Math 260: Python programming in math

Fall 2020

Searching the internet:
PageRank and Markov chains

Graphs

Websites linked to https://www.mathworks.com

N

Source: https://www. mathworks. com/help/matlab/math/ use-page-rank-algorithm-to-rank-websites. html

https://www.mathworks.com/help/matlab/math/use-page-rank-algorithm-to-rank-websites.html

A graph is a set of vertices V connected by edges.

e The ‘neighbors’ of v are the vertices linked from v

The ‘edge set’ E is the set of pairs (v, w) (edges from v € V to w € V)

a directed graph distinguishes between edges from v — w and w — v
(e.g. links from web-pages)

Oua®
(D/—\@ \@ @’é_—.\

Key question: how do we represent a graph in code?

Oua®,
®/—\@ \@ @é:@

First, number the vertices 0,--- ,N — 1. Then...
Option 1: Just list the edges... Option 2: Create an adjacency list
e Create a list of edges (v;, v}) e Map k to neighbors of vi
(tuples) e Fast to look up all neighbors of v
e Not very efficient! e Just a list of ‘lists of neighbors’
directed example: # directed example:
edges = [[1,2], adj_list = [[1,3], #0->1, 3
[2,1], [2], #1->2
(2,01, [0,1]
f0,11, 01

[0,3]] adj_list[0] # neighbors of vert. 0

o3

©—®
\ 2B\
® O

Another representation is the adjacency matrix A:

a,-j:{

0 otherwise

Adjacency matrices for the two graphs above:

0 1
10
A=1(1 1
1 0
0 0

1

1
0
0
0

if vi links to v;

o= oo

O = O

e.g. first row of A; = v linked to 1,2,3 (not 0 or 4)
e Important matrix in graph theory!

e Typically sparse (mostly zeros)

[Nl o]

O OO

e The adjacency list gives the non-zero entries in each row of A

Weighted graphs

A weighted graph associates a number w;; to each edge vi — v;.
e e.g cities connected by roads, weight = length of road
e We can keep track of this along with the adjacency matrix/list

A weighted adjacency matrix has the weight w; in the (i,/) entry, e.g.

0.2
—-)@ 0 08 0 0.2

0.8 : |0 o0 47 o0
/1 5“'3 A= 15 03 0 0
@4'_ 0 0 0 0
e
4

Now onto the object of interest here...

Discrete Markov chains

Consider a bee flying through a house with three rooms.
e Label the rooms 0,1, 2; you also open a window to the outside (room 3).
e The bee moves from one room to another at random each minute
e It chooses to go from room r; — r; with probability pj;.

We can represent this process with a weighted directed graph, e.g.

0.5/\ |
free! 05 04 0 01

0 05 05 0
’// ‘\07
0.5

07 03 O 0
0 0 0 1

® .
Y

e The matrix P is the transition matrix - it describes the probability of
transitioning from one place to the next.

e A process of this type is called a (discrete) Markov chain.

Discrete Markov chains

0.5
/\ free! 05 04 0 0.1

0.1

Okua©) p_|0 05 05 0
OW \Yj \/ 07 03 0 0

0.5
0.3 1

O

0.5

e It's easy to simulate directly given the adjacency list

e Suppose we have the adjacency list adj and a probability list probs so
that, e.g. adj[0] — [0,1,3] and probs[0] — [0.5, 0.4, 0.1])

while pos != 3: # (while not free)
r = random.uniform(0, 1)
p = probs[pos] # get list of transition probs.
k=0
total = p[0]
while r > total:
k+=1
total += p[k]
pos = adjlpos] [k] # go to selected neighbor

Generate x € (0,1), check if x > p[0], then p[0] < x < p[0] + p[1] and so on.

Discrete Markov chains

For more on the ‘escape time’ for the bee, see a probability course...
Let's now consider a variant. Suppose the window is closed...

0.5/\
@ 05 05 O
0.5 P=]10 05 05
//5.5 N7 07 03 0
= @
-
0.5
This Markov chain is called recurrent - the bee will wander in the chain forever.

e The key question: After a long time, what is the probability s; that the
bee will be in room j?

e This is independent of the bee's starting position

e Call this the ‘stationary distribution’ s.

Discrete Markov chains

A nice probability argument gives us a formula. Let
s; = probability the bee is in room j after a long time

and let p; be the transition probability for i — j.

e If the bee is in room j, it must have come from room i/, so

prob(bee in room j) = Z prob(bee in room i the step before) - pj

i

e But after a long time, the LHS is just s; and the prob in the sum is s;, so

Sj = E SiPij-
i

In matrix form, the result is that
s=Ps.

That is, s is an eigenvector of PT with eigenvalue 1.

Discrete Markov chains

To summarize the main result...
e Let P be the transition matrix for a recurrent Markov chain
- pij is the probability to transition from i — j
- There are no ‘dead ends’: any vertex can be reached from any other
e Let s; be the probability to be in vertex j after a long time (as a vector: s)

Then the vector s (the stationary distribution) is given by
P's=s

i.e. an e-vector of PT with e-value 1. Often we write s as a row vector, so

n
I
’d
o

Theorem

A special case of the Perron-Frobenius theorem says that
e)\ =1 is the largest eigenvalue of P”

e The eigenvector is unique (if scaled so that) = 1)

To find s, we solve an eigenvalue problem for the largest eigenvalue of P7.

Discrete Markov chains

05 05 0
0-5/\ P=105 00 05
© 07 03 0

0.5
;//3.5 N7 0.5 05 0.7
0.3 @ PT = |05 00 03
ey 00 05 0

0.5

Eigenvalues of P are 1 and (—5 + iv/15)/20 (not needed)

The eigenvector A =1 is s = (0.531,0.31,0.16) (scale so " =1)

PTs=s
0.5 0.5 0.7 [0.531 0.531
0.5 0.0 0.3 031 =031
00 05 O 0.16 0.16

so if you want to avoid the bee, you should be in room 2.

We really need a better way to find the eigenvector!

The power method

The goal is to find the largest eigenvalue (in magnitude) of an n X n matrix A.

First, an example. Consider

3 1 1 1
A:[O 2],)\123,V1=|:0:|,)\2:2,V2:|:_1:|

Suppose we pick a starting vector, say, x = (6, —1). In the eigenvector basis,
X = bvy + va.
Now we repeatedly multiply by A on the left...
Ax=5-(3vi)+ (2-w2)
A’x =5 (3%v1) + (2°w2)
Afx = 5. 3kv1 + 2ka for k > 1.
The first term grows fastest, so it follows that
A*x ~ 5 - 3%y 4 (smaller)

i.e. applying A repeatedly makes all but the vi term smaller and smaller.

The power method

Now for the general case... For simplicity, assume that:
e A has n eigenvalues with [A1] > |A2] > -+ > |\
e A has eigenvectors vy, - - - , v, that form a basis for R"

Pick any vector xo and consider the simple iteration
Xk = AXp—1

Then
xx = Afxg = cl)\’fvl + (smaller terms).

e We are free to rescale x at each step so the first term stays the same size:

o Ax
[| Axk—1]]

where ||w/|| is the magnitude of a vector: ||w| = /w? + -+ + wZ.

e After doing so, the result is

Xk

Xk ~ cv1 + (terms that go to zero).

where c is such that |cvy| = 1.

e To get the eigenvalue, see the next slide...

The power method: finding eigenvalues (aside)

How do we get the eigenvalue? We want a ratio like
X
1y
Xk
but that doesn’'t work since x, is a vector. Instead:
e Pick a vector w
e Take a dot product with w to get a scalar
e Take the ratio of these dot products:
W - Xkt1
gy = ——m
W - Xi
From the expression
X ~ C1>\,1(V1
we can show that the ratios r, approach A;.
A better choice (effectively w = x) is the Rayleigh quotient
_ Xk (Axk)
Xk * Xk

— A1 as k — oo.

Since we chose xx to be a unit vector, the denominator vanishes, leaving

Fe = Xk * (Axk).

The power method

To summarize: suppose A is n X n with a largest eigenvalue A; in magnitude.
To find it and the eigenvector,
e Pick a random starting vector xo

e Compute (with |[|w|| = /w? + -+ 4+ wZ.) the iteration
Xk = AXk—l/HAXk—IH, He = Xg * (Axk)

Then ri — A1 and xx converges to an eigenvector of \j.

A simple python ‘sketch’:

def power_method(a) : Using numpy (sketch):
n = a.nrows # number of rows
x = # (set to random vector)
while condition:
q = multiply(A, x)
r= dot_prod(x, q) #x TAx q = mp.dot(a, %)
x = g/norm(q) # normalize r = x.dot(q)
return x, r x = q/sqrt(q.dot(q))
return x, r

def power_method(a) :
n = a.shape[0]
x = #...set to random np.array
while condition:

def norm(x) :
return sqrt(sum((v¥*2 for v in x)))

The ‘condition’ needs to be specified here: One can stop when the r is close
enough to converged (e.g. when |rk — rc_1] is small enough).

For Markov chains

Now back to Markov chains...
e We want to find the eigenvector for A\; = 1 of the matrix A= P"
e)\; is known to be the largest

The fact that A1 = 1 makes life easier! We have

Afxg ~ vy + -+ = A ~ a1 + (small).

To be safe, it may be important to ensure the ‘eigenvector’ is a vector of
probabilities, i.e.

n
Ixills = 1 where [lwl[x == [w].
j=1
This is satisfied if ||xo|l1 = 1, but rounding error may cause small deviations.
Example code:

def stationary(p, steps):
n = a.shape[0]
x = #...set to random np.array, pos. values
x = x/sum(x) # normalize
for it in range(steps)
x = np.dot(a, x)
x = x/sum(x) # to be safe...
return x

PageRank

Finally, we can apply this idea to a search engine.

Consider a set of N web pages with (directed) links.
e Let A be the adjacency matrix for this directed graph
e Not all nodes have to be reachable from all others!
We define a Markov process by imagining a ‘web surfer’:
e At each step, the surfer picks a link at random, all with equal probability
e Let ¢; denote the number of outgoing links from page i
The transition probabilities are then
aj

Pij:?

i

and we must solve
T
P's =s.

This would be plugged into the power method.

But there's a catch! The surfer needs somewhere to go if they get ‘stuck’ in a
part of the graph with no links back.

PageRank

A simple fix - add artificial links to all pages.
e The surfer goes to a random page with probability 1 — «
e Take o to be near one (but not equal to one)

Then the modified transition probability is

. aﬂ n 11—«
pU - Ei N
Thus we must solve
Ms =s

for the eigenvector s, where M is the ‘PageRank’ matrix

1-a)

M=aP" + (N E, E = matrix of all ones.

Note that the adjacency list adj for A, ¢; is just the size of adj[i].

PageRank

Let's return to the mathworks.com example...
Websites linked to https://www.mathworks.com

This data set has 100 pages, stored in a .txt file as an adjacency list, e.g.

14, 12345678910 11 12 13 14
15, 1
16, 1 16 17 18 19 20

PageRank

A small example:

0 1/2 0 1/2
p_ 0 0 1 0
@ @ ~11/3 1/3 0 1/3
AV
= 1ol 111
_ pr, 1«
M=aP+==11 1 1 1
1 1 1 1
Applying the power method with M and @ = 0.9 we get
Ms=s, s~ (0.15,0.22,0.42,0.22)"
@_»@ This ranks the websites by a
measure of how connected they
/ \ //(are to the pages.
— Page 2 is highest ranked!

Aside: what do the iterates mean?

An aside: given a transition matrix P, the power method calculates
xo, x1=P'xo, x2=(P")’xo," -

for a starting distribution xg, and we have
kli)rT;O(PT)kxo =s (stationary dist.)

But what do the iterates mean? We have that

P(in state j at step 1) = Z P(in state i at step 0)pj;.

i

Let xk = (P7)*xo (the power method iterate)

The formula says that

(x1); = (P"x0); = P(in state j at step 1)

e so x; is the distribution at step 1 (given xo)

e ... and x is the distribution at step k (given xo)

Aside: what do the iterates mean?
Example (from before, with o = 1):
0 1/2 0 1/2

p_|0 0 1 0
=113 1/3 0 1/3 ‘<—‘
0 0 1 0
— (0.25,0.25,0.25, 0.25)

Xo
After one step... @ > ‘

x; = [0.083,0.208,0.5 ,0.208]

-~
and so on... > @

[0.167,0.208,0.417,0.208]

X2

xg = [0.143,0.214,0.429,0.214] / //
x10 = [0.143,0.215,0.428,0.215] '
()=
—
(converges to s as k — ocol) @

PageRank

What about ‘dead ends'?
e Cases matter for the model (should one-way links be important?)
e A few trategies exist.,, (not detailed here)

e Example: (o = 0.6)

Oea©
/N -
S @/ P

The issue: M7 is no longer a transition matrix! A surfer that goes to the dead
page disappears. The largest eigenvalue is less than one.

0.1 01 03 0.1
04 0.1 03 01
0.1 07 01 0.1
04 0.1 03 01

Qwr+ O O
O wim ONI-
O O = O
QO wir ONI-
<
Il

e Interpretation: M*x — 0 as k — oo - all surfers end up vanishing
e Good news: the power method still works!

e x /= sum(x) normalization is now required

Result for above: A\; & 0.771 and s & (0.161, 0.255, 0.330, 0.255)

Sparse matrices

Websites linked to https J//www.mathworks.com

0151 - n-1

e Rat leaves a room with prob. p
e Graph of n = 100 websites

e Each site: less than k = 15 links

e n total states

e Each state has 2 — 3 neighbors
e Adjacency matrix: O(n?) entries!

e Adjacency matrix has O(N) non-zeros (<& N?)

e \We must store matrices in a compact form!

Sparse matrices

Rat transition matrix (s =1 — 2p):

s p 0 ... 0 32(1_1—217
p s p »)
0 0 ‘—c‘—’
: . p s p
-« «— -
0o -~ 0 p s 0151115 - In-1

e The 'list of entries’ and ‘adjacency list' structures work here
e Adjacency list is more compact; list of entries is easier

e (For precise details, see ‘compressed row/column format’)

Sparse matrices

How to do this in python...? The ‘general’ way:

1) First, we need the ‘list of entries’ form:

01 # initialize row, col, val
row[0:2] = 0O
s . : col[0:2] = [0, 1]
p p Co vall0:2] = [s, pl
: : : 0 pos = 2
for j in range(n-1):
row[pos:pos+3] = [j, j, jl
col[pos:pos+3] = range(pos, pos+3)
val[pos:pos+3] [p, s, p]
-0 o 0 p - #... also last row ...

2) Next, use the sparse matrix class in scipy.sparse

from scipy import sparse

given row, col, val, n
mat = sparse.coo_matrix((val, (row, col)), shape=(n, n))

Sparse matrices

What do we want to do with sparse matrices? Examples:
e Slices of rows/columns, submatrices etc.
e Matrix-vector products (important!) Ax
e Calculating eigenvalues
e Solving linear systems Ax = b

Sparse linear algebra deals with (good) algorithms to these.

scipy.sparse implements efficient methods for sparse matrices...

sparse_mat = sparse_coo(...) # sparse matrix
dense_mat = sparse_mat.toarray() # 2d array version
x = some_vector()

dense_mat.dot(x) # regular multiply
sparse_mat.dot(x) # uses sparse multiply

y
y

Sparse matrices

Important point:

The "COO” (list of entries) format is not efficient for most calculation!
The matrix should be converted to an efficient form before use.

e There are tradeoffs between efficiency and flexibility
e Formats include ‘compressed column/row’ (scipy: csc and csr)

e Conversion is typically fast between formats
(but you can also construct each type directly)

Typical use: Construct COO (simple), then convert

#Conversion between types:
mat = sparse.coo_matrix(...) # in “list of entries' form

mat.tocsr() # convert to compressed row
mat.tocsc() # convert to compress column

mat.toarray() # convert to *dense*x 2d array

Sparse matrices

Special case: banded matrix, e.g. tridiagonal:

a1 b 0 0
@ a by :
A: 0- 0

: . Cn—1 an—1 bn—l
o --- 0 Cn an

You can store this just as an n x 3 array!

sketch of data storage:
a = [[a1, b1, 0],
[c2, a2, b2],

[0, cn, anl]

(In general, k diagonals = n X k array)

