Math 260: Python programming in math

Summer 2020 (Session 1)

How python works, and what matters for computation



Under the hood



What happens when you run python code?

bytecode

(line 26

ef dot_prod(x, y):

n = len(x) SETUP_LOOP (to 52)
LOAD_GLOBAL (range)
(0, n): LOAD_CONST (0)
Ty ) LOAD_FAST (n)
val += x[j]*y[]] CALL_FUNCTION
GET_ITER
FOR_ITER 4 (to 50)
STORE_FAST 4 (3)
. . (line 27)
Python has an interpreter: LOAD_FAST (val)
1) source code is converted to bytecode LOAD_FAST 09
. LOAD_FAST 4 ()
comprised of fundamental steps: BINARY_SUBSCR
. . LOAD_FAST €%)
add, load’ into memory... LOAD_FAST 4 (3)
T BINARY_SUBSCR
1b) Python ‘optimizes’ bytecode BINARY MULTIPLY
2) The interpreter executes the bytecode.... 44 INPLACE_ADD
46 STORE_FAST

JUMP_ABSOLUTE
POP_BLOCK




Interpreted vs. compiled languages

As it goes from code file to processor instructions, it no longer has
‘human-readable’ structure (hard to change).

code code¢nput
interpreter
compiled
machine prograim crTTTE oIt T
code + **
processor processor
Compiled: Interpreted:
e Code is ‘compiled’ into a program e Lines of code — interpreter
3 ‘machine code’ - can be executed a 'virtual’ computer that executes
e The whole program must be compiled! e Interpreter keeps more structure -
e Cake analogy Easier to work with while running

° Examples: FORTRAN, C, CH+, ... (] Examples: python, matlab...



Interpreted vs. compiled languages

As it goes from code file to processor instructions, it no longer has
‘human-readable’ structure (hard to change).

code code ¢nput
interpreter
compiled
machine program ST TETmEssm=Es==
code **
processor processor

Key point: compiled code can be heavily optimized by the compiler (it does
not have to keep as much structure from the written code)

Tradeoff: efficiency for flexibility...

Example: numpy has fast algorithms coded in C.
The python functions call this (pre-compiled) C-code!



A simple model of a computer

How is code ‘executed’? To answer - we need to know how computers work.
A simple model (to get the point across):

memory processor

What needs to happen:
e The program and data are loaded into memory
e Data is sent to the processor
e The processor executes instructions

e Data is stored as needed



A simple model of a computer

memory

I processor

heap

—_——
; .
e E— registers

o registers: memory the processor can use

An idealized computer:

Problem: small amount of ‘active’ space available

e the stack: memory for code, some other items (faster access)
e the heap: memory for data (slow access)

Key question: how to reduce cost of data transfer?



A simple model of a computer

memory
stack processor
heap ﬂ ﬂ
< |cachel _ ™ -
registers

Solution: caching!
e size: register < cache < heap
e cache: small memory space ‘near’ registers
caching: Store frequently used data in the cache
(keep ‘active’ data in the cache as long as possible)
So what's the point?
e Caching, memory, etc. handled by python automatically

e But python's ability to optimize depends on how the code is written



Why the internal process matters

Example: sum the elements of an m X n matrix

def sum_elements(mat):
# (asssuming mat is a list of rows, e.g. [[1,2,3],[4,5,61])

e mat has entries mat [j] [k]
e We can sum over j, then k or k then j
e Which is faster? Test it!
Quick note: how to time code...
e Use a ‘counter’ to get the current time
e Save it, then calculate elapsed time at the end

e Good choice (accurate): time.perf_counter

import time

start = time.perf_counter()
# ... some code goes here...
elapsed = time.perf_counter() - start
print(f"Elapsed time: {elapsed} sec.")




Exercise

The timing question, and a bit of review...

a) The following code creates a matrix with entries ajx = 1/(j + k + 1) (this is
the Hilbert matrix):

def hilb(n):
return [[1/(j+k+1) for k in range(n)] for j in range(n)]

Rewrite it using two for loops (over j and k).

b) Write a function that sums the elements of a square matrix *by row*:

def sum_elements_by_row(mat) :

total = 0
n = len(mat)
# ... compute the sum of entries of mat

return total

3 i would be summed as 1+ 2+ 3 + 4.
c) Now do the same, but *by column* (for A above: 14+3+2+4.)
Write code in _main__ to time both and compare, for a large enough n that

both take at least a second. Which is faster?

Example: A= {1



Why the internal process matters

Example: sum the elements of an m X n matrix

Option 1: rows are ‘outer’ index Option 2: cols are ‘outer’ index
def sum_elements(mat) : def sum_elements(mat) :

sum = 0 sum = 0

m = len(mat) m = len(mat)

n = len(mat[0]) n = len(mat[0])

for j in range(m): for in range(n):

for k in range(n):
sum += mat[j] [k]
return sum sum += mat[j] [k]
return sum

for | j| in range(m):

Choosing the matrix generated by

# an n x n matrix with float elements
mat = [[1/(j+k+1) for j in range(n)] for k in range(n)]

with n = 3000 | get:
e Option 1: takes =~ 0.64 sec.
e Option 2: takes = 1.35 sec.



Why the internal process matters

Example: sum the elements of an m X n matrix

Option 1: rows are ‘outer’ index Option 2: cols are ‘outer’ index
def sum_elements(mat): def sum_elements(mat) :
total = 0 total = 0
m = len(mat) m = len(mat)
= len(mat[0]) n = len(mat[0])
for j in range(m): for in range(n):
for k in range(n): £ ] . () :
total += mat [J] [k] or in ra.nge m):

total += mat[j][k]
return total

return total

matf0] [0 ]2 [2] - |1 nat [0] |41 | | T Tan]

mat.[l] |04‘l,1‘|2| |n—1| mat [1] { /{ |n—1|

[-1]

mat [m-1] |0 |1 |2 | |ﬂ‘1‘ mat [m-1] q‘o |1

Moving along the array is fast - jumping to the next is slow!
(to be continued...)



Representation of numbers
(and why it matters)



What is a number?

Problem: computers have only a finite amount of data
e **How does the computer approximate a real number?
Questions:
e Is there a largest int?
(Answer: no; python adds space for digits as needed)
e What are the largest and smallest (positive) floats?
Answer: ~ 107°% and ~ 10°%
e What happens if x goes smaller/larger than these values?
Answer: (test it!)
e What is the smallest float greater than one (i.e. such that 1 + x > 1)

Answer: e, = 2 x 107° (machine epsilon)



What is a number?

A floating point number is represented in binary in the form
1.b1 by --- bsy ><2e7 by =0or 1. (F)

Example: 7/4 is 2-(7/8) = 0.111 x 2.
e Next number above 1:

1+27 2 =1+em
o If |x| < €m/2 then 1+ x is rounded to 1

TN Y
(machine) @ * ®
1™ l+eém 1+ 2,
€m/2
e rounding error for (??) has size
1 —52 e
=2 2
5 X

e Better to think of the relative error (|x| has size 2°):

|x — float(x)| < %’"M



What is a number: Example

Rounding error bound:
|x — float(x)| < %’"|x|

Important fact:

Representing real numbers (rounding to float), addition/subtraction,
multiplication /division all can have an en-sized error.

Thus, every arithmetic operation can introduce an error of size ¢, which
may accumulate through the program.

e In practice, numerical ‘equality’ is really ‘equal up to rounding error':

a = (2x(1/2)) %2 - 2
print('{:.1e}' .format(a)) #prints 4.4e-16

e Expect more error with more computations, e.g.

100

6 ~10
E a, could have error ~ 10°¢,, ~ 10
n=1

(although the error is usually better due to coincidental cancellation)



Difference quotients

e Difference quotients can be disastrous....

e Suppose f is computed to an accuracy of €,. Then

fy) = f() — error ~ 2€m

> small
y—x ly — x|

e Dividing ‘small’ by ‘small’ amplifies relative error.
Simple example:
e Suppose sin(7/4 + 107*) is computed with an error 107°. Then
sin(r/4+107*) =1 _ sin(r/4+107%) -1 10°°
104 h 104 104

computed actual

e Even though the error in sin was 107, the error in the quotient is
~ 1072/ cos(m/4) (not smalll).

e Amplified by 10™* (much worse when y = x).



What is a number: Example

This issue arises naturally in derivative approximations.

For instance, consider the forward difference

~ f(Xo + h) — f(Xo)

f'(x0) b

In the world of theory,

. f(xo+ h) — f(x
But for the computer, there are errors in computing f...

e Does the error get better as h — 07

e Example: take

f(x) =sinx, xo =1
and test for h =107 for k =1,2,3--- ,16.

e Look at a table/plot of

sin(xo + h) — sin(xo)

D(h) = ) ,

vs. h.

(see example code)



