Math 260: Python programming in math

Fall 2020

Least squares, gradient descent

Gompertz model

Earlier, we looked at the logistic model for population growth,
y'=rn(1-y/K).

The Gompertz model instead uses the equation

’

y = —aylog(y/K)
where a and K are constants.

e Used to describe growth of tumors (y(t) = tumor size)

e Growth rate per y (i.e. alog(y/K)) non-linear in y

The solution to this ODE is
y(t) = K exp(—ae™™) (M)
Suppose we have an experiment measuring the tumor size at IV times:

(Ek7}/}k)7 k:177N (D)

Gompertz model

y(t) = K exp(—ae™ ™) (M)
(£, 9x), k=1,---,N. (D)

The goal: estimate parameters K, a and b by fitting (M) to the data (D).

1.0 o
o] 12T T
0.6 1 ’:;4 |

0.4 j]\ﬁ

0.2 1 ‘-.’#-

0.0 +— T T T T
0.0 0.5 1.0 15 2.0

(data here generated from exact solution plus some noise...)

Gompertz model

y(t) = K exp(—ae™") (M)
(fkr},}k)7 k:17aN (D)
To define the ‘best fit’, consider the least-squared error
N
=> (i) =9
k=1

where v = (r1, r2) denotes the parameters (a, b).
(The r vector is more convenient for computation).

e The function E should have a minimum at r* = (a*, b*) - these are the
best fit parameters

e Since the number of parameter is small, E cannot be made zero

e How do we find this minimum?

Least squares: gradient descent

Now, ignoring the context, what we really want is to

find a minimum of E(r), (E = some function of r = (r1, r2))

Key facts (calculus!)
e At a minimum of E, the gradient is zero:

r’is a minimum of E = VE=0atr"

_ (OE OE
where VE = ((971’1’ Oirg)

e At any point r, the function E is decreasing
fastest in the —V E direction.

The latter holds since
(rate of change of E in dir. v) =v-VE

which is most negative when v = —VE.

We call v the direction of steepest descent.
This fact suggests that we can ‘follow’ the gradient
down to look for a min. of E...

Least squares: gradient descent

To search for a possible minimum x* of the function
F(x), F:R" >R

we can iteratively ‘follow the gradient.’

Algorithm sketch: gradient descent

Pick a point xx. Then,

- Calculate the steepest descent direction

v = —VF(x).

- Search along v, i.e. along the half-line
g(a) = xx + av

to find a new point with a smaller F value.

- Set this to be the ‘next’ point xx11 and repeat.

e This generates a sequence Xg, X1, - - - , of points with
F(xo0) > F(x1) > F(x2) > --- — F(x") (if all goes well...)

e When to stop? When |F(x«4+1) — F(xk)| is small enough, or |xx+1 — X|...

Gradient descent - backtracking

A scheme is required to search for a minimum along the (half) line
gla)=xk+av, a>0 (L)

This step (the line search) can be done in several ways.

Line search strategy: Backtracking

After identifying the line (L),
e Guessa =1

e If F(g()) is less than F(xx) by
enough, accept the step

e If not, set o to /2 and repeat.

e Since f is decreasing along v close to x,
backtracking will always find an «

e Simplest ‘enough’ criterion: just use
F(q(a)) < F(x«).

(Better choices — more progress per step).

More sophisticated approaches exist... but this will at least guarantee progress!

Gradient descent: example

function: F(x,y) = (x — 1)2 —|—4y2 def func(x): # F

gradient: VF = (2(x — 1), 8y)

Gradient descent steps (x = (x,y)):

Xk+1 = Xk — OthF(Xk)

return (x[0] - 1)**2 + 4sx[1]*x2

def dfunc(x): # gradient of F
dx = 2x(x[0] - 1)
dy = 8x(x[11)
return np.array((dx, dy))

stopping condition: ||xx+1 — Xk|| < tol

2.0
1.5 A
1.0 1
0.5 1
0.01
—0.5 1
-1.01

-1.5

1 2 3 4

X

With tol = 1073, completes in 10 steps (not great, but works!).

Gradient descent: limitations

Issue 1: Local minima can be a problem...

e We can only hope for a ‘local minimum’ -
gradient descent can get stuck in local valleys X/
e Finding the global minimum of F is harder!

e A good initial guess helps, but requires prior
knowledge of F.

Issue 2: The gradient gives limited information...

e —VF is not always the best direction to
search for a minimum...

e Can be slow, give bad information when far
from the minimum, etc.

e Many ways to improve it by using a better
searching scheme!

Some examples for reference: Levenberg-Marquardt, Gauss-Newton, BFGS...

Gradient descent: applied to least squares

Now back to non-linear least squares... we need to minimize

N

E(r) = (y(Bir) —)’

k=1

where r = (1, r2) (the parameters to fit). To find VE, compute
0 N L] 2 Ny OF o
o [(Y(szf)) } = 2(y(t,) — J%) 8rj(tk’r)

by the chain rule. Then

N

_ dy _
- Z[0 -9 3 (6| forj = 1.2

We then guess initial parameters ro = (ao, bo).
The gradient descent loop computes

vie =—VE atrg
ak = result of the search step

Yit1 = Pk + Qg

Note that convergence to the ‘right’ minimum may require a good ro.

Gradient descent: applied to least squares

y(t) = K exp(—ae ™) (M)
(2, i), k=1,---,N. (D)
Lo e exp. data i:t*
o8] - i .!,_n'a"'
0.6 .;4 |

0.4 é‘*
N
&

0.0

00 05 10 15 20
(data here generated from (a, b) = (3,2) some noise...)

Result: (a, b) ~ (2.980,1.979), after 43 iterations.

Aside: Non-dimensionalization

For numerics and analysis, it's important to put the problem in the right form!

Consider, for example, a model for cell growth with a ‘rapid growth’ term

dbo _

p
=rm(l - 2
dt

p(l—) +sp”, p(0) = po.

modeling a population p(t) of cells that an grow abnormally fast.

e This problem has three parameters (plus an initial condition po).

e Understanding qualitative behavior means exploring a 4d space!

We can reduce the number of parameters using non-dimensionalization.

e The idea: rescaling a variable by a constant (p = Cp) does not change
how the system behaves (just ‘changing the units’)

e The process: scale all the variables, plug into the model equations.

Then choose scales that simplify the eqs. (and/or that are meaningful).

Aside: Non-dimensionalization

Model equation:
P 2
— =rm(l—=)+sp p = po.
dt ’ (K) P (O) 0

p(t) = population (number of cells) and t = time in minutes.

There are two variables to scale here. Define ‘non-dimensional’ variables
p=p/P, t=1t/T.

where Py (cells) and Ty (minutes) are constants ('scales’) to be found.

Plug into the model to get

P dp ~ P, 2,2 4

ZE — pp(l — = P°p°, = P.

T g5 = PP — p) +sPB", B(0) = po/
Now multiply through by T/P to get a non-dimnensional equation (all terms
have no units):

dp P 2
— =rTp(l——p TPp 5(0) = po/P.
77 = (TPl = 2p) +sTPp", p(0) = po/
Now simplifying the logistic term to cancel out r, K suggests the scales

T=1 P-xk
r

Aside: Non-dimensionalization

Now simplifying the logistic term to cancel out r, K suggests the scales

T = 1, P=K
r

This gives

dﬁ ~ ~ SK A2 ~

— =p(1 - —p, 0) = K.

g7 — PA=p) +—-p B0)=po/
Finally, we see the underlying parameters that matter, which are

sK R
o= po=po/K.

r
Relabeling y = p and 7 = £ we then have an ODE for y(7),

dy o . 2 o
dT—y(l y)+oy*, y(0)= y.

which has a single parameter o (plus initial condition).

As a sanity check, o should be non-dimensional (no units):

—sK 1 cells
T Tr cells-t 1/t

Non-dimensionalization

In summary, we converted the dimensional equation

dp _ P 2 _

g = P =) +sp7 p(0) = po. (D)
into non-dimensional form

d

d% =y(l-y)+oy’, y(0)=y (ND)

with y = p/K and 7 = rt and o = sK/r. This tells us:
e The key parameter is o, a ratio of the rapid to base growth rates.

e The behavior of this ODE really depends on one parameter, not three

e For numerics, we should use (ND): it leads to simpler code, and we can
more easily use properties of the equation to improve the solver.

e For example - p can asymptote at a time t* due to the rapid growth.
It is easier to estimate this with (ND), since only o is involved.

Remember: the code may need to know how to convert back e,g,

times 7=1,2,3,--- <= timest=1/r,2/r,--- minutes .

Example:
parameter estimation for ODEs

ODEs: parameter estimation

Here's a real example of this sort of problem,
where we ‘fit’ an ODE model to experimental data.

In fluid dynamics, we need to measure the surface tension ~y of a fluid-
how much energy per area is required to ‘stretch’ the surface of a fluid.

One method to do so is a pendant drop experiment, where you create a
droplet that hangs from a source (like a drop from a faucet).

Then, we fit a theoretical model to this data using least-squares,
where -y, the surface tension, is one of the parameters.

Reference: Berry, Joseph D., et al. "Measurement of surface and interfacial tension using pendant drop tensiometry.”

Journal of colloid and interface science 454 (2015): 226-237.

Pendant drop

Surface tension in a round drop is described by the Young-Laplace formula:

ressure from s.t. = A L + L

u to= ==+ =

p P Y R R

where Ry, Ry are the radii of curvature.

Gravity creates hydrostatic pressure proportional to depth:
pressure from gravity = —Cz

(e.g. the weight of water creating pressure in deep ocean).

Now we assume the drop is circular around the vertical axis (cylindrical
symmetry) and consider coordinates (r, z) (cylindrical).

S :
—

s z

|]

Pendant drop

.. we obtain the following system of ODEs:

dg _ 2 B sin ¢

ds R R s

Zz = cos ¢
% =sin¢

e The independent variable s is the arc length.

e The parameters are Ry (a base ‘radius’) and
B = pgRZ /v, the Bond number. P-T 3=

e Given B, Ry we can compute surface tension!

The ODE only has an analytical solution with
no gravity - just a spherical drop:

o= S/Rov
r=~Ro sin(d)), zZ = RO(COS((;b) - 1)’

Pendant drop

Letting y = (¢, z, r) we have a system of the form
y'(s) = F(y)
subject to the initial conditions
z=r=¢=0ats=0.

In python:

def pendant(s, y, b, r0):
dp = 2/r0 - bxy[1]/r0**2 - sin(y[0])/r
dz = cos(y[0])
dr = sin(y[0])
return np.array([dp, dz, dr])

We can then solve it using an ode solver...

ic = np.zeros(3) # initial condition

b=1

r0o =1

s, y = ode_solver(lambda s,y: pendant(s,y,b,r0), [0, 10], ic, h)

Assume that the ODE solver takes a function f(s, y)...
The lambda function lets us ‘capture’ b and r.
This makes pendant into a function of (s, y) only.

Pendant drop

Next, we need to know where to stop.

e The pendant shape ends where the
drop is attached to the device.

e Assume this occurs when ¢ = 7/2
e ¢ = /2 happens once before, too

e —> stop at second point with ¢ = 7/2

Co)CJ)
Now let's assume we have measured data
(8, Py 2k), k=0,---N

where s = kh for a uniform spacing h, stopping with the criterion above.

Let r(s; B, Ro) (etc.) be the numerical solution. Then the LS error is

E(B.R) =Y [(r(§k; B, Ro) — #)? + (2(5; B, Ro) — 2k)2]

Pendant drop

Finally, we have stated a least-squares problem - to minimize

E(B,R)) =Y [(r(sk B, Ro) — &) +(z(§k;B,Ro)72k)2}
k=0

the least squares error between the measured and numerical solutions.

This can be solved using gradient descent. Finally, the surface tension is
computed from B and Ry using
_ B
7= ?Rg’
All that is left is to apply gradient descent. We need:
e A function to compute E(B, Ry) (which calls the ODE solver)

e A function to compute VE (more work required!)

Non-dimensionalization

For our fluid droplet example - in dimensional form,

dp sing\ dz dr
V(E—i— p >_2fyR0 pEZ, ds-cosqﬁ, =sin¢

ds

where 2vRy is a ‘reference pressure’ p = fluid density.

We can use Ry, the droplet ‘radius’ as a scale for all length variables,

and ¢ is already non-dimensional, leading to

v (d¢ | sing Pg
2 (e = 29R, — &3
Ro<d§+ F) TR

Multiply by the factor on the left to get the non-dimensional form

b snd _o_ peR
ds F 0%

Non-dimensionalization

We then get the non-dimensional system

d¢ n sing _ > Bz
ds r
dz dr .
E—cosqﬁ, E_Smd)
where)
B = reRs (‘Bond number’).

The Bond number can be interpreted as

_ strength of gravity forces
strength of surface tension forces’

The non-dimensionalization tells us that:
e The system’s behavior really depends only on B

e.g. a water droplet and a liquid gallium (like mercury) droplet - about 7
times as dense and 7 times higher surface tension - behave the same way.

e We really only need one parameter for the ODE

