
Math 260: Python programming in math

Fall 2020

Searching the internet:
PageRank and Markov chains

1 / 30



Graphs

Source: https: // www. mathworks. com/ help/ matlab/ math/ use-page-rank-algorithm-to-rank-websites. html

2 / 30

https://www.mathworks.com/help/matlab/math/use-page-rank-algorithm-to-rank-websites.html


Graphs

• A graph is a set of vertices V connected by edges.

• The ‘neighbors’ of v are the vertices linked from v

• The ‘edge set’ E is the set of pairs (v ,w) (edges from v ∈ V to w ∈ V )

• a directed graph distinguishes between edges from v → w and w → v
(e.g. links from web-pages)

Key question: how do we represent a graph in code?

3 / 30



Graphs

First, number the vertices 0, · · · ,N − 1. Then...

Option 1: Just list the edges...

• Create a list of edges (vi , vj)
(tuples)

• Not very efficient!

# directed example:
edges = [ [1,2],

[2,1],
[2,0],
[0,1],
[0,3]]

Option 2: Create an adjacency list

• Map k to neighbors of vk

• Fast to look up all neighbors of v

• Just a list of ‘lists of neighbors’

# directed example:
adj_list = [ [1,3], # 0 -> 1, 3

[2], # 1 -> 2
[0,1]
[]]

adj_list[0] # neighbors of vert. 0

4 / 30



Graphs

Another representation is the adjacency matrix A:

aij =

{
1 if vi links to vj

0 otherwise

Adjacency matrices for the two graphs above:

A1 =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 0

 A2 =


0 1 0 1
0 0 1 0
1 1 0 0
0 0 0 0


e.g. first row of A1 =⇒ v0 linked to 1, 2, 3 (not 0 or 4)

• Important matrix in graph theory!

• Typically sparse (mostly zeros)

• The adjacency list gives the non-zero entries in each row of A
5 / 30



Weighted graphs

A weighted graph associates a number wij to each edge vi → vj .

• e.g cities connected by roads, weight = length of road

• We can keep track of this along with the adjacency matrix/list

A weighted adjacency matrix has the weight wij in the (i , j) entry, e.g.

A =


0 0.8 0 0.2
0 0 4.7 0

1.5 0.3 0 0
0 0 0 0


Now onto the object of interest here...

6 / 30



Discrete Markov chains

Consider a bee flying through a house with three rooms.

• Label the rooms 0, 1, 2; you also open a window to the outside (room 3).

• The bee moves from one room to another at random each minute

• It chooses to go from room ri → rj with probability pij .

We can represent this process with a weighted directed graph, e.g.

P =


0.5 0.4 0 0.1
0 0.5 0.5 0

0.7 0.3 0 0
0 0 0 1



• The matrix P is the transition matrix - it describes the probability of
transitioning from one place to the next.

• A process of this type is called a (discrete) Markov chain.

7 / 30



Discrete Markov chains

P =


0.5 0.4 0 0.1
0 0.5 0.5 0

0.7 0.3 0 0
0 0 0 1



• It’s easy to simulate directly given the adjacency list

• Suppose we have the adjacency list adj and a probability list probs so
that, e.g. adj[0] → [0,1,3] and probs[0] → [0.5, 0.4, 0.1])

while pos != 3: # (while not free)
r = random.uniform(0, 1)
p = probs[pos] # get list of transition probs.
k = 0
total = p[0]
while r > total:

k += 1
total += p[k]

pos = adj[pos][k] # go to selected neighbor

Generate x ∈ (0, 1), check if x > p[0], then p[0] < x < p[0] + p[1] and so on.
8 / 30



Discrete Markov chains

For more on the ‘escape time’ for the bee, see a probability course...
Let’s now consider a variant. Suppose the window is closed...

P =

0.5 0.5 0
0 0.5 0.5

0.7 0.3 0



This Markov chain is called recurrent - the bee will wander in the chain forever.

• The key question: After a long time, what is the probability sj that the
bee will be in room j?

• This is independent of the bee’s starting position

• Call this the ‘stationary distribution’ s.

9 / 30



Discrete Markov chains

A nice probability argument gives us a formula. Let

sj = probability the bee is in room j after a long time

and let pij be the transition probability for i → j .

• If the bee is in room j , it must have come from room i , so

prob(bee in room j) =
∑
i

prob(bee in room i the step before) · pij

• But after a long time, the LHS is just sj and the prob in the sum is si , so

sj =
∑
i

sipij .

In matrix form, the result is that

s = PT s.

That is, s is an eigenvector of PT with eigenvalue 1.

10 / 30



Discrete Markov chains

To summarize the main result...

• Let P be the transition matrix for a recurrent Markov chain

- pij is the probability to transition from i → j

- There are no ‘dead ends’: any vertex can be reached from any other

• Let sj be the probability to be in vertex j after a long time (as a vector: s)

Then the vector s (the stationary distribution) is given by

PT s = s

i.e. an e-vector of PT with e-value 1. Often we write s as a row vector, so

s = sP.

Theorem

A special case of the Perron-Frobenius theorem says that

• λ = 1 is the largest eigenvalue of PT

• The eigenvector is unique (if scaled so that
∑

= 1)

To find s, we solve an eigenvalue problem for the largest eigenvalue of PT .

11 / 30



Discrete Markov chains

P =

0.5 0.5 0
0.5 0.0 0.5
0.7 0.3 0



PT =

0.5 0.5 0.7
0.5 0.0 0.3
0.0 0.5 0



Eigenvalues of PT are 1 and (−5± i
√

15)/20 (not needed)

The eigenvector λ = 1 is s = (0.531, 0.31, 0.16) (scale so
∑

= 1)

PT s = s0.5 0.5 0.7
0.5 0.0 0.3
0.0 0.5 0

0.531
0.31
0.16

 =

0.531
0.31
0.16


so if you want to avoid the bee, you should be in room 2.

We really need a better way to find the eigenvector!
12 / 30



The power method

The goal is to find the largest eigenvalue (in magnitude) of an n× n matrix A.

First, an example. Consider

A =

[
3 1
0 2

]
, λ1 = 3, v1 =

[
1
0

]
, λ2 = 2, v2 =

[
1
−1

]
Suppose we pick a starting vector, say, x = (6,−1). In the eigenvector basis,

x = 5v1 + v2.

Now we repeatedly multiply by A on the left...

Ax = 5 · (3v1) + (2 · v2)

A2x = 5 · (32v1) + (22v2)

Akx = 5 · 3kv1 + 2kv2 for k ≥ 1.

The first term grows fastest, so it follows that

Akx ∼ 5 · 3kv1 + (smaller)

i.e. applying A repeatedly makes all but the v1 term smaller and smaller.

13 / 30



The power method

Now for the general case... For simplicity, assume that:

• A has n eigenvalues with |λ1| > |λ2| ≥ · · · ≥ |λn|
• A has eigenvectors v1, · · · , vn that form a basis for Rn

Pick any vector x0 and consider the simple iteration

xk = Axk−1

Then
xk = Akx0 = c1λ

k
1v1 + (smaller terms).

• We are free to rescale x at each step so the first term stays the same size:

xk =
Axk−1

‖Axk−1‖

where ‖w‖ is the magnitude of a vector: ‖w‖ =
√

w 2
1 + · · ·+ w 2

n .

• After doing so, the result is

xk ∼ cv1 + (terms that go to zero).

where c is such that ‖cv1‖ = 1.

• To get the eigenvalue, see the next slide...

14 / 30



The power method: finding eigenvalues (aside)

How do we get the eigenvalue? We want a ratio like

xk+1

xk
∼ λ1

but that doesn’t work since xk is a vector. Instead:

• Pick a vector w

• Take a dot product with w to get a scalar

• Take the ratio of these dot products:

rk =
w · xk+1

w · xk

From the expression
xk ∼ c1λ

k
1v1

we can show that the ratios rk approach λ1.
A better choice (effectively w = xk) is the Rayleigh quotient

rk =
xk · (Axk)

xk · xk
→ λ1 as k →∞.

Since we chose xk to be a unit vector, the denominator vanishes, leaving

rk = xk · (Axk).

15 / 30



The power method

To summarize: suppose A is n × n with a largest eigenvalue λ1 in magnitude.
To find it and the eigenvector,

• Pick a random starting vector x0

• Compute (with ‖w‖ =
√

w 2
1 + · · ·+ w 2

n .) the iteration

xk = Axk−1/‖Axk−1‖, rk = xk · (Axk)

Then rk → λ1 and xk converges to an eigenvector of λ1.

A simple python ‘sketch’:

def power_method(a):
n = a.nrows # number of rows
x = # (set to random vector)
while condition:

q = multiply(A, x)
r = dot_prod(x, q) #x^TAx
x = q/norm(q) # normalize

return x, r

def norm(x):
return sqrt(sum((v**2 for v in x)))

Using numpy (sketch):

def power_method(a):
n = a.shape[0]
x = #...set to random np.array
while condition:

q = np.dot(a, x)
r = x.dot(q)
x = q/sqrt(q.dot(q))

return x, r

The ‘condition’ needs to be specified here: One can stop when the r is close
enough to converged (e.g. when |rk − rk−1| is small enough).

16 / 30



For Markov chains

Now back to Markov chains...

• We want to find the eigenvector for λ1 = 1 of the matrix A = PT

• λ1 is known to be the largest

The fact that λ1 = 1 makes life easier! We have

Akx0 ∼ c1v1 + · · · =⇒ Akx0 ∼ c1λ1 + (small).

To be safe, it may be important to ensure the ‘eigenvector’ is a vector of
probabilities, i.e.

‖xk‖1 = 1 where ‖w‖1 :=
n∑

j=1

|wj |.

This is satisfied if ‖x0‖1 = 1, but rounding error may cause small deviations.
Example code:

def stationary(p, steps):
n = a.shape[0]
x = #...set to random np.array, pos. values
x = x/sum(x) # normalize
for it in range(steps)

x = np.dot(a, x)
x = x/sum(x) # to be safe...

return x

17 / 30



PageRank

Finally, we can apply this idea to a search engine.

Consider a set of N web pages with (directed) links.

• Let A be the adjacency matrix for this directed graph

• Not all nodes have to be reachable from all others!

We define a Markov process by imagining a ‘web surfer’:

• At each step, the surfer picks a link at random, all with equal probability

• Let `i denote the number of outgoing links from page i

The transition probabilities are then

pij =
aij
`i

and we must solve
PT s = s.

This would be plugged into the power method.

But there’s a catch! The surfer needs somewhere to go if they get ‘stuck’ in a
part of the graph with no links back.

18 / 30



PageRank

A simple fix - add artificial links to all pages.

• The surfer goes to a random page with probability 1− α
• Take α to be near one (but not equal to one)

Then the modified transition probability is

p̃ij = α
aij
`i

+
1− α
N

.

Thus we must solve
Ms = s

for the eigenvector s, where M is the ‘PageRank’ matrix

M = αPT +
(1− α)

N
E , E = matrix of all ones.

Note that the adjacency list adj for A, `i is just the size of adj[i].

19 / 30



PageRank

Let’s return to the mathworks.com example...

This data set has 100 pages, stored in a .txt file as an adjacency list, e.g.
...
14, 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15, 1
16, 1 16 17 18 19 20
...

20 / 30



PageRank

A small example:

P =


0 1/2 0 1/2
0 0 1 0

1/3 1/3 0 1/3
0 0 1 0



M = αPT+
1− α

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Applying the power method with M and α = 0.9 we get

Ms = s, s ≈ (0.15, 0.22, 0.42, 0.22)T

This ranks the websites by a
measure of how connected they
are to the pages.

Page 2 is highest ranked!

21 / 30



Aside: what do the iterates mean?

An aside: given a transition matrix P, the power method calculates

x0, x1 = PTx0, x2 = (PT )2x0, · · ·

for a starting distribution x0, and we have

lim
k→∞

(PT )kx0 = s (stationary dist.)

But what do the iterates mean? We have that

P(in state j at step 1) =
∑
i

P(in state i at step 0)pij .

• Let xk = (PT )kx0 (the power method iterate)

• The formula says that

(x1)j = (PTx0)j = P(in state j at step 1)

• so x1 is the distribution at step 1 (given x0)

• ... and xk is the distribution at step k (given x0)

22 / 30



Aside: what do the iterates mean?

Example (from before, with α = 1):

P =


0 1/2 0 1/2
0 0 1 0

1/3 1/3 0 1/3
0 0 1 0


x0 = (0.25, 0.25, 0.25, 0.25)

After one step...

x1 = [0.083, 0.208, 0.5 , 0.208]

and so on...

x2 = [0.167, 0.208, 0.417, 0.208]

... =
...

x9 = [0.143, 0.214, 0.429, 0.214]

x10 = [0.143, 0.215, 0.428, 0.215]

(converges to s as k →∞!)

23 / 30



PageRank

What about ‘dead ends’?

• Cases matter for the model (should one-way links be important?)

• A few trategies exist.,, (not detailed here)

• Example: (α = 0.6)

P =


0 1

2
0 1

2

0 0 1 0
1
3

1
3

0 1
3

0 0 0 0

 , M =


0.1 0.1 0.3 0.1
0.4 0.1 0.3 0.1
0.1 0.7 0.1 0.1
0.4 0.1 0.3 0.1


The issue: MT is no longer a transition matrix! A surfer that goes to the dead
page disappears. The largest eigenvalue is less than one.

• Interpretation: Mkx→ 0 as k →∞ - all surfers end up vanishing

• Good news: the power method still works!

• x /= sum(x) normalization is now required

Result for above: λ1 ≈ 0.771 and s ≈ (0.161, 0.255, 0.330, 0.255)

24 / 30



Sparse matrices

• Graph of n = 100 websites

• Each site: less than k ≈ 15 links

• Adjacency matrix: O(n2) entries!

• Rat leaves a room with prob. p

• n total states

• Each state has 2− 3 neighbors

• Adjacency matrix has O(N) non-zeros (� N2)

• We must store matrices in a compact form!

25 / 30



Sparse matrices

Rat transition matrix (s = 1− 2p):

s p 0 · · · 0

p s p
. . .

...

0
. . .

. . .
. . . 0

...
. . . p s p

0 · · · 0 p s



• The ‘list of entries’ and ‘adjacency list’ structures work here

• Adjacency list is more compact; list of entries is easier

• (For precise details, see ‘compressed row/column format’)

26 / 30



Sparse matrices

How to do this in python...? The ‘general’ way:

1) First, we need the ‘list of entries’ form:



s p 0 · · · 0

p s p
. . .

...

0
. . .

. . .
. . . 0

...
. . . p s p

0 · · · 0 p s



# initialize row, col, val
row[0:2] = 0
col[0:2] = [0, 1]
val[0:2] = [s, p]
pos = 2
for j in range(n-1):

row[pos:pos+3] = [j, j, j]
col[pos:pos+3] = range(pos, pos+3)
val[pos:pos+3] = [p, s, p]

#... also last row ...

2) Next, use the sparse matrix class in scipy.sparse

from scipy import sparse

# given row, col, val, n
mat = sparse.coo_matrix((val, (row, col)), shape=(n, n))

27 / 30



Sparse matrices

What do we want to do with sparse matrices? Examples:

• Slices of rows/columns, submatrices etc.

• Matrix-vector products (important!) Ax

• Calculating eigenvalues

• Solving linear systems Ax = b

Sparse linear algebra deals with (good) algorithms to these.

scipy.sparse implements efficient methods for sparse matrices...

sparse_mat = sparse_coo(...) # sparse matrix
dense_mat = sparse_mat.toarray() # 2d array version
x = some_vector()

y = dense_mat.dot(x) # regular multiply
y = sparse_mat.dot(x) # uses sparse multiply

28 / 30



Sparse matrices

Important point:

The ”COO” (list of entries) format is not efficient for most calculation!
The matrix should be converted to an efficient form before use.

• There are tradeoffs between efficiency and flexibility

• Formats include ‘compressed column/row’ (scipy: csc and csr)

• Conversion is typically fast between formats
(but you can also construct each type directly)

Typical use: Construct COO (simple), then convert

#Conversion between types:
mat = sparse.coo_matrix(...) # in `list of entries' form
mat.tocsr() # convert to compressed row
mat.tocsc() # convert to compress column

mat.toarray() # convert to *dense* 2d array

29 / 30



Sparse matrices

Special case: banded matrix, e.g. tridiagonal:

A =



a1 b1 0 · · · 0

c2 a2 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . cn−1 an−1 bn−1

0 · · · 0 cn an


You can store this just as an n × 3 array!

# sketch of data storage:
a = [[a1, b1, 0],

[c2, a2, b2],
...
[0, cn, an]]

(In general, k diagonals =⇒ n × k array)

30 / 30


