
Math 260: Python programming in math

Summer 2020 (Session II)

How python works, and what matters for computation

1 / 1

Under the hood

2 / 1

What happens when you run python code?

source code

Python has an interpreter:

1) source code is converted to bytecode

comprised of fundamental steps:

add, ‘load’ into memory...

1b) Python ‘optimizes’ bytecode

2) The interpreter executes the bytecode....

bytecode

3 / 1

Interpreted vs. compiled languages

As it goes from code file to processor instructions, it no longer has
‘human-readable’ structure (hard to change).

Compiled:

• Code is ‘compiled’ into a program

→ ‘machine code’ - can be executed

• The whole program must be compiled!

• Cake analogy

• Examples: FORTRAN, C, C++, ...

Interpreted:

• Lines of code → interpreter
a ‘virtual’ computer that executes

• Interpreter keeps more structure -

Easier to work with while running

• Examples: python, matlab...

4 / 1

Interpreted vs. compiled languages

As it goes from code file to processor instructions, it no longer has
‘human-readable’ structure (hard to change).

Key point: compiled code can be heavily optimized by the compiler (it does
not have to keep as much structure from the written code)

Tradeoff: efficiency for flexibility...

Example: numpy has fast algorithms coded in C.
The python functions call this (pre-compiled) C-code!

5 / 1

A simple model of a computer

How is code ‘executed’? To answer - we need to know how computers work.
A simple model (to get the point across):

What needs to happen:

• The program and data are loaded into memory

• Data is sent to the processor

• The processor executes instructions

• Data is stored as needed

6 / 1

A simple model of a computer

An idealized computer:

• registers: memory the processor can use

Problem: small amount of ‘active’ space available

• the stack: memory for code, some other items (faster access)

• the heap: memory for data (slow access)

Key question: how to reduce cost of data transfer?

7 / 1

A simple model of a computer

Solution: caching!

• size: register < cache � heap

• cache: small memory space ‘near’ registers

caching: Store frequently used data in the cache

(keep ‘active’ data in the cache as long as possible)

So what’s the point?

• Caching, memory, etc. handled by python automatically

• But python’s ability to optimize depends on how the code is written

8 / 1

Why the internal process matters

Example: sum the elements of an m × n matrix

def sum_elements(mat):
(asssuming mat is a list of rows, e.g. [[1,2,3],[4,5,6]])

• mat has entries mat[j][k]

• We can sum over j , then k or k then j

• Which is faster? Test it!

Quick note: how to time code...

• Use a ‘counter’ to get the current time

• Save it, then calculate elapsed time at the end

• Good choice (accurate): time.perf counter

import time

start = time.perf_counter()
... some code goes here...
elapsed = time.perf_counter() - start
print(f"Elapsed time: {elapsed} sec.")

9 / 1

Exercise

The timing question, and a bit of review...

a) The following code creates a matrix with entries ajk = 1/(j + k + 1) (this is
the Hilbert matrix):

def hilb(n):
return [[1/(j+k+1) for k in range(n)] for j in range(n)]

Rewrite it using two for loops (over j and k).

b) Write a function that sums the elements of a square matrix *by row*:

def sum_elements_by_row(mat):
total = 0
n = len(mat)
... compute the sum of entries of mat
return total

Example: A =

[
1 2
3 4

]
would be summed as 1 + 2 + 3 + 4.

c) Now do the same, but *by column* (for A above: 1 + 3 + 2 + 4.)
Write code in main to time both and compare, for a large enough n that
both take at least a second. Which is faster?

10 / 1

Why the internal process matters

Example: sum the elements of an m × n matrix
Option 1: rows are ‘outer’ index

def sum_elements(mat):
sum = 0
m = len(mat)
n = len(mat[0])
for j in range(m):

for k in range(n):
sum += mat[j][k]

return sum

Option 2: cols are ‘outer’ index

def sum_elements(mat):
sum = 0
m = len(mat)
n = len(mat[0])

for k in range(n):

for j in range(m):

sum += mat[j][k]
return sum

Choosing the matrix generated by

an n x n matrix with float elements
mat = [[1/(j+k+1) for j in range(n)] for k in range(n)]

with n = 3000 I get:

• Option 1: takes ≈ 0.64 sec.

• Option 2: takes ≈ 1.35 sec.

11 / 1

Why the internal process matters

Example: sum the elements of an m × n matrix
Option 1: rows are ‘outer’ index

def sum_elements(mat):
total = 0
m = len(mat)
n = len(mat[0])
for j in range(m):

for k in range(n):
total += mat[j][k]

return total

Option 2: cols are ‘outer’ index

def sum_elements(mat):
total = 0
m = len(mat)
n = len(mat[0])

for k in range(n):

for j in range(m):

total += mat[j][k]
return total

Moving along the array is fast - jumping to the next is slow!
(to be continued...)

12 / 1

Representation of numbers
(and why it matters)

13 / 1

What is a number?

Problem: computers have only a finite amount of data

• **How does the computer approximate a real number?

Questions:

• Is there a largest int?

(Answer: no; python adds space for digits as needed)

• What are the largest and smallest (positive) floats?

Answer: ≈ 10−308 and ≈ 10308

• What happens if x goes smaller/larger than these values?

Answer: (test it!)

• What is the smallest float greater than one (i.e. such that 1 + x > 1)

Answer: εm ≈ 2× 10−16 (machine epsilon)

14 / 1

What is a number?

A floating point number is represented in binary in the form

1.b1 b2 · · · b52 × 2e , bk = 0 or 1. (F)

Example: 7/4 is 2 · (7/8) = 0.111× 21.

• Next number above 1:

1 + 2−52 = 1 + εm

• If |x | < εm/2 then 1 + x is rounded to 1

• rounding error for (??) has size

1

2
2−52 × 2e

• Better to think of the relative error (|x | has size 2e):

|x − float(x)| ≤ εm
2
|x |

15 / 1

What is a number: Example

Rounding error bound:

|x − float(x)| ≤ εm
2
|x |

Important fact:

Representing real numbers (rounding to float), addition/subtraction,
multiplication/division all can have an εm-sized error.
Thus, every arithmetic operation can introduce an error of size εm, which
may accumulate through the program.

• In practice, numerical ‘equality’ is really ‘equal up to rounding error’:

a = (2**(1/2))**2 - 2
print('{:.1e}'.format(a)) #prints 4.4e-16

• Expect more error with more computations, e.g.

106∑
n=1

an could have error ∼ 106εm ∼ 10−10

(although the error is usually better due to coincidental cancellation)

16 / 1

Difference quotients

• Difference quotients can be disastrous....

• Suppose f is computed to an accuracy of εm. Then

f (y)− f (x)

y − x
=⇒ error ∼ 2εm

|y − x | � small

• Dividing ‘small’ by ‘small’ amplifies relative error.

Simple example:

• Suppose sin(π/4 + 10−4) is computed with an error 10−6. Then

s̃in(π/4 + 10−4)− 1

10−4︸ ︷︷ ︸
computed

=
sin(π/4 + 10−4)− 1

10−4︸ ︷︷ ︸
actual

+
10−6

10−4

• Even though the error in sin was 10−6, the error in the quotient is

≈ 10−2/ cos(π/4) (not small!).

• Amplified by 10−4 (much worse when y ≈ x).

17 / 1

What is a number: Example

This issue arises naturally in derivative approximations.

For instance, consider the forward difference

f ′(x0) ≈ f (x0 + h)− f (x0)

h
.

In the world of theory,

lim
h→0

f (x0 + h)− f (x0)

h
= f ′(x0).

But for the computer, there are errors in computing f ...

• Does the error get better as h→ 0?

• Example: take
f (x) = sin x , x0 = 1

and test for h = 10−k for k = 1, 2, 3 · · · , 16.

• Look at a table/plot of

D(h) =
sin(x0 + h)− sin(x0)

h
, vs. h.

(see example code)
18 / 1

