
Math 260: Python programming in math

Fall 2020

Data structures II:
dictionaries, binary trees...

1 / 21

More data structures

2 / 21

What we have

Given an array-like structure a like a stack, consider the operations:

• Append at the ‘end’ of the structure

• pop an element from an ‘end’

• Insert into the structure (at some non-endpoint index)

• Look-up an element (find it in the structure)

• remove an element (find, then remove it)

where ‘end’ and ‘largest’ are defined in thex structure.

For a stack and queue in python,

• Append: not fast? (Naive: O(n); actual: better)

• Look-up, pop: O(1) (using the list indexing)

• Insert/remove: O(n)

(pop for a queue should be O(1), or at least can be made to work this way)

• How do we get good insertion cost? Answer: compromise - balance out
look-up and insert costs and organize the data.

3 / 21

Binary search trees

One solution (of several!): a Binary search tree (BST)

• A good balance for all types of operations

• Heaps, hash tables, etc. may be better if not all operations are needed

• Typical usage: representing a large comparable set of data

- insert/remove, get a range, combine... (good for data operations)

Defining properties:

• A tree where each node has up to two children

• Key property: For each node with data x , all data at and below its left
child is ≤ x and all data at and below its right child is ≥ x .

4 / 21

Binary search trees

• First we need a suitable node class:

class BinaryNode:
def __init__(self, data, left=None, right=None, parent=None);

self.data = data
self.children = [left,right]
self.parent = parent

• You can get away with not tracking the parent,
but it will make some code a little easier to write

Now let’s make a binary search tree class...

Features:

• find: finds a node with the given
value (returns the node)

• delete: deletes a node from the tree

• insert: adds a node to the tree

class BinaryTree:
def __init__(self, root);

self.root = root
def insert(self, val):

inserts a value into the tree
def find(self, val):

finds a node with the given value
def delete(self, node):

remove a node from the tree

5 / 21

Finding an element

Starting at the root node...

• if val is > than the node’s, go right

• Otherwise (≤), go left

• If you can no longer go anywhere, stop
and return None (failure case)

• Concise to write with a while loop...

def find(self, val):
n = self.root
while n and n.data != val: #(Note: None is False)

n = n.children[val > n.data]

return n

• The BST property guarantees that this works!

• Note that val > n.data is zero (False) if val ≤ n.data

• Note that an empty child of a node is set as None

6 / 21

Inserting an element

Insert is almost the same as find!
To insert a value val into the tree:

• Start at the root node

• if val is > than the node’s, go right

• Otherwise (≤), go left

• Stop when the next step would go to None

• Add a new node with val in this open spot

def insert(self, val):
node = self.root
while node:

p = node # new node will attach to p
node = node.children[val > node.data]

n = BinaryNode(val)
p.children[val > p.data] = n
n.parent = p

• Searches until it finds an empty spot (node); then p is the node to attach to.

• New node is always a ‘leaf’ (no children)

7 / 21

Deleting an element

Delete is more subtle than insert:

• We need to remove the node and maintain
the BST property

• Cut, then re-attach branches of the tree...

• ...avoiding copying of data and nodes

• Easy cases: the node has at most one child

def delete(self, n):
left = n.children[0]
right = n.children[1]

if not(left or right): # top picture
side = node.data > n.parent.data
n.parent.children[side] = None

elif not left: #middle picture
connect parent to child of deleted node
n.parent.children[1] = right
right.parent = n.parent

elif not right:
...

(Also: special cases for a root node...)

8 / 21

Deleting an element

The last case is recursive.
To delete node with two children:

• Find the largest ‘predecessor’ pre of
node: the largest entry below it with
a smaller value

• move the data from pre to node

• Then delete pre (recursively)

def delete(self,n):
left = n.children[0]
right = n.children[1]
...other cases...
else:

find pre by going right
while left.children[1]:

left = left.children[1]

n.data = left.data # move data
self.delete(left) # delete pre

The second call will be one of the easy cases - why?

9 / 21

Binary search trees: efficiency

Let’s now compare a sorted list to a tree...

Suppose I have n integers (e.g. a roster of student IDs). I need t be able to:

• check if a given integer is in the list

• add/remove them from the list.

Let’s also assume the binary search trees are ‘balanced’. That is,
they take up as much space as possible at each depth.

Sorted list:

• Insert/remove: O(n)

• Find: O(log n)

• Creation: O(n log n) (by
sorting)

‘Worst case’ of O(n) for an unbalanced tree can be avoided...

10 / 21

Binary search trees: efficiency

Let’s now compare a sorted list to a tree...

Suppose I have n integers (e.g. a roster of student IDs). I need t be able to:

• check if a given integer is in the list

• add/remove them from the list.

Let’s also assume the binary search trees are ‘balanced’. That is,
they take up as much space as possible at each depth.

Binary tree

• Insert: O(depth)

• Find: O(depth)

• Both O(log n) if balanced

‘Worst case’ of O(n) for an unbalanced tree can be avoided...

11 / 21

Hash tables

An array has the property that:

• Look-up for the element at index k is O(1) (optimally fast)

• Setting the element at index k is O(1)

• The data can be ‘contiguous’ (one block of memory)

However, sometimes we have data in key-value pairs, where each ‘key’ is
associated with a ‘value’, such as,,,

- Lists of properties and values

- words and definitions

An array is this, with positive integer keys. What if they are not integers?

12 / 21

Hash tables

Solution: use a hash table

• Create an array with enough space

• Define a ‘hash function’ that assigns a
number (a ‘hash’) to any key

• Store the value for each key at that index

• If too many keys exist, resize the array

With a good hash function, we get nice properties:

• Array like look-up/insert: table[key] = val and v = table[key]

• Look up and insert in ≈ O(1) time (indexing, hash both cost O(1))

• Any hashable object can be inserted

13 / 21

Hash tables

Subtleties:

• Good hash functions are not trivial to create

• (you can use, e.g. functions of the object id)

• The table must handle collisions correctly

Once working, hash tables are a powerful tool.
Advantages:

• Flexible key types, O(1) look-up/insert

Disadvantages:

• Data does not have locality
(not consecutive in memory like arrays)

• Not good for iterating over all keys

(collisions are resolved by looking
for an open slot to relocate to).

14 / 21

Aside: dynamic arrays

Now let’s see how to resize an array, and how append actually works in python.

• We want an Array class that can ‘resize’ if needed...

• ...but does not do so every time an element is appended

A solution is to reserve a bit of extra space (a buffer) when resizing.

A sketch of an example (‘alloc’ represents allocating memory):

def alloc(k): # `allocate' memory
return [0]*k

class Array: # just for example
def __init__(self, n):

self.n = n
self.cap = n + 5
self.data = alloc(self.cap)

def resize(self, newsize):
while self.cap < newsize:

self.cap *=2
space = alloc(self.cap)
space[:n] = self.data[:n]
self.data = space
self.n = newsize

15 / 21

Aside: dynamic arrays

So what’s the cost of appending?

• It’s mostly cheap (O(1))...

• but occasionally expensive (O(n))

Suppose we start with an empty array,
then append 1 to n = 2k .

Total cost:

• n O(1) operations to add elements

• k resizes, each taking C · 2k operations

total cost = O(n) + C(1 + 2 + · · · + 2k)

= O(n) + C(2k+1 − 1)

The average cost per append is

avg. cost. ≈ O(n)‘/n = O(1).

So we get O(1) append time ‘on average’ (‘amortized constant’).
Generally: doing expensive operations only occasionally is still efficient.

16 / 21

Dictionaries

Key point: you don’t need to implement this; Python has it built-in.
The type is called a dictionary (type dict). The syntax:

d = {'cat': 'meow', 'dog': 'woof', 13 : [1,2]}
d['cat'] # 'meow'
d[13] # [1,2]

d = dict() # empty dict
e = d # both point to the same dict (mutable)

d['sheep'] = 'baa' # add a new key/val pair
all_keys = d.keys() # get a list of the keys
keys, vals = d.items() # get the keys and values

You can check if a key is in a dictionary in O(1) time
(Python only has to check one location - where the hash points)

d = {'cat': 'meow', 'dog': 'woof', 13 : [1,2]}
if 'cat' in d:

print(d['cat'])

d['axolotl'] # raises KeyError

Note: in works for other collections (e.g. lists) too!

17 / 21

Dictionaries

Aside: zip creates an ‘iterator’ for iterating over a set of lists:

keys, vals = english_words_and_definitions()
for j in range(len(keys)):

d[keys[j]] = vals[j]

d = dict(zip(keys, vals)) # fancy short version of above

for k, v in zip(keys, vals):
print(k,v)

equiv. to for j in range(len(keys)):
print(keys[j],vals[j])

An iterator defines how for loops, etc. iterate (‘starting’ and ‘next’ element).

zip((a,b,...)) says to start with (a[0],b[0],,..),
then ‘next’ goes from (a[k],b[k],,..) to (a[k+1],b[k+1],,..)

18 / 21

Aside: zip and iterators

Python uses dictionaries whenever key-value pairs are needed

Every class has a dictionary mapping instance variables names to values

class Foo:
def __init__(self):

self.bar = 1
self.c = 2

a = Foo()
for var, value in a.__dict__.items():

print('a has {}={}'.format(var, value))

You can pass a dict. of ‘keyword args’ with the special ‘kwargs syntax’:

def func(**kwargs):
for k in kwargs.keys():

print("Input: {}={}".format(k, kwargs[k]))
func(b=1,cat='meow')
prints...
Input: b=1
Input: cat='meow'

19 / 21

Aside: enumerate

Often you want to iterate over a set, but also need the index:

names = ["alpha", "beta", "gamma"]
for k in range(len(names)):

print{"{} has index {}".format(name[k], k))

When you really want to iterate over the set, use enumerate:

for k, name,in enumerate(names):
print("{} has index {}".format(name, k))

This trick cleans up code where the index is not needed much.

(enumerate creates pairs of indices and values.)

20 / 21

Comparing data structures

Cost of common operations (bad in red, good boxed)

• Array (fixed length):

- one continuous block, integer indexing

- append: not supported

- Insert/look-up: O(n) and O(1)

• Array (dynamic):

- Array, but with a resize scheme

- O(1) (amortized) append, insert still O(n)

• Hash table:

- no continuous block of data; not fast to iterate

- Insert/look-up: O(1) (amortized) and O(1)

• Binary search tree:

- great when keeping ‘order’ of data is important

- Insert/look-up: typically O(log n), worst case O(n)

21 / 21

