions have their own local namespaces

• local variables cannot be seen outside their namespace

pi = 3.141592654 # global

def circ_dims(radius):
per = 2*pi*radius # local

def area(radius):
c = 1 # (unused)
return per*radius/2

return area(radius), per

def some_func():
print(per) # fails!

pi seen by all
per seen by circ dims, area only
c seen by area only

26 / 32

Scope

• When a variable leaves its scope, it is deleted (memory is freed)

• =⇒ local variables are not accessible outside their function

• shadowing: Two variables in outer/inner scopes have the same name

def greeter(name):
local var. `name'
print('Hello ' + name)
local `name' destroyed

name = "Albert"
greeter(name)

def doubler(x):
local reference x
for k in range(len(x)):

x[k]*=2

x = [1,2]
doubler(x)

27 / 32

Scope

Quick note: loops do not have their own scope (only functions)

sum = 0
for k in range(5):

sum += k

print(sum) # 10
print(k) # 4

sum = 0
k = 0
while k < 5:

sum += k
k += 1

print(sum) # 10
print(k) # 5

(k exists after the loop is done!)

28 / 32

Lists vs. tuples

Tuples

• fixed size version of a list, immutable type

arr = [1,2,'a']
tup = (1,2,'a')
arr[0] = 1 # ok
tup[0] = 1 # error! (no assignment)

• Good for holding small groups of fixed data; used by return:

def func(x):
a = 2*x
b = x + 2
return a, b, # ---> tuple (a,b)

c, d = func(2) # set returns individually
t = func(2) # return as tuple

• Tuples: can be optimized better by python (fixed size)

• Lists: much more flexible

29 / 32

Input and output (I/O), the basics

Important: formatted output is more clear (not just values)

assume N = 5 and fib[N] = 8
print(N, fib[N]) # prints 5 8
print("Fib {0} = {1}".format(N, fib[N])) # Fib 5 = 8
print("Fib {} = {}".format(N, fib[N])) # Fib 5 = 8
pval = 3.141592654
print("pi = {:.4f}".format(pval)) # pi = 3.1416
print("{:.2e}".format(pval*1e-8)) # 3.14e-8

• curly brace syntax: {label:format}
• blank label uses order listed in .format(...)

• if label is k, it uses the k-th variable in .format(...)

• Lots of formatting codes! (Look them up)

Notable: .xf (float, x digits) and .xe (x digits, sci. notation)

30 / 32

Input and output (I/O), the basics

Python 3.6+ shorthand: f-strings...

• f"string" defines a ‘formatted string’ (f-string)

• For an f-string, ‘labels’ in braces can be the variable:

temp = 15.2
unit = 'Celsius'
print(f"It's {temp:.0f} deg. {unit}.") #It's 15 deg. Celsius.
print("It's {:.0f} deg. {}".format(temp, unit)) #(same)

(i.e. the variable can be ‘plugged into’ the braces)

pval = 3.141592654
print(f"pi equals {pval:.4f}") #prints 'pi equals 3.1416'

• Equivalent to format (just shorter)

31 / 32

Input and output (I/O), the basics

User input:

name = input('What is your name?')
print('Hi, {}!'.format(name))

• Use var = input(message) to query user input

• Three options for user input:

i) Console input: query with input

ii) File input: read from a settings/input file (covered soon!)

iii) program arguments (passed when run), e.g.

python prog.py 1 2 moo

iv) no run-time input: set values by editing code in main

• (iv) is convenient for short examples

• Best practice: write code that can be used without being changed

32 / 32

