
Math 260: Python programming in math

Fall 2020

Data structures, part I:
Recursion, stacks and queues

1 / 18

Recursion

2 / 18

Recursion

• Recursion refers to a function calling itself

• A recursive algorithm has (a simpler case of) itself as a step

- We always need ‘base cases’ that are resolved explicitly

• So how does this work in code?

Recursive code puts function calls on the (call) stack:

def fact(n):
if n == 0: # base case

return 1 # (*)
elif n > 0:

return n*fact(n-1)
else:

raise(ValueError('oh no!'))

a = fact(3) # **

Call stack at the base case (*):
(most recent at bottom)

• fact(3)

• fact(2)

• fact(1)

• fact(0)

• return 1

• Functions resolve in ‘last in, first out’ (LIFO) order

• fact(0) finishes, then fact(1), ...

• computing n! puts n + 1 calls on the stack at once

3 / 18

Recursion: good and bad

Was that really necessary? No - recursion is excessive here.

def fact(n):
if n == 0:

return 1
else:

return n*fact(n-1)

Call stack:

• fact(n)

•
...

• fact(0)

def fact(n):
f = 1
for k in range(n+1):

f *= k
return f

Call stack:

• fact(n)

- (for loop)

Both are different implementations of the same algorithm!

Key point: Recursion isn’t free

• The call stack takes memory/time to set up

• This is called ‘overhead’ (costs not part of the algorithm steps)

• Stack size is limited! fact(3000) → stack size exceeded!

4 / 18

Recursion: good and bad

• Common usage:

- Derive a recursive algorithm (elegant)

- Code an equivalent but non-recursive implementation

• Algorithms can often be nicely expressed recursively (e.g. binary search...)

• Good recursion (implementation) - less common:

- ‘naturally’ recursive (can’t easily be made non-recursive)

- or where the function overhead is not relevant

- Stack limits mean recursive algorithms don’t scale up well

Example (bad): overlap can make a recursive algorithm inefficient:

def fib(n):
if n==0 or n==1:

return 1
return fib(n-1) + fib(n-2)

How many function calls are made here?

Answer: 2n - compared to the O(n) steps it should take.

5 / 18

Recursion

A naturally recursive type of algorithm is ‘divide and conquer’:

• To compute something over a set:

• Break the set into (disjoint) pieces...

- then compute for each piece,

- ...combine and return the result

Example: sorting a list. Suppose a is a length n list of numbers:

a) Split the list into two n/2 sized lists

b) Sort each half-list

c) Combine the sorted half-lists into one sorted list

This is mergesort.

6 / 18

Recursion: mergesort

Mergesort:

a) Split the list into two n/2 sized lists

b) Sort each half-list

c) Combine the sorted half-lists into one sorted list

implementation (sketch):

def mergesort(j, k, arr, work):

if j==k: # base case
return

m = (j + k)//2
mergesort(j, m, arr, work)
mergesort(m+1, k, arr, work)

now [j,m] and [m+1,k] are sorted
merge them together...
(use work for temp space)

• This sorts the sub-list from [j , k] (inclusive).

• Note that work is passed: shared space for calculations

7 / 18

Recursion: mergesort

Mergesort:

a) Split the list into two n/2 sized lists

b) Sort each half-list

c) Combine the sorted half-lists into one sorted list

How efficient is mergesort?

• Let M(n) be the work required to run mergesort on a length n list

• Step (b) requires 2M(n/2) work

• Step (a) is trivial and (c) requires cn work (exercise)

Assume n = 2k is a power of 2 for simplicity. Then

M(n) = 2M(n/2) + cn

= 2(2M(n/4) + c(n/2)) + cn

= · · ·

= cn + 2c
n

2
+ 4c

n

4
+ · · ·

=⇒ M(n) ≈ kcn so O(n log n) work is required.

(Aside: the O(n log n) is essentially optimal for Big-O. The popular algorithm
with this Big-O is quicksort, which is a bit faster than mergesort.)

8 / 18

Data structures:
stacks and queues

9 / 18

Stacks and queues

The simplest data structures are stacks and queues. For both:

• A container with ordered data (a ‘list’, in the English sense of the word)

• Two operations are available:

- An insert function that adds an item to the container

- A pop function that removes an item (by some rule)

The differences:

• A stack is a first in, first out (FIFO) container:

- items are inserted to and popped from the top of the stack

• A queue is a first in, last out (LIFO) container

- items are inserted to the top, removed from the bottom

10 / 18

Stacks and queues

Python lists have commands to do this (so we don’t need a new class):

• a.pop() pops from the end; a.pop(0) from the start

• a.append() adds to the end, a.insert(0) inserts at the start

• We’ll use append for simplicity; insert/pop can both be implemented to be
O(1) operations (very efficient) for stacks and queues.

11 / 18

Aside: trees

A useful structure is a tree:

• a graph consisting of nodes connected by edges

• Has the tree property: contains no cycles (closed
paths from a node to itself)

We can build a simple tree in python with a Node class

• It contains data for that node (e.g. names in a family tree)

• It has a list children of nodes below it in the tree

• A tree is a root node with children, which have children, etc.

• A node with no children: ‘leaf node’

Node class:

class Node:

def __init__(self, data, children):
self.data = data
self.children = children

... and other features ...

The tree above, with k2’s as data:

n = [Node(k**2, []) for k in range(7)]
n[0].children = [n[1], n[2]]
n[1].children = n[3:6]
n[2].children = n[6]

12 / 18

Recursion and stacks: searching trees

Now suppose we want to find a value val in a tree.
If found, we return a reference to the corresponding node. One approach:

• Check if the root has val

• If not, search its children recursively

Recursive algorithm:

This is called a depth-first search (DFS).

13 / 18

Recursion and stacks: searching trees

Now suppose we want to find a value val in a tree.
If found, we return a reference to the corresponding node. One approach:

• Check if the root has val

• If not, search its children recursively

Recursive algorithm:

def search(val, root):
if(root.data==val):

return root

for child in root.children:
t = search(val, child)
if t: #if t != None

return t

return None

This is called a depth-first search (DFS).

14 / 18

Depth-first search

At the start, initialize stack to contain node 0.
Replace recursive calls with ‘add node to the stack’.

steps:

• Check 0, add [1, 2] to stack
stack is [1,2]

• Check 2, add 6 to stack
stack is [1,6]

• Check 6 (no children!)
stack is [1]

• Check 1, add [3, 4, 5] to stack
stack is [3,4,5]

This does the same thing as the recursive method!

15 / 18

Recursion and stacks: searching trees

Recursive algorithm:

def search(val, root):
if(root.data==val):

return root

for child in root.children:
t = search(val, child)
if t: #if t != None

return t

return None

Using a stack:

def dfs(val, root):
stack = [root]

while stack: # empty list is False
node = stack.pop()
if(node.data == val):

return node

stack.extend(node.children)

return None

• The recursive method puts function calls on the (special) call stack

• The stack method uses a simpler stack of nodes to track un-searched nodes

• The explicit code is more efficient (but the same algorithm)!

16 / 18

Breadth-first search

Replacing the stack in DFS with a queue also works...

Using a stack:

def dfs(val, root):
stack = [root]

while stack:
node = stack.pop()
if(node.data == val):

return node

stack.extend(node.children)

return None

Using a queue:

def bfs(val, root):
q = [root]

while q:
node = q.pop(0)
if(node.data == val):

return node

q.extend(node.children)

return None

This time, the earliest nodes added are checked first! (closest to root).
We call this a breadth-first search.

(Aside: for a cyclic graph, more effort is required for both DFS and BFS to
avoid going in circles!)

17 / 18

Breadth-first search

Example (comparing DFS and BFS):

Depth-first: Breadth-first:

(Order may vary a bit by implementation)

18 / 18

