
Math 260: Python programming in math

Fall 2020

Least squares, gradient descent

1 / 24

Gompertz model

Earlier, we looked at the logistic model for population growth,

y ′ = ry(1− y/K).

The Gompertz model instead uses the equation

y ′ = −ay log(y/K)

where a and K are constants.

• Used to describe growth of tumors (y(t) = tumor size)

• Growth rate per y (i.e. a log(y/K)) non-linear in y

The solution to this ODE is

y(t) = K exp(−ae−bt) (M)

Suppose we have an experiment measuring the tumor size at N times:

(t̂k , ŷk), k = 1, · · · ,N. (D)

2 / 24

Gompertz model

y(t) = K exp(−ae−bt) (M)

(t̂k , ŷk), k = 1, · · · ,N. (D)

The goal: estimate parameters K , a and b by fitting (M) to the data (D).

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
exp. data
fit

(data here generated from exact solution plus some noise...)

3 / 24

Gompertz model

y(t) = K exp(−ae−bt) (M)

(t̂k , ŷk), k = 1, · · · ,N. (D)

To define the ‘best fit’, consider the least-squared error

E(r) =
N∑

k=1

(y(t̂k ; r)− ŷk)2

where r = (r1, r2) denotes the parameters (a, b).
(The r vector is more convenient for computation).

• The function E should have a minimum at r∗ = (a∗, b∗) - these are the
best fit parameters

• Since the number of parameter is small, E cannot be made zero

• How do we find this minimum?

4 / 24

Least squares: gradient descent

Now, ignoring the context, what we really want is to

find a minimum of E(r), (E = some function of r = (r1, r2))

Key facts (calculus!)

• At a minimum of E , the gradient is zero:

r∗is a minimum of E =⇒ ∇E = 0 at r∗

where ∇E = (∂E
∂r1
, ∂E
∂r2

).

• At any point r, the function E is decreasing
fastest in the −∇E direction.

The latter holds since

(rate of change of E in dir. v) = v · ∇E

which is most negative when v = −∇E .

We call v the direction of steepest descent.
This fact suggests that we can ‘follow’ the gradient
down to look for a min. of E ...

5 / 24

Least squares: gradient descent

To search for a possible minimum x∗ of the function

F (x), F : Rn → R

we can iteratively ‘follow the gradient.’

Algorithm sketch: gradient descent

Pick a point xk . Then,

- Calculate the steepest descent direction

v = −∇F (xk).

- Search along v, i.e. along the half-line

q(α) = xk + αv

to find a new point with a smaller F value.

- Set this to be the ‘next’ point xk+1 and repeat.

• This generates a sequence x0, x1, · · · , of points with

F (x0) > F (x1) > F (x2) > · · · → F (x∗) (if all goes well...)

• When to stop? When |F (xk+1)− F (xk)| is small enough, or |xk+1 − xk |...
6 / 24

Gradient descent - backtracking

A scheme is required to search for a minimum along the (half) line

q(α) = xk + αv, α > 0 (L)

This step (the line search) can be done in several ways.

Line search strategy: Backtracking

After identifying the line (L),

• Guess α = 1

• If F (q(α)) is less than F (xk) by
enough, accept the step

• If not, set α to α/2 and repeat.

• Since f is decreasing along v close to xk ,
backtracking will always find an α

• Simplest ‘enough’ criterion: just use

F (q(α)) < F (xk).

(Better choices → more progress per step).

More sophisticated approaches exist... but this will at least guarantee progress!
7 / 24

Gradient descent: example

function: F (x , y) = (x − 1)2 + 4y 2

gradient: ∇F = (2(x − 1), 8y)

Gradient descent steps (x = (x , y)):

xk+1 = xk − αk∇F (xk)

stopping condition: ||xk+1 − xk || < tol

def func(x): # F
return (x[0] - 1)**2 + 4*x[1]**2

def dfunc(x): # gradient of F
dx = 2*(x[0] - 1)
dy = 8*(x[1])
return np.array((dx, dy))

0 1 2 3 4
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

With tol = 10−3, completes in 10 steps (not great, but works!).
8 / 24

Gradient descent: limitations

Issue 1: Local minima can be a problem...

• We can only hope for a ‘local minimum’ -
gradient descent can get stuck in local valleys

• Finding the global minimum of F is harder!

• A good initial guess helps, but requires prior
knowledge of F .

Issue 2: The gradient gives limited information...

• −∇F is not always the best direction to
search for a minimum...

• Can be slow, give bad information when far
from the minimum, etc.

• Many ways to improve it by using a better
searching scheme!

Some examples for reference: Levenberg-Marquardt, Gauss-Newton, BFGS...

9 / 24

Gradient descent: applied to least squares

Now back to non-linear least squares... we need to minimize

E(r) =
N∑

k=1

(y(t̂k ; r)− ŷk)2

where r = (r1, r2) (the parameters to fit). To find ∇E , compute

∂

∂rj

[
(y(t̂k , r)− ŷk)2

]
= 2(y(t̂k , r)− ŷk) · ∂f

∂rj
(t̂k , r)

by the chain rule. Then

∂E

∂rj
= 2

N∑
k=1

[
(y(t̂k , r)− ŷk)

∂y

∂rj
(t̂k , r)

]
for j = 1, 2

We then guess initial parameters r0 = (a0, b0).
The gradient descent loop computes

vk = −∇E at rk

αk = result of the search step

rk+1 = rk + αkvk

Note that convergence to the ‘right’ minimum may require a good r0.
10 / 24

Gradient descent: applied to least squares

y(t) = K exp(−ae−bt) (M)

(t̂k , ŷk), k = 1, · · · ,N. (D)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
exp. data
fit

(data here generated from (a, b) = (3, 2) some noise...)

Result: (a, b) ≈ (2.980, 1.979), after 43 iterations.

11 / 24

Aside: Non-dimensionalization

For numerics and analysis, it’s important to put the problem in the right form!

Consider, for example, a model for cell growth with a ‘rapid growth’ term

dp

dt
= rp(1− p

K
) + sp2, p(0) = p0.

modeling a population p(t) of cells that an grow abnormally fast.

• This problem has three parameters (plus an initial condition p0).

• Understanding qualitative behavior means exploring a 4d space!

We can reduce the number of parameters using non-dimensionalization.

• The idea: rescaling a variable by a constant (p = Cp̂) does not change
how the system behaves (just ‘changing the units’)

• The process: scale all the variables, plug into the model equations.

Then choose scales that simplify the eqs. (and/or that are meaningful).

12 / 24

Aside: Non-dimensionalization

Model equation:
dp

dt
= rp(1− p

K
) + sp2, p(0) = p0.

p(t) = population (number of cells) and t = time in minutes.

There are two variables to scale here. Define ‘non-dimensional’ variables

p̂ = p/P, t̂ = t/T .

where P0 (cells) and T0 (minutes) are constants (‘scales’) to be found.

Plug into the model to get

P

T

dp̂

dt̂
= rPp̂(1− P

K
p̂) + sP2p̂2, p̂(0) = p0/P.

Now multiply through by T/P to get a non-dimnensional equation (all terms
have no units):

dp̂

dt̂
= rT p̂(1− P

K
p̂) + sTPp̂2, p̂(0) = p0/P.

Now simplifying the logistic term to cancel out r ,K suggests the scales

T =
1

r
, P = K .

13 / 24

Aside: Non-dimensionalization

Now simplifying the logistic term to cancel out r ,K suggests the scales

T =
1

r
, P = K .

This gives
dp̂

dt̂
= p̂(1− p̂) +

sK

r
p̂2, p̂(0) = p0/K .

Finally, we see the underlying parameters that matter, which are

σ =
sK

r
, p̂0 = p0/K .

Relabeling y = p̂ and τ = t̂ we then have an ODE for y(τ),

dy

dτ
= y(1− y) + σy 2, y(0) = y0.

which has a single parameter σ (plus initial condition).

As a sanity check, σ should be non-dimensional (no units):

σ = s
K

r
∼ 1

cells · t
cells

1/t
.

14 / 24

Non-dimensionalization

In summary, we converted the dimensional equation

dp

dt
= rp(1− p

K
) + sp2, p(0) = p0. (D)

into non-dimensional form

dy

dτ
= y(1− y) + σy 2, y(0) = y0 (ND)

with y = p/K and τ = rt and σ = sK/r . This tells us:

• The key parameter is σ, a ratio of the rapid to base growth rates.

• The behavior of this ODE really depends on one parameter, not three

• For numerics, we should use (ND): it leads to simpler code, and we can
more easily use properties of the equation to improve the solver.

• For example - p can asymptote at a time t∗ due to the rapid growth.
It is easier to estimate this with (ND), since only σ is involved.

Remember: the code may need to know how to convert back e,g,

times τ = 1, 2, 3, · · · ⇐⇒ times t = 1/r , 2/r , · · · minutes .

15 / 24

Example:
parameter estimation for ODEs

16 / 24

ODEs: parameter estimation

Here’s a real example of this sort of problem,
where we ‘fit’ an ODE model to experimental data.

In fluid dynamics, we need to measure the surface tension γ of a fluid-
how much energy per area is required to ‘stretch’ the surface of a fluid.

One method to do so is a pendant drop experiment, where you create a
droplet that hangs from a source (like a drop from a faucet).

Then, we fit a theoretical model to this data using least-squares,
where γ, the surface tension, is one of the parameters.

Reference: Berry, Joseph D., et al. ”Measurement of surface and interfacial tension using pendant drop tensiometry.”

Journal of colloid and interface science 454 (2015): 226-237.

17 / 24

Pendant drop

Surface tension in a round drop is described by the Young-Laplace formula:

pressure from s.t. = ∆p = −γ
(

1

R1
+

1

R2

)
where R1,R2 are the radii of curvature.
Gravity creates hydrostatic pressure proportional to depth:

pressure from gravity = −Cz
(e.g. the weight of water creating pressure in deep ocean).

Now we assume the drop is circular around the vertical axis (cylindrical
symmetry) and consider coordinates (r , z) (cylindrical).

18 / 24

Pendant drop

... we obtain the following system of ODEs:

dφ

ds
=

2

R0
− B

R2
0

z − sinφ

r

dz

ds
= cosφ

dr

ds
= sinφ

• The independent variable s is the arc length.

• The parameters are R0 (a base ‘radius’) and
B = ρgR2

0/γ, the Bond number.

• Given B,R0 we can compute surface tension!

The ODE only has an analytical solution with
no gravity - just a spherical drop:

φ = s/R0,

r = R0 sin(φ), z = R0(cos(φ)− 1),

19 / 24

Pendant drop

Letting y = (φ, z , r) we have a system of the form

y′(s) = F (y)

subject to the initial conditions

z = r = φ = 0 at s = 0.

In python:

def pendant(s, y, b, r0):
dp = 2/r0 - b*y[1]/r0**2 - sin(y[0])/r
dz = cos(y[0])
dr = sin(y[0])
return np.array([dp, dz, dr])

We can then solve it using an ode solver...

ic = np.zeros(3) # initial condition
b = 1
r0 = 1
s, y = ode_solver(lambda s,y: pendant(s,y,b,r0), [0, 10], ic, h)

Assume that the ODE solver takes a function f (s, y)...
The lambda function lets us ‘capture’ b and r0.
This makes pendant into a function of (s, y) only.

20 / 24

Pendant drop

Next, we need to know where to stop.

• The pendant shape ends where the
drop is attached to the device.

• Assume this occurs when φ = π/2

• φ = π/2 happens once before, too

• =⇒ stop at second point with φ = π/2

Now let’s assume we have measured data

(ŝk , r̂k , ẑk), k = 0, · · ·N

where sk = kh for a uniform spacing h, stopping with the criterion above.

Let r(s;B,R0) (etc.) be the numerical solution. Then the LS error is

E(B,R0) =
N∑

k=0

[
(r(ŝk ;B,R0)− r̂k)2 + (z(ŝk ;B,R0)− ẑk)2

]
21 / 24

Pendant drop

Finally, we have stated a least-squares problem - to minimize

E(B,R0) =
N∑

k=0

[
(r(ŝk ;B,R0)− r̂k)2 + (z(ŝk ;B,R0)− ẑk)2

]
the least squares error between the measured and numerical solutions.

This can be solved using gradient descent. Finally, the surface tension is
computed from B and R0 using

γ =
B

ρgR2
0

.

All that is left is to apply gradient descent. We need:

• A function to compute E(B,R0) (which calls the ODE solver)

• A function to compute ∇E (more work required!)

22 / 24

Non-dimensionalization

For our fluid droplet example - in dimensional form,

γ

(
dφ

ds
+

sinφ

r

)
= 2γR0 − ρgz ,

dz

ds
= cosφ,

dr

ds
= sinφ

where 2γR0 is a ‘reference pressure’ ρ = fluid density.

We can use R0, the droplet ‘radius’ as a scale for all length variables,

s = R0ŝ, z = R0ẑ , r = R0 r̂ ,

and φ is already non-dimensional, leading to

γ

R0

(
dφ

dŝ
+

sinφ

r̂

)
= 2γR0 −

ρg

R
ẑ .

Multiply by the factor on the left to get the non-dimensional form

dφ

dŝ
+

sinφ

r̂
= 2− ρgR2

0

γ
.

23 / 24

Non-dimensionalization

We then get the non-dimensional system

dφ

ds
+

sinφ

r
= 2− Bz

dẑ

dŝ
= cosφ,

dr̂

dŝ
= sinφ

where

B =
ρgR2

0

γ
(‘Bond number’).

The Bond number can be interpreted as

B =
strength of gravity forces

strength of surface tension forces
.

The non-dimensionalization tells us that:

• The system’s behavior really depends only on B

e.g. a water droplet and a liquid gallium (like mercury) droplet - about 7
times as dense and 7 times higher surface tension - behave the same way.

• We really only need one parameter for the ODE

24 / 24

