
Math 260: Python programming in math

Fall 2020

Sparse matrices (briefly):
Banded systems

1 / 15



Finite differences

Here’s an example of a linear algebra problem (with some ODE context)...

Suppose we want to solve, for y(x), the boundary value problem

y ′′ − y = x , y(0) = 1, y(1) = e − 1

which has the solution y(x) = ex − x .
Unlike an initial value problem, we can’t just ‘start’ at an endpoint!

An approach is to approximate the function at mesh points xj ...

...and use the approximation

y ′′(x) ≈ y(x + h)− 2y(x) + y(x − h)

h2

for the second derivative.
2 / 15



Finite differences

y ′′ − y = x ,

y(0) = 1, y(1) = e − 1

Let xj = jh be the mesh points (h = 1/N). Then, at xj ,

yj+1 − 2yj + yj−1

h2
− yj ≈ xj

The formula for our approximation uj is then

uj+1 − 2uj + uj−1 − h2uj = h2xj , j = 1, · · · ,N − 1

for the ‘interior’ points.
At the endpoints, we impose boundary conditions

u0 = 1, uN = e − 1

3 / 15



Finite differences

To summarize, we have the problem/appproximation

y ′′ − y = x ,

y(0) = 1, y(1) = e − 1

For j = 1, 2, · · · ,N − 1,

uj+1−(2 + h2)uj + uj−1 = h2xj

u0 = 1, uN = e − 1

Example: With five mesh points 0, 0.2, · · · , 1 we have h = 0.2 and

u2 − (2 + h2)u1 + 1 = h2x1

u3 − (2 + h2)u2 + u1 = h2x2

e − 1− (2 + h2)u3 + u2 = h2x3

which is the linear system2 + h2 −1 0
−1 2+h2 −1
0 −1 2+h2

u1u2
u3

 = −h2

0.2
0.4
0.6

−
 1

0
(e − 1)



4 / 15



Finite differences

uj+1 − (2 + h2)uj + uj−1 = h2xj , j = 1, · · · ,N − 1

u0 = uN = 0.

In general, the system to solve has the form

2 + h2 −1 0 · · · 0

−1 2 + h2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 2 + h2 −1

0 · · · 0 −1 2 + h2




u1
u2
...

uN−2

uN−1

 = −h2


x1
x2
...

xN−2

xN−1

−

u0
0
...
0
uN



• The matrix has three diagonals (around the center), called tri-diagonal

• Matrices like this how up often when data relates only to adjacent data

• We can solve using Gaussian elimination!

But GE takes O(n3) work... but only ≈ 3n non-zeros - can we do better?

5 / 15



Finite differences

The answer is yes - we can get O(n) time - extremely fast!

Now forget about the ODE context and just consider trying to solve

Ax = b, A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


Let’s first look at an example, where we use GE to reduce

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


and get the LU factorization (A = LU).

6 / 15



Finite differences

Here entries of L are noted in red (in the zeroed entries).

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒ A =


2 −1 0 0

−0.5 2.5 −1 0
0 −1 2 −1
0 0 −1 2


(Zero out (2, 1) entry using R2 ← R2 + 0.5R1).
From here, we use ‘lazy’ notation: X denotes a value we could compute.

2 −1 0 0
−0.5 2.5 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒


2 −1 0 0

−0.5 2.5 −1 0
0 X X −1
0 0 −1 2


(Zero out (3, 2) entry using R3 ← R3 + (1/2.5)R2.

2 −1 0 0
−0.5 2.5 −1 0

0 X X −1
0 0 −1 2

 =⇒


2 −1 0 0

−0.5 2.5 −1 0
0 X X −1
0 0 X X


Done! Notice the mostly-zero structure has greatly simplified things...

7 / 15



Tridiagonal matrices

Thus we have found that the result looks like (X being some numbers)

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 =⇒


2 −1 0 0
X X −1 0
0 X X −1
0 0 X X



=⇒ A = LU where L =


1 0 0 0
X 1 0 0
0 X 1 0
0 0 X 1

 , U =


2 −1 0 0
0 X −1 0
0 0 X −1
0 0 0 X


This process generalizes to the N × n tri-diagonal matrix, where:

• We only need to zero out one entry below the diagonal for each column

• The upper-diagonal never changes

• Both L and U have one diagonal other than the center (‘bi-diagonal’)

8 / 15



Tridiagonal matrices

Now let’s derive an efficient Gaussian elimination for a tridiagonal matrix:

q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


=⇒



d1 r1 0 · · · 0

`2 d2 r2
. . .

...

0 `3
. . .

. . . 0
...

. . .
. . . dn−1 rn−1

0 · · · 0 `n dn


We want to find the `’s and d ’s.
First, d1 = q1 trivially. Then the first step of GE gives

`2 =
p2
d1

, d2 = q2 − `2r1, (multiplier: `2)

Then for the next step after that (and so on),

`3 =
p3
d2

, d3 = q3 − `3r2,

`j =
pj
dj−1

, dj = qj − `j rj−1, j = 2, 3 · · · , n.

Thus we can solve for variables in the order

`2 → d2 → `3 → d3 → · · · `n → dn.

9 / 15



Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux = y .

Both solves are quite fast - forward/back substitution also simplify!

Forward solve: we have
1 0 · · · 0

`2 1
. . .

...
...

. . . 1 0
0 · · · `n 1



y1
y2
...
yn

 =


b1
b2
...
bn

 =⇒ yj + `jyj−1 = bj

so y is given by

y1 = b1, yj = bj − `jyj−1, j = 2, · · · , n.

10 / 15



Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux = y .

Both solves are quite fast - forward/back substitution also simplify!

Backward solve: Similarly,
d1 r1 · · · 0

0 d2
. . .

...
...

. . .
. . . rn−1

0 · · · 0 dn



x1
x2
...
xn

 =


y1
y2
...
yn

 =⇒ djxj + rjxj+1 = yj

so we can solve for x by

xn = yn/dn, xj =
yj − rjxj+1

dj
, j = n − 1, n − 2, · · · , 1

11 / 15



Tridiagonal matrices

In summary, we have an efficient Gaussian elimination for solving Ax = b where

A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


=⇒



d1 r1 0 · · · 0

`2 d2 r2
. . .

...

0 `3
. . .

. . . 0
...

. . .
. . . dn−1 rn−1

0 · · · 0 `n dn


This method is sometimes called the Thomas algorithm.

• (initialize) Set d1 = q1 and y1 = b1.

• (LU and fwd. solve) Then for j = 2, · · · , n:

`j = pj/dj−1, dj = qj − `j rj−1

yj = bj − `jyj−1.

• (Back solve) Finally set xn = yn/dn and for j = n − 1, n − 2, · · · , 1:

xj = (yj − rjxj+1)/dj .

Note that you can do the Ux = y solve in parallel with the LU.
12 / 15



Tridiagonal matrices

A tridiagonal matrix should be stored in banded form:

A =



q1 r1 0 · · · 0

p2 q2 r2
. . .

...

0 p3
. . .

. . . 0
...

. . .
. . . qn−1 rn−1

0 · · · 0 pn qn


is stored as


0 q1 r1
p2 q2 r2
...

...
...

pN−1 qN−1 rN−1

pN−1 qN−1 0



Pay attention to:

• The zeros - not part of the data (correct code should never read them!)

• Conventions may differ on the unused zeros (‘padding’)

• Python needs indexing from zero here (and for the algorithm...) (Also
indices have to be shifted down by one for python...)

We store only 3n numbers - much more feasible than n2.

13 / 15



Linear algebra in numpy

Features:

• Most linear algebra stuff is in scipy.linalg

• Basic features are in numpy itself

Slices and such:

• a.shape is a tuple of A’s dimensions

• Slices in numpy create ‘views’ to the array

they are references to that data

• Slices can be used to get blocks of a matrix...

Useful ‘constructors’:

• arr.tolist() returns a ‘list version’ of arr

• ‘Copy constructor’ b = np.array(a) (makes a new array b!)

• np.zeros(shape): zero matrix

• np.ones: matrix of ones

• np.eye(n): identity matrix

14 / 15



Linear algebra in numpy

See example code for the finite difference method. We solve

y ′′ − q(x)y = f (x), y(0) = ya, y(b) = yb

by solving the linear system In general, the system to solve has the form

2 + h2 −1 0 · · · 0

−1 2 + h2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 2 + h2 −1

0 · · · 0 −1 2 + h2




u1
u2
...

uN−2

uN−1

 = −h2


h2x1 − u0

h2x2
...

h2xN−2

h2xN−1 − uN

 (FD)

breaking up into the following functions:

a) build fd that creates A (as an array bands) and rhs as in (FD)

b) trisolve(bands, rhs): solves Ax = rhs, with A tri-diagonal

• A solve ‘main’ function that:

- gets the Ax = rhs system from (a)...

- then solves it using (b),

- and finally,it adds back in the endpoints u0, uN and plots.

15 / 15


