
Math 260: Python programming in math

Fall 2020

Finite differences:
Boundary value problems and PDEs

1 / 30

Finite differences

Here’s an example of a linear algebra problem (with some ODE context)...

Suppose we want to solve, for y(x), the boundary value problem

y ′′ − y = x , y(0) = 1, y(1) = e − 1

which has the solution y(x) = ex − x .
Unlike an initial value problem, we can’t just ‘start’ at an endpoint!

An approach is to approximate the function at mesh points xj ...

...and use the approximation

y ′′(x) ≈ y(x + h)− 2y(x) + y(x − h)

h2

for the second derivative.
2 / 30

Finite differences

y ′′ − y = x ,

y(0) = 1, y(1) = e − 1

Let xj = jh be the mesh points (h = 1/N). Then, at xj ,

yj+1 − 2yj + yj−1

h2
− yj ≈ xj

The formula for our approximation uj is then

uj+1 − 2uj + uj−1 − h2uj = h2xj , j = 1, · · · ,N − 1

for the ‘interior’ points.
At the endpoints, we impose boundary conditions

u0 = 1, uN = e − 1

3 / 30

Finite differences

To summarize, we have the problem/appproximation

y ′′ − y = x ,

y(0) = 1, y(1) = e − 1

For j = 1, 2, · · · ,N − 1,

uj+1−(2 + h2)uj + uj−1 = h2xj

u0 = 1, uN = e − 1

Example: With five mesh points 0, 0.25, · · · , 1 we have h = 0.25 and

u2 − (2 + h2)u1 + 1 = h2x1

u3 − (2 + h2)u2 + u1 = h2x2

e − 1− (2 + h2)u3 + u2 = h2x3

which is the linear system2 + h2 −1 0
−1 2+h2 −1
0 −1 2+h2

u1u2
u3

 = −h2

0.25
0.5

0.75

−
 1

0
(e − 1)



4 / 30

Finite differences

uj+1 − (2 + h2)uj + uj−1 = h2xj , j = 1, · · · ,N − 1

u0 = uN = 0.

In general, the system to solve has the form

2 + h2 −1 0 · · · 0

−1 2 + h2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 2 + h2 −1

0 · · · 0 −1 2 + h2




u1
u2
...

uN−2

uN−1

 = −h2


x1
x2
...

xN−2

xN−1

−

u0
0
...
0
uN



• The matrix has three diagonals (around the center), called tri-diagonal

• Matrices like this how up often when data relates only to adjacent data

• We can solve using Gaussian elimination!

But GE takes O(n3) work... but only ≈ 3n non-zeros - can we do better?

5 / 30

Finite differences

The answer is yes - we can get O(n) time - extremely fast!

Now forget about the ODE context and just consider trying to solve

Ax = b, A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


Let’s first look at an example, where we use GE to reduce

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


and get the LU factorization (A = LU).

6 / 30

Finite differences

Here entries of L are noted in red (in the zeroed entries).

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒ A =


2 −1 0 0

−0.5 1.5 −1 0
0 −1 2 −1
0 0 −1 2


(Zero out (2, 1) entry using R2 ← R2 + 0.5R1).
From here, we use ‘lazy’ notation: X denotes a value we could compute.

2 −1 0 0
−0.5 1.5 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒


2 −1 0 0

−0.5 1.5 −1 0
0 X X −1
0 0 −1 2


(Zero out (3, 2) entry using R3 ← R3 + (1/2.5)R2.

2 −1 0 0
−0.5 1.5 −1 0

0 X X −1
0 0 −1 2

 =⇒


2 −1 0 0

−0.5 1.5 −1 0
0 X X −1
0 0 X X


Done! Notice the mostly-zero structure has greatly simplified things...

7 / 30

Tridiagonal matrices

Thus we have found that the result looks like (X being some numbers)

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒


2 −1 0 0
X X −1 0
0 X X −1
0 0 X X



=⇒ A = LU where L =


1 0 0 0
X 1 0 0
0 X 1 0
0 0 X 1

 , U =


2 −1 0 0
0 X −1 0
0 0 X −1
0 0 0 X


This process generalizes to the N × n tri-diagonal matrix, where:

• We only need to zero out one entry below the diagonal for each column

• The upper-diagonal never changes

• Both L and U have one diagonal other than the center (‘bi-diagonal’)

8 / 30

Tridiagonal matrices

Now let’s derive an efficient Gaussian elimination for a tridiagonal matrix:

q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


=⇒



d1 r1 0 · · · 0

`2 d2 r2
. . .

...

0 `3
. . .

. . . 0
...

. . .
. . . dn−1 rn−1

0 · · · 0 `n dn


We want to find the `’s and d ’s.
First, d1 = q1 trivially. Then the first step of GE gives

`2 =
p2
d1
, d2 = q2 − `2r1, (multiplier: `2)

Then for the next step after that (and so on),

`3 =
p3
d2
, d3 = q3 − `3r2,

`j =
pj
dj−1

, dj = qj − `j rj−1, j = 2, 3 · · · , n.

Thus we can solve for variables in the order

`2 → d2 → `3 → d3 → · · · `n → dn.

9 / 30

Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux = y .

Both solves are quite fast - forward/back substitution also simplify!

Forward solve: we have
1 0 · · · 0

`2 1
. . .

...
...

. . . 1 0
0 · · · `n 1



y1
y2
...
yn

 =


b1
b2
...
bn

 =⇒ yj + `jyj−1 = bj

so y is given by

y1 = b1, yj = bj − `jyj−1, j = 2, · · · , n.

10 / 30

Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux = y .

Both solves are quite fast - forward/back substitution also simplify!

Backward solve: Similarly,
d1 r1 · · · 0

0 d2
. . .

...
...

. . .
. . . rn−1

0 · · · 0 dn



x1
x2
...
xn

 =


y1
y2
...
yn

 =⇒ djxj + rjxj+1 = yj

so we can solve for x by

xn = yn/dn, xj =
yj − rjxj+1

dj
, j = n − 1, n − 2, · · · , 1

11 / 30

Tridiagonal matrices

In summary, we have an efficient Gaussian elimination for solving Ax = b where

A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


=⇒



d1 r1 0 · · · 0

`2 d2 r2
. . .

...

0 `3
. . .

. . . 0
...

. . .
. . . dn−1 rn−1

0 · · · 0 `n dn


This method is sometimes called the Thomas algorithm.

• (initialize) Set d1 = q1 and y1 = b1.

• (LU and fwd. solve) Then for j = 2, · · · , n:

`j = pj/dj−1, dj = qj − `j rj−1

yj = bj − `jyj−1.

• (Back solve) Finally set xn = yn/dn and for j = n − 1, n − 2, · · · , 1:

xj = (yj − rjxj+1)/dj .

Note that you can do the Ux = y solve in parallel with the LU.
12 / 30

Tridiagonal matrices

A tridiagonal matrix should be stored in banded form:

A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


is stored as


0 q1 r1
p2 q2 r2
...

...
...

pN−1 qN−1 rN−1

pN−1 qN−1 0



Pay attention to:

• The zeros - not part of the data (correct code should never read them!)

• Conventions may differ on the unused zeros (‘padding’)

• Indexing (easy to be off by one!). Here:

row k of the array ⇐⇒ row k of the matrix

We store only 3n numbers - much more feasible than n2.

13 / 30

Code structure

See example code for the finite difference method. We solve

y ′′ − y = x , y(0) = ya, y(b) = yb

by solving the linear system In general, the system to solve has the form

2 + h2 −1 0 · · · 0

−1 2 + h2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 2 + h2 −1

0 · · · 0 −1 2 + h2




u1
u2
...

uN−2

uN−1

 = −h2


h2x1 − ya

h2x2
...

h2xN−2

h2xN−1 − yb

 (FD)

breaking up into the following functions:

a) build fd that creates A (as an array bands) and rhs as in (FD)

b) trisolve(bands, rhs): solves Ax = rhs, with A tri-diagonal

• A solve ‘main’ function that:

- gets the Ax = rhs system from (a)...

- then solves it using (b).

14 / 30

From ODEs to partial differential equations...

15 / 30

PDEs and the method of lines

Suppose I am in a (cold) 1d room of length L.
I open windows at both ends to the outside.

Let the temperature in the room be u(x , t).
Over time, u will equalize with the outside.

This process is modeled by the heat equation

∂u

∂t
= β

∂2u

∂x2

which is a partial differential equation
(it has derivs. in x and t).

Physical interpretation (‘Fourier’s law’):

heat flow per time = −β ∂u
∂x
.

That is, heat flows from higher to lower
temperature, and faster if the difference is large.

16 / 30

The heat equation

Other heat-like equations (different fluxes):

• Fisher’s equation (genetics):

∂f

∂t
=

∂2

∂x2
(x(1− x)f (x , t))

(describes distribution f (x , t) of a trait in a population - ”genetic drift”)

• Black-Scholes - derivatives in finance

• Height of a liquid droplet h(x , t) (”Porous medium equation”)

∂h

∂t
=

∂

∂x
(h3 ∂h

∂x
)

• ”advection-diffusion”:

∂u

∂t
+

∂

∂x
(F (u)) = ν

∂2u

∂x2

e.g. transport of a chemical in a solution

• And much more!

Can be solved with similar methods!

17 / 30

PDEs and the method of lines

∂u

∂t
= β

∂2u

∂x2
, x ∈ (0, L), t > 0.

To complete the problem, there are also initial conditions

u(x , 0) = f (x) (initial distribution of heat)

and boundary conditions (where T0 is the outside temp.)

u(t, 0) = u(t, L) = T0 for all t.

The goal: reduce the problem into manageable pieces for computation.
We’ll need: derivative approximations, an ODE solver, and a bit more.

18 / 30

Finite differences

First, let’s review some ways of approximating derivatives...

Forward difference: f ′(x) ≈ f (x + h)− f (x)

h

Central difference: f ′(x) ≈ f (x + h)− f (x − h)

2h

Central (2nd) difference: f ′′(x) ≈ f (x + h)− 2f (x) + f (x − h)

h2

A ‘stencil’ diagram shows the points used in the approximation:

19 / 30

PDEs and the method of lines

We’ll solve the heat equation using the method of lines.

∂u

∂t
= β

∂2u

∂x2
, x ∈ (0, L), t > 0.

Step 1 (define a mesh in space): First define the points in space where the
approximation is defined...

xj = jh, j = 0, 1, · · · ,N, where h = L/N.

Now think of u at each fixed x as a function in t:

u(xj , t) := uj(t) along the ‘line’ x = xj t > 0.

20 / 30

PDEs and the method of lines

∂u

∂t
= β

∂2u

∂x2
, x ∈ (0, L), t > 0.

Step 2 (approximate x-derivatives): Using the central difference in x ,

∂u

∂t
≈ β u(x + h, t)− 2u(x , t) + u(x − h, t)

h2
.

At x = xj :
duj
dt
≈ β uj+1 − uj + uj−1

h2
, j = 1, · · · ,N − 1

which is a system of ODEs for the functions along each ‘line’.

The boundary conditions give the last two equations... (u0 = uN = T0).
21 / 30

PDEs and the method of lines

We have derived a system of N − 2 ODEs

duj
dt
≈ β uj+1 − uj + uj−1

h2
, j = 1, · · · ,N − 1

u(t, 0) = u(t, L) = T0 =⇒ u0(t) = uN(t) = T0.

The initial conditions come from the IC for the original problem:

u(x , 0) = f (x) =⇒ uj(0) = f (xj).

This system approximates the solution to the PDE (the method of lines).

As h→ 0 (i.e. as N →∞), it can be shown to converge.
(That is, a higher density of lines will give a better solution).

22 / 30

PDEs and the method of lines

The ODE system can now be solved by any usual method. In summary:

duj
dt
≈ β uj+1 − uj + uj−1

h2
, j = 1, · · · ,N − 1

u(t, 0) = u(t, L) = T0 =⇒ u0(t) = uN(t) = T0.

uj(0) = f (xj).

As an example, let’s see what Euler’s method looks like.

Our system is already in ‘generic first order system form’

u′ = G(u), u(0) = (f (x1), · · · , f (xN−1))

where u(t) = (u1(t), · · · , uN−1(t)) and G has components

Gj(u) =
β

h2
(uj+1 − 2uj + uj−1), j = 1, · · · ,N − 1

with u0 and uN replaced by T0.

23 / 30

PDEs and the method of lines

For implementation, we just need to create the system of ODEs:

u′ = G(u), u(0) = (f (x1), · · · , f (xN−1))

for u = (u1, · · · , uN−1) with

Gj(u) =
β

h2
(uj+1 − 2uj + uj−1), j = 1, · · · ,N − 1,

u0(t) = uN(t) = T0.

Let’s define c = β/h2. A simple implementation:

def odefunc(t, u, c, ul, ur):
n = len(u) + 2 # u = (u_1, ... u_(n-1))
du = np.zeros(m)
for j in range(1, n-2): # interior points

du[j] = a*(u[j+1] - 2*u[j] + u[j-1])

boundary points
du[0] = a*(u[1] - 2*u[0] + ul) # x= 0
du[n-2] = a*(ur - 2*u[n-2] + u[n-3]) # x = L
return du

(Note: to improve this, have odefunc not create a new array each call).

24 / 30

PDEs and the method of lines

With u(t) = (u1(t), · · · , uN−1(t)),

u′ = G(u), u(0) = (f (x1), · · · , f (xN−1))

Gj(u) =
β

h2
(uj+1 − 2uj + uj−1), j = 1, · · · ,N − 1

Let u(k) denote the solution vector at time tk .
We use a super-script for time,
and sub-script for space here, so

u(k) = (u1(tk), · · · , un−1(tk))

Euler’s method approximates at times

0 = t0 < t1 < · · ·

where we assume that the t’s have an equal
spacing ∆t. Then

u(k+1) = uk + ∆tG(uk), k = 0, 1, · · · .

25 / 30

PDEs and the method of lines

Euler’s method:

u(k+1) = uk + ∆tG(uk), k = 0, 1, · · · .

This is enough to write up the code, but it’s worth ‘plugging in’ G ,

Gj(u) =
β

h2
(uj+1 − 2uj + uj−1), j = 1, · · · ,N − 1.

For the j-th component,

uk+1
j = uk

j +
β∆t

h2
(uk

j+1 − 2uk
j + uk

j−1)

Set a = β∆t/h2. This equation is linear in u. In matrix form...
u1
u2
...

uN−2

uN−1



(k+1)

=


1− 2a a · · · 0

a 1− 2a
. . .

...
...

. . .
. . . a

0 · · · a 1− 2a




u1
u2
...

uN−2

uN−1



(k)

+


aT0

0
...
0

aT0


Note that u0(t) = uN(t) = T0 has been plugged in here.

26 / 30

PDEs and the method of lines

Euler’s method:

u(k+1) = u + ∆tG(uk), k = 0, 1, · · · .

uk+1
j = uk

j +
β∆t

h2
(uk

j+1 − 2uk
j + uk

j−1)

We can simplify a bit by defining the ‘differentiation matrix’

D =
1

h2


−2 1 · · · 0

1 −2
. . .

...
...

. . .
. . . 1

0 · · · 1 −2

 , (D~f)j ≈ f ′′(xj).

Then, from the previous slide, Euler’s method becomes

u(k+1) = (I + ∆tD)u(k) + b

It’s worth noting that:

• This matrix form is nice for theory...

• ... but the ODE or difference formula are used in implementation

27 / 30

Euler’s method (directly)

uk+1
j = uk

j +
β∆t

h2
(uk

j+1 − 2uk
j + uk

j−1), uk
0 = u`, uk

N = ur .

You can implement this directly with a for loop:

code sketch:
c = beta*dt/h**2
n = len(x) - 1 # x = (x_0, ... x_n)
u = f(x[1:n]) # u at interior points
while t < t_final:

for j in range(1, n-2):
unext[j] = u[j] + c*(u[j+1]-2*u[j]+u[j-1])

eqs. with boundary terms
unext[0] = u[0] + c*(u[1] - 2*u[0] + ul)
unext[n-2] = u[n-2] + c*(ur - 2*u[n-2] + u[n-3]
u[:] = unext[:]
t += dt

• u: u at current t

• unext: space for u at next t

• n: grid points x0, · · · , xn
• x points: The array of xj ’s

28 / 30

Euler’s method (directly)

uk+1
j = uk

j +
β∆t

h2
(uk

j+1 − 2uk
j + uk

j−1), uk
0 = u`, uk

N = ur .

This can be simplified by keeping the boundary points in; we compute

u = (u0, · · · , uN)

but update only u1, · · · , uN−1. The formula then holds for all (relevant) j .

code sketch:
c = beta*dt/h**2
n = len(x) - 1 # x = (x_0, ... x_n)
u = f(x) # u at *all* points
while t < t_final:

for j in range(1, n+1):
unext[j] = u[j] + c*(u[j+1]-2*u[j]+u[j-1])

u[:] = unext[:]
t += dt

• Technique can be extended...

• Use fictional ‘ghost points’ to make the formula always work (u−1, · · ·)
• Simplifies loops (no special cases)

29 / 30

Implicit methods...

A problem: there is a stability constraint

∆t < C∆x2

or else numerical solutions grow exponentially!
The fix: use a (good) implicit method.

Forward Euler (bad stability):

uk+1
j = uk

j +
β∆t

h2
(uk

j+1 − 2uk
j + uk

j−1)

matrix form: u(k+1) = (I + ∆tD)u(k) + b

Backward Euler (always stable!):

uk+1
j = uk

j +
β∆t

h2
(uk+1

j+1 − 2uk+1
j + uk+1

j−1)

matrix form: (I −∆tD)u(k+1) = u(k) + b

Implicit - at each step, we must solve a
tridiagonal linear system!

30 / 30

