Math 260: Python programming in math

Fall 2020

Sparse matrices (briefly):
Banded systems



Finite differences

Here's an example of a linear algebra problem (with some ODE context)...

Suppose we want to solve, for y(x), the boundary value problem
Y'—y=x, y(0)=1 y(l)=e-1
which has the solution y(x) = * — x.

Unlike an initial value problem, we can't just ‘start’ at an endpoint!

An approach is to approximate the function at mesh points x;...

...and use the approximation
(x+h) = 2y(x) + y(x = h)

y
y'(x) = =

for the second derivative.



Finite differences

y' —y=x
y(0)=1, y(1)=e~-1 f f T T

Let x; = jh be the mesh points (h = 1/N). Then, at x;,

Yir1 — 2y + ¥

L“ﬁgif—%%&

The formula for our approximation u; is then
uj+172uj+uj_1—h2uj:hzxj’ j:]-,"',N*].

for the ‘interior’ points.
At the endpoints, we impose boundary conditions

U0:1, uN:e—l



Finite differences

To summarize, we have the problem/appproximation

Forj=1,2,--- /N -1,

" .
y oy=x Uj+1—(2 + hz)uj +ui1 = h2Xj
y(0)=1, y(1)=e-1
w=1 uy=e—-1

Example: With five mesh points 0, 0.2,--- ,1 we have h = 0.2 and
th— 2+ h)u+1=hx
s — (24 h)wm 4 n = hx
6—1—(2+h2)U3+UQ = h’x3
which is the linear system

24 m -1 0 u 0.2 1
-1 24K -1 w| =—hr 04| - 0
0 -1 24k |u 0.6 (e —1)



Finite differences

w1 — 2+ Py +ur = bx, =1,

Uo:UNZO.

In general, the system to solve has the form

2+ h?
-1
0

-1
2+ K
-1

0
-1

2+ K
-1

0

0
-1

2+ K]

un—2
un-—1

SN —1
X1
X2
XN—2
XN—1

un

e The matrix has three diagonals (around the center), called tri-diagonal

e Matrices like this how up often when data relates only to adjacent data

e We can solve using Gaussian elimination!

But GE takes O(n®) work... but only ~ 3n non-zeros - can we do better?



Finite differences

The answer is yes - we can get O(n) time - extremely fast!

Now forget about the ODE context and just consider trying to solve

-ql n 0 N 0

P2 a2 r

Ax = b, A= |0 P3 0
dn—1 rn—1
0o .- 0 Pn Gn |

Let's first look at an example, where we use GE to reduce

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

A=

and get the LU factorization (A = LU).



Finite differences

Here entries of L are noted in red (in the zeroed entries).

2 -1 0 0 2 -1 0 0

1 2 -1 o0 05 25 -1 0

A=l o -1 2 1| = A= 0 -1 2 -1
0 0 -1 2 0 0 -1 2

(Zero out (2,1) entry using R, < R, + 0.5Ry).
From here, we use ‘lazy’ notation: X denotes a value we could compute.

2
-0.5
0
0

(Zero out (3,2) entry using R3 < Rz + (1/2.5)R>.

-1
2.5
-1

0

0
-1
2
-1

2 -1 0
-05 25 -1
0 X X
0 0 -1

0]

0
-1

0]

0
-1

2_

2_

2
-0.5
0
0

-1 0
25 -1
X X
0 -1
-1 0
25 -1
X X
0 X

o
0
-1
X_

Done! Notice the mostly-zero structure has greatly simplified things...



Tridiagonal matrices

Thus we have found that the result looks like (X being some numbers)

2 -1

-1 2

A= 0 -1

0 0

— A= LU where L =

oo X H

o X = o

X = O o

o O o

1

2
X
0
0

-1 0 0
X -1 0
X X -1
0o X X

2 -1 0 0

0 X -1 0

U= 0 0o X -1

0 0 0 X

This process generalizes to the N x n tri-diagonal matrix, where:

e We only need to zero out one entry below the diagonal for each column

e The upper-diagonal never changes

e Both L and U have one diagonal other than the center (‘bi-diagonal’)



Tridiagonal matrices

Now let's derive an efficient Gaussian elimination for a tridiagonal matrix:

rq1 rn 0 0 7 rdq r 0 0 7

P2 q2 r lo d> r

o pz 0| = |0 & . . 0
Gn—1  In—1 R

L0 .- 0 Pn qn | LO - 0 ln dn |

We want to find the ¢'s and d's.
First, di = q1 trivially. Then the first step of GE gives

U = (%7 b = qx — 62"1, (multiplier: fz)
Then for the next step after that (and so on),
P3
==, da=qs—/¢
3T 40 BT @b
0= P d=qg —0:r i=273....n
1T Ay j = qj — Ljlj-1, ] =4 , N

Thus we can solve for variables in the order

b > b = b3 —d3s — -y — dy.



Tridiagonal matrices

Finally, to solve Ax = b we solve

Ly = b, Ux=y.
Both solves are quite fast - forward/back substitution also simplify!

Forward solve:

: we have
i 0 --- 0 i by
o1 e b2
2 : S| = by = b
: .1 0 : :
0 [n 1 n bn

so y is given by

.yl:b17 yj:bj_gjyjfly _]-:27"',l7.



Tridiagonal matrices

Finally, to solve Ax = b we solve
Ly = b, Ux=y.

Both solves are quite fast - forward/back substitution also simplify!

Backward solve: Similarly,

b n . 0

X1 1
0 d - : X2 Y2
=1 = dxtixin=y;
: ST : :
o --- 0 dn Xn n
so we can solve for x by
Yi = X+t

Xn :}/n/dny Xj =



Tridiagonal matrices

In summary, we have an efficient Gaussian elimination for solving Ax = b where

rq1 rn 0 0 7 rdi n 0 0 7
[22) q2 r &) d> r
A=1|o ps . 0| = |0 e . 0
. qn—1 ra—1 P A
LO .- 0 Pn an | Lo --- 0 ln dn |

This method is sometimes called the Thomas algorithm.
e (initialize) Set di = g1 and y1 = bi.
e (LU and fwd. solve) Then for j =2,--- ,

U= pj/di—1, dj=q; —{ir

i = bj — fiyj-1.

e (Back solve) Finally set x, = y»/dn and for j=n—1,n—2,--- 1

xi = (yj — rixj+1)/d;.

Note that you can do the Ux = y solve in parallel with the LU.



Tridiagonal matrices

A tridiagonal matrix should be stored in banded form:

q1 n 0 e 0
- : 0 a
P2 g n . : p2 .
A= 1|0 p3 0 is stored as :
qn—1 rn—1 PN-1 an-—1
PN-1  gn-1
NUBEERE 0  pn Gn

Pay attention to:

n
rn

'n—1

e The zeros - not part of the data (correct code should never read them!)

e Conventions may differ on the unused zeros (‘padding’)

e Python needs indexing from zero here (and for the algorithm...) (Also

indices have to be shifted down by one for python...)

We store only 3n numbers - much more feasible than n?.



Linear algebra in numpy

Features:
e Most linear algebra stuff is in scipy.linalg

e Basic features are in numpy itself

Slices and such:
e a.shape is a tuple of A's dimensions
e Slices in numpy create ‘views' to the array
they are references to that data

e Slices can be used to get blocks of a matrix...

Useful ‘constructors’:
e arr.tolist() returns a ‘list version’ of arr
e ‘Copy constructor’ b = np.array(a) (makes a new array b!)
e np.zeros(shape): zero matrix
e np.ones: matrix of ones

e np.eye(n): identity matrix



Linear algebra in numpy

See example code for the finite difference method. We solve

Y —a(x)y = f(x),

y(0) = ya,

}’(b) =Y

by solving the linear system In general, the system to solve has the form

r2 + h?
-1

0

0

-1
2 4 h?

-1

0

-1

0

24+ h?

-1

0

0

-1

2+ h?]

breaking up into the following functions:
build_fd that creates A (as an array bands) and rhs as in (FD)
trisolve(bands, rhs): solves Ax = rhs, with A tri-diagonal

a)
b)

A solve ‘main’ function that:

- gets the Ax = rhs system from (a)...

- then solves it using (b),

uy h?x1 — ug
up h2X2
=—h (FD)
uy-—2 s h2xpy_2

- and finally,it adds back in the endpoints ug, uny and plots.



