
Math 260: Python programming in math

Solving linear systems:
LU factorization

1 / 39

The problem

A fundamental equation in computational math is the linear system

Ax = b, A = invertible n × n matrix, b ∈ Rn

• We will learn a good algorithm to solve it, and translate to python

• The end goal: write a function that looks like this:

def linsolve(a, b):
...
return x

a = [[1,2],[3,4]] #mat[0] = 0-th row
b = [5,11]
x = linsolve(a, b) # x= [1,2]

• efficiency Is important - keep the number of operations low.

Off-by-one?

Math convention: A has entries aij with i , j starting at one
Code convention: indexing starts at zero
You will often have to translate from ‘starts at one’ to ‘starts at zero’, e.g. a12
might be a[0][1]. Keep this in mind!

2 / 39

The easy cases: lower triangular

There are two ‘easy’ cases to look at first. Suppose

Ax = b, A =


a11 0 . . . 0

a21 a22
. . . 0

...
. . .

. . . 0
an1 . . . an,n−1 ann


i.e. A is a lower triangular (LT) matrix. Then

a11x1 = b1

a21x1 + a22x2 = b2

...

i∑
j=1

aijxj = bi (for row i)

• Solve for x1, then x2, etc. (forward substitution):

xi =
1

aii

(
bi −

i−1∑
j=1

aijxj

)
(given that x1, · · · , xi−1 are already computed).

3 / 39

The easy cases: lower triangular

xi = (bi −
i−1∑
j=1

aijxj)/aii

• Direct ‘translation’ to python (just remember to index from zero)
• Start with i = 1 (first row), then i = 2 etc, computing (??)

def fwd_solve(a, b):
n = len(b)
x = [0]*n
for i in range(n):

compute xi here

return x

=⇒

def fwd_solve(a, b):
n = len(b)
x = [0]*n
for i in range(n):

x[i] = b[i]
for j in range(0,i):

x[i] -= a[i][j]*x[j]
x[i]/= a[i][i]

return x

Example:

A =

3 0 0
4 2 0
1 5 3

 , b =

 3
2
−1

 , x =

 1
−1
1

 → a = [[3,0,0],[4,2,0],[1,5,3]]
b = [3,2,-1]
x = fwd_solve(a, b)
x is [1,-1,1]

4 / 39

The easy cases: lower triangular

xi = (bi −
i−1∑
j=1

aijxj)/aii

• A second option: do the work ‘in-place’:
overwrite b with the result and have no return

Once b[i] is used, the space is free, so we can replace it with x[i]:b0b1
b2

 →︸︷︷︸
i=0

x0b1
b2

 →︸︷︷︸
i=1

x0x1
b2

 →︸︷︷︸
i=2

x0x1
x2


def fwd_solve(a, b):

n = len(b)
x = [0]*n
for i in range(n):

x[i] = b[i]
for j in range(i):

x[i] -= a[i][j]*x[j]
x[i]/= a[i][i]

return x

vs.

in-place:

def fwd_solve(a, b):
n = len(b)
#b[0], ...b[i-1] contain x-values
for i in range(n):

for j in range(i):
b[i] -= a[i][j]*b[j]

b[i]/=a[i][i]

What are the benefits/disadvantages of each approach?
5 / 39

The easy cases

The second easy case - if A is upper triangular (UT),

Ax = b, A =


a11 0 . . . 0

a21 a22
. . . 0

...
. . .

. . . 0
an1 an2 . . . an,n


• Use back-substitution (same as forward, but start at xn)

• Go backwards from xn down to x1

• Exercise: implement this

code structure:

def back_solve(a, b):
n = len(b)
x = [0]*n
...
return x

example:

A =

4 1 2
0 3 1
0 0 2

 , b =

1
5
4

 , x =

−1
1
2



6 / 39

LU factorization

So how do we solve the problem

Ax = b

for a general n× n matrix A? One approach: break into an UT and a LT solve.

Definition (LU factorization)

Let A be an n × n matrix. An LU factorization of A has the form

A = LU

where L is lower triangular and U is upper triangular.

To solve Ax = b we can try to:

1) Find an LU factorization of A; then LUx = b.

2) Solve Ly = b with forward substitution.

3) Solve Ux = y with backward substitution.

That is, we solve L(Ux) = b for Ux then solve for x from that.

You already know how to do this from linear algebra - Gaussian elimination!

7 / 39

Gaussian elimination

Here’s the algorithm for reducing A to upper triangular form (this will be U):

• Initialize L to the identity matrix

• Reduce column 1, column 2, ... up to column n-1 of A

• To reduce the k-th column:

- For all entries (i , k) below (k, k) in that column:

- Zero out the (i , k) entry using the row operation

Ri ← Ri −mRk , m = aik/akk

-Store the multiplier in the (i , k) entry of L

The result is that the reduced matrix is U, so

A = LU, L = lower triangular, U = upper triangular.

(Does this always work? No - that we’ll have to fix...)

8 / 39

Gaussian elimination

Example: Consider the LU factorization for

A =

4 −2 2
6 6 18
6 6 10

 .
Two columns to reduce:

A :

4 −2 2
6 6 18
6 6 10

 R2←R2− 3
2
R1

R3←R3− 3
2
R2

=======⇒

4 −2 2
0 9 15
0 9 7

 R3←R3−R2======⇒

4 −2 2
0 9 15
0 0 −8



L :

1 0 0
0 1 0
0 0 1

 =======⇒

 1 0 0
3/2 1 0
3/2 0 1

 ======⇒

 1 0 0
3/2 1 0
3/2 1 1


Result: A = LU where

L =

 1 0 0
3/2 1 0
3/2 1 1

 , U =

4 −2 2
0 9 15
0 0 −8

 .
9 / 39

Gaussian elimination (Aside: theory)

Why does this work?

• Elementary row operations are matrices, e.g.

E =

1 0 0
0 1 0
λ 0 1,

 , EA = adds λR1 to R3

• The inverse of this RO is simple - subtract instead of add:

E−1 =

 1 0 0
0 1 0
−λ 0 1,

 , E−1A = subtracts λR1 from R3

The reduction process, in matrix form, then looks like:

Mn−1Mn−2 · · ·M1A = U,

Mk = product of RO’s to reduce that column.

These matrices just have λ’s in corresponding entries, e.g.

M =

 1 0 0
−x 1 0
−y 0 1

 does the row ops.

(
R2 ← R2 − xR1

R3 ← R3 − yR1

)

10 / 39

Gaussian elimination (Aside: theory)

The reduction process, in matrix form, is:

Mn−1Mn−2 · · ·M1A = U

Mk = row ops to reduce the k-th column

It follows that A = LU where

L = M−1
1 · · ·M

−1
n−1.

Example:

A :

4 −2 2
6 6 18
6 6 10

 R2←R2− 3
2
R1

R3←R3− 3
2
R2

=======⇒

4 −2 2
0 9 15
0 9 7

 R3←R3−R2======⇒

4 −2 2
0 9 15
0 0 −8


Row reduction matrices:

M1 =

 1 0 0
−3/2 1 0
−3/2 0 1

 , M2 =

1 0 0
0 1 0
0 −1 1


11 / 39

Gaussian elimination (Aside: theory)

Observe that

M−1
k = same as Mk , but with multiplier signs reversed

since Mk is inverted by adding instead of subtracting rows...

M =

 1 0 0
−x 1 0
−y 0 1

 =⇒ M−1 =

1 0 0
x 1 0
y 0 1


M = row ops.

(
R3 ← R2 − xR1

R3 ← R3 − yR1

)
=⇒ M−1 = row ops.

(
R3 ← R2+xR1

R3 ← R3+yR1

)
Finally, we claim that

L = M−1
1 · · ·M

−1
n−1

= ROs to reduce A in reverse with opposite signs

= matrix of multipliers

where the ‘multiplier’ for Rj → Rj − λRi is λ. To show this...

12 / 39

Gaussian elimination (Aside: theory)

... requires a bit of work; each M deposits its multipliers into L, and later M’s
do not affect existing columns.

L = M−1
1 · · ·M

−1
n−1

= ROs to reduce A in reverse with opposite signs

Example:

M1 =

 1 0 0
−3/2 1 0
−3/2 0 1

 , M2 =

1 0 0
0 1 0
0 −1 1



L =

 1 0 0
3/2 1 0
3/2 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
3/2 1 0
3/2 1 1


L can be computed by applying the ROs

R3 → R3 + R2

R3 → R3 −
3

2
R1

R2 → R2 −
3

2
R1

13 / 39

Gaussian elimination

• k: index of column to reduce

• i: row to reduce

• j: element of that row

(Assume you can copy a and create a zero matrix)

def ge_lu(a):
u = a.copy()
ell = zeros([n,n])
for k in range(n-1):

reduce k-th column of u
(rows k+1 through n-1)

return ell, u

=⇒

...
for k in range(n-1):

for i in range(...):
get multiplier, store it
reduce i-th row with k-th

return ell, u

=⇒ (Exercise)

But this leaves empty space in
ell and u!

We want to make the code more
compact...

14 / 39

Gaussian elimination

Storage:

• The algorithm can be written ‘in-place’, overwriting A

• Regardless, we can store L in the unused half of U

• This works even if in-place (‘zeroed’ entries of A are free space)

def ge_lu(a):
for k in range(n-1):

for i in range(...):
replace zeroed entry with mult.
update rows in a directly

(no return, both L and U in a)

• Typical: ‘return’ one matrix containing both L and U (compact form)

• But L and U both have diagonal entries?

15 / 39

Gaussian elimination

Compact version of previous example:

A =

4 −2 2
6 6 18
6 6 10

 .
Store multipliers in the zeroed entries (shown in red):

A :

4 −2 2
6 6 18
6 6 10

 R2←R2− 3
2
R1

R3←R3− 3
2
R2

=======⇒

 4 −2 2
3/2 9 15
3/2 9 7

 R3←R3−R2======⇒

 4 −2 2
3/2 9 15
3/2 1 −8


Result: a single matrix storing L and U:

result =

 4 −2 2
3/2 9 15
3/2 1 −8


Note: if used to solve LUx = b, be careful with the indexing - e.g. if the result
is ellu then ellu[1][0] is part of L but ellu[0][1] is part of U.

16 / 39

LU factorization

Back to solving Ax = b... recall our algorithm had two parts:

1) The ‘factor’ step: Find an LU factorization of A; then LUx = b.

2) The ‘solve’ step:

- Solve Ly = b with forward substitution.

- Solve Ux = y with backward substitution.

• The actual code for solving Ax = b will then look like:

#(given a matrix a, vector b)
fact = lu_factor(a)
y = fwd_solve_lu(fact, b)
x = back_solve_lu(fact, y)

• Note that the ‘solve’ functions are specialized and not general forward/back
solve routines; they assume fact is LU in compact form

• Note that a new array y is unnecessary (we can do some overwriting!)

17 / 39

Why factor?

• The factor/solve split lets us quickly solve with the same A repeatedly, e.g.

lu = lu_factor(a) # expensive
x1 = lu_solve(lu, b1) # cheap!
x2 = lu_solve(lu, b2) # cheap!

• This is (almost always) better than computing the inverse A−1

Key point: no inverses!

In numerical linear algebra, you should think:

A−1b means to solve Ax = b

i.e. you almost never actually compute A−1 to compute A−1b.
Your ‘Ax = b’ solver is then also a ‘multiply b by A−1’ routine.

Question: suppose we want to solve

A2x = b

where is A an n × n matrix How can this be done efficiently? Answer:

• Compute L,U so that A = LU

• Use this to solve Ay = b, then Ax = y

(Effectively: x = A−1(A−1b))
18 / 39

Big-O

19 / 39

Big-O notation

• We want to express the computational cost of an algorithm as it scales
• Big-O notation describes size to ‘leading order’

Definition (Big-O (sequences))

A sequence an is said to be Big-O of a sequence bn, written

an = O(bn)

if it holds that
|an| ≤ C |bn| as n→∞

for some constant C . (That is, it holds for n large enough).

• Measures how fast a sequence grows. Typical rates:

O(1), O(n), O(n log n), O(n2), O(n3), · · ·

• ‘Leading order’ behavior, e.g.

an = 2n3 + 4n2 + 1 =⇒ an = O(n3) or an = 2n3 + O(n2)

• Caution: the ‘equals’ here is not really equals (not symmetric!):

n2 is O(n3) but n3 is not O(n2)

20 / 39

Little o

Definition

Big-O (sequences) A sequence an is said to be litle-o of a sequence bn, written

an = o(bn)

if it holds that
lim

n→∞

an
bn

= 0.

Similarly, we say that an is asymptotic to bn (written an ∼ bn) if

lim
n→∞

an
bn

= 1.

• Asymptotic-to precisely descibes leading order behavior, e.g.

an = 2n3 + 4n2 + 1 =⇒ an ∼ 2n3 as n→∞.

• Little-o describes ’smaller terms’, e.g.

an = 2n3 + o(n3).

• Note that an ∼ bn if and only if an = bn + o(bn).

21 / 39

Computational complexity

A simple way to measure computational cost: count the steps.

• What operations take time?

- flop (floating point operation): add/subtract, mult/divide

• Assignment is cheaper than arithmetic (omitted here for simplicity)

• Other issues: loading/unloading in memory, conditionals... (also omitted)

Empirical approach: test and time directly (use e.g. time.perf counter)

import time
start = time.perf_counter()
...some code
elapsed = time.perf_counter() - start

Best practices

Using actual time (called clock time) to measure your program is unreliable -
it may vary due to internal memory, other processes on your cpu, etc.

To get a good measure, take a large number of runs and average the result!
In addition, see how it scales with problem size - only relative times matter
since computer power varies.

22 / 39

Computational complexity

For simplicity, we count the number of mults. (multiplies) only.

Example - matrix-vector multiplication:

y = Ax =⇒ yi =
n∑

j=1

aijxj for 1 ≤ i ≤ n.

Note: here we do not take into account relative costs of operations!

• For each i , there are n multiplies

of mults = n · n =⇒ n2.

• If you also count additions then

of flops = 2n2 + O(n).

23 / 39

Computational complexity

Now suppose that A is tridiagonal:

A =



a1 b1 0 · · · 0

c2 a2 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . cn−1 an−1 bn−1

0 · · · 0 cn an


That is only, only one diagonal above/below have non-zero entries.
How many multiplies are needed to compute Ax?

Answer: three per row for rows i = 2, · · · , n − 1 so

of mults = 3n + O(1).

This is an example of a sparse matrix (a matrix with mostly zeros).
For such matrices, linear algebra operations are fast. Example:

twitter users i = 1, · · · n, aij =

{
1 i follows j

0 otherwise
.

O(n2) ∼ (300 million)2 = way too much computation
24 / 39

Example: LU factorization

Recall that to solve Ax = b we needed two separate parts:
Substitution (Forward or back): As a reminder, the forward formula is

xi = (bi −
∑i−1

j=1 aijxj)/aii

Gaussian elimination (to compute the L and U):

• For k from 1 to n − 1:

- For each row i from k + 1 to n:

- zero out the aik entry with

Ri ← Ri −
aik
akk

Rk ,

You can show (exercise) that

• Forward/back substitution take 1
2
n2 + O(n) mults.

• The LU step (Gaussian elimination) takes 1
3
n3 + O(n2) mults.

25 / 39

Example: LU factorization

So to solve Ax = b,

• Factor: A = LU (steps: ∼ n3/3)

• Forward solve: Ly = b ((steps: ∼ n2/2)

• Back solve: Ux = y ((steps: ∼ n2/2)

Most of the work happens in the factor step; the rest is (relatively) faster.

Thus, given A = LU,

computing A−1b takes n2 + O(n) mults.

and the factor step only has to be done once.

Since matrix multiplication is n2 mults, this is quite good!

26 / 39

pivoting

27 / 39

Pivoting: theory

Now let’s return to Gaussian elimination (with math indexing):

• For k from 1 to n − 1:

- For each row i from k + 1 to n:

- zero out the aik entry with

Ri ← Ri −
aik
akk

Rk ,

Call the partially reduced matrix that we update the ‘working matrix’.

Question: When does this algorithm work?

Answer: At the k-th step, weeneed the pivot element akk to be non-zero.

This means GE can fail for invertible matrices - not good!

A =


1 1 1 1
1 1 2 1
0 5 2 1
0 3 0 7

 =⇒︸ ︷︷ ︸
reduce col. 1


1 1 1 1
0 0 1 0
0 5 2 1
0 3 0 7

 =⇒︸ ︷︷ ︸
k=1

???

28 / 39

Pivoting: theory

To fix this, we must perform another row operation: swapping rows.

· · ·


1 1 1 1
0 0 1 0
0 3 2 1
0 3 0 7

 =⇒︸ ︷︷ ︸
R2↔R3


1 1 1 1
0 3 2 1
0 0 1 0
0 3 0 7

 =⇒︸ ︷︷ ︸
reduce col 2


1 1 1 1
0 3 2 1
0 0 1 0
0 0 −2 6

 · · ·
Each row swap can be written in matrix form, e.g.0 0 1

0 1 0
1 0 0

 swaps rows 1 and 3

A permutation matrix is a product of swaps, e.g.

P =

0 0 1
1 0 0
0 1 0

 ↔

(
swap R1 ↔ R3

then R2 ↔ R3

)

The net effect is that PA permutes rows 1→ 2→ 3→ 1.

29 / 39

Pivoting: Theory

In matrix form, Gaussian elimination then has the form

Mn−1Pn−1 · · ·M2P2M1P1A = U (G)

where the M’s and P’s are the row reductions and row swaps.

• GE with pivoting always works if A is invertible (lin. al. exercise: why?)

• Some work required to simplify the mess of P’s inside...

Theorem (Gaussian elimination)

The row-swaps can be ‘factored’ out of (G).
The result is that if A is invertible, then

PA = LU where

P = Pn−1 · · ·P1 is the product of the row swaps

U is the UT reduced matrix from GE

L is the LT matrix of multipliers

In short: if you knew the row swaps in advance, you could apply them to A first
(to get PA) then apply GE without pivoting to PA to get L,U.

30 / 39

Pivoting: in practice

Mn−1Pn−1 · · ·M2P2M1P1A = U

• The GE algorithm still has to do the row swaps as it goes

• We do not want to store P as a matrix

Definition

For a permutation matrix P, the corresponding permutation vector is the
result of applying the row swaps to the the list

p = {1, 2, · · · , n}

For example:(
swap R1 ↔ R3,

then R2 ↔ R3

)
→ P =

0 0 1
1 0 0
0 1 0

→ p = {3, 1, 2}

by swapping p1 and p3, then p2 and p3. This completely describes P!

31 / 39

Pivoting: in practice

Definition

For a permutation matrix P, the corresponding permutation vector is the
result of applying the row swaps to the the list

p = {1, 2, · · · , n}

For example:(
swap R1 ↔ R3,

then R2 ↔ R3

)
→ P =

0 0 1
1 0 0
0 1 0

→ p = {3, 1, 2}

by swapping p1 and p3, then p2 and p3. This completely describes P! A useful
rule is that

the i-th row of PA = p(i)-th row of A.

For example, for the P above,

A =

1 2 3
4 5 6
7 8 9

 , PA =

7 8 9
1 2 3
4 5 6

 , p = {3, 1, 2}

and row 3 of PA is row p(3) = 2 of A.
32 / 39

Pivoting: in practice

Implementation:

• It is important to swap even if the entry is non-zero

• small pivot elements can amplify error in row reduction:

Ri ← Ri −
aik
akk

Rk︸ ︷︷ ︸
div. by small!

• To keep the algorithm stable (minimize accumulation of error), we need to
swap rows to keep the pivot element akk large

• We don’t want to waste too much time - O(n2) is okay, O(n3) is not

Partial pivoting

A typical pivoting scheme is partial pivoting:

• Look at ak+1,k , · · · an,k (entries below the diagonal in col. k)

• Find the index r > k such that ar,k has the largest magnitude

• swap rows r and k

While not perfect, it is usually good enough.

33 / 39

Pivoting: example

Here’s an example: For k = 1 (first column), with actual swaps: 1 2 4
1 0 1

-2 2 4

 =⇒︸ ︷︷ ︸
R1↔R3

 -2 2 4
1 0 1
1 2 4

 =⇒

 −2 2 4
−1/2 1 3
−1/2 3 6

 , p = {3, 2, 1}

with row operations R2 ← R2 − (−1/2)R1 and R3 ← R3 − (−1/2)R1.

Now for k = 2 with actual swaps: −2 2 4
−1/2 1 3

−1/2 3 6

 =⇒︸ ︷︷ ︸
R2↔R3

 −2 2 4

−1/2 3 6
−1/2 1 3

 =⇒

 −2 2 4
−1/2 3 6
−1/2 1/3 1


with row op R3 ← R3 − 1

3
R2 and p updated from {3, 2, 1} to {3, 1, 2}.

34 / 39

Pivoting

How do we swap rows? Assume that the matrix is a list of rows like

row 1 row 2 row 3
a = [[1,2,4],[1,0,1],[-2,2,4]]

for A =

1 2 4
1 0 1
2 2 4


(This is called row major because rows are the first index. The other ordering
is called column major).

To swap two rows we only need to swap the references to the data, e.g.

tmp = a[0]
a[0] = a[2]
a[2] = tmp

makes a[0] point to the old data of a[2] and vice versa.
This is much faster than copying the data!

35 / 39

Pivoting: implementation

To use this factorization, we need to update the back/forward solves also since

Ax = b =⇒ LUx = Pb.

So we need to solve
Ly = Pb, Ux = y .

Thus, the solve part has to take p in as well, e.g.

p, ellu = lu_factor(a)
x = lu_fwd_and_back(ellu, p, b)

Note that (Pb)i = bp(i), so Pb can be accessed from knowing b and p.

Now all that’s left is to put it all together and write, (i) factor, (ii)
forward/backward solve and (iii) a general function

x = linsolve(a, b)

that a user can call to solve Ax = b without worrying about all the details.

Remark: This isn’t just a practice algorithm; it’s a good method for a general
linear system when n is not too large. (a version is used by matlab’s default
solver and scipy.linalg).

36 / 39

Stray notes

37 / 39

Aside: commas and swaps

In discussing function returns we came across commas on the LHS of an
equals:

t = (1,2)
a, b = t # a=1 and b=2

The ‘comma’ syntax works on the right hand side, too; it is short for ‘make a
tuple with these elements’ - for instance:

x = a, b # x is now (a, b)
a, b = 1, 2 #now a = 1 and b = 2

What do the following snippets do? How are they different (if at all)?

Example 1%
a = 1
b = 2

a = b
b = a

Example 2
a = 1
b = 2

a, b = b, a

Example 3
a = [1,2]
b = [3,4]

c = a
a = b
b = c

Example 4
a = [1,2]
b = [3,4]

a, b = b, a

Example 5
a = [1,2]
b = [3,4]

c = a[:]
a[:] = b
b[:] = c

38 / 39

Example: operation counts

Forward substitution to solve Lx = b:

for i in range(n):
x[i] = b[i]
for j in range(i):

x[i] -= a[i][j]*x[j] #*
x[i] /= a[i][i] #**

xi =
1

aii

(
bi −

i−1∑
j=0

aijxj

)
,

i = 0, · · · n − 1.

To count multiplications/divisions: sum # ops over each for loop:

n−1∑
i=0

(· · ·)

n−1∑
i=0

(
1 +

i−1∑
j=0

· · ·

)
one div. at (**)

n−1∑
i=0

(
1 +

i−1∑
j=0

1

)
one mult. at (*)

Now calculate the sum:

#ops =
n−1∑
i=0

(1 + i) = n +
n(n − 1)

2
=

1

2
n2 +

1

2
n.

39 / 39

