
Math 260: Python programming in math

Errors and algorithms

1 / 10

Error and residuals

2 / 10

Measuring error

There are two fundamental types of error. Let

x = (solution to f (x) = 0), x̃ = approximation to x

• Absolute error |x − x̃ |
• Relative error |x − x̃ |/|x |

- |x | is very large/small, relative may be a better measure

- rel. error ≈ 10−(k+1) means ≈ k significant digits

Lastly. there is an indirect measure...

• The residual is f (x̃)

- i.e. the leftover when the approx. is plugged into the equation

• The residual is unreliable, but is computable

3 / 10

Measuring error: Example

f (x) = (x − 100)7, x = 100, x̃ = 100.1

• Absolute/relative errors: 0.1 and 0.1/100 = 10−3

(Error is in fourth digit: x̃ = 1.001× 102; three digits of accuracy).

• Residual:
f (x̃) = (0.1)7 = 10−7 (deceptively small!).

When do we use each measure?

• Residual is easy to check - that is its main feature

... because it isn’t the same as error

• Relative error makes sense most of the time (but absolute is easier)

• Example: red light and orange light wavelengths λ = 700 nm and 600nm;
difference 10−7m - ‘small’ absolute error in these units...

Key theme (for later) - what is error?:

Algorithms take in ‘tolerances’ that say ‘compute to wqithin (this error)’.
The algorithm must answer: what does ‘error’ mean?

4 / 10

Measuring error: sensitivity

In numerics, we care about how sensitive a problem is to changes in the input.

For example, consider the problem:

given x0, evaluate f (x0).

Suppose the input x0 is peturbed by a small amount δ to a new value x̃0....

f (x̃0) = f (x0 + δ) ≈ f (x0) + f ′(x0)δ

The difference in the results is related to δ by

|f (x̃0)− f (x0)| ≈ |f ′(x0)|δ.

That is, as the error in the input propagates to the result,
it is amplified by a factor f ′(x0):

(error in result) ≈ |f ′(x0)|(error in input).

5 / 10

Measuring error: sensitivity

For example, take f (x) = tan(x) and

x0 =
π

2
− 10−2, x̃0 = x0 − 10−2.

Then
tan(x0) = 99.996 · · · tan(x̃0) = 49.99

so the difference 10−2 in x =⇒ difference ≈ 50 in f !

Definition (Condition)

A very sensitive problem in this sense is called ill-conditioned.
A not-so sensitive problem is called well-conditioned.

The typical ‘amplification’ factor for the relative error is called the condition
number, defined in a suitable way (depends on problem).

For instance, the condition number for evaluating f (x) is f ′(x0)/f (x0) since

|f (x0)− f (x̃0)|
|f (x0)| ≈ |f

′(x0)|
f (x0)

|x0 − x̃0|.

Ill-conditioned problems are inherently hard to solve!
Errors the result are hard to control, even if the inputs are fine.

6 / 10

An algorithm: bisection

7 / 10

Bisection: the setup

The problem (zero-finding):

Let f (x) be a continuous function and suppose there is a solution x∗ to

f (x) = 0.

Goal: Find a numerical solution x̃ such that the error is less than a given
tolerance tol, i.e.

|x̃ − x∗| < tol

(this is the absolute error; the relative error is |x̃ − x∗|/|x∗|)

• Requirement: there is a bracketing interval [a, b] such that

f (a) and f (b) have opposite signs.

• By the intermediate value theorem, there is a zero in [a, b]

• What guess c minimizes the possible error? =⇒ take the midpoint
8 / 10

Bisection: the algorithm

• Assume f (c) 6= 0. Since f (a), f (b) have opposite signs,

exactly one of [a, c] and [c, b] is a bracketing interval.

• Now apply the same process to the new bracketing interval.

• Key question: How fast do the midpoints converge to x∗?

9 / 10

Bisection: the algorithm

• Let [an, bn] and cn = (an + bn)/2 denote the interval/midpoint at n-th step

• Bound on the error:

|x∗ − cn| <
1

2
|bn − an|

• We know how the interval sizes change, so

|x∗ − cn| <
1

2
2−n|b0 − a0|

(intervals halve in width at each step).

• =⇒ error decreases by a factor of 2 each step (not bad, not great...)

• Benefit: not much is assumed of f

10 / 10

