
Math 260: Python programming in math

Classes and objects:
creating classes, rules and syntax

1 / 15



Classes

• So far, we’ve used only the built-in types like float, list and so on

• It is essential to be able to create new objects - this is done with classes

Suppose we want to make an object describing a pet with properties:

• name (the name of the pet)

• species (a string)

• hunger (number of hours until it needs food)

• parents (a tuple of two pets)

Here’s the minimal code:

class Pet: # style: capitalize class names
def __init__(self, name, species, parent1=None, parent2=None):

self.name = name
self.species = species
self.hunger = 0 # (always starts hungry)
self.parents = (parent1, parent2)

m = Pet('mittens', 'cat')
print('{} is a {}'.format(m.name, m.species)) # mittens is a cat

2 / 15



Classes: initialization

Creating an object:

• An object of a certain class is called an ‘instance’

• An instance is created by calling the constructor: obj = Pet(...)

• The constructor is specified as the special function __init__

• Each instance contains its own ‘instance variables’ (initialized by __init__)

def __init__(self, name, species, parent1=None, parent2=None):
self.name = name
self.species = species
self.hunger = 0 # (always starts hungry)
self.parents = (parent1, parent2)

Variables in classes:

• In the class block, self refers to the instance calling that function

• For code inside the class scope, self.var refers to the instance variable

• For an instance obj, use obj.var (e.g. m.species)

m = Pet('mittens', 'cat')
f = Pet('bandit', 'ferret')
# m.name is 'mittens' and f.name is 'bandit'

3 / 15



Classes: functions and class variables

Class variables:

• variables defined in the class block
itself (no self.)

• Each instance is initialized with these

• Typically used for variables shared
between all instances or properties
common to all things in the class

Methods:

• functions in classes are called
member functions or methods

• self is always the first argument

• These live in the class scope

• self gives the method access to the
calling instance’s data

• When calling, self input is implied
by the obj. syntax, e.g.
obj.eat(2) means eat(obj,2)

class Pet:
full = -2

def __init__(self,name,species):
self.name = name
self.species = species
self.hunger = 0

def eat(self, amount):
self.hunger -= amount
if self.hunger < self.full:

self.nap()

def nap(self):
self.hunger += 1

m = Pet('java','cat')
m.eat(3)
m.nap() #m.hunger is now -1

4 / 15



Classes: Class variables

Important note: mutable class variables are initialized only once,
when the first instance is created.

Thus, mutable class variables are shared by all instances.

class Blob:
population = [0] #only set when the first Blob is made

def __init__(self, mass):
self.mass = mass # not shared
self.population[0] += 1 # shared!

family = []
for k in range(10):

family.append(Blob(k))

• Intent: each Blob instance can see a global count of the number of Blobs.

• All blobs have references to the same .population list.

• Thus, family[k].population is [10] for each k

• Each blob can see the count!

5 / 15



Classes: special methods

There are ‘special methods’ that define object behavior (such as __init__).

Special functions are denoted with double underscores like __init__

• __repr__ defines how print(obj) behaves (a string representation)

def __repr__(self):
return "Name: " + self.name + ", a " + self.species

Always good to define for debugging (so you can print the object)

• __del__ (the destructor) is called when the object is destroyed

- for instance: obj has a file open; then del closes the file

Important point: You cannot change how assignment (=) behaves.

• a=b assigns by reference (a and b point to the same object)

• objects are ‘passed by reference’, not by value:

m = Pet('mittens','cat')
def tranquilize(animal):

animal.nap()
tranquilize(m)

6 / 15



Operator overloading

Built-in operators like + and [] can be (re)-defined for classes.
This is called operator overloading.

Example: Suppose we want pets to be comparable by their name.

• We need comparison operators ==, >, etc.

• Python needs == and one other (it then fills in the rest!)

• The special names for == and > are __eq__ and __gt__

class Pet:
...
def __eq__(self, r):

return self.name == r.name

def __gt__(self, r): #... or some better ordering...
return self.name > r.name

Now the object is ‘comparable’ - all the operators <, <= etc. work.

pet1 = Pet('felix','cat')
pet2 = Pet('mittens','cat')
pet1 < pet2 # True

You can now plug lists of Pets into search functions (e.g. binary search)!
7 / 15



Operator overloading: when (not) to use it

• Other operators to overload include all arithmetic (*, *=, + etc.)

• For instance, we could define + for pets...

def __add__(self, r): #(not really a good idea)
return Pet("", self.species, parent1 = self.name, parent2 = r)

Best practices:

Only overload an operator when it is obvious what it should do. The above is
an example of a bad usage. It’s better to define a named function in most
cases.
Exceptions include math objects like vectors (where + is obvious) - see HW.

8 / 15



Operator overloading: more options

Here are a few useful special methods:

• __add__(self,r) and __sub__(self,r) are + and −

a+b means a.__add__(b)

• __getitem__(self, key) defines ‘getting’ with obj[key]

• __setitem__(self, key, val) defines ‘setting’ with obj[key]=· · ·

obj[key] means obj.__getitem__(key)

obj[key]=v means obj.__setitem__(key, v)

• __call__(self,var) defines ‘function call’ (parentheses)

obj(var) means obj.__call__(var)

Many others have reasonable default behavior - don’t override unless you have
a very good reason. For instance:

• __setattr__ and __getattr__ define the obj.var behavior (period)

obj.var means obj.__getattr__(var)
obj.var=v means obj.__setattr__(var, v)

9 / 15



Style notes and scope

Classes are important for organizing code. Good style helps.

• Use objects to give structure to your code. This style of programming is
called object oriented programming (OO). Don’t go overboard - not
everything needs an object when existing types will do (more to come!).

• Never use the double underscore, except defining the special methods.

• It’s standard to use the same-name convention for initialization, e.g.

class Pet:
def __init__(self, name, species):

self.name = name
self.species = species

which is allowed since self.species is in the class scope,
and species is a local variable in the function.

10 / 15



Shallow and deep copies

We do often need to define what it means to ‘copy’ an object, something like:

a = Array([1, 2, 3])
b = a.copy()

• A shallow copy creates a new object, then sets its member variables
equal to the old ones (in the a=b sense)

The original/copy will have references to the same (mutable) data!

class Thing:
__init__(self):
self.x = 1
self.arr = [1, 2]

shallowcopy(self):
obj = Thing()
obj.x = self.x
obj.arr = self.arr
return obj

11 / 15



Shallow and deep copies

We do often need to define what it means to ‘copy’ an object, something like:

a = Array([1, 2, 3])
b = a.copy()

• A deep copy creates a new object, then copies its member variables by
creating true copies (same values, new data)

• In both cases, immutable member variables are truly copied

class Thing:
__init__(self):
self.x = 1
self.arr = [1, 2]

deepcopy(self):
obj = Thing()
obj.x = self.x
obj.arr[:] = self.arr[:] # !
return obj

12 / 15



Example: an array

A numeric array class Vector can represent a real vector x ∈ Rn.
It has properties like:

• The vector can be initialized from a list, or with a repeated fixed value

• Elements can be set and accessed by index: arr[k] and arr[k] = v

• Vectors can be added/subtracted (etc.),

• The vector can be (nicely) displayed

constructor and indexing...

def __init__(self, r): # constructor
if type(r) == int:

self.arr = [0 for k in range(r)]
else:

self.arr = r[:]

def __getitem__(self, k): # arr[k]
return self.arr[k]

def __setitem__(self, k, val): # arr[k] = v
self.arr[k] = val

x = Vector(3, 0) # x = [0, 0, 0]
y = Vector([4, 5, 6])

x[0] = 1 #calls __setitem__

print(x[0]+y[1]) # calls __getitem__

13 / 15



Example: an array

A numeric array class Vector can represent a real vector x ∈ Rn.
It has properties like:

• The vector can be initialized from a list, or with a repeated fixed value

• Elements can be set and accessed by index: arr[k] and arr[k] = v

• Vectors can be added/subtracted (etc.),

• The vector can be (nicely) displayed

printing and addition...

def __repr__(self):
return str(self.arr)

def __add__(self, y): # z <- x + y
n = len(self.arr)
z = Vector(n)
for k in range(n):

z[k] = self.arr[k] + y[k]
return z

print(x) # calls __repr__

x = Vector(3, 0) # x = [0, 0, 0]
y = Vector([4, 5, 6])

z = x + y

14 / 15



Example: an array

mult. of a vector with a scalar on the left:

def __repr__(self):
return str(self.arr)

def __rmul__(self, y): # y*arr
n = len(self.arr)
z = Vector(n)
for k in range(n):

z[k] = y*self.arr[k]
return z

def __mul__(self, y): # arr*y
# ...

x = Vector([1, 2, 3])
y = Vector([4, 5, 6])

z = y*5 # calls y.__mul__
w = 2*x + 3*y # calls __rmul__

x*y # also calls x.__mul__(y)

What’s missing? Many more features could be added...

• Error handling: incompatible input types for +...

• Case work: scalar + vector (3 + Vector([1,2])) and more

• More vector functions (dot product, ...)

• A nicer print function

• Much more!

15 / 15


