Math 260: Python programming in math

Fall 2020

Finite differences:
Boundary value problems and PDEs

Finite differences

Here's an example of a linear algebra problem (with some ODE context)...

Suppose we want to solve, for y(x), the boundary value problem
Y'—y=x, y(0)=1 y(l)=e-1
which has the solution y(x) = * — x.

Unlike an initial value problem, we can't just ‘start’ at an endpoint!

An approach is to approximate the function at mesh points x;...

...and use the approximation
(x+h) = 2y(x) + y(x = h)

y
y'(x) = =

for the second derivative.

Finite differences

y' —y=x
y(0)=1, y(1)=e~-1 f f T T

Let x; = jh be the mesh points (h = 1/N). Then, at x;,

Yir1 — 2y + ¥

L“ﬁgif—%%&

The formula for our approximation u; is then
uj+172uj+uj_1—h2uj:hzxj’ j:]-,"',N*].

for the ‘interior’ points.
At the endpoints, we impose boundary conditions

U0:1, uN:e—l

Finite differences

To summarize, we have the problem/appproximation

Forj=1,2,--- /N -1,

" .
y oy=x Uj+1—(2 + hz)uj +ui1 = h2Xj
y(0)=1, y(1)=e-1
w=1 uy=e—-1

Example: With five mesh points 0, 0.25,--- ;1 we have h = 0.25 and
th— 2+ h)u+1=hx
s — (24 h)m 4 n = hx
6—1—(2+h2)U3+UQ = h’x3
which is the linear system

24+ hm -1 0 u 0.25 1
-1 24+R -1 w|=-r|05]| - 0
0 -1 2+h] |us 0.75 (e —1)

Finite differences

w1 — 2+ Py +ur = bx, =1,

Uo:UNZO.

In general, the system to solve has the form

2+ h?
-1
0

-1
2+ K
-1

0
-1

2+ K
-1

0

0
-1

2+ K]

un—2
un-—1

SN —1
X1
X2
XN—2
XN—1

un

e The matrix has three diagonals (around the center), called tri-diagonal

e Matrices like this how up often when data relates only to adjacent data

e We can solve using Gaussian elimination!

But GE takes O(n®) work... but only ~ 3n non-zeros - can we do better?

Finite differences

The answer is yes - we can get O(n) time - extremely fast!

Now forget about the ODE context and just consider trying to solve

-ql n 0 N 0

P2 a2 r

Ax = b, A= |0 P3 0
dn—1 rn—1
0o .- 0 Pn Gn |

Let's first look at an example, where we use GE to reduce

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

A=

and get the LU factorization (A = LU).

Finite differences

Here entries of L are noted in red (in the zeroed entries).

2 -1 0 0 2 -1 0 0

1 2 -1 o0 05 15 -1 0

A=l o -1 2 1| = A= 0 -1 2 -1
0 0 -1 2 0 0 -1 2

(Zero out (2,1) entry using R, < R, + 0.5Ry).
From here, we use ‘lazy’ notation: X denotes a value we could compute.

2
-0.5
0
0

(Zero out (3,2) entry using R3 < Rz + (1/2.5)R>.

2
-0.5
0
0

-1
1.5
-1

0

-1
1.5
X
0

0
-1
2
-1

0
-1
X
-1

0]

0
-1

0]

0
-1

2_

2
-0.5
0
0

2
-0.5
0

2_

0

-1
1.5
X
0

-1
1.5
X
0

0 o0
-1 0
X -1
-1 2]
0 0]
-1 0
X -1
X X

Done! Notice the mostly-zero structure has greatly simplified things...

Tridiagonal matrices

Thus we have found that the result looks like (X being some numbers)

2 -1

-1 2

A= 0 -1

0 0

— A= LU where L =

oo X H

o X = o

X = O o

o O o

1

2
X
0
0

-1 0 0
X -1 0
X X -1
0o X X

2 -1 0 0

0 X -1 0

U= 0 0o X -1

0 0 0 X

This process generalizes to the N x n tri-diagonal matrix, where:

e We only need to zero out one entry below the diagonal for each column

e The upper-diagonal never changes

e Both L and U have one diagonal other than the center (‘bi-diagonal’)

Tridiagonal matrices

Now let's derive an efficient Gaussian elimination for a tridiagonal matrix:

rq1 rn 0 0 7 rdq r 0 0 7

P2 q2 r lo d> r

o pz 0| = |0 & . . 0
Gn—1 In—1 R

L0 .- 0 Pn qn | LO - 0 ln dn |

We want to find the ¢'s and d's.
First, di = q1 trivially. Then the first step of GE gives

U = (%7 b = qx — 62"1, (multiplier: fz)
Then for the next step after that (and so on),
P3
==, da=qs—/¢
3T 40 BT @b
0= P d=qg —0:r i=273....n
1T Ay j = qj — Ljlj-1,] =4 , N

Thus we can solve for variables in the order

b > b = b3 —d3s — -y — dy.

Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux=y.
Both solves are quite fast - forward/back substitution also simplify!

Forward solve:

: we have
i 0 --- 0 i by
o1 e b2
2 : S| = by = b
: .1 0 : :
0 [n 1 n bn

so y is given by

.yl:b17 yj:bj_gjyjfly _]-:27"',l7.

Tridiagonal matrices

Finally, to solve Ax = b we solve
Ly = b, Ux=y.

Both solves are quite fast - forward/back substitution also simplify!

Backward solve: Similarly,

b n . 0

X1 1
0 d - : X2 Y2
=1 = dxtixin=y;
: ST : :
o --- 0 dn Xn n
so we can solve for x by
Yi = X+t

Xn :}/n/dny Xj =

Tridiagonal matrices

In summary, we have an efficient Gaussian elimination for solving Ax = b where

rq1 rn 0 0 7 rdi n 0 0 7
[22) q2 r &) d> r
A=1|o ps . 0| = |0 e . 0
. qn—1 ra—1 P A
LO .- 0 Pn an | Lo --- 0 ln dn |

This method is sometimes called the Thomas algorithm.
e (initialize) Set di = g1 and y1 = bi.
e (LU and fwd. solve) Then for j =2,--- ,

U= pj/di—1, dj=q; —{ir

i = bj — fiyj-1.

e (Back solve) Finally set x, = y»/dn and for j=n—1,n—2,--- 1

xi = (yj — rixj+1)/d;.

Note that you can do the Ux = y solve in parallel with the LU.

Tridiagonal matrices

A tridiagonal matrix should be stored in banded form:

q1 n 0 . 0
. : 0 q1 n
p2 q2 r : . p2 q2 r
A= |0 p3 0 is stored as
Gn-1 ro_1 pPN—1 gn-1 IN-—1
PN—1 qN-1 0
0 0 pn Gnl

Pay attention to:
e The zeros - not part of the data (correct code should never read them!)
e Conventions may differ on the unused zeros (‘padding’)

e Indexing (easy to be off by onel!). Here:

row k of the array <= row k of the matrix

We store only 3n numbers - much more feasible than n?.

Code structure

See example code for the finite difference method. We solve

"
y —y=X

y(0)=ya y(b) =y

by solving the linear system In general, the system to solve has the form

2+ h?

-1

0

0

-1
2 4 h?

-1

0

-1

0

2+ h?

-1

0 7

0

-1

2 + h?]

breaking up into the following functions:
build_fd that creates A (as an array bands) and rhs as in (FD)

a)
b)

uy h2X1 — Ya
up h2X2
= (FD)
un—2 h?xn_2
uy—1 h?xn_1— yb

trisolve(bands, rhs): solves Ax = rhs, with A tri-diagonal

A solve ‘main’ function that:

- gets the Ax = rhs system from (a)...

- then solves it using (b).

From ODEs to partial differential equations...

PDEs and the method of lines

Suppose | am in a (cold) 1d room of length L.
| open windows at both ends to the outside.

Let the temperature in the room be u(x, t).
Over time, u will equalize with the outside.

This process is modeled by the heat equation

ou_ o
ot~ " ox2
which is a partial differential equation
(it has derivs. in x and t).

Physical interpretation (‘Fourier’s law’):
. 0

heat flow per time = —ﬂ—u.

Ox

That is, heat flows from higher to lower
temperature, and faster if the difference is large.

heat
1 -
i 0 lx) S

U

L\Z@L hedt

I

The heat equation

Other heat-like equations (different fluxes):

e Fisher’s equation (genetics):

of
o T X1 -)f(x.0)
(describes distribution f(x, t) of a trait in a population - " genetic drift")
e Black-Scholes - derivatives in finance

e Height of a liquid droplet h(x,t) (" Porous medium equation”)

Oh _ 0 0
ot Ox' Ox
e "advection-diffusion”:
ou &u
b P =vgh

e.g. transport of a chemical in a solution
e And much more!

Can be solved with similar methods!

PDEs and the method of lines

x € (0,L), t>0.
To complete the problem, there are also initial conditions
u(x,0) = f(x) (initial distribution of heat)
and boundary conditions (where Ty is the outside temp.)
u(t,0) =u(t,L)=To forall t.

The goal: reduce the problem into manageable pieces for computation.
We'll need: derivative approximations, an ODE solver, and a bit more.

Finite differences

First, let's review some ways of approximating derivatives...

Forward difference: f'(x) ~ flxth) = f(x)

h
Central difference: f'(x) = Flet h);hf(x —h)
—2f f(x—h
Central (2nd) difference: f”(x) ~ FOct h) h(2X) + = h)

A ‘stencil’ diagram shows the points used in the approximation:

oK Mk

[o|— ®

NARRALS
CDHH e——®

)k L ¥\

(N ——FoJ —

PDEs and the method of lines

We'll solve the heat equation using the method of lines.

ou

ot ﬁax”
Step 1 (define a mesh in space): First define the points in space where the
approximation is defined...

€ (0,L), t>0.

xp=jh, j=0,1,--- N, where h = L/N.
Now think of u at each fixed x as a function in t:

u(xj, t) := uj(t) along the ‘line’ x = x; t > 0.

Tt WO e

T
I U
— " P
>(Wsk 4/.\ 11 /1'\/]\
, [
x”xl . X}J‘(7(,\/ If ', ;
— —t
o™k hL ox

O X, X-1 L X

PDEs and the method of lines

ou
— = L .
5 ﬂ82, x€(0,L), t>0
Step 2 (approximate x-derivatives): Using the central difference in x,
8 u(x + h,t) — 2u(x,t) + u(x — h, t)
~ B = .

duj ~ 5Uj+1 —uj+ uj-1
dt h? ’
which is a system of ODEs for the functions along each ‘line’.

At x = x;: j=1--- N-1

t 1:) UIQ\ L)N—Il‘t)ﬁ

[(|

' Co

%’W$L\ /? /(\ 1rs /?l\/‘\

. [

_x,’__)s("g bt K | L
ok S Lox X

o X X1 L

The boundary conditions give the last two equations... (uy = uy = To).

PDEs and the method of lines

We have derived a system of N — 2 ODEs

duj Uiyl — Uj + Uj—1 .

gt =G T g N1

dt ﬂ h2) J))

U(t, 0) = U(t‘7 L) =Ty — U()(t) = UN(t) = To.
The initial conditions come from the IC for the original problem:
u(x,0) = F(x) = 4;(0) = £(x)-

This system approximates the solution to the PDE (the method of lines).

As h — 0 (i.e. as N — o0), it can be shown to converge.
(That is, a higher density of lines will give a better solution).

t |t T t

A : o :
[[
VSN ").'K/.\/.\.A/[mk’l\
NEE SN
o [_\/ o L><

PDEs and the method of lines

The ODE system can now be solved by any usual method. In summary:

de ~ Bujurl —uj+ uj—1

dt h2 S b N

u(t, 0) = U(t, L) =Ty = Uo(t) = UN(t) = To.
5(0) = £(x).

As an example, let's see what Euler’s method looks like.

Our system is already in ‘generic first order system form’
u = G(u)a U(O) = (f(Xl)v o 7f(XN—1))

where u(t) = (uv1(t), -+, unv—1(t)) and G has components

GJ'(U):%(UJ'.;_1—2UJ'+UJ'_1), j=1--- ,N-1

with up and uy replaced by To.

PDEs and the method of lines

For implementation, we just need to create the system of ODEs:
u'=G(u), u(0)=(f(x), -, flxn-1))
for u = (u1,--- , un—1) with

C;J(u): p(uj+172uj+uj*1)7 J:]-) aNfla

uo(t) = UN(t) = To.

Let's define ¢ = 3/h*. A simple implementation:

def odefunc(t, u, c, ul, ur):
n=1enC) +2#u= (i1, ... u_(n-1))
du = np.zeros(m)
for j in range(l, n-2): # interior points
duljl = ax(ulj+1] - 2*%u[j] + ulj-1D)

boundary points

duf[0] = a*(u[1] - 2*u[0] + ul) #x=0
du[n-2] = ax(ur - 2*xu[n-2] + uln-3]) # x = L
return du

(Note: to improve this, have odefunc not create a new array each call).

PDEs and the method of lines

With u(t) = (ui(t), - -+, un—1(t)),
u'=Gu), u(0)=(f(xa), -, Flxu-1))

Gj(u) = %(Uj+1*2Uj+Uj_1)7 j=1,--- ,N—-1

Let u®® denote the solution vector at time tk. U\ul
We use a super-script for time, 4\> N /\\
and sub-script for space here, so / /
1 l -
(k) S;Leﬂ L z‘) @ ® N
u = (ur(t), -, un—1(t)) Vo Usq,

Euler's method approximates at times
O=to<ti <---

where we assume that the t's have an equal
spacing At. Then

™ = u* L AtG(U¥), k=01,

PDEs and the method of lines

Euler's method:
u Y =k + AtG*), k=0,1,---
This is enough to write up the code, but it's worth ‘plugging in’ G,
Gj(u) = %(Ujﬂ -2y +u1), j=1,--- N-1
For the j-th component,

k+1 « , BAt

u "t = +—h2 (uﬁl 2u —|—uJ 1)

Set a = ﬂAt/h2. This equation is linear in u. In matrix form...

u (k1) 1-2a a xx 0 u ® aTo
. . 0
1 a 1—-2a - : 2
= +
un—2 : - - a un—2 0
Un_1 0 ‘e a 1-2a| [yy_,4 aTo

Note that up(t) = un(t) = To has been plugged in here.

PDEs and the method of lines

Euler's method:
u Y =y 4 At“G(uk)7 k=0,1,---

k+1 BAt
ui = uf

Uy — 2uf + ufy)
We can simplify a bit by defining the 'differentiation matrix’
2 1 ... 0
D=2 | B BRI
o -~ 1 =2
Then, from the previous slide, Euler's method becomes

u = (1 + AtD)u™

It's worth noting that:
e This matrix form is nice for theory...

. but the ODE or difference formula are used in implementation

Euler's method (directly)

k1 ok, BAt, k K Kk _ kK
u = + T(Ujﬂ —2uf + uj_4), Up = Ug, Uy = Up.

You can implement this directly with a for loop:

code sketch:
beta*dt/h**2 Kt
len(x) - 1 #x = (x_0, ... x_n) PR ﬁ\
f(x[1:n]) # u at interior points /| |
while t < t_final: Stencil - e~ o —o
I
for j in range(1, n-2): uk
unext[j] = ulj]l + cx(ulj+1]1-2%xuljl+ulj-11)
egs. with boundary terms
unext[0] = u[0] + c*(u[1] - 2*u[0] + ul) /\\
unext[n-2] = uln-2] + cx(ur - 2*u[n-2] + u[n-3]
ul:] = unext[:]
t +=dt —fﬁ.

#
c
n
u

e u: u at current t ’é

e unext: space for u at next t

n: grid points xp, - -+ , Xpn

e x_points: The array of x;'s

Euler's method (directly)

k1 ok, BAt, k K Kk _ kK
u = + T(Ujﬂ —2uf + uj_4), Up = Ug, Uy = Up.

This can be simplified by keeping the boundary points in; we compute

U=(U07"' 7UN)
but update only uy, -+, un—1. The formula then holds for all (relevant) j.
code sketch:
c = betaxdt/h**2
n=1len(x) - 1#x=(x0, ... x_n)
u = f(x) # u at *all* points

while t < t_final:
for j in range(l, n+1):
unext[j] = ulj] + cx(ulj+1]-2%ul[jl+ulj-11)
ul:] = unext[:]
t += dt

e Technique can be extended...

e Use fictional ‘ghost points’ to make the formula always work (u_1,---)
e Simplifies loops (no special cases)

Implicit methods...

A problem: there is a stability constraint
At < CAX®

or else numerical solutions grow exponentially!
The fix: use a (good) implicit method.

Forward Euler (bad stability):

A FE U 4 1
UJ{H—I = UJ"(+ %(ujﬁrl - 2“}(+ UJ‘LI) - > ¢
matrix form: u**?) = (r+ AtD)u<k) +b .——é——q \<T
USI.L. U[,-\- I

Backward Euler (always stable!):

BAt »
UJ{H-1 = UJ{(+ h2 ujkjll - 2UJ{<+1 + “kall) (St
—_—
matrix form: (I — AtD)u*™ = u® 4 p ‘KT—F’ K*l/\t
. V-
Implicit - at each step, we must solve a U&‘ (A

tridiagonal linear system!

