Math 260: Python programming in math

Classes and objects:
creating classes, rules and syntax

Classes

e So far, we've used only the built-in types like float, 1ist and so on
e |t is essential to be able to create new objects - this is done with classes
Suppose we want to make an object describing a pet with properties:

e name (the name of the pet)

e species (a string)

e hunger (number of hours until it needs food)

e parents (a tuple of two pets)

Here's the minimal code:

class Pet: # style: capitalize class names
def __init__(self, name, species, parentl=None, parent2=None):
self.name = name
self.species = species
self.hunger = 0 # (always starts hungry)
self.parents = (parentl, parent2)

m = Pet('mittens', 'cat')
print('{} is a {}'.format(m.name, m.species)) # mittens is a cat

Classes: initialization

Creating an object:
e An object of a certain class is called an ‘instance’
e An instance is created by calling the constructor: obj = Pet(...)
e The constructor is specified as the special function __init__

e Each instance contains its own ‘instance variables’ (initialized by __init__

def __init__(self, name, species, parenti=None, parent2=None):
self.name = name
self.species = species
self.hunger = 0 # (always starts hungry)
self.parents = (parentl, parent2)

Variables in classes:
e In the class block, self refers to the instance calling that function
e For code inside the class scope, self.var refers to the instance variable

e For an instance obj, use obj.var (e.g. m.species)

m = Pet('mittens', 'cat')
f = Pet('bandit', 'ferret')
m.name is 'mittens' and f.name is 'bandit'

Classes: functions and class variables

Class variables:

e variables defined in the class block
itself (no self.)

e Each instance is initialized with these

e Typically used for variables shared
between all instances or properties
common to all things in the class

Methods:

e functions in classes are called
member functions or methods

e self is always the first argument
e These live in the class scope

e self gives the method access to the
calling instance’s data

e When calling, self input is implied
by the obj. syntax, e.g.
obj.eat(2) means eat(obj,2)

class Pet:
full = -2
def __init__(self,name,species):

def

self.name = name
self.species = species
self.hunger = 0

eat(self, amount):

self.hunger -= amount

if self.hunger < self.full:
self.nap()

def nap(self):

self.hunger += 1

m = Pet('java','cat')
m.eat(3)
m.nap() #m.hunger is now -1

Classes: Class variables

Important note: mutable class variables are initialized only once,
when the first instance is created.

Thus, mutable class variables are shared by all instances.

class Blob:
population = [0] #only set when the first Blob is made

def __init__(self, mass):
self.mass = mass # not shared
self.population[0] += 1 # shared!

family = []
for k in range(10):
family.append(Blob(k))

Intent: each Blob instance can see a global count of the number of Blobs.
All blobs have references to the same .population list.

e Thus, family[k] .population is [10] for each k

Each blob can see the count!

Classes: special methods

There are ‘special methods’ that define object behavior (such as __init__).

Special functions are denoted with double underscores like __init__

e __repr__ defines how print(obj) behaves (a string representation)

def __repr__(self):
return "Name: " + self.name + ", a " + self.species

Always good to define for debugging (so you can print the object)
__del__ (the destructor) is called when the object is destroyed

- for instance: obj has a file open; then del closes the file

Important point: You cannot change how assignment (=) behaves.

e a=b assigns by reference (a and b point to the same object)

e objects are ‘passed by reference’, not by value:

m = Pet('mittens','cat')

def tranquilize(animal):
animal.nap()

tranquilize(m)

Operator overloading

Built-in operators like 4+ and [] can be (re)-defined for classes.
This is called operator overloading.

Example: Suppose we want pets to be comparable by their name.
e We need comparison operators ==, >, etc.

e Python needs == and one other (it then fills in the rest!)

e The special names for == and > are __eq__ and __gt__

class Pet:

def __eq__(self, r):
return self.name == r.name

def __gt__(self, r): #... or some better ordering...
return self.name > r.name

Now the object is ‘comparable’ - all the operators <, <= etc. work.

petl = Pet('felix','cat')
pet2 = Pet('mittens','cat')
petl < pet2 # True

You can now plug lists of Pets into search functions (e.g. binary search)!

Operator overloading: when (not) to use it

e Other operators to overload include all arithmetic (*, *=, + etc.)

e For instance, we could define + for pets...

def __add__(self, r): #(not really a good idea)
return Pet("", self.species, parentl = self.name, parent2 = r)

Best practices:
Only overload an operator when it is obvious what it should do. The above is
an example of a bad usage. It's better to define a named function in most

cases.
Exceptions include math objects like vectors (where + is obvious) - see HW.

Operator overloading: more options

Here are a few useful special methods:
® __add__(self,r) and __sub__(self,r) are + and —

a+b means a.__add__(b)
o __getitem__(self, key) defines ‘getting’ with obj [key]
o __setitem__(self, key, val) defines ‘setting’ with obj [key]=---

obj [key] means obj.__getitem__(key)

obj [keyl=v means obj.__setitem__(key, v)

e __call__(self,var) defines ‘function call' (parentheses)
obj (var) means obj.__call__(var)

Many others have reasonable default behavior - don't override unless you have
a very good reason. For instance:

e __setattr__ and __getattr__ define the obj.var behavior (period)

obj.var means obj.__getattr__(var)
obj.var=v means obj.__setattr__(var, v)

Style notes and scope

Classes are important for organizing code. Good style helps.

Use objects to give structure to your code. This style of programming is
called object oriented programming (OO). Don’t go overboard - not
everything needs an object when existing types will do (more to comel).

Never use the double underscore, except defining the special methods.

It's standard to use the same-name convention for initialization, e.g.

class Pet:
def __init__(self, name, species):
self.name = name
self.species = species

which is allowed since self.species is in the class scope,
and species is a local variable in the function.

Shallow and deep copies

We do often need to define what it means to ‘copy’ an object, something like:

[

= Array([1, 2, 3])
= a.copy()

o

e A shallow copy creates a new object, then sets its member variables
equal to the old ones (in the a=b sense)

The original /copy will have references to the same (mutable) data!

class Thing: shallov.vcopy@elf) :
L obj = Thing()

__init__(self): obi.x = self.x
self.x = 1 J- .

obj.arr = self.arr

self.arr = [1, 2] return obj

Shallow and deep copies

We do often need to define what it means to ‘copy’ an object, something like:

a = Array([1, 2, 31)
a.copy()

o
]

e A deep copy creates a new object, then copies its member variables by
creating true copies (same values, new data)

In both cases, immutable member variables are truly copied

S EEE— deepcopy (self) :
class Thing: pob?y= Thing()
__init__(self): obj.x = self.x

self.x =1 obj.arr[:] = self.arr[:] # !
self.arr = [1, 2] R
return obj

Example: an array

A numeric array class Vector can represent a real vector x € R".

It

has properties like:

e The vector can be initialized from a list, or with a repeated fixed value

e Elements can be set and accessed by index: arr([k] and arr[k] = v

e Vectors can be added/subtracted (etc.),

e The vector can be (nicely) displayed

constructor and indexing...

def

def

def

__init__(self, r): # constructor
if type(r) == int:

self.arr = [0 for k in range(r)]
else:

self.arr = r[:]

__getitem__(self, k): # arr(k]
return self.arr[k]

__setitem__(self, k, val): # arr[k] = v
self.arr[k] = val

x = Vector(3, 0) # x = [0, 0, O]
y = Vector([4, 5, 6])

x[0] = 1 #calls __setitem__

print(x[0]+y[1]) # calls __getitem_

Example: an array

A numeric array class Vector can represent a real vector x € R".
It has properties like:

e The vector can be initialized from a list, or with a repeated fixed value
e Elements can be set and accessed by index: arr([k] and arr[k] = v
e Vectors can be added/subtracted (etc.),

e The vector can be (nicely) displayed

printing and addition...

def __repr__(self):

return str(self.arr) print(x) # calls __repr

def __add__(self, y): #z <-x+y
n = len(self.arr)
z = Vector(n)
for k in range(n):
z[k] = self.arr[k] + y[k]
return z

= Vector(3, 0) # x = [0, 0, 0]
Vector([4, 5, 6])

™
|

<
]

Z=X+y

Example: an array

mult. of a vector with a scalar on the left:

def __repr__(self):

return str(self.arr)

= Vector([1, 2, 31)
Vector([4, 5, 6])

M
I

def __rmul__(self, y): # y*arr
n = len(self.arr)
z = Vector(n)
for k in range(n):
z[k] = y*self.arr[k]
return z

<
1

z = y*5 # calls y.__mul__
w = 2%x + 3xy # calls __rmul__

x*y # also calls x.__mul__(y)

def __mul__(self, y): # arr*y
...

What's missing? Many more features could be added...
e Error handling: incompatible input types for +...
e Case work: scalar 4 vector (3 + Vector([1,2])) and more
e More vector functions (dot product, ...)
e A nicer print function

o Much more!

